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Abstract. Leta, b andn be integers witm > 3. We show that, in the sense of natural density, almost

all integers represented by the binary foum™ — by™ are thus represented essentially uniquely.

By exploiting this conclusion, we derive an asymptotic formula for the total number of integers
represented by such a form. These conclusions augment earlier work of Hooley concerning binary
cubic and quartic forms, and generalise or sharpen work of Hooley, Greaves, and Skinner and Wooley
concerning sums and differences of twith powers.
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1. Introduction

The problem of determining which integers are represented by a given binary form,
and the number of such representations, is one with along and distinguished history
extending back beyond the seminal work of Gauss concerning quadratic forms. In
1909, Thue [23] proved that whefi(z,y) € Z[z,y] is a binary form of degree

k > 3, andF is irreducible overQ, then there are only finitely many integral
solutions to the equatiof'(z,y) = n. Evertse [6], and Bombieri and Schmidt
[2], have sharpened this conclusion, and thus the latter number of solutions is
now known to beO(kt«(™)), wherew(n) denotes the number of distinct prime
divisors ofn (see [22] for later developments). When the degreE & large, and

n IS not too small in terms of’, it is conjectured that wheneveris represented

in the formn = F(z,y), with =,y € Z, then this representation is essentially
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unique, in the sense that all primitive representations afe generated from a
single solution by the group of automorphismsfafSuch numerical evidence as
is available supports this conjecture. Moreover Hooley [11] has shown that in the
sense of natural density, almost all integers represented by an irreducible binary
cubic form are thus represented essentially uniquely, with a similar conclusion [14]
holding for a class of quartic forms. With the exception of the examples provided
by sums of twokth powers (see [13, 21]), ho such conclusion has hitherto been
available for binary forms of higher degree. Our purpose in the present paper is to
establish this conclusion for binary additive forms, which is to say, forms of the
shapewz® — by, thereby lending credibility to the aforementioned conjecture, and
augmenting the extensive body of literature on such forms (see, in particular, [1, 7,
16, 17, 19, 20]).

In order to describe our main conclusions we require some notation. When
k is a positive integer, and and 5 are nonzero integers, lét,3 = Fy3(z,y)
denote the binary additive fori, s (z, y) = az* — By*. Denote by, the group
of automorphisms of the forn#,, 3 lying in SLx(Z), and write A(«, 3) for the
cardinality of A4,5. We say thatf;, 3 represents the integeressentially uniquely
if there exist integers andy with F,3(x,y) = n such that ifu andv are integers
with F,3(u,v) = n, then(u,v) is generated frongz, y) by the action of4,z.
Finally, whenX is a positive real number, let,(X; «, 3) denote the number of
integers with absolute value not exceedixighat are represented l#y, 3, but are
not represented essentially uniquely.

THEOREM 1.Letk be an integer exceedidgand leto and3 be nonzero integers.
Then for each positive numbagt,

k(X a, B) < X2 ke,
where the implicit constant depends at moskon «, 3, and where

. Tk-9
k= ok(2k2 — 3k + 3)°

Moreover wherk = 5, the exponeng,, may be replaced b9/470.
For comparison, the aforementioned work of Hooley [11, 14] shows that

X2/3

_ d X X830+ (g q
(loglog X )1/600° and (X0, 0) < L (1.1)

/~1’3(X1 «, /8) <

where the implicit constants may dependeandS. Hooley [14] shows, in fact,
that whena and g have opposite signs, then the exponent3Bin the latter
estimate may be replaced by1®.

https://doi.org/10.1023/A:1000270823971 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000270823971

REPRESENTATION OF INTEGERS BY BINARY ADDITIVE FORMS 17

WhenF (z,y) € Z[z,y]is abinary form of degrel > 3, Mahler [15] has shown
that the numberNz(m), of integral solutions of the inequality'(z,y)| < m
satisfies

Np(m) = Apm?* + Op p(m =), (1.2)

where A denotes the area of the s, n) € R? : |F(&,n)| < 1}. Theorem 1,

on the other hand, shows that when the fdrris additive, the number of integers
with absolute value not exceedifif which are represented #yin more than one
essentially distinct way, is(X%/*). Consequently, in the sense of natural density,
almost all integers represented 5y are thus represented essentially uniquely.
This observation contrasts sharply with the corresponding situation for binary
guadratic forms, where it is well known that most integers which are represented
have many representations. A more concrete formulation of these deliberations
is provided by the following immediate corollary of Theorem 1 and the asymptotic
formula (1.2).

COROLLARY. Suppose that the hypotheses of the statement of Thédneid.
Let S(X; «, 5) denote the number of integers, with absolute value not exceeding
X, which are represented by the binary form* — gy*. Also, letA(«, 3) denote

the area of the se{(ﬁ,n) €R? : |at® — Bn¥| < 1}. Then

Ala, B)

X2k L O(X /2 Fmtey, 1.3
A(e. f) ( ) (1.3)

S(X;a,B) =

where the implicit constant depends at moskon «, 5.

