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We study the Γ-convergence of nonconvex vectorial integral functionals whose
integrands satisfy possibly degenerate growth and coercivity conditions. The latter
involve suitable scale-dependent weight functions. We prove that under appropriate
uniform integrability conditions on the weight functions, which shall belong to a
Muckenhoupt class, the corresponding functionals Γ-converge, up to subsequences,
to a degenerate integral functional defined on a limit weighted Sobolev space. The
general analysis is then applied to the case of random stationary integrands and
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1. Introduction

In this paper, we study the effective behaviour of scale-dependent integral function-
als with possibly degenerate integrands. Functionals of this kind typically model the
energy of a heterogeneous material whose physical properties (elastic, thermal, elec-
trical, etc.) may both deteriorate and vary significantly from point to point, on a
mesoscopic scale.

The energy functionals we consider are of the form

Fk(u) =
∫
A

fk(x,∇u) dx, (1.1)

where A ⊂ Rn is an open, bounded, Lipschitz set, k ∈ N is a parameter related
to some material property (e.g. the size of the microstructure) and u : A→ Rm

represents a physical variable (e.g. the elastic deformation of the body).
The degeneracy of the integrands fk : Rn × Rm×n → [0, +∞) is expressed in

terms of growth and coercivity conditions which can depend both on the parameter
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k and on the spatial variable x. These are given by introducing weight functions
λk : Rn → [0, +∞) which modulate the typical superlinear growth in the gradient
variable. That is, for every x ∈ Rn, ξ ∈ Rm×n, and k ∈ N the integrands fk satisfy

αλk(x)(|ξ|p − 1) � fk(x, ξ) � βλk(x)(|ξ|p + 1), (1.2)

where p > 1, and 0 < α � β < +∞.
If the weight functions λk are bounded in L∞ uniformly in k, then (1.2) reduces

to the standard growth and coercivity of order p > 1. In this case, the limit
behaviour of Fk is well understood and can be described using the language of Γ-
convergence. Namely, if k → ∞, the functionals Fk Γ-converge (up to subsequences),
on W 1,p(A; Rm), to an integral functional of the form

F (u) =
∫
A

f0(x,∇u) dx, u ∈W 1,p(A; Rm), (1.3)

with f0 satisfying the same (nondegenerate) growth conditions satisfied by fk (see
[9]). Moreover, if εk → 0+ and fk(x, ξ) = f(x/εk, ξ) for some nondegenerate f ,
then the limit integrand f0 is x-independent and subsequence-independent both in
the periodic [6, 30] and in the stationary random case [15, 16, 28], and given by
a so-called homogenization formula. As a result, in this case, the whole sequence
(Fk) Γ-converges to F .

In this paper, we consider sequences of weight functions (λk) which are not
bounded in general. Specifically, for every k ∈ N we assume that

λk, λ
−1/(p−1)
k ∈ L1

loc(R
n), (1.4)

moreover, we additionally require the existence of a constant K � 1 such that for
every k ∈ N there holds(

−
∫
Q

λk dx
)(

−
∫
Q

λ
−1/(p−1)
k dx

)p−1

� K, (1.5)

for every cube Q ⊂ Rn. The uniform integrability condition (1.5) is known as Muck-
enhoupt condition and the functions satisfying it are referred to as Muckenhoupt
Ap(K)-weights [29].

In this case, the growth conditions (1.2) satisfied by fk naturally set the problem
in the parameter-dependent weighted Sobolev space W 1,p

λk
(A; Rm) where, for a given

Ap(K)-weight λ we have

W 1,p
λ (A; Rm) =

{
u ∈W 1,1(A; Rm) :

∫
A

λ|u|p dx+
∫
A

λ|∇u|p dx < +∞
}
.

The limit behaviour of functionals Fk with integrands satisfying (1.2) was studied
for the first time in [10], in the convex, scalar case and under the sole integrability
condition (1.4). Assuming that λk converges weakly to some λ∞ in L1, in [10]
the authors proved a Γ-convergence and integral representation result for the Γ-
limit of Fk, on the space of Lipschitz functions. The latter, though, in general
is smaller than the domain of the Γ-limit. Moreover, in the setting considered in
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Γ-convergence in weighted Sobolev spaces 493

[10] the functionals Fk are not equi-coercive and therefore a convergence result for
the associated minimization problems cannot be derived from the Γ-convergence
analysis.

