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ABSTRACT. Tt is of practical importance to have a description on time-scales of 1-100
years of the relationship between the mass imbalance of an ice sheet and its rate of change of
thickness. In this paper, a linearized treatment of the relationship is described. Closed-form
expressions are derived that relate the time-variant density in an isothermal firn layer to the
fluctuations in accumulation rate and density that occur at the surface. These expressions are
used to provide a spectral description of the contribution of surface accumulation and surface
density fluctuations to the rate of change of thickness of an ice sheet. Using these, the contri-
bution of firn densification to the variability of ice-sheet thickness i1s examined as a function of
the time interval over which the ice sheet is observed. This contribution is illustrated for sites
in Antarctica and Greenland. It is concluded that it is important to give greater attention than
hitherto to the spatial scale of accumulation fluctuations if satellite observations of ice-sheet
clevation change are to be used to estimate ice-sheet imbalance over short time intervals.

LIST OF SYMBOLS Om,0p Standard deviation of surface accumulation and
surface density, respectively
Onh,Om, 0, Standard deviation of time-averaged ice-sheet
f Densification rate of firn thickness, surface accumulation and surface
g Acceleration due to gravity density, respectively
@ Rate of change of ice-sheet thickness w Radian frequency
h Fourier transform of fluctuation in thickness
Hy, H,  See Equation (32) 1. INTRODUCTION
I See Equation (19)
m Surface accumulation rate It is customary in theoretical and modeling studies of ice
M Surface accumulation-rate fluctuation sheets to treat ice as incompressible, and ice-sheet mass bal-
T Fourier transform of surface accumulation-rate ances are often quoted as rates of change of thickness. How-
fluctuation ever, in the accumulation zone of an ice sheet the near-
mo Mean surface accumulation rate surface ice consists of firn densifying under its own weight
M Ice-sheet mass loss (Paterson, 1994). When fluctuations in mass accumulation,
P Pressure density and temperature occur at the surface, fluctuations
Da Atmospheric pressure in the density will result throughout the firn layer, and the
q See Equation (8) thickness and mass of an ice sheet will not be simply related.
qQ See Equation (9) This is of practical importance if one is to relate obser-
Tmy Tp See Equation (36) vations of changes in ice-sheet thickness over relatively short
R See Equations (15) intervals (e.g. Zwally and others, 1989; Wingham and
Ry O(1) component of R others, 1998) to actual or predicted changes in ice-sheet
Ry O()\) component of R mass. The difficulty is generally appreciated (e.g.
t Time in the surface-fixed coordinate system Braithwaite and others, 1994; Warrick and others, 1995), and
4 Time in the inertial coordinate system it is qualitatively understood (Van der Veen, 1993) that the
T Averaging interval effective density with which mass fluctuations appear in
v Velocity of firn relative to the surface ice-sheet thickness is a function of their duration. Nonethe-
z Depth from surface less, there has been little quantitative investigation of the
4 Vertical coordinate in the inertial coordinate relation between fluctuations of surface accumulation and
system surface density and those of ice-sheet thickness. The effect
2 Depth of base of firn column of variations in accumulation rate on the horizontal flow of
A Dimensionless parameter of o(1) ice (Oerlemans, 1981; Van der Veen, 1993) is a separate matter
P Firn density that 1s ignored here by assuming the fluctuations are short
Pice Density of ice enough to have no effect on the horizontal ice flow.
Ps Fluctuation in density of snow Any treatment of this problem rests on a densification law
Psnow Mean density of snow for snow. The difficulties in forming a general law are dis-
Ds Fourier transform of fluctuation in density of snow cussed by Mellor (1975) and are considerable. On the other
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hand, Bader’s (1960) use of a compactive viscosity (the ratio
of the vertical strain rate to the overburden pressure) to char-
acterize the densification of cold firn has been given a theor-
etical basis in the processes of grain-boundary sliding
(Maeno and Ebinuma, 1983; Alley, 1987), dislocation creep
(Wilkinson and Ashby, 1975) and boundary and lattice diffu-
sion (Coble, 1970). These mechanisms are expected to domi-
nate dry-firn densification, and their resulting non-linear
compactive viscosity describes with reasonable success firn-
density profiles in Greenland and Antarctica (Alley, 1987,
Arthern and Wingham, 1998). Non-linear creep appears to
describe quite well the densification of cold ice sheets. Quite
different simplifications of the actual process of densification
may be appropriate for warm or seasonal snowpack (e.g.
Braithwaite and others, 1994; Gray and Morland, 1995).

This paper is an investigation of the variation in thickness
of a firn layer whose densification occurs through non-linear
viscous creep. By restricting attention to small fluctuations,
we are able in section 2 to provide a closed-form expression
for the density variation in the firn layer. This is used in sec-
tion 3 to provide a closed-form expression for the thickness
fluctuation. In this expression, the physics of the densification
1s contained within integration kernels that act on the history
of accumulation rate and surface density. The kernels are
shift-invariant, allowing a simple description of the effect of
densification in terms of the Fourier spectra of the fluctua-
tions of the thickness, accumulation rate and surface density.
This allows us in section 4 to discuss with some generality the
influence of the observation interval on the effect of densifica-
tion on estimates of ice-sheet imbalance determined from the
rate of change of elevation. Some remarks on the limitations
of the treatment are provided in section 5 and some conclu-
sions are drawn in section 6. The numerical treatment of a
similar problem, including the effects of temperature fluctu-
ation and finite amplitude fluctuation, has been given by
Arthern and Wingham (1998).

The theory of the paper is illustrated for sites in Antarc-
tica and Greenland using a non-linear viscous firn-densifi-
cation model which is described in detail in Arthern and
Wingham (1998). This allows the practical implication of
these results for modern satellite measurements of the Ant-
arctic and Greenland ice sheets to be discussed. One im-
portant feature of the results is that they highlight the
practical importance of gaining a better understanding of
the spatial scale of accumulation fluctuation in connection
with satellite measurements of ice-sheet imbalance, as did
Oerlemans (1981) in connection with the contribution of
Antarctic ice-sheet mass fluctuation to global sea level.

2. TIME-VARIANT DENSITY OF A FIRN COLUMN

In this section, we suppose firn may be regarded as a com-
pressible fluid subject to changes which are sufficiently slow
that inertial accelerations may be neglected. We consider the
firn to be isothermal, and restrict our attention to firn in
which the pressure, density and velocity vary only in the ver-
tical. In an inertial reference frame with vertical coordinate
7 the equations of mass and momentum conservation are

dp  O(pv) _

aw + 0 0 (1)
9p _
57 P9=0, (2)

where pis the overburden pressure in the firn, pis its density,
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v/ is the vertical velocity and g is the acceleration due to
gravity. We take 2/ increasing downwards, so that a positive
value of v/ describes a downward motion.