By employing Hooley’s estimates (1.1), a similar conclusion can also be inferred
for binary additive forms of degree 3 and 4. We note that in this additive situation,
the conclusion (1.3) provides a significant sharpening of a theorem 6&Endd
Mahler [4] to the effect thaf (X ; a, B) > X%*. Perhaps it is opportune, before
leaving this topic, to characterise the possible automorphism groups for binary
additive forms. It plainly suffices to consider forms:* — By* with « and 3
restricted to bek-free integers (so that neither is divisible by akth power of
a prime number). One may easily verify that the following are the only possible
automorphisms:

(i) whenk is even, the map&e, y) — +(z, +y);
(i) whena = —p, the map(z,y) — (y, z);
(i) when a = g andk is odd, the magz,y) — (—y, —z).
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Consequentlyi(a, 3) is characterised as follows.

e

1, whenk is odd andx # £,

2, whenk is odd andy = £,

Al ) =4 2 ’
8,

whenk is even andy # — (3,
whenk is even andv = — (.

In circumstances where = +0, the investigation of integers represented by
the formaz* — By* simplifies to the study of sums and differences of tvib
powers. In this situation a modification of the argument used to establish Theorem
1 yields a somewhat sharper conclusion. Write, for the sake of conciﬁ‘f(mX)
for pr(X; 1, £1).

THEOREM 2. Letk be an integer exceedir®yj and letX be a positive number.
Then

VE(X) <oy X+ k(k-1)Fe

Moreover, wherk = 3 or 5, one has

VE(X) < X2+ ve

For comparison, Hooley [12] has shown thgt(X) <. X%+, and has also
established (in [13]) that when> 5 is odd one has; (X) < X% (k—1+_ Also,
whenk > 4 is even the estimate provided by Theorem 2:p(.X) is identical
with that provided by Skinner and Wooley [21, Thm. 1.1] (see Greaves [9, 10]
whenk = 4). However, Theorem 2 provides bounds tgLr(X) which are new
and non-trivial for all everk with & > 6, and provides bounds superior to those of
Hooley [13, 14] wherk = 4, and wherk > 5 is odd.

Our proofs of Theorems 1 and 2 depend on a bound for the number of solutions
of a certain auxiliary equation. We establish this estimate in Section 4, following the
trail laid down in [21] for a simpler situation in which less precision was required.

It transpires that our argument employs a slicing procedure which entails counting
the number of points on certain affine plane curves. We bound the latter number
by appealing to an estimate of Bombieri and Pila [3], the successful application
of which requires us to establish a criterion for the absolute irreducibility of the
polynomial f (z,vy) = f(z,y; «, 3, b1, b2), defined by

fla,y) = al(z +b)F — (z = b)F) = By + b2)" — (y —b2)¥).  (1.4)

In Theorem 2.2 we completely classify the situations in which the polynomial
f(z,y) is, or is not, absolutely irreducible. Having obtained our absolute irre-
ducibility criterion in Section 2, and recorded further technical preliminaries in
Section 3, we are able in Section 4 to establish the desired auxiliary estimates.
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The proofs of Theorems 1 and 2, in Sections 6 and 5 respectively, are fairly
immediate consequences of the estimates provided in Section 4, the proof of The-
orem 1 entailing the application of Roth’s Theorem to bound the domains of the
variables.

In the remainder of this paper, constants implied by the Vinogradov symbols
< and >, and those relating to Landau’s notation, unless otherwise stated,
depend at most on a positive numlkeand upon the degree of a given binary
form.

The authors are grateful to the referee for useful comments.

2. An absolute irreducibility criterion

In this section we investigate the absolute irreducibility of the polynoyfiial v)
defined in (1.4). Our strategy is to show that if this polynomial is reducible over
C[z,y], then the corresponding curve must possess many singular points. Mean-
while, by exploiting the arithmetic of the number fields defined by the latter singular
points, one finds that(z, y) has few singular points unleas= +4 andb; = +b,.

But in the latter circumstanclz, y) is plainly reducible ove@[z, y]. We start our
investigations irC.

LEMMA 2.1. Leta, 8, b; andby be nonzero complex numbers,Adbe an integer
exceedin®, and letf(z,y) = f(z,y;«, §,b1,b2) be the polynomial defined in
(1.4). Then the projective closuré, of the affine plane curve ovér defined by
the equationf(z,y) = 0, has the following properties.

(i) The points at infinity o@ are non-singular.

(i) If f(z,y) factors non-trivially overC as f = fi1f», and if C1 and C, are
the projective closures of the curves defined fy= 0 and f» = 0
respectively, then all the intersection points@fand C, have intersection
multiplicity one.

(ii) If f(z,y) isreducible overC thenC possesses at least— 2 distinct singular
points overC.