In order to extend the Γ-convergence result in [10] to the domain of the Γ-limit
and to gain compactness, in [17] the Muckenhoupt condition (1.5) was also required
together with the additional bound

c1 � −
∫
Q0

λk dx � c2, (1.6)

where 0 < c1 � c2 < +∞ and Q0 ⊂ Rn is a given cube. The Muckenhoupt condi-
tion (1.5) guarantees the continuous embedding of W 1,p

λk
(A) in the Sobolev space

W 1,1+δ(A), for some δ > 0. Then, a combination of (1.5) and (1.6) ensures that
sequences with equi-bounded energy are bounded in W 1,1+δ(A), and hence pre-
compact in L1(A) (whenever A ⊂ Q0). Therefore, in the setting considered in
[17] the equi-coerciveness of the functionals Fk can be recovered. Moreover, again
thanks to (1.5)–(1.6) a lower bound on the Γ-limit can be established, which shows
that its domain is the weighted Sobolev space W 1,p

λ∞(A), where λ∞ belongs to a
Muckenhoupt class and is the weak L1-limit of (a subsequence of) λk.

Besides the contributions [10, 17], Γ-convergence and relaxation results for func-
tionals of type (1.1)–(1.2) defined on weighted Sobolev spaces were also established
in [3, 11, 18, 19, 21, 22, 31] without departing, though, from the convex/monotone
operator, scalar setting, with the only exception of [31]. More specifically, in [31]
the authors proved a stochastic homogenization result for a sequence of discrete
nonconvex, vectorial energy functionals with degenerate integrands. Under suitable
assumptions on the random weights, which are weaker than (1.5) in the scalar case
but not really comparable to (1.5) in the vectorial case, the authors showed that in
the stationary ergodic case the energies homogenize to a nondegenerate determin-
istic integral functional. We observe that the case of homogenization is somehow
special since in this case the limit functional is always nondegenerate and thus
defined on the space W 1,p.

In the present paper, we extend the analysis in [17] to the nonconvex, vecto-
rial setting, without assuming any periodicity or stationarity of the integrands fk.
Namely, we assume that fk satisfies (1.2), together with some mild continuity con-
dition in ξ (cf. (3.3)), and that the weight functions λk are as in (1.4)–(1.6). Under
these assumptions we show the existence of a subsequence (kh), a limit Muck-
enhoupt weight λ∞, with λkh

⇀ λ∞ in L1(Q0), and a degenerate integrand f∞
satisfying

αλ∞(x)
(

1
K

|ξ|p − 1
)

� f∞(x, ξ) � βλ∞(x)(|ξ|p + 1), (1.7)

a.e. in Q0 and for every ξ ∈ Rm×n, such that the functionals Fkh
Γ-converge, with

respect to the strong L1(A; Rm)-convergence, to the integral functional

F∞(u) =
∫
A

f∞(x,∇u) dx, u ∈W 1,p
λ∞(A; Rm).

We also show that the Γ-convergence holds true, with the same subsequence (kh), for
every open, bounded, Lipschitz set A ⊂ Rn, with A ⊂⊂ Q0. Moreover, we derive an
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asymptotic formula for the limit integrand f∞ which can be expressed as a (double)
limit of sequences of scaled minimization problems as follows:

f∞(x, ξ) := lim sup
ρ→0+

lim
h→∞

1

ρn
inf

{∫
Qρ(x)

fkh
(y,∇u + ξ) dy : u ∈ W 1,p

0,λkh
(Qρ(x); Rm)

}
,

(1.8)

where Qρ(x) ⊂ Rn denotes the cube centred in x with side-length ρ > 0, and

W 1,p
0,λkh

(Qρ(x); Rm) = W 1,1
0 (Qρ(x); Rm) ∩W 1,p

λkh
(Qρ(x); Rm).

The proof of this result is carried out in a number of intermediate steps. Namely,
we first prove the Γ-convergence and integral representation result on the space
W 1,∞(A; Rm) � W 1,p

λ∞(A; Rm). To do so, we use the localization method of Γ-
convergence and adapt the approach in [7, 14] to our setting to get an integral
representation result for functionals with degenerate integrands. We remark here
that the most delicate part in the implementation of the localization method is the
proof of the subadditivity of the Γ-limit, which requires to combine a fundamental
estimate for the functionals Fk together with an ad hoc vectorial truncation argu-
ment, in the same spirit as, e.g. [8, lemma 3.5]. We then extend the Γ-convergence
and integral representation result to the limit weighted Sobolev space W 1,p