We follow Bader (1960) in supposing the densification
occurs through a process of creep, at a rate that depends on
its density and overburden pressure:

1D0_ fip,p). (3)

p Dt/

where D/Dt' = 8/t +1/3/07. From Equation (1), —p~'Dp
/Dt = 0v' /07 is the vertical strain rate. With this resul,
Equation (3) may be written p = —[p/ f(p, p)|Ov' /07, which
identifies the function p/f(p, p) as Bader’s “compactive vis-
cosity” The equality of the densification rate with minus the
vertical velocity gradient does not hold in more general flow
situations.

At the surface of the firn, lying at 2 = z;, we suppose the
surface mass accumulation rate, surface density and surface
pressure are known functions. The location of the surface is
generally time-variant, with a velocity denoted 25, and is not
known. Another condition is needed to solve these equa-
tions. We suppose that, at a point sufficiently deep in the firn,
the density reaches that of ice and the downward velocity is
a constant. This point is termed the base of the firn. For rea-
sons which will become apparent, the base will be taken as a
fixed point in the inertial system.

These boundary conditions, together with Equations
(1-3), determine the pressure, density and velocity uniquely.
They do not do so conveniently, however. We therefore in-
troduce the transformation

2z =2 — zl(t)

t=t,

(4)

where 2 is the depth of firn. With this transformation, Equa-
tions (1-3) are unchanged, provided one takes the vertical
velocity v in the transformed equations to describe the
velocity of the firn observed from a point on the surface.
The surface boundary conditions now apply at z = 0. The
base of the firn lies at z = 2, (t), a function of time in these
new coordinates. (A transformation of the form Equation
(4) will generally introduce new inertial terms into the mo-
mentum conservation equation, Equation (2). However, the
inertial acceleration is here negligible by assumption in the
inertial frame, and it follows with equality that it remains so
in the transformed frame,)

The pressure, density and velocity will vary as a result of
fluctuations in the mass-deposition rate and surface density.
We shall restrict these to the fluctuations

pu(t,0) = ri(t) = 1o + Arins(t) (5)
p(tv 0) = Psnow T /\Ps(t) (6)

in the surface mass-accumulation rate and surface density,
taking the atmospheric pressure to be

p(t,0) = pa, (7)

a constant. The fluctuations in the surface conditions will be
taken to be small, in the sense that the dimensionless par-
ameter A in Equations (5) and (6) is assumed to be o(1).
(Mathematically, the introduction of the parameter A
makes the solution of the perturbation problem a function
of a single parameter. It plays the same role as the single
small parameter that would need to appear in a non-dimen-
sional treatment. Practically one may take it as a notational
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device and regard, for example, O(\?) as shorthand for
O(ri, p3, 1ivsps))

If the surface conditions are independent of time, the so-
lutions of Equations (I-3) are time-invariant. The density is
a function of firn depth only, a result known as “Sorge’s law”
in the literature (Bader, 1954). Time-invariant solutions may
be found on setting 9/9t = 0 in Equations (1) and (3) and
A =0 in Equations (5) and (6). These equations then pro-
vide dv/dz = (19/p?) dp/dz, an equation that permits the
strain rate and compactive viscosity to be determined from
observations of density—depth profiles (e.g. Bader, 1953).

When fluctuations in the surface conditions occur, one
needs to proceed more generally. Even when restricted to
small perturbations, however, Equations (1-3) are equiva-
lent to a second-order equation with variable coefficients,
and a closed-form solution cannot be given directly. There-
fore a second transformation of the equations is made. The
variables {¢, gy }whose definitions are

t

o(t) = / dsi(s) (8)

an(t, ) = q(t) —é@(t, 2~ ) (9)

are introduced. ¢ is the mass of firn deposited at the surface
up to time ¢. gy may be recognized physically by noting that
Equations (2) and (7) show that (p(t, 2)/g — pa) is the mass
overburden experienced by a firn element at the point (¢, 2).
This must equal the mass deposited at the surface since the
element’s own deposition. g is therefore the value of g at the
instant it traverses the surface. This implies that g 1s con-
stant along the material path of a firn element, a result
proved directly in Appendix A. The mapping between the
{t, z}-plane and the {q, qo }-plane is shown in Figure 1. The
firn occupies the region g > qo > qo(t, 2(t)), with the sur-
face at gy = ¢ and the base at qg = q(t, z1(1)).

In general, a transformation is invertible if its Jacobian J
satisfies 0 < |.J| < co. In the present case

_ %40

T (10)
Using Equation (8), one has
0
7= (1)
t
=% 1) 2,(1(q)))
0
q
= 3,(1) \_/\/\_,
) b
@ (b

Fig. I. The mapping between the (a) {t, z}-plane and (b)
{q, qo}-plane. In the {t, z}-plane, the surface lies at z = 0
and does not move, and the base of the firn is at a time-variant
depth. Amaterial pathin this plane is shown as a dashed line.
In the {q, qo }-plane, the surface lies along the line {q = qo },
with the firn occupying {q > qo}. In this plane, a material
path, shown dashed, is a line of constant qy.
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while Equations (9) and (2) provide

940 _
0z
The inverse transformation z = z(q, qo) is given in Appendix
B. Equation (11) shows that the transformation is invertible if
the mass-deposition rate is strictly positive and the density
remains finite. Strictly, this means that our results are not

—p. (12)

applicable to any circumstance in which surface ablation
occasionally equals or exceeds surface accumulation. In ap-
plying these results to the practical situation we shall assume
it 1s sufficient for the annual average of accumulation to be
positive.
Writing
R(q(t),qo(t,z)) = p(t,z), (13)
the transformation of Equation (3) with Equations (8) and
(9) provides
OR  Rf(R,q— q)

i) 14

while the boundary condition Equation (6) becomes

R(QO? qO) = Psnow + )\pg(t(QO)) . (15)

The advantage of the transformation is now clear. The
velocity has been eliminated from the problem, and only a
first-order problem with a known surface boundary condi-
tion remains.

We now seek solutions to Equations (14) and (15) for
small fluctuations. A solution

is assumed. Solving Equation (14) to O(1):
10Ry, 1
e Y
Ry 9g  my (@~ Fo) (17)

Ro{Qm q()} = Psnow -

From Equations (17), the solution Ry is a function of ¢ — go.
It may be regarded as a function of a single, positive argu-
ment whose value is the mass overburden. If f is chosen to
be a positive, decreasing function of density that approaches
zero as the density approaches that of ice, then Ry (2) — pice
for large .