Proof. (i) The homogenization of (x, y) has the shape
h(w,y, z) = 2braa®t — 228y" 1 + 22g(x,y, 2),

where g(z,y, z) is a homogeneous polynomial of degrée— 3. At infinity

one hasz = 0, and thus if the first partial derivatives vanish, then necessarily
x =y = 0. Butz = y = z = 0 does not define a point in the projective plane,
whence there are no singular points®at infinity. Part (i) of the lemma follows
immediately.
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(ii) By hypothesisf splits non-trivially overC asf = f1f2, andC; and(C, are
the respective projective closures of the curves definediby 0 andf, = 0.
Suppose that; andC; intersect at a poinP. Then necessaril¥ is a singular point
of C, whence from (i) one has th&tis a finite point. IfC; andC, have intersection
multiplicity exceeding one aP, then without loss of generality one has

<3f1 3f1> ) <3f2 %) 2.1)

dx Oy 0z y

at P. Note that the Equation (2.1) covers the case wiiere a singular point of
C1, in which case one has = 0. Consequently, on making use of the fact that

fi=f=0atP,
2 2 2 2
P o (22, P g (00)
Ox? ox 0y? oy
and

;xZéfy =22 (%) (83—22) '

But in view of (1.4) the polynomiab?f/dz0y is identically zero, and hence
at least one ob?f/0x? and §%f /0y? vanishes alP. Moreover, becaus® is a
singular point ofC, one also ha®f/0x = df/dy = 0 at P, and thus a simple
calculation reveals that at least onépandb, is zero, contrary to our assumptions.
It follows that wheneve€, andCs intersect, they do so with multiplicity one, and
this completes the proof of part (ii) of the lemma.

(iii) Suppose thaf (z, y) is reducible ove€, so that it splits non-trivially, let us
say asf = fif2. LetCy; andC» denote the projective closures of the curves defined
by f1 = 0 andf, = 0, respectively. Since the product of the degreef @ind > is
at least as large as dgg- 1, which isk — 2, we find from Bezout’s Theorem that
C1 and(Cs intersect in at least — 2 points in the complex projective plane, when
counted according to multiplicity. But by (i), none of these points is at infinity, and
by (ii), the intersection multiplicity at each of these points is one. Thus there are at
leastk — 2 distinct intersection points, and all of these points are singular points of
C. This completes the proof of part (iii) of the lemma.

THEOREM 2.2.Letk be an integer exceedirk)let b1 andb, be nonzero integers,
and suppose that and § are nonzerds-free integers. lix = £ andb; = +by,
then the polynomiaf defined by(1.4) is reducible inQ[z, y], and otherwisef is
absolutely irreducible irC[z, y].
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Proof. If f is not absolutely irreducible then by Lemma 2.1 there exist at least
k—2 distinct singular point® = (x, y) on the affine curve defined kfy(x, y) = 0.

Since

%ﬁ::ak«x—%bﬂk_l—(x——bﬁk_5
and

)

6—5 = BE((y +52)* 1~ (y — b)Y,

it follows that at a singular poinP we have
z+b = wl(x — bl) and Y+ by = wz(y — bz), (2.2)

wherew; andw; are(k — 1)th roots of unity, not necessarily distinct. Notice that
since theb; are nonzero, one has # 1 (i = 1,2). Thus, on solving for: andy
and substituting into the equatigiiz, y) = 0, we obtain the relation

k k—1
3<ﬁ> :(1_”ﬂ . (2.3)
G \ b2 1—w;
Moreover, in view of (2.2), the values, andw, uniquely determine andy, and
hence the Equation (2.3) must hold for at lekast 2 distinct pairs(ws,w,) of
non-trivial (k — 1)th roots of unity.

Suppose next thab; and w, satisfy (2.3), and let; andr, be the exact
multiplicative orders ofw; and w, respectively. Necessarily each of and r;
dividesk — 1. Whenm > 1, let(,, denote a primitiventh root of unity. It is
well-known (see for example, [8, Thm. 45], and its proof) thatifs divisible by
at least two distinct primes, then-1¢,, is a unit. If 1— w1 and 1— w, are both
units then the right-hand side of (2.3) is a unit. But then, since the left hand side of
(2.3) is rational, we must haver/3)(b1/b2)¥ = +1. Our hypotheses concerning
o andg therefore lead to the conclusion that= 43 andb; = £by, in which case
f is plainly reducible inQ[z, y]. Henceforth, therefore, we may suppose without
loss of generality thade and 5 are coprime, and that, = p”, a prime power. We
can also assume thas # r1, since otherwise the right-hand side of (2.3) again
becomes a unit.

Our strategy is now to show that there are fewer than2 singular points by
considering the possibilities faf andr;. If such can be established, then in view
of Lemma 2.1 it follows thaf is absolutely irreducible, and the proof of Theorem
2.2 will be complete.