λ∞(A; Rm).
The latter coincides with the domain of F∞, thanks to (1.7); hence we get a complete
description of the Γ-limit of Fkh

. The passage from W 1,∞(A; Rm) to W 1,p
λ∞(A; Rm)

is performed by resorting to classical approximation argument (see [1, theorem
II.4]) which exploits the property of the maximal function in relation to the Muck-
enhoupt weights. More precisely, we can adapt [17, theorem 3.1] to the vectorial
setting to show that in the liminf inequality, we can replace a sequence (uk), with
uk → u in L1(A; Rm) and equi-bounded W 1,p

λk
(A; Rm)-norm, with a sequence of Lip-

schitz functions converging to a W 1,∞(A; Rm)-function which differs from u on a set
with vanishing measure. Eventually, the asymptotic formula for f∞ is obtained by
combining a convergence result for minimization problems with prescribed Dirichlet
conditions together with a derivation formula for f∞ which is obtained by extending
to the weighted Sobolev setting the method developed in [4, 5].

Finally, the general Γ-convergence analysis is complemented by an application to
the case of stationary random weights and integrands, thus generalizing the classical
stochastic homogenization result in [15, 16, 28] to the degenerate setting.

That is, we specialize our general result to the choice

λk(ω, x) = λ

(
ω,

x

εk

)
, fk(ω, x, ξ) = f

(
ω,

x

εk
, ξ

)
,

where ω belongs to the sample space of a given probability space (Ω, F , P ), λ is a
random Muckenhoupt weight (cf. assumption 8.5), and f is a degenerate stationary
random integrand (cf. definition 8.7). Then, following the same approach as in
[16], we combine the deterministic analysis and the subadditive ergodic theorem
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[2, theorem 2.9] to show that, almost surely, the random functionals

Fk(ω)(u) =
∫
A

f

(
ω,

x

εk
,∇u

)
dx, u ∈W 1,p

λk
(A; Rm)

Γ-converge to a nondegenerate (spatially) homogeneous random functional

Fhom(ω)(u) =
∫
A

fhom(ω,∇u) dx u ∈W 1,p(A; Rm),

where fhom satisfies standard growth conditions of order p > 1 with random
coefficients (cf. (8.10)) and is given by the following asymptotic cell formula

fhom(ω, ξ) = lim
t→∞

1
tn

inf

{∫
Qt(0)

f(ω, x,∇u+ ξ) dx : u ∈W 1,p
0,λ (Qt(0); Rm)

}
.

(1.9)

If, moreover, λ and f are ergodic, we show that fhom is deterministic and given by
the expected value of the right hand side of (1.9). Furthermore, in the ergodic case
fhom satisfies the following deterministic growth and coercivity conditions of order
p > 1:

α

(∫
Ω

λ(ω, 0)−1/(p−1) dP
)1−p (|ξ|p − 1

)
� fhom(ξ) � β

(∫
Ω

λ(ω, 0) dP
)

(|ξ|p + 1),

for every ξ ∈ Rm×n.

Outline of the paper. The paper is organized as follows. In § 2 we recall the
notions of Muckenhoupt classes and weights and of weighted Sobolev spaces. More-
over, we recall here some well-known related results which will be used throughout.
In § 3 we introduce the functionals we study and state the main result of this paper,
theorem 3.2. The proof of theorem 3.2 is then carried out in § 4–7. Namely, in
§ 4 we prove a Γ-convergence and integral representation result in the space W 1,∞,
theorem 4.1. In § 5 we establish theorem 5.2 which extends the results in theorem
4.1 to the weighted Sobolev space W 1,p

λ∞ , also showing that the latter coincides with
the domain of the Γ-limit. On account of theorem 5.2, in § 6 we prove that in this
setting Γ-convergence is stable under the addition of Dirichlet boundary conditions
and we derive a convergence result for the associated minimization problems. In
§ 7 we prove a derivation formula for the integrand of the Γ-limit, theorem 7.1 (see
also corollary 7.2). Eventually, in § 8 we prove a stochastic homogenization result
for stationary random weights and integrands, theorem 8.12.

2. Preliminaries

In this section, we collect some useful definitions and preliminary results which will
be used throughout.
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2.1. Muckenhoupt classes

We start by recalling the definition of the so-called Muckenhoupt classes. An
introduction to the theory of Muckenhoupt classes can be found in [24].