In O(X) one has:

Y PR3 ST P

oqg My OR mg o (18)
R1(q0,90) = ps <q—0) .
my

In Equation (18), the quantities {-} are O(1) functions
whose single argument will be denoted {-}(z), for example.
Defining

L(z) = exp imioo/zds{fuzo%}(s) . (19)

the function I_ may be recognized as the the integrating
factor of Equation (18). The solution R; may be written

Ri(q,q90) = I+(q — q)

1 q

q0
(20)
Equation (20) shows a perturbation in the density of firn par-
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cel arising in two ways: because it 1s deposited at the surface
with a perturbed density, and because its density has de-
pended on the fluctuating overburden it has experienced.
The form of the argument of the mass-deposition rate myg in
the integrand of Equation (20) reflects the fact that the over-
burden experienced by a parcel of firn depends on the history
of the surface deposition rate that followed its own depos-
ition. The density perturbations are acted on by the function
I, which describes the reduction by compression in a density
perturbation as it is advected down the column. With f a
positive, decreasing function of density, { f + Ro0f/OR} is a
negative function as the density approaches that of ice. We
suppose that I (x) — 0 for large z, so that, with a sufficient
mass overburden following burial, the density fluctuations
are completely suppressed.

3. TIME-VARIANT THICKNESS OF A FIRN LAYER

We are concerned with variations in the thickness, or depth
h, of the firn. This equals the depth to the base of the firn
when viewed from the surface. From Equation (Bl), this is
given by

q(t)

1
h(t) = / ds —————~. 21
" R, ) ey
q(t,2(1))
The depth h is a function of ¢ only. Its rate of change is given by
ane d Y 1

h(t) = —2=— ds —————. 22
O="3 ~& / S Raws

qo(t,2(t))

We will refer to h as the thickness rate. (The notation d/d¢
takes its ordinary meaning; it is not an alternative notation
for D/Dt)

In a measurement, it is the change in thickness of an ice
sheet that is observed, measured in a frame fixed with respect
to the base of the ice sheet. To deal with this situation, we sup-
pose that the firn forms the near surface of an otherwise in-
compressible ice sheet. We suppose the ice beneath the firn
loses mass per unit bed area at a rate of M through mass-flux
divergence or basal melting. We suppose the base of the ice
sheet is fixed relative to the inertial frame. h is the rate at
which the base of the firn appears to move when viewed from
the surface. Since the base of the firn is by definition at a fixed
location in the inertial system, this must equal the rate at
which the surface appears to move when viewed from the
bed. Thus h = —Z (25 18 positive downwards) and Equation
(22) provides a solution for the surface in the inertial, bed-
fixed frame.

Equation (22) evidently requires an expression
dqo(t, z(t))/dt. One has
dao(t, (1)) _ (O dz 9o
di ot 2 dt aZb
_da 1(op . % (23)
ot g \ot 0z
=plv+4).

The second line of the righthand side of Equation (23) uses
Equations (4) and (9) and the fact that z;, 1s a fixed location
in the inertial reference frame. The third line uses Equations
(2), (11) and (A3). v + % is simply the firn velocity observed in
the inertial frame. Equation (23) identifies dgy (¢, 2,(t))/dt as
the mass flux through the base of the firn . Since the base of
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the firn is by definition at a fixed location in the inertial
frame, conservation of mass requires that

d(JO (tv Zh (t))
dt

It is not necessary to precisely locate the base of the firn.

=M. (24)

We assume that the firn sensibly achieves the density of ice at
its base, that is

Rolqg — qo(t, 20(t))] = pice (25)
and
Iilg = qo(t, z(t))] = 0. (26)

With these assumptions, no physical boundary exists
between the firn and ice. A physical quantity such as h can
have no dependence on 2. In evaluating Equation (22) one
may suppose that any dependence on zj, will disappear. Its
precise location is then immaterial.

With these preliminaries, Equation (22) may be evaluated
using Equations (5), (8), (16), (17), (19), (20), (24) and (25) in
Equation (22). The result may be written in the form

PS(t> it (t>

h ~— (g — M) —AlmUQ———

Pice

psnow psnow

/ du {%2)} (27)

¢

) d

+ / dsms(s)a
)

a (b2
gy

(rivgu){f RoI_}(rig(s +u—1t))| + O(N?).

Equation (27) is derived in Appendix C. Note that while 2,
makes an explicit appearance in Equation (27), its value is
indeed immaterial, because Equations (25) and (26) cause
the integrands to be effectively terminated.

Limiting forms for the thickness rate may be obtained
which do not depend on the detailed form of the densification
rate f. If the conditions at the surface are time-invariant, one
has A = 0 and

}i:

(1o — M) . (28)
Pice

In the static case, the density of the column remains fixed
when viewed from the surface. The densification of the firn
makes no contribution to the thickness rate, which is propor-
tional to the mass balance of the ice sheet. One may antici-
pate that this will continue to be the case for fluctuations of
sufficiently long duration. Indeed, if one allows the functions
ms and ps to be slowly varying enough that they may be
brought outside the integrals in Equation (27), one has that

h ~— (1o + Ming(t) — My) + O(A2)  (29)

Pice
and the thickness rate follows the mass balance of the column.
Equation (29) is derived in Appendix B.
On the other hand, if the fluctuations are of very short
duration, the integrals in Equation (27) become very small,
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and one then has directly from Equation (27) that the thick-
ness rate may be approximated by

1 : () pilt
i~ (mO—M1)+A[7;*()—mop2()}+0(A2).

(30)

In this limit, the mass fluctuations at the surface appear in
the thickness rate at the surface density. Equation (30) may
be reached with a simple argument if one accepts that fluc-
tuations of very short duration make negligible contribution
to the mass overburden and densification. In the absence of
fluctuations, the density is fixed when viewed from the sur-
face, and any change in thickness must result from ice with a
density pice so that 2 = (M —1729)/pice (which with
h = —% is Equation (28)). If the fluctuations do not affect
the densification, the velocity at the surface observed in the
inertial frame — we write it v; here — is unaltered when the
fluctuations are present. But, in general, v; — 2, = m/p at
the surface. Since vj; is fixed by assumption, fluctuations in
m/p at the surface can result only in fluctuations in Z. To
first order, these are 1M/ Psnow — mgps/pznow. Combining
these results gives Equation (30).