Casel. Suppose that, = p® and, without loss of generality, < s. The
primep is totally ramified in the cyclotomic fiel@(w-). Letp be the prime ideal
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dividing (p) in the latter field, and lef = ord,((c/B)(b1/b2)*). We know that
ord,(1 — wp) = 1 and org(1 — w1) = p* " (see [8, Thm. 45]). Using the fact
ord,(p) = [Q(w2) : Q] = ¢(p*), and equating orders ain (2.3), we find that

dp*tp—1) = (p* " — 1 (k —1).

It follows that the power op dividing dp*~! must be the same as that dividing
k — 1, and so this uniguely determingsand thus- as well. Also,p is uniquely
determined as the only prime dividingor 3, sincep is the only prime ideal of
Q(w2) occurring in the factorisation of the right-hand side of (2.3).

If r» = 4 andr; = 2 then there are only two possible choices(tor, w;), and
this is insufficient, since there must be at lelst 2, andk — 1 is divisible by
ro = 4. Therefore we may suppose tirat> 4. But then there is an automorphism
of Q(w2)/Q which fixesw; but does not fixu, or send it to its complex conjugate.
This automorphism fixes the left hand side of (2.3) but changes the absolute value
of the right-hand side. This again is impossible.

Case2. Suppose now thab is a power of some prime different from or
is divisible by at least two distinct primes. Then-lw, is either a unit or does
not dividep in any cyclotomic field. It follows that is uniquely determined by
the equationdp” ~Y(p — 1) = k — 1. For each of the)(p") possible choices of
w1, there are at most two (complex conjugate) possibilitiesJdgrfor otherwise
the absolute value of the right hand-side of (2.3) changes. Hence there are at most
2¢(p") < 2p" — 1 choices for{ws,w>). Since bothr; andr, must dividek — 1,
we deduce that there are fewer thian 2 choices fo(ws, w»), and once more this
provides a contradiction.

3. Preliminary lemmata

Before advancing to the main body of our argument, we pause in order to record
several preliminary lemmata.

LEMMA 3.1. Fori = 1, 2, 3, suppose that); is a positive number, and that is
an integer withl < z; < @Q;. Then the equatiom 1 + a2 + azxz = 0is soluble
in integersas, az, az with (a1, az, az) = 1 and

lai] < Q;1(3Q1Q2Q:)Y? (1< i< 3).

Proof. This is the case = 3 of [21, Lem. 2.1].
LEMMA 3.2. Let p(z) and ¢(z) be polynomials with integral coefficients, of
respective degreels and r. Suppose also thdt > r and (k,r) = 1. Then the

numberN (X; p, q) of solutions of the Diophantine Equatigity) = ¢(z), with
0< z,y < X, satisfiesV(X; p,q) < XVk+e,
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Proof. This is [21, Corollary 2.3.1].

LEMMA 3.3. Letk be an integer exceedir®jleta,, a, b1 andb, be fixed positive
integers, and suppose thatand 5 are nonzerok-free integers. Letf(z,y) =
f(x,y; a, B,b1,b2) be the polynomial defined ifl.4). Also, letM(X) denote
the number of solutions of the Diophantine Equatjga,u, apv) = 0 with 1 <
u,v < X, subject, in the cases in whielhh = +4, to the additional condition
a1 + b1 75 asv + by. ThenM(X) <K X1/ (k=1)+e

Proof. Suppose either that # +3, or else thate = +5 but by # +b,.
Then by Theorem 2.2 the polynomif{u, v) is absolutely irreducible of degree
k — 1. Thus Bombieri and Pila [3, Thm. 5] implies that in this cddéX) <«
X1/(k=D+e Meanwhile, ifa: = +6 andby = +b,, then any solutiom, v counted
by M(X) satisfies the equatiog(aiu;b1) = +g(aov; +b1), whereg(z;w) =
(z+w)* — (z —w)*. Butwhenz andw are positiveg(z; w) is a strictly increasing
function of z, and thus solutions to the latter equation must satigfy = +aov.
Consequently, in this second case, there are no solutions counted By with
a1u + b1 # axv + by. This completes the proof of the lemma.

Notice that in the conclusions of Lemmata 3.2 and 3.3, the implicit constants
depend at most ahande, but are independent of the coefficients of the polynomials
defining the respective equations.

4. An auxiliary equation

It transpires that our arguments in Sections 5 and 6 below depend for their success
on certain estimates for the number of solutions of the Diophantine Equation

auf — Bv = aus — Bus, 4.1)

with variables restricted to a suitable region. By defining new variablgsz, w
by

T=u1—u2, Y=ul+u, 2z=v1—U W=+ Uy, 4.2
the Equation (4.1) may be brought into the shape

aYy(z,y) = BYy(2, w), (4.3)
where the polynomidlx(s, t) is defined by

Ti(s,t) = (t+s)F — (t — s)k. (4.4)
The object of this section is to obtain estimates for the numhgQ,H) =

M (Q,H; a, 3), of solutions of the Equation (4.3) withd = < H1, 1 <y < Q1,
1<z < Hy 1< w < Qo subject, in the cases whatie= +/3, to the additional
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conditionz + y # z + w. We divide our argument into two parts, according to the
parity of k, following closely the argument of [21, Sect. 3].