Definition 2.1. Let p > 1 and K � 1. The Muckenhoupt class Ap(K) is defined
as the collection of all nonnegative functions λ : Rn → [0, +∞), with λ, λ−1/(p−1) ∈
L1

loc(R
n), such that

(
−
∫
Q

λdx
)(

−
∫
Q

λ−1/(p−1) dx
)p−1

� K,

for every cube Q ⊂ Rn with faces parallel to the coordinate hyperplanes.
Moreover, we set Ap :=

⋃
K�1Ap(K).

The elements of the class Ap (resp. Ap(K)) are usually referred to as Ap-weights
(resp. Ap(K)-weights). Simple examples of Ap-weights are radially symmetric
functions of the type

λ(x) = |x|γ for − n < γ < n(p− 1).

Further examples can be found, e.g. in [25].
We recall the following ‘reverse Hölder inequality’ which holds for functions in

Ap and whose proof can be found in [13, theorem IV].

Theorem 2.2. Let p > 1 and K � 1. Then there exist an exponent σ =
σ(K, p, n) > 0 and a constant c = c(K, p, n) > 0 such that

(
−
∫
Q

λ1+σ dx
)1/(1+σ)

� c

(
−
∫
Q

λdx
)
, (2.1)

(
−
∫
Q

λ−(1+σ)/(p−1) dx
)1/(1+σ)

� c

(
−
∫
Q

λ−1/(p−1) dx
)
, (2.2)

for every cube Q and for every λ ∈ Ap(K).

Remark 2.3. We observe that since λ−1/(p−1) ∈ Ap′(K) with p′ := p/(p− 1), then
inequality (2.2) can be obtained by applying (2.1) to the weight λ−1/(p−1).

In this paper, we will deal with sequences of Ap(K)-weights. The following result
is a consequence of theorem 2.2 and its proof can be found in [17, proposition 4.1].

Proposition 2.4. Let K � 1, p > 1, and let (λk) be a sequence of functions in
Ap(K). Let Q0 ⊂ Rn be a cube and assume that there exist two constants c1, c2
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with 0 < c1 � c2 such that

c1 � −
∫
Q0

λk dx � c2, (2.3)

for every k ∈ N. Then there exist a subsequence (λkh
) ⊂ (λk), a constant c3 = c3(n),

depending only on n, and functions λ∞ and λ̃∞ in Ap(c
p
3K) such that

λkh
⇀ λ∞ in L1+σ(Q0) (2.4)

and

λ
−1/(p−1)
kh

⇀ λ̃−1/(p−1)
∞ in L1+σ(Q0), (2.5)

for some σ > 0. Moreover, there holds

λ̃∞ � λ∞ � Kλ̃∞, (2.6)

a.e. in Q0.
If (2.3) is replaced by the stronger condition

0 < lim inf
k→∞

−
∫
Q

λk dx, lim sup
k→∞

−
∫
Q

λk dx < +∞ for every cube Q ⊂ Rn,

then (2.4) and (2.5) holds true for every cube Q ⊂ Rn, (2.6) holds a.e. in Rn, and
λ∞ ∈ Ap(K).

The equi-integrability estimate below is another immediate consequence of
theorem 2.2.

Proposition 2.5. Let p > 1, K � 1, and let (λk) be a sequence of functions in
Ap(K) satisfying (2.3). Then there exist σ = σ(K, p, n) > 0 and c = c(K, p, n) > 0
such that ∫

E

λk dx � c c2|Q0|
( |E|
|Q0|

)σ/(1+σ)

,

for every measurable set E ⊂ Q0 and every k ∈ N.

Proof. Let σ > 0 and c > 0 be the constants given by theorem 2.2. By (2.1) and
(2.3) we get (

−
∫
Q0

λ1+σ
k dx

)1/(1+σ)

� c

(
−
∫
Q0

λk dx
)

� c c2,

for every k ∈ N. Therefore, the Hölder inequality easily gives∫
E

λk dx � |E|σ/(1+σ)|Q0|1/(1+σ)

(
−
∫
Q0

λ1+σ
k dx

)1/(1+σ)

� c c2|E|σ/(1+σ)|Q0|1/(1+σ) = c c2|Q0|
( |E|
|Q0|

)σ/(1+σ)

.

�
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2.2. Weighted Sobolev spaces

In this short subsection, we recall the definition and the basic properties of
weighted Sobolev spaces. For a comprehensive treatment of this subject we refer the
reader to the monographs [25, 34]. For further relevant results concerning weighted
Sobolev spaces, we will provide a precise reference to the literature whenever these
results are used in the paper.