The two limiting cases, Equations (29) and (30), of very
slow and very rapid surface fluctuations, respectively, are
memoryless; they depend only on the instantaneous values
of the surface fluctuations. At intermediate time-scales,
Equation (27) shows that the thickness depends on the
history of the surface fluctuations. This more general case
may be investigated using Fourier methods by exploiting
the fact that the value of ¢(¢, zp,) is immaterial, which allows
q(t, z,) — —oo without loss. The quantity

h(w) = /OC dt {ii(t) —pilce (mo—Ml)}eM (31)

is the Fourier transform of the fluctuations in thickness. If
one sets ﬁls and ps to be the Fourier transforms of the surface
mass and density fluctuations, respectively, and allows that
q(t, z,) — —o0, Equation (27) may be Fourier transformed
to provide

h(w) = A(rhs(w) Hin () + ps(w) Hy(w)) + O(N), (32)

where the functions Hy, and H), are, respectively, the mass and
density fluctuation transfer functions. The form of Equation
(32) follows from the fact that the kernels in Equation (27)
are convolution kernels when ¢(t, z,) — —oo(see, e.g.,
Porter and Stirling, 1992, p. 333). Various particular integral
forms may be obtained for the functions Hy,, and H, using
Equations (27), (31) and (32), but since no use is made of
them here, they are not detailed.

Equation (32) provides a simple description of the densifi-
cation process. The function Hy, is a reciprocal density. This is
the density at which an accumulation-rate fluctuation of a
particular frequency appears in the thickness fluctuation.
Equations (29) and (30) lead us to suppose the limiting forms

—1
- 0
Hdm:{%ewq (33)

-1
Psnow w—= 0

so that fluctuations at very low frequency appear with the
density of ice, whereas those of a high frequency appear with
the density of snow. High-frequency accumulation-rate fluc-
tuations are amplified in the thickness rate in comparison
with low frequencies. The function H, plays a similar role
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for surface density fluctuations. Here one may suppose the
limiting forms

0 w—~0
. 72 .
mOpSHOVV W — 00

) = { (34)

Thus, low-frequency fluctuations in density do not appear in
the thickness rate.

More generally, the behaviour of the functions Hy, and
H, will depend on the particular form of the densification
function f (Equation (3)), and on the mean surface condi-
tions which determine the O(1) solution. To illustrate their
behaviour, I used a model for the strain rate f which
accounts for grain-boundary sliding (Maeno and Ebinuma,
1983; Alley, 1987), dislocation creep (Wilkinson and Ashby,
1975) and boundary and lattice diffusion (Coble, 1970). This
model provides analytic expressions for the compactive
viscosity in terms of the mechanical and thermodynamical
constants of firn. A complete tabulation of the model and
the values of the constants is given in Arthern and Wingham
(1998). For now, it is sufficient to note that the densification
rate f depends explicitly on the (isothermal) temperature.
The functions Hy, and H, may be regarded therefore as
functions of the mean surface deposition rate (my), surface
density (pspow) and temperature.

With this model, the kernels of the integrals in Equation
(27) are well behaved and smoothly varying. The functions
H,, and H, were calculated by Fourier transforming Equa-
tions (27) using the Mathematica™ routine NIntegrate,
having first used the routine NDSolve to calculate the O(1)
solution of Equation (17). Calculations were performed for
the cases {my = 130kg m 2a ) paew = 350kgm %, T =
245K}, which describe mean conditions at Byrd station,
West Antarctica, and which are close to average values for
the Antarctic ice sheet as a whole, and {rg = 400 kgm *a
Psnow = 350 kg mfg, T = 250 K}, which describe the higher
temperature and accumulation-rate conditions at Cam;)
Century, Greenland. Figure 2 shows the function pZ. | Hp|™;
Figure 3 the function (mng;‘now)|Hp|2. (A value of
pizce|Hm|Zequal to 1 means the accumulation-rate fluctuation
appears in the thickness rate with the density of ice; a value of
(77'”L62p;1now)|Hp|2 equal to | implies the velocity v; is unper-
turbed.) It should be noted these illustrations satisfy the
relations Equations (33) and (34). (The O(1) solutions in
these cases are illustrated in figures 1 and 2 of Arthern and
Wingham (1998),

[~

— 10— T ] T

[¢;]

=y

Mass transfer function 22, |H,,

I L I L
0 0.05 0.1 0.15 0.2

Frequency (a™)

o

Fig. 2. The normalized elevation-rate mass-transfer function
pi?ce|Hm\2for Byrd (solid line) and Camp Century (dashed
line).
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4. IMPLICATION FOR REMOTE GEODETIC ESTI-
MATES OF ICE-SHEET MASS IMBALANCE

Satellite observations of thickness change are generally
made in ignorance of contemporary or historical fluctuations
in accumulation rate and surface density. In consequence,
the terms in Equation (27) will introduce uncertainty in
relating observed thickness rate to ice mass imbalance. Such
1s the practical difficulty of obtaining measurements of these
quantities, to some degree in time but particularly in space,
this situation is likely to continue for the foreseeable future,
and the best that may be hoped for at present is a statistical
characterization of the magnitude of these terms. In this sec-
tion, the role of the densification in determining the average
properties of the observed thickness rate is described. In sec-
tion 4.1, point thickness fluctuations arising from uncorre-
lated surface fluctuations are considered. In section 4.2, the
consequence of temporal and spatial covariability of the sur-
face conditions is discussed.

4.1. Thickness fluctuations from random surface
conditions

Much of the variability in accumulation rate in Greenland
and Antarctica is associated with interannual fluctuations,
and interannual fluctuations in density are commonly
observed in ice cores. If one assumes annual averages of
these fluctuations to have time-independent variances o2,
and 0/2], respectively, and supposes that they are indepen-
dent year-to-year, their variances when the fluctuations are
averaged over a longer interval T" are simply

ok } 1 {02
=0y, (35)
a, T g,

(In Equation (35) the “1” has the dimension of time.)
Assuming, in addition, that the fluctuations are indepen-
dent of each other, the variance of the thickness rate 6}21 aver-
aged over the interval T is, from standard methods (see,
e.g., Papoulis, 1991, ch. 10),

) /T o2 /T
_ Om 2 2
=2 [ P [ awlh,w)
—7n/T —/T (36)
9 22 =2

O-Hl moo-
= rm(T)—2 +7,(T) i L

ice snow

The dimensionless numbers ', and 7, which are defined by
Equation (36), describe the particular contribution made to

2
[Hp}
[

2.4
0 p.s‘now

=y

o
3]

<

1 1
0 01 0.2 0.3 0.4 0.5
Frequency {(a™)

Density transfer function m

Fig. 3. The normalized elevation-rate density transfer function
(m;Qp:‘now)\Hpror Byrd (solid line) and Camp Century
(dashed line).
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the thickness-rate variance by the process of densification.
The scaling of 7, and 7, is chosen so as to make their values
consistent with those of Hy, and H,. They are functions of
time because the thickness rate responds differently to dif-
ferent frequencies in the surface fluctuations. As the aver-
aging interval increases, fluctuations at higher frequencies
are increasingly suppressed. The behaviour of 7, with time
for the two cases illustrated in Figures 2 and 3 is shown in
Figure 4; that of r, in Figure 5.