LEMMA 4.1. Letk be an even integer with > 4, and leta and 3 be nonzero
k-free integers. LeH,, H,, Q1, Q> be positive numbers, and write

M = min{|al, |B|} max{ Hy, Hz, Q1, Q2}-

Then

1/2
My(Q.Hi0,B) < M° (HiHaQz + HE) " (Hy + Qo + Q)Y
Proof. We begin by noting that by relabelling variables, we may suppose without
loss of generality thaty| > |3]. Next, for each solution, y, z, w of (4.3) counted
by My (Q,H; «, 3), we have

where we write

Uk(s,t) = Z (27’13— 1> s2rh—2r=2, (4.6)

0<r<k/2
We note for future reference that for real values ahdt, the polynomialiy (s, t)
is zero if and only ifs = ¢ = 0. Writed = (z,2) ande = (z/d,w), and put
z1 = z/(de), z1 = z/d andw; = w/e. Then(z1, z2w1) = 1. On substituting into
(4.5), we obtain
az1yUk(dez1,y) = Bz1wiUg(d21, ewr). 4.7)
For ease of handling, let us define

A = (3BH1H,Q2)Y?, A= A/(dQz), B=A/(eH;), C=A/Hy.(4.8)

LetTy(d, e) denote the number of solutiofigs, y, 21, w1) of Equation (4.7) with

max{ A, B} < x1 < Hi/(de), (4.9
1<y <Q, (4.10)
1<z < Hofd,  (w1,21) = 1, (4.11)
1<wr < Q2fe, (z1,w1) =1, (4.12)
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and subject, in the cases where= £, to the additional condition
dex1 +y # dz1 + ews. (4.13)

Also, letT»(d, e) denote the corresponding number of solutions with the condition
(4.9) replaced by

1<z <maxA, B}. (4.14)

Then it follows from the preceding paragraph that

> Y (Tu(de) + Tu(de)) . (4.15)

1<d<H; 1<e<Hy/d

We first estimatd’. By Lemma 3.1, for each,, z;, wq satisfying (4.9), (4.11)
and (4.12), there exist integersb andc, not all zero, with(a, b,c) = 1,0< |a| <
A,0< |b] < B,0< |¢|] < C and satisfying the equation

awq + bzy = cx1. (4.16)

We note that botlw andb are nonzero. For suppose that= 0. Then we have
bz = cxq With (z1, 21) = (b,¢) = 1, whencgzi| = |b| < B, contradicting (4.9).
Similarly, if b = 0, then necessarilyz1| = |a| < A, again contradicting (4.9).
Thus we may assume that neitlsanor b is zero. We substitute from (4.16) for
into (4.7) to deduce that

< > Y > Uldea,b,e), (4.17)

0<|a|<A 0<|b|<B 0Le<C
whereU (d, e; a, b, c) denotes the number of solutions of the equation
aaf LzyUs(dexr, y) = Bra(cas — bza) Uy (adzy, e(czy — bz1)), (4.18)

with z1,y, z1 satisfying (4.9)—(4.11). Observe that, in view of the coprimality
condition (z1,21) = 1 of (4.11), for each such solutiofxy, y, z1) counted by
U(d,e;a,b,c) the Equation (4.18) implies that; divides gbUy(ad, —be). Fur-
thermore, since neither nor b is zero, we haveUy(ad,—be) # 0. Thus, by
using standard estimates for the divisor function, there are at@{ost®) possible
choices forz1. Fixing any one such choice, the equation (4.18) takes the shape
p(z1) = q(y), wherep(z1) has degrek andg(y) has degreg—1. Then Lemma 3.2

implies that the number of possible choicesfaindz; is O ((Hz + Ql)l/]’“’a).
ThusU(d, e; a, b, ¢) is O(M®(H, + Q1)¥*), and hence by (4.8) and (4.17),

Ti(d,e) < M (de)™ (H1H,Q + HY) Y2 (Hy 1+ Qu)YE. (4.19)
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Next we estimatél»(d, e). Let Vi(d,e) denote the number of the solutions
x1,Y, 21, w1 counted byTy(d, e) in which z1 < B, and letV,(d, e) denote the
corresponding number of solutions with < A. Then in view of (4.14), we have

TZ(da 6) < Vl(da 6) + ‘/é(da 6). (420)

First we bound/(d, e). For each fixed choice af; andz1, we solve the Equation
(4.7) fory andwy. On recalling (4.6), Equation (4.7) implies that

a((a1y + b1)" — (ary — b1)*) = B((azws + b2)* — (agw1 — b2)*), (4.21)

wherea; = 1, by = dex1, ap = e andby, = dz;. Then by Lemma 3.3, the
number of possible choices fgrandw; satisfying (4.10), (4.12) and (4.13) is
O((Q1 + Q2)Y*=D+=) Consequently