Let p > 1, let λ ∈ Ap. In all that follows A ⊂ Rn denotes an open and bounded
set with Lipschitz boundary. Let m ∈ N, m � 1; we define the weighted Lebesgue
space

Lpλ(A; Rm) :=
{
u ∈ L1(A; Rm) :

∫
A

λ|u|p dx < +∞
}

;

we recall that Lpλ(A; Rm) equipped with the norm

‖u‖Lp
λ(A;Rm) :=

(∫
A

λ|u|p dx
)1/p

is a reflexive Banach space. Moreover, we define the weighted Sobolev space
W 1,p
λ (A; Rm) as

W 1,p
λ (A; Rm) :=

{
u ∈W 1,1(A; Rm) ∩ Lpλ(A; Rm) :

∫
A

λ|∇u|p dx < +∞
}
,

the latter is also a reflexive Banach space when endowed with the norm

‖u‖W 1,p
λ (A;Rm) :=

(∫
A

λ|u|p dx+
∫
A

λ|∇u|p dx
)1/p

.

We recall that the embedding of W 1,p
λ (A; Rm) in Lpλ(A; Rm) is compact (see, e.g.

[23, lemma 1]). Furthermore, we have the following continuous embeddings:

L∞(A; Rm) ↪→ Lpλ(A; Rm) ↪→ L1+δ(A; Rm),

W 1,∞(A; Rm) ↪→W 1,p
λ (A; Rm) ↪→W 1,1+δ(A; Rm),

for some δ > 0.
Throughout the paper, we will also use the fact that C∞(A; Rm) is dense in

W 1,p
λ (A; Rm) (see, e.g. [34, corollary 2.1.6]).
The following characterization of W 1,p

λ (A; Rm) will be useful for our purposes.

Proposition 2.6. Let p > 1, λ ∈ Ap, and let A ⊂ Rn be open, bounded, and with
Lipschitz boundary. Define

Ŵ 1,p
λ (A; Rm) :=

{
u ∈W 1,1(A; Rm) :

∫
A

λ|∇u|p dx < +∞
}
,

then Ŵ 1,p
λ (A; Rm) = W 1,p

λ (A; Rm).
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Proof. The inclusion W 1,p
λ (A; Rm) ⊂ Ŵ 1,p

λ (A; Rm) is obvious, therefore we only
need to show that

Ŵ 1,p
λ (A; Rm) ⊂W 1,p

λ (A; Rm). (2.7)

To prove (2.7) we will establish the following Poincaré-type inequality: there exists
C > 0 such that

‖u‖Lp
λ(A;Rm) � C

(‖u‖L1(A;Rm) + ‖∇u‖Lp
λ(A;Rm×n)

)
, (2.8)

for every u ∈ C∞(A; Rm).
We will obtain (2.8) arguing by contradiction. Were (2.8) false, then for every

j ∈ N there would exist uj ∈ C∞(A; Rm) such that

‖uj‖Lp
λ(A;Rm) > j

(‖uj‖L1(A;Rm) + ‖∇uj‖Lp
λ(A;Rm×n)

)
.

Define the renormalized functions vj ∈ C∞(A; Rm) as

vj :=
uj

‖uj‖Lp
λ(A;Rm)

, for every j ∈ N.

Then,

‖vj‖Lp
λ(A;Rm) = 1 and ‖vj‖L1(A;Rm) + ‖∇vj‖Lp

λ(A;Rm×n) <
1
j
, (2.9)

for every j ∈ N. Hence, in particular, the sequence (vj) is bounded in W 1,p
λ (A; Rm).

Therefore, by the compact embedding of W 1,p
λ (A; Rm) in Lpλ(A; Rm), up to subse-

quences (not relabelled), vj → v in Lpλ(A; Rm), for some v ∈ Lpλ(A; Rm). Moreover,
since the embedding of Lpλ(A; Rm) in L1(A; Rm) is continuous, we also have vj → v
in L1(A; Rm). Therefore, (2.9) entails both ‖v‖Lp

λ(A;Rm) = 1 and v = 0 a.e. in A and
hence a contradiction.

Now let u ∈ Ŵ 1,p
λ (A; Rm); by [11, proposition 3.5] (see also [12, theorem 6.1])

there exists (uj) ⊂ C∞(A; Rm) such that

‖uj − u‖L1(A;Rm) + ‖∇uj −∇u‖Lp
λ(A;Rm×n) → 0 as j → ∞.