For observations over intervals as short as 5 years, Figures
4 and 5 show that at Byrd and Camp Century, 7y, is close to
the value (pice/ pSHOW)Z, and 7, is close to 1. At least approxi-
mately, accumulation-rate fluctuations at these sites should
be treated as if they occurred with the density of snow, i.e.
that Equation (30) holds. In this limit, one has the practical
advantage that fluctuations in thickness may be algebraically
related to the contemporary fluctuations in surface density
and accumulation rate. On the other hand, the thickness rate
is more sensitive to the fluctuation in accumulation rate than
to the longer-term ice imbalance (the O(1) term in Equation
(30)) in the ratio pice : Psnow- Lhis has the important implica-
tion that it is possible for the instantaneous thickness rate to
have the opposite sign to the instantaneous mass imbalance.

Over longer intervals, Figures 4 and 5 illustrate that the
firn column adjusts more rapidly to fluctuations in surface
density than in accumulation rate, and that the adjustment
1s more rapid at a higher-temperature, higher mean accumu-
lation-rate site. The reduction in the values of 7, and r, at
these intervals shows that, for accurate estimates at a particu-
lar site, one needs to accept the full complexity of Equation
(27). This has the practical implication that the fluctuations in
thickness rate will not be simply related to the contemporary
fluctuations in surface density and accumulation rate.

At sufficiently long intervals, the only contribution to the

10—

Averaging interval 7 (years)

Fig. 4. The variation of rywith averaging interval for Byrd
(solid line) and Camp Century (dashed line ).

1.5 .| T

Averaging interval T (years)

Fig. 5. The variation of v, with averaging interval for Byrd
(solid line) and Camp Century (dashed line ).
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thickness-rate variance is that due to the ice-mass fluctuation,
since from using Equations (33) in Equation (36), one has

rm(T) — 1

Tp(T)HO}asTHoo. (37)

For these intervals, the thickness rate follows contempor-
ary fluctuations in accumulation rate, and with the same
sensitivity as it has to longer-term ice imbalance. However,
Figures 4 and 5 show that in the case of the two examples,
this limit has not been reached even with a measurement
interval of 50 years, except for the density fluctuation at
Camp Century. While 7, and 7, are considerably reduced,
the assumption that Equation (29) holds will underestimate
somewhat the thickness variability.

We now consider the likely magnitude in practice of the
thickness fluctuations, for which estimates of UIQH and 0/27 are
required. Accumulation-rate fluctuation in ice-core records
contains a component associated with metre-scale surface
processes. For this reason, it is common in considering accu-
mulation-rate variability at a point to distinguish “spatial”
and “temporal” variability (see, e.g., Giovinetto and
Schwerdtfeger, 1966). (By variability we mean the square
root of the variance. In practice, the latter means the varia-
bility that is common to sites in the (sometimes poorly
defined) wider vicinity of the point observation. Since varia-
bility at the metre scale will not be observed in satellite
observations, and at least at some sites (Petit and others,
1982) the spatial component is largely absent in averages of
5 years or more, we shall take the “point” variability and the
“temporal” variability to be equivalent.

In Antarctica, decadal fluctuations have been observed
in ice cores (Petit and others, 1982) with a variability of 0.25
of the point mean accumulation rate, or 0.251m in our nota-
tion. An average figure from ice cores (Wingham and
others, 1998) in the Antarctic interior for the 5 year point
variability is 0.15my, equivalent (according to Equation
(35)) to an interannual variability of 0.34m. In Greenland,
the variability is typically somewhat higher, equivalent to
an interannual variability of 0.55m¢ (Van der Veen, 1993).
A typical figure for the variability of interannual fluctua-
tions in density appears to be 10% of the mean (e.g. Gow,
1961), which is 0.1 pgpow In our notation.

On the basis of these values and the preceding discus-
sion, one has, for Antarctica for example,

2 1 P
ot = | 52 | [0.34%r(T) + 0.1%=r,(T)
\ e (38)
mi 1 i—‘ [0.342 + 0.12] T ~ 5years
~ T? phno“
P 0.34> T ~ 100 years.

It is apparent that, even for short observation intervals for
which 7, is largest, the thickness variability is dominated by
the accumulation-rate fluctuations. In addition, while there
does not seem to have been the same attention given to the
distinction between “spatial” and “temporal” fluctuations in
respect of density as there has in respect of accumulation rate,
contemporary snow-pit records taken within the same vicinity
(e.g. Koerner, 1971) appear to show a very considerable vari-
ation in density. It seems reasonable to assume that the “point”
variability in surface density observed in a satellite obser-
vation of thickness rate will be smaller than that seen in indi-
vidual core records. In consequence, in practice, the effect of
fluctuations in surface density can probably be ignored.
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To illustrate the practical importance of the thickness
fluctuation it is useful to express it as a fraction of the mean
accumulation rate myg. This may be done by multiplying both
sides of Equation (38) by p., /m3. Taking psnow as 350 kg m’
and pice as 917 kg me, Equation (38) then shows that, for
short observation intervals, the accumulation-rate fluctu-
ation in Antarctica will contribute to the point thickness
variability the equivalent of an interannual fluctuation in
ice-mass imbalance of 0.89my. Although this variability will
decrease more rapidly with observation interval 7' than
T'72, it is, practically speaking, a substantial fluctuation.
After an observation interval of 10 years, Figure 4 shows that
at Byrd the point variability of the thickness rate will be the
equivalent of 0.221 (7 =4), and even after a 50 year inter-
val the thickness-rate variability will be 0.07my (7, =2.2).

4.2. Effects of covariability

The assumption that accumulation-rate and surface density
fluctuations are uncorrelated year-to-year (i.e. in the lan-
guage of random signal theory they are “white” processes)
allows the reduction in fluctuation that occurs through tem-
poral averaging (Equation (35)) to be separated in Equation
(36) from the reduction arising from the process of densifi-
cation. In general, this is an oversimplification. Although
accumulation rate appears to be quite close to a white process
in some core records (e.g. Gow, 1961), other records show a
distinct absence of fluctuations on scales of >30years—a
good example is Petit and others (1982) — leading to the view
(e.g. Van der Veen, 1993) that accumulation rate is generally a
“blue” process. In this case, Equation (38) will overestimate
somewhat the fluctuations on time-scales of > 30 years.
However, other core records, particularly at or near ice-
sheet margins (e.g. Peel, 1992; Isaksson and others, 1996) show
a significant degree of variability on 50—100 year time-scales.
In the case of a “red” spectrum it is not immediately obvious
what, in practice, should be taken to equal the theoretically
constant mass-accumulation rate my. However, Figures 4
and 5 show that little amplification (i.e. ry, > 1) of the thick-
ness rate by densification occurs for fluctuations with periods
longer than 100 years. Thus, if one sets m(t) to be the accu-
mulation rate averaged on century time-scales, and uses

Ti(t) = g (£) + Aring (t) (39)

in place of Equation (5), little difference will result. In such
cases, the magnitude of the fluctuation may be larger than
Equation (38) implies, since this is based largely on accumu-
lation-rate variability at sites which appear to have “white”
or “blue” variability.