Vi(d,e) < Y S Qi+ Qb

1<21<B 1<z < Ha/d
whence by (4.8),
Vi(d, e) < (de)"H(H1H2Q2)"%(Q1 + Qo) = VFe. (4.22)

A similar argument boundg;(d, e) in like manner, on interchanging the roles of
d ande, andwi andzz. In this way we obtain

Va(dye) < 3 >0 (Qu+ Hy)Y Dt

1<31<A ISw1<Q2/e
and thus by (4.8),
Va(d, e) < (de)™ (H1H2Q2)Y3(Q1 + Ho)Y/h=1Fe, (4.23)
Onrecalling (4.15), (4.19) and (4.22), we therefore deduce that

Mp(QH) <M > > (de)™?

1<d<Hi 1<e<H/d
1/2 _
X (H1H2Q2 + H12) (Q1+ Q2+ Hp)Y ),
and the desired conclusion follows immediately.
LEMMA 4.2. Letk be an odd integer witlk > 3, and leta and 8 be nonzero

k-free integers. Lef,, H,, Q1, Q2 be positive numbers, and defind as in the
statement of Lemmé&l. Then

) . 2 2\1/2 5
M,(Q,H;a, 8) < M;, (H1H2Q2+H1 +H2) (Q1+ Q2+ H)%,
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whered, = 1/k and My, = |a|M whenk = 3,5, andé, = 1/(k — 1) and
M, = M otherwise.

Proof. As in the proof of Lemma 4.1, we may plainly suppose that> |3]|.
For each solutiom, y, z, w of (4.3) counted by (Q, H; a, 3), we have

where we write

k

Vi(s,t) = Y ( )sz’"t’“‘z’"‘l. (4.25)
o<r<k/2 r+1

We again note for future reference that for real values ahdt, the polynomial

Vi(s,t) is zero if and only ifs = ¢ = 0. Writed = (z, z), and putr; = z/d and

z1 = z/d. Thus(z1, z1) = 1. On substituting into (4.24), we obtain

az1Vi(dz1,y) = BzaVi(dz1, w). (4.26)

We now estimaté/; (Q, H; «, ) using an argument strikingly similar, though
simpler, than that used in the proof of Lemma 4.1. In order to curtail our delib-
erations, we adopt the convention throughout the remainder of the proof of this
lemma thate = 1, wy = w, that the coprimality conditiofiz1,w;) = 1 is to be
ignored, and that occurrences of jalx B} are to be replaced simply by. Let
T1(d) denote the number of solutiofs,, y, z1, w) of the Equation (4.26) satisfy-
ing (4.9)-(4.13), and let>(d) denote the corresponding number of solutions with
the condition (4.9) replaced by (4.14). Then it follows from the above discussion
that

Mp(Q,H) < Y (Tu(d) + Ta(d)) . (4.27)
1<d<H,

We firstobserve that from (4.4) and (4.25) the Equation (4.26) implies that (4.21)
is satisfied. Thus the argument leading to (4.22) remains valid, and we deduce that

3 Ta(d) < ME(H1H2Q2)Y2(Q1 + Q2) Y+, (4.28)

1<d<H,

We estimateT’(d) when 1< d < Hj as in the argument used to estimate
Ti(d, e) inthe proof of Lemma 4.1. Léf (d; a, b, c) denote the number of solutions
(1,9, 21, w) of the equation (4.26) satisfying (4.9)—(4.13) and (4.16). Then it
follows, as in the argument leading to (4.17), that

< S Y Y Uldabe). (4.29)

0<|a|<A 0K|b|<B 0<ce<C
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On substituting from (4.16) foiw into (4.26), we deduce thdt (d;a,b,c) is
bounded above by the number of solutions of the equation

kL1 Vi(dza, y) = Bz1Vi(adz1, czq — bzy), (4.30)

with x4, y, z1 satisfying (4.9)—(4.11). Moreover on this occasion one may assume
thata is nonzero. Observe that for each solutien, y, z1) counted by (d; a, b, ¢),

the Equation (4.30) implies that divides 3V (ad, —b). Furthermore, since is
nonzero, we hav&j (ad, —b) # 0. Then by again using standard estimates for the
divisor function, it follows that there are at ma3{.M*) possible choices far;.
Fixing any one such choice, the Equation (4.30) takes the shiape = ¢(y),
wherep(z1) has degreé andq(y) has degreé¢: — 1. Then Lemma 3.2 implies
that the number of possible choices fpandz; is O((H» + Q1)Y**¢), whence
U(d;a,b,c) is O(M?(H, + Q1)Y/*). Consequently we deduce from (4.29) the
bound

1/2
T1(d) < M*d ™ (HiHoQo + H + H3) 2@+ Qo+ H)YE (a3D)

On combining (4.27), (4.28) and (4.31), we arrive at the desired conclusion in
the cases wherke > 7. Whenk = 3, we proceed as in the above argument, save
for the treatment of». In this case the Equation (4.21) becomes

a(3a2byy? + b3) = B(3adbw? + b3).