Moreover, in view of (2.8) the sequence (uj) is bounded in W 1,p
λ (A; Rm), therefore

again appealing to the compact embedding ofW 1,p
λ (A; Rm) in Lpλ(A; Rm) we deduce

that uj → u in Lpλ(A; Rm) and hence u ∈W 1,p
λ (A; Rm), as desired. �

Remark 2.7. We note that by the density of C∞(A; Rm) inW 1,p
λ (A; Rm) inequality

(2.8) actually holds in the whole space W 1,p
λ (A; Rm). That is, there exists a constant

C > 0 such that

‖u‖Lp
λ(A;Rm) � C

(‖u‖L1(A;Rm) + ‖∇u‖Lp
λ(A;Rm×n)

)
, (2.10)

for every u ∈W 1,p
λ (A; Rm).
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Finally, in this paper, we will also consider the space

W 1,p
0,λ (A; Rm) := W 1,1

0 (A; Rm) ∩W 1,p
λ (A; Rm).

We recall that W 1,p
0,λ (A; Rm) agrees with the closure of C∞

0 (A; Rm) in W 1,p
λ (A; Rm)

(see, e.g. [32, theorem 1.4] or [17, proposition 2.1]).

2.3. Maximal function and measure theory

In this subsection, we recall the definition of maximal function and some of its
properties which are useful for our purposes. Moreover, for the readers’ convenience
we also recall some classical result in measure theory which we are going to employ
in the paper.

For the theory of maximal functions we refer to [33].
Let u ∈ L1

loc(R
n), then the Hardy maximal function of u at x is defined as

(Mu)(x) := sup
r>0

−
∫
Qr(x)

|u|dy

where Qr(x) is the cube centred at x, with side length r and faces parallel to the
coordinate planes. The following property will be useful for our purposes: there
exists a constant c̃ = c̃(n) > 0 depending only on n such that

|{x ∈ Rn : (Mu)(x) � l}| � c̃(n)
l

‖u‖L1(Rn), (2.11)

for every u ∈ L1(Rn) and every l > 0.
The following result is proven in [29, theorem 9].

Theorem 2.8. Let p > 1, K � 1, and let λ ∈ Ap(K). Then there exists a constant
c4 = c4(K, p, n) > 0 such that∫

Rn

λ|Mu|p dx � c4

∫
Rn

λ|u|p dx,

for every u ∈ L1
loc(R

n).

We observe that theorem 2.8 in particular implies that if u ∈ Lpλ(R
n) then Mu ∈

Lpλ(R
n).

For the following lemma we refer to [1, lemma I.11].

Lemma 2.9. Let u ∈ C∞
0 (Rn) and let l > 0. Set

H l := {x ∈ Rn : (M |∇u|)(x) < l}.
Then u is Lipschitz continuous in H l; i.e. there exists a constant c5 = c5(n) > 0
such that

|u(x) − u(y)| � c5 l|x− y|,
for every x, y ∈ H l.

https://doi.org/10.1017/prm.2022.3 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.3


Γ-convergence in weighted Sobolev spaces 501

We recall the following result which can be found in [20].

Lemma 2.10. Let G ⊂ Rn be measurable with |G| < +∞. Let (Eh) be a sequence
of measurable subsets of G such that |Eh| � τ for every h ∈ N and for some τ > 0.
Then there exists a subsequence (Ehj

) ⊂ (Eh) such that
⋂
j∈N Ehj

	= ∅.

Eventually, we state the following technical lemma whose proof can be found in
[1, lemma I.7].

Lemma 2.11. Let (φh) be a bounded sequence in L1(Rn). Then for every τ > 0 there
exist a measurable set Eτ with |Eτ | < τ, δτ > 0, and a sequence (hτj ) such that for
every j ∈ N ∫

B

|φhτ
j
|dx < τ,

for every measurable set B such that B ∩ Eτ = ∅ and |B| < δτ .

3. Setting of the problem and statement of the main result

In this section, we introduce the functionals we are going to study and state the
main result of the paper.

Assumption 3.1 (Admissible weights). Let p > 1, K � 1, and let Ap(K) denote the
Muckenhoupt class as in definition 2.1. A sequence of measurable weight functions
λk : Rn → [0, +∞) is admissible if:

• λk ∈ Ap(K), for every k ∈ N;

• there exists a cube Q0 ⊂ Rn such that for every k ∈ N there holds

c1 � −
∫
Q0

λk dx � c2, (3.1)

for some constants 0 < c1 � c2 < +∞.