The assumption that the accumulation rate and surface
density fluctuations are uncorrelated may also be criticized.
Sublimation occurs at the surface in summer even in dry firn,
and the lowering of surface density that results is directly
related to a reduction in accumulation rate. However, it ap-
pears this effect may be small in comparison with those due to
the mass fluctuations. For example, it has been calculated
(personal communication from M. Spencer, 1998) that subli-
mation may contribute up to 2 cm to the annual cycle of thick-
ness in West Antarctica. In comparison, an interannual
fluctuation of thickness 0.89772¢ is some 28 cma ' ice equiva-
lent in West Antarctica.

Probably more important than the temporal covariability
of the accumulation fluctuation is the spatial covariability.
The uncertainties in the present imbalances of the grounded
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Antarctic and Greenland ice sheets are of order 0.25 of their
average mean accumulation rate (hereafter, e.g., 0.25my;
Warrick and others, 1996). Uncertainties in the mass im-
balances of individual drainage basins are very difficult to
determine from the literature (see, e.g., Jacobs, 1992), but
perhaps 0.31 is a typical figure. These are somewhat smaller
than the figure of 0.89m that we have argued characterizes
the point interannual fluctuation. It is apparent that, if the
point variability observed in individual ice cores is character-
istic of large areas of the ice sheet, 1.e. if the accumulation-rate
fluctuations are correlated over large distances, satellite
observations of ice-sheet thickness rate must extend over
50 years to significantly reduce present uncertainty in ice-
sheet imbalance. If, on the other hand, the correlation scale
of accumulation-rate fluctuations is small, point estimates
such as Equation (38) may greatly overestimate the import-
ance of accumulation-rate fluctuations in averages of the
thickness rate over large areas.

5. LIMITATIONS ARISING FROM THE TREAT-
MENT OF DENSIFICATION

A significant limitation of the treatment here is its ignorance
of the effect of temperature fluctuations. If the firn tempera-
ture approaches or reaches the melting point, refreezing
makes a significant contribution to densification (Braithwaite
and others, 1994). Relatively high temperatures may also un-
derlie the strongly non-linear compactive viscosities observed
in seasonal snowpack, 4—6 orders of magnitude smaller than
those observed in ice-sheet firn (Mellor, 1975). Even in cold,
dry firn, however, temperature is important in that the pro-
cesses of densification are thermally activated. Fluctuations
in temperature at the surface will be convected and advected
into the firn. Numerical calculations by Arthern and Wing-
ham (1998) showed that in central Greenland and Antarctica
the effects of observed interannual surface temperature fluc-
tuations on the rate of change of thickness will be small in
comparison with those of surface density and accumulation
rate. Nonetheless, the isothermal treatment used here ex-
cludes the present results from practical application to much
of southern Greenland and coastal Antarctica. (It should be
noted too that, in general, the spatial scale of the thickness
fluctuation resulting from temperature variation may be very
different from that associated with mass transport by the
atmosphere, which predominates in regions of dry firn.)

A second weakness of the treatment is its ignorance of
the role of horizontal strain rate. This is avoided by restrict-
ing the firn motion, but, even so, a certain sleight of hand
hasbeen necessary. In section 3 the quantity M, was defined
as the rate of mass loss from the ice sheet underlying the firn
layer. Theoretically, there is no difficulty with this; it simply
restates through Equation (24) the boundary condition at
the base of the firn. However, M; did service in the discus-
sion of section 4 for practical situations in which the firn and
ice lose mass by horizontal flux divergence. Implicitly, I
have assumed that the results in so far as they describe the
thickness fluctuations hold good if the firn is allowed to
diverge horizontally and Mj is taken as the divergence loss
from the firn and ice as a whole. In fact, if the horizontal
strain rate is small (which it will be for the most part in the
interior of Antarctica and Greenland) this will probably be
the case. If the problem were repeated with the horizontal
strain rate regarded as a small parameter, the effect of the
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strain rate on the O(\) fluctuations would be second-order.

The assumption is probably a good one.

6. CONCLUSIONS

This paper describes the relationship between the mass
imbalance of a dry, isothermal firn layer and its rate of
change of thickness. Using a linearized set of equations, the
rate of change of thickness may be related to fluctuations of
accumulation rate and density occurring at the surface
through linear integral operators whose kernels depend on
the mean surface conditions. These operators may be regarded
as shift-invariant. In consequence, an alternative, spectral
description may be used. This description shows that the pro-
cess of densification may amplify the appearance of the sur-
face accumulation-rate fluctuation in the rate of change of
thickness by as much as the ratio of the density of ice to the
density of snow. For examples from the Antarctic and Green-
land ice sheets, the amplification is most important over short
(~b year) observation intervals, but remains sensibly large for
periods of > 50 years. Variations in surface density also intro-
duce short-duration fluctuations into the thickness rate,
although these may be of less practical importance.

Because accumulation rates are generally unknown,
their effect on the thickness rate will introduce uncertainty
in determining the longer-term imbalance of an ice sheet
from short observations by satellite of its elevation rate. At a
point, this uncertainty is large in comparison with the pres-
ent uncertainties in the mass imbalance of the Antarctic and
Greenland ice sheets. (It is also large in comparison with the
errors associated with modern satellite altimetry (Wingham
and others, 1998)) However, whether it remains compara-
tively large in areal averages of elevation rate depends on
the spatial correlation of accumulation-rate fluctuations.

The spatial correlation of accumulation-rate fluctuation
has had limited attention in the literature. Enomoto (1991)
has concluded that decadal fluctuations in accumulation rate
at ice-core sites in separate drainage basins in Antarctica
have had little common variance in the past century. On the
other hand, Morgan and others (1991) have reported strik-
ingly high correlations in recent accumulation rate at sites in
Wilkes Land. In general, it appears in Antarctica at least that
the accumulation-rate records are too sparse to determine
the spatial covariability of accumulation rate. Increased at-
tention to investigating the correlation scale would be timely.
In lieu of this, the observed spatial covariance of the thick-
ness rate may itself provide valuable information.
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APPENDIX A

MASS CONSERVATION OF THE FIRN LAYER

In section 2 it was argued that conservation of mass implied
that go was constant on a material path. Here the converse is
shown, namely, that a necessary consequence of the con-
stancy of gy on a material path is the conservation of mass.
Consider a parcel of firn that passes through the surface at
t = to. It will define a material path in the {z, t}-plane that
may be described by the function z = z(t, ¢y). By definition,
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the velocity of the parcel equals the gradient of the path
with respect to time ¢:

dZ(t, t(]) -
dat

If qo is constant along the material path, dgo(¢, z)/dt =0 on
the path, 1.e.