Then provided thatb? # b3, standard estimates (see, for example, Estermann
[5]) show that the number of possible choicesg@ndw, is O(M},). Meanwhile,
sincex andg are cube-free in this caseib$ = 3b3, then necessarily = +4 and

b1 = by, whences1y = awq, and thusii1y + b1 = aw1 + by, contradicting (4.13).

We therefore deduce that whén= 3, one has(d) < M5d *(H1H2Q2)Y?,

and the desired refinement follows immediately. The éase5 may be disposed

of similarly once we observe that in this case the Equation (4.21) becomes

(5b1Y? — 4b3) = B(5by W2 — 4b3),

whereY = a3y?+ b2 andW = a3w? + b3. This completes the proof of the lemma.

5. Sums and differences okth powers

In this section we apply the conclusions of Section 4 to establish Theorem 2. We
first make some simplifying observations. First note that whes eveny, (X)

is the number of non-negative integers not exceedinghich are represented as
the sum of twokth powers of non-negative integers in more than one essentially
distinct way. Thus Skinner and Wooley [21, Thm. 1] shows that when 4 is
even,

V7 (X) < X2+ Rk D) te
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In all other cases under consideration, on taking account of the underlying auto-
morphism group and noting that zero has multiple representations, one finds that
u,f(X) < 1+ v (X), wherevj(X) denotes the number of positive integers not
exceedingX that are represented as the difference of two integptalpowers in

more than one essentially distinct way.

Next we observe that if a positive integeiis represented as the difference of
two integralkth powers, say. = u* —v*, then on taking account of the underlying
automorphism group one may suppose that |v| andu # v. Thus, by a suitable
rearrangement of variables, we deduce tfjaX’) is bounded above by the number
of integral solutions of the system

0<uf —oF =ub —0b <X, (5.1)
with

—u; <v; <wu, (1=121,2) and wug # up. (5.2)
For each solutionu, v of (5.1) satisfying (5.2), we define integetsy, z, w by
T =u1—v1,y = u1+v1, 2z = upx— v andw = up+vy. On recalling the definition
of T« (s,t) given by (4.4), the above discussion leads to the conclusion

Vi (X) <« Np(28X), (5.3)
whereN(Q) denotes the number of solutions of the system
in non-negative integers, y, z, w satisfyingz # 0,z # 0 andz + y # z + w.
Moreover, wherk is even we may use the symmetry Bf.(s, ) to impose the
additional conditiony > =z andw > z.

On recalling the definitions (4.6) and (4.25), we note that (4.4) implies that

2stU(s,t), whenk is even
Tk(sa = .
2sVi(s,t), whenk is odd
Consequently, if;, y, z, w is a solution of (5.4) counted by (Q), then
0<z<min{QY* Qy**} and 0<z<min{QY* Quw'~*}.  (5.5)
We note that the contribution @ (Q)) from those solutions witly = 0 orw = 0
is O(Ql/’“f). For wheny = 0, on assigning any permissible choicecaine finds

from (5.4) thatz is a divisor of a fixed nonzero integer. Having determimezhd
z, the variablew is determined by a non-trivial polynomial from (5.4), and thus the
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desired conclusion follows from (5.5). A similar argument disposes of the solutions
with w = 0 in like manner. Next, on dividing into dyadic intervals, we deduce that

No(Q) < QY 4 OF max max  N;(Q;Y,W),  (5.6)
1Y <QY (k=) 1<Ww QY (k—1)

where N} (Q; Y, W) denotes the number of integral solutions of the system (5.4)
satisfyingY < y < 2Y, W < w < 2W and (5.5). Moreover, on recalling the
definition of M (Q, H; «, 3) from Section 4, one has

NP (@Y. W) < Mi(2Y,2W, min{QY*, Qv+,
min{Ql/k’ lefk}; 1’ 1) (57)

Write §; for 1/k whenk = 3,5, and for ¥(k — 1) otherwise. Then when
Y < QY*, W < QY* andk > 3, we may combine the conclusions of Lemmata
4.1 and 4.2 with (5.7) to obtain

N]:(Q;Y, W) & (WQZ/k)l/Z(Ql/k +Y + W)5k+€ < (Ql/k)3/2+6k+e.
When instead” < QY% andQY* < W < QY1 one similarly obtains

N (@Y, W) < (QUHEWZ V(Y + W + QW F)hte
< (Ql/k)3/2+5k-+&“

On interchanging the roles &f andW, a similar argument yields the same bound
whenQV* < v < QY* -1 andw < QV*. Finally, whenQ'* < v < QY k-1
andQY* < W < QY*-1 we find that

NE(@ Y, W) < (QRWERYIRR(Y 4 W 4 QWiF)te
< (Ql/k)3/2+5k+e‘

Thus in any caseV; (Q;Y, W) < (QY*)¥/2+%+2 and so Theorem 2 follows
immediately from (5.3) and (5.6).