Let (λk) be a sequence of weights satisfying assumption 3.1; in this paper, we
consider Borel integrands fk : Rn × Rm×n → [0, +∞) satisfying the two following
conditions:

(1) (degenerate growth conditions) there exist two constants 0 < α � β < +∞
such that for almost every x ∈ Rn

αλk(x)(|ξ|p − 1) � fk(x, ξ) � βλk(x)(|ξ|p + 1), (3.2)

for every ξ ∈ Rm×n and every k ∈ N;

(2) (continuity in ξ) there exists L > 0 such that for almost every x ∈ Rn

|fk(x, ξ1) − fk(x, ξ2)| � Lλk(x)(|ξ1|p−1 + |ξ2|p−1 + 1)|ξ1 − ξ2|, (3.3)

for every ξ1, ξ2 ∈ Rm×n, and every k ∈ N.
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Let A(Q0) denote the collection of all open subsets of Q0 with Lipschitz bound-
ary. We consider the sequence of localized integral functionals Fk : W 1,1(Q0; Rm) ×
A(Q0) −→ [0, +∞) defined as

Fk(u,A) :=

⎧⎨⎩
∫
A

fk(x,∇u) dx if u ∈W 1,p
λk

(A; Rm),

+∞ otherwise.
(3.4)

We endow W 1,1(Q0; Rm) with the strong L1(Q0; Rm)-topology. If not otherwise
specified, throughout the paper the Γ-limits will all be computed with respect to
this topology.

The following theorem is the main result of this paper.

Theorem 3.2. Let Fk be the functionals defined in (3.4). Then there exists a subse-
quence (Fkh

) such that for every A ∈ A(Q0), A ⊂⊂ Q0, the functionals Fkh
(·, A) Γ-

converge to the functional F∞(·, A) with F∞ : W 1,1(Q0; Rm) ×A(Q0) −→ [0, +∞]
given by

F∞(u,A) :=

⎧⎨⎩
∫
A

f∞(x,∇u) dx if u ∈W 1,p
λ∞(A; Rm),

+∞ otherwise,

where, for some c3 = c3(n) > 0, λ∞ belongs to Ap(c
p
3K) and satisfies

λkh
⇀ λ∞ weakly in L1(Q0).

The integrand f∞ : Q0 × Rm×n → [0, +∞) is a Borel function and for a.e. x ∈ Q0

and every ξ ∈ Rm×n is given by the following asymptotic formula

f∞(x, ξ) := lim sup
ρ→0+

lim
h→∞

mFkh
(uξ, Qρ(x))
ρn

, (3.5)

where, for every A ∈ A(Q0),

mFkh
(uξ, A) := inf

{
Fkh

(u,A) : v ∈W 1,p
0,λkh

(A; Rm) + uξ
}
,

with uξ(x) := ξx.
Moreover, f∞ satisfies the following properties for almost every x ∈ Q0:

(i) for every ξ ∈ Rm×n

αλ∞(x)
(

1
K

|ξ|p − 1
)

� f∞(x, ξ) � βλ∞(x)(|ξ|p + 1); (3.6)

(ii) for every ξ1, ξ2 ∈ Rm×n

|f∞(x, ξ1) − f∞(x, ξ2)| � L′λ∞(x)(|ξ1|p−1 + |ξ2|p−1 + 1)|ξ1 − ξ2|, (3.7)

for some L′ > 0.
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Remark 3.3. We observe that if we replace (3.1) with the following stronger
condition:

0 < lim inf
k→∞

−
∫
Q

λk dx, lim sup
k→∞

−
∫
Q

λk dx < +∞ for every cube Q ⊂ Rn, (3.8)

then theorem 3.2 holds true without the restriction A ⊂⊂ Q0. Specifically, if (3.8)
holds, then if we define the functionals Fk on W 1,1

loc (Rn; Rm) ×A0, where A0 is
the collection of open, bounded, and Lipschitz subsets of Rn, thanks to a diagonal
argument, it can be shown that the functionals Fkh

(·, A) Γ-converge with respect
to the L1

loc(R
n; Rm)-convergence to F∞(·, A), for every A ∈ A0; moreover, λ∞ ∈

Ap(K) (cf. proposition 2.4) and f∞ is defined through (3.5) for a.e. x ∈ Rn.
We note that (3.8) holds true in the case of admissible periodic or stationary

weights (cf. § 8 and remark 8.11).