) (@ 0
ot 0z Ot g\ ot 0z
e 1dp
= m(t) 5o vp

(A1)

(A2)

must vanish. The first line of Equation (A2) uses Equation
(9), and the second line Equations (2) and (11).

The vanishing of the righthand side of (A2) is a state-
ment of the conservation of mass. Integrating Equation (1)
over depth provides

¢
0—/dz—tz +/dza(ap;)(t,z)
0

¢ 2
— @ gl @+ (w0 - (e 4y
0

g

— 2 (F .0 -Z00) + (6.0 - )

=240+ (o)1) — ()

which is the required result. The second line uses Equation
(2) to reformulate the first term. The third line uses Equa-
tion (5), and the fourth line Equation (7).

APPENDIX B

THE INVERSE TRANSFORMATION = = z(q, o)

The conditions for the transformation Equations (8) and (9)
to be invertible are given following Equation (12). The in-
verse transformation ¢ = t(¢) cannot be given explicitly.
Here we show that the transformation z = 2(q, qo) is

(g, qo) = /ds 7}2(; 5 (B1)

9

This result is proven by showing that z = 2(q, ) is the
solution of the equations

(0, q0) = 0 (B2)

()= g
Oqo ¢ D R(q,q0)

Integrating Equation (B3) and applying the condition
Equation (B2) then provides Equation (Bl).

To obtain Equation (B2), note that from Equations (7)
and (9), ¢ = qo when z = 0, which provides it directly. To
obtain Equation (B3), note that by definition the inverse
transformations must satisfy

(B3)

s = q(t(s)) (B4)
s = qo(t(q), 2(¢, 8)) - (B5)
407
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But
q0(t(q), 2(q,5)) = q(t(q)) — é (p(t(a), 2(q,5)) — pa)
2(q,)
= / du p(t (B6)
0
=4q— /dw_q7 (q,’U}).

The first line of Equation (B6) is the definition of gy (¢, 2) of
Equation (9). The second line uses Equation (B4) and Equa-
tions (2) and (7). The last line uses the variable substitution
u = z(q,w), Equation (B5) and Equation (13). Substituting
Equation (B6) into Equation (B5) shows that for Equation

(B5) to hold,
/ dw — (g, w)R(q,

Differentiating Equation (B7) with respect to s provides
Equation (B3).

w)=q-—s. (B7)

APPENDIX C
DERIVATION OF EQUATION (27)

In this appendix the central result of the paper, Equation
(27), 1s derived. On substituting from Equation (16) for R in
Equation (22) and specializing the argument of Ry using
the result following Equation (17), one has first that

d q(t) )
= ds — —
d /‘ " R(q(®).5)
qo(t,2(t))
q(t)
_d / ds 1
de Ro(q(t) — s) + Ri(q(t), s) + O(\?)
a2 (t))
d q(t) )
=— ds
dt R()(q(t) — S)
a0 (t2(t))
a7 R,
N Y d Aulgit), s) O()\2 C1
i ] O ()

qo(t,2(t))

where the third and fourth lines follow by expanding the
denominator.

Taking the integral in the third line of Equation (Cl),
one has directly

q q(t) )
— ds
dt / Ro(q(t) — s)
Qo (t2(t))
_ 1 ode() 1 dago(t, 2 (t))
Ro(0) dt  Rolq(t) — qo(t, 2(1))] dt
q(t) d )
+ ds ——7———. C2
| Smam (€2
qo(t,2n(t))
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Taking each term of the second and third lines of Equation
(C2) in turn, one has first that

1 dg(#) _ (rizg + N (1))
R()(O) dt N Psnow (03)
on using Equations (5), (8) and (17). Second,
1 dgo(t, 2(t)) _ M
O RGN ) R

on using Equations (24) and (25). Thirdly,

q(t) alt)
d 1 d 1
/dSERom ) /dsd_ ) =)
qolt2u(1)) 0(t: ()
_ dy(t) [ 1 1 }
dt [Ro(0) Rolg(t) — qo(t, zu(t))]
- (m() + )\mQ(t)) (pilce a psiow> . (05)

The first two steps follow directly. The final line uses Equa-
tions (5), (8), (17) and (25). Substituting Equations (C3), (C4)
and (G)) into the third line of Equation (C2) provides

q(t) .
— My + Mg (1)

d / 1 mo

— ds = C6

a Rolal) = 5) P (C6)
qo(t,2n(t))

for the integral in the third line of Equation (Cl).

Turning now to the second of the two integrals in the sec-
ond line of Equation (C2), one has on substituting for R
from Equation (20)

q(t)
S G TG
dt R2(q(t) — s)
a(t,z (1)
q(t)
d FRATCERWES
dt R2(q(t) — s)" \umg
(t Zb((?) (C?)
q(t
1l a ds Ii(q(t) —s
m% dt Rg(q(t) — 8
Q(t,z(t))
q(t)

[ awm. (mﬂo){fRoI}(w—s»

S
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Taking the first of the two terms on the righthand side of
Equation (C7), one has

q(t)

q(tzb(t)
dg(t) L. (0) (@) dQOth)
dt R%(O my
L [g(t) = qolt, 2(0))] (qo<t zbu)))
R2[q(t) — qolt, 20(1))] *\ g
q(t)
s gh(Q(t) s)
* (f/( N ds <m) dt R3(g(t) — s)
(g + Ming(8) (a(t)
N pSIlOW ps (?0> (CS>
q(t)
d I(g(t) —s) 1o
A "’*( )dt1§<q<t> 5~ o0

a0 (t,2(t))

mot

d I (mgt — s)
/ ds ps< i ) dt R} (mgt — s) +OW).
0(t,2(t))

The first step of Equation (C8) follows directly. The fourth
and sixth lines use Equations (5), (8), (17) and (25). The final
line then follows directly.

Taking the second of the two terms on the righthand side
of Equation (C7) one has

dt
0(t,2 (%))

q/(t) dwm. () (Rl Y )

q(t)
d L (q(t) = 5)
dt / ¥ Rt —s)

w
o(t,z(t))
/w LA =5 ¢ ppor
q (t)—s
o(t,z(t)) (Cg>
d(J(t) q(t)
“Ta ™ (m0>
T Lah-»
+4it) — 38
ds WUROL}(Q@) —s)
Qo (t,2(t))
q(t) d

qo(t,21(t))

w

L (q(t) — )
g “Z/(t)) " WURGL}(W —5).