6. Binary additive forms

Our way is now clear to establish Theorem 1. We begin by discussing some
simplifications. First, by multiplying the form through, if necessary,b¥, we

may restrict attention to non-negative integers represented:by- 3y*. Next we

note that there is no loss of generality in supposirgnd to be nonzeré-free
integers. Moreover the conclusions of Theorem 2 permit us to suppose further
thata # +4. In particular, therefore, zero is representechby — 5y* precisely
whenz = y = 0, and so it suffices henceforth to consider only positive integers
represented by the form in question.
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Now we bound the domains of the variables. Supposeitisa positive integer
represented bwz* — By*. If k is even andvz® — By* is definite, so thaty > 0
andg < 0, then plainly|z| < n'/* and|y| < nY/*. If k is even andchz® — By*
is indefinite, meanwhile, one has that is positive. Let) = (5/a)Y/*. Then no
matter what the parity of, on recalling thaty and arek-free andx # +3, we
have that is a real irrational algebraic number. Leebe a small positive number.
Then it follows from Roth’s Theorem (see [18]) that for each pair of nonzero
integersp andg, one has

Ip—0q|>> gl *° and [pf t—q| > |p| T,

where here the (ineffective) implicit constants depend at most,ghande. We
thus conclude that for each integer pairv) one has

ot — ot > (max{ful, [of})" 7

and so in all cases under considerationgif* — By* = n then there exists a
numberA = A(k, e, o, 8) such that

lz| < AnY =2+ and |y| < AnY/(k=2+e, (6.1)

An upper bound fop,. (X'; o, 3) is provided by the number of integral solutions
of the system

0 < auf — Bof = aul — pvk < X, (6.2)

with uy # up, and subject in the cases whérés even to the additional condition

u1 # —up. We apply different arguments to bound the latter number according to
the size of max-1 »{|u;|, |v;|}. Thus, on dividing the range for the latter maximum
into dyadic intervals, one deduces from (6.1) that for any nunbesatisfying
1<V < AXY(k=2+¢ one has

m(X;0,8) < T(V)+X°  max  S(W), (6.3)
VEWAXLY (k=2)+e

whereT' (V') denotes the number of solutions of (6.2) with# u» (and wherk is
even, withu; # tuy), satisfying

max{lu;|, jvil} <V, (6.4)

and where5 (W) denotes the corresponding number of solutions satisfying instead

W < max{fu,, |vi|} < 2W. (6.5)
=41,
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We first boundS(W). Let us estimate the number of solutions of (6.2) counted
by S(W) in which

lua| = max{|ul, [v;]}. (6.6)
1=1,2

Plainly one may argue similarly when one of the remaining variables is in fact
maximal. In view of (6.5), the hypothesis (6.6) implies thiat< |ui| < 2W. But
from (6.2) one hagnuf — Bv¥| < X, and hencéu10~1 — v1| < X|ua|**. Thus

we deduce that givem with W < |ug| < 2W, the number of possible choices for
v1is O(14+ XWIF). Further, given:; andvs, the variablesi, andv, satisfy an
equation of the shapeus — Bvs = n, so that there ar®(X*) possible choices

for u, andwv, (see, for example, [2], although earlier references would suffice in
this case). Consequently, on combining these bounds we conclude that

S(W) < X* (W + XWH) : (6.7)

Next we observe that an upper bound 1ai1") is provided by the number of
integral solutions of the equation

a(uf —uf) = B(vf — vh), (6.8)

with u1 # uy (and whenk is even, withu; # +u»), and satisfyindu;| < V and

lvi| <V (i = 1,2). We are therefore able to boufiV') by using Lemmata 4.1
and 4.2, following some simplifying observations. Note first that by interchanging
indices, it suffices to consider only those solutions in whielj > |up| and

|v1| > |vz|. Also, whenk is even we may plainly suppose that the variables are
all non-negative. Wheh is odd, moreover, we may adjust the signsxadnd 3,

if necessary, so that it suffices to consider the situation in whicand v, are
restricted to be positive numbers. Now define new variablesz, w according

to (4.2). Then we find that the solutianv of (6.8) corresponds to a solution
x,v, z, w of the Equation (4.3). On recalling (6.4), we are led by this discussion to
the conclusion

T(V) < My(2V,2V,2V,2V; o, B),
and hence, by Lemmata 4.1 and 4.2, we have
T(V) <« V¥/Zonte, (6.9)

whered, = 1/k whenk = 3,5, andj,, = 1/(k — 1) otherwise.
On combining (6.3), (6.7) and (6.9), we finally obtain

/J'k(X: O(,ﬁ) < V3/2+5k+€ + XE(Xl/(ku) + szik),
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and the conclusion of Theorem 1 follows with a modicum of computation on taking
VE-1/24+0 — x .
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