The third and fourth lines reverse the order of the integra-
tions. The fifth to eighth lines follow on performing the differ-
entiation with respect to ¢. The term containing dgo (¢, 2, (t))/
dt which is apparently missing from these final lines is zero
on account of the upper limit of the integral in the fourth line.
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The term on the fifth and sixth lines of Equation (C9) may be
reformed in the following way:

q(t)
da(t) (a0 [ Lot~ 9)
L e si{fRoI Ha(t) —s)
d ™ — s
¢ ( °>qu(t,!,( ) Ri(q(t) — s)

), (20 q/(” St 9

dt mo
a0 (t,2(t))
¢

(ﬁ@mm@s)) T ds{;%ifl“}m(t)s)

qo(t,2n(t))
dq(t) o T e |
q . q
= ——Laigmg [ =2 ds = (5
a (mo) / * 0 <Ro<q<t>—s>)
qo(t,2(t))

mgms(t)( LI )+O()\). (C10)

Pice Psnow

The second line uses the definition Equation (19) of the func-
tions I, and I_. The third line substitutes for f using Equa-
tion (17), the fourth then following directly. The fifth line
uses the results of Equation (C)).

The term on the seventh and eighth lines of Equation
(C9) may also be simplified:

w\ d
Q0 (t,2(t))
r I, (ot — )
R E—— I - .
ds R (ot — ) {fRoI_}(w —8) + O()\)

qo(t,2(t))

Substituting from Equations (C10) and (Cll) into Equa-
tion (C9), and then Equations (C8) and (C9) into (C7), pro-
vides an expression for the integral on the fourth line of
Equation (Cl). Together with the expression of Equation
(G6) for the integral on the third line of Equation (Cl), one
then has:

q a(t) )
— d
dr / * Rq(0), s)
qo(t,26(1))
ho — M, j S(t
_ o L\ o ps(t)+)\m—()
2

pico Psnow psnow

s\ d Ii(met — s)
—-A ds ps| — | ————"—= 12
/ s <m0> dt R2 (gt — 5) (C12)

A / dw m(ﬂ> 4 / ds 7]*2(".“”5 —)
mg g ) dt Ri(mhot — s)
qo(t,2(t)) Go(t,2n(t))

{fRoI_}(w—s) +O(N?).

Substitutions of u = s/ for the integration variable in the
second line, and u = w/my and = ¢ — s/my in the inte-
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gration variables of the third line, provide Equation (27).
(The symbols used for the integration variable are, of
course, immaterial) This final substitution allows the final
line of Equation (27) to be recognized as a convolution inte-
gral when ¢(t, z,) — —o.

APPENDIX D
DERIVATION OF EQUATION (29)

When p; varies sufficiently slowly in Equation (27) that it
may be brought outside the integral,

| ds ps(s)%{%%}(mo(t —))

Qo(t:26 (1)) /1o
t

s 5 {f (e =)

= —py(t) E{%}(O) - {%}(mot —ql(t, Zb(t)))]

=2 (D1)

pSIlOW

The third line follows directly. The last line uses Equations
(17), (19) and (26).

When m varies sufficiently slowly in Equation (27), one
has first that

t—ap (L (1)

¢
. d

/ ds mg(s) o
qo(t,2(t)) /10 P
(ou){f Rol-}(1g(s +u —1))

t=qo(t21, (1)
n

t 0
~ 1 (t) / ds % / du {1{;2}
0

a (1) t—s
0

(rou){f Rol-}(rio(s +u —1)).
Working with the “inner” integral of Equation (D2) pro-
vides

t—q (t,2, (1)
o

/ du{;3}<mou>{fRoz Fro(s +u — 1)

t—s

_gj
Todt

a (1.2, (1)

()

~ [t ot ) 5 {7 ote = )

a(t2(0)
mg

(D2)

&l e

w{ s poote = ) BoL_ (s = w)

- {%}(mot = qo(t, 2(){f RoI-}(1mos — qo(t, 2(1)))

- / duw {f RoT_}(rios — w)) 2

ao (12 (1)

g

(D3)
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) 5 { 7 ot =),

The first two steps follow directly. The final line uses Equa-
tion (26). Continuing on the same path,

j dur {f Rol} (s ))%{%}(mo@ —w)

a (£, (1))

i

r d (I
= - dw {f Rol-}(riw(s — w)) = —5 ¢ (mo(t — w))
‘10(‘;{(;)) ¢ {RO}

i

- [urnyofy }<mo<t— 9)

Rl Yan(t 20 — ) { 5 ot e (4|

[ I\, d .
_ / dw {ﬁg}(mo(t —w)) = {f Rol}(sita(s — w))
qo(‘vfh(t))

.y RUI—}(O){%%}(MOU )

_ / dw {%}(mo(t —w) %{f Rol_}(rig(s — w))
a9 (t.2,(1))

i

(D4)

The second, third, fourth and fifth lines follow directly. The
sixth and final lines use Equation (26).

Substituting Equation (D4) into Equation (D3), and
substituting the result back into the “outer” integral of Equa-
tion (D2) provides:

t=ap (1.2, (1)
o

o [ [ el

410 b([) t—
i

(mou){f Rol-}(mio(s +u — 1))

— i (t){f Rol_}(0) / ds{%}mu )

'1[)(‘~_31\(t))

t s
I
—ms(t) / ds / dw {Rg} (D5)
aw(t2®) a(t2(0) 0
D) o
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Reversing the order of integration of the final line of Equa-

tion (D5), one has

[ o [l

ap (2 (1) a (1 ®)

g )

mw—wm%Ua¢me—m>

- / M{;}m&ﬂm

a0 (b2 (1)
o

t

/dS %{fRUI,}(mU(S — U)))

w

— {FRI )0 j aw{g }mm—w»

a(t2p(0)
7"0

t

]l

1 (t.2, (1))
e

— (JRI_}(0) / M{ﬁhmﬁ—m>

2
RO
a(t2, (1))
I

1 1

Psnow  Pice

Wingham: Small fluctuations of a firn column

The third and fourth lines follow directly. The fifth and
sixth lines follow on performing the integration directly
and using Equation (19). The seventh and final lines make
use of the results of Equation (Cl0) to deal with the integral
of f/Ry. Using Equation (D6) in Equation (D5), one has,
finally,

t—ap (.2, (1))

mg I+
/ ds dt/t . du {R_%}

2 (D7)
(mou){f Rol-}(mo(s +u —1))

1 1
(1)
Psnow  Pice

Substituting Equations (DI) and (D7) into Equation (27)
provides Equation (29).
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