The proof of theorem 3.2 will be broken up in several intermediate results
and it will be carried out in § 4–7. Namely, in § 4 we prove that (up to subse-
quences) the functionals Fk Γ-converge to the integral functional F∞ on the space
W 1,∞(Q0; Rm). Moreover, in this section we also prove that the limit integrand
f∞ satisfies the desired growth conditions as well as the continuity property. By
means of an approximation argument, in § 5 we extend the Γ-convergence result
established in § 4 to the whole W 1,1(Q0; Rm), also showing that the domain of
F∞ coincides with the ‘limit’ weighted Sobolev space W 1,p

λ∞(Q0; Rm). Eventually,
by combining the analysis in § 6 and § 7, we derive the asymptotic formula (3.5)
for f∞.

4. Γ-convergence and integral representation in W 1,∞

In this section, we show that on W 1,∞(Q0; Rm) the sequence (Fk) Γ-converges
(up to subsequences) to a limit functional which can be represented in an integral
form.

The following theorem is the main result of the present section.

Theorem 4.1 (Γ-convergence in W 1,∞). Let Fk be the functionals defined in
(3.4). Then there exists a subsequence (Fkh

) such that for every A ∈ A(Q0) the
functionals Fkh

(·, A) Γ-converge on W 1,∞(A; Rm) to the functional F (·, A) with
F : W 1,∞(Q0; Rm) ×A(Q0) −→ [0, +∞) given by

F (u,A) =
∫
A

f∞(x,∇u) dx, (4.1)

for some Borel function f∞ : Q0 × Rm×n → [0, +∞). Moreover, the function f∞
satisfies the following properties for almost every x ∈ Q0 :

(i) for every ξ ∈ Rm×n

αλ∞(x)
(

1
K

|ξ|p − 1
)

� f∞(x, ξ) � βλ∞(x)(|ξ|p + 1), (4.2)

where λ∞ ∈ Ap(c
p
3K), for some c3 = c3(n) > 0, and λkh

⇀ λ∞ in L1(Q0);
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(ii) for every ξ1, ξ2 ∈ Rm×n

|f∞(x, ξ1) − f∞(x, ξ2)| � L′λ∞(x)(|ξ1|p−1 + |ξ2|p−1 + 1)|ξ1 − ξ2|, (4.3)

for some L′ > 0.

The proof of theorem 4.1 will be achieved in a number of intermediate steps by
means of the so-called localization method of Γ-convergence (see, e.g.[7, chapters
9–11] or [14, chapters 16–19]).

To this end, we consider the localized Γ-liminf and the Γ-limsup of Fk; i.e. we
consider the functionals F ′, F ′′ : W 1,1(Q0; Rm) ×A(Q0) −→ [0, +∞] defined as

F ′(u,A) := Γ- lim inf
k→∞

Fk(u,A), (4.4)

F ′′(u,A) := Γ- lim sup
k→∞

Fk(u,A), (4.5)

for u ∈W 1,1(Q0; Rm) and A ∈ A(Q0). Then, the aim of this section is to show that,
up to subsequences, for every u ∈W 1,∞(Q0; Rm) and A ∈ A(Q0) we have

F ′(u,A) = F ′′(u,A) = F (u,A),

where F is as in (4.1).

Remark 4.2. We observe that F ′ and F ′′ are lower semicontinuous with respect
to the strong topology of L1(Q0; Rm) [14, proposition 6.8]. They also inherit some
of the properties of the functionals Fk. Namely, as set functions they are both
increasing [14, proposition 6.7], moreover, F ′ is superadditive on pairwise-disjoint
sets [14, proposition 16.12]; while as functionals they are both local [14, proposition
16.15].

Thanks to assumption 3.1 we can invoke proposition 2.4 to deduce the existence
of λ∞ ∈ Ap(c

p
3K) such that λk ⇀ λ∞ in L1+σ(Q0).

Then in the following lemma we show that the domain of F ′′ (and hence also the
domain of F ′) contains the space W 1,p

λ∞(Q0; Rm).

Lemma 4.3. Up to subsequences, there holds

F ′′(u,A) � β

∫
A

λ∞(|∇u|p + 1) dx, (4.6)

for every u ∈W 1,p
λ∞(Q0; Rm) and A ∈ A(Q0).

Proof. Let (λkh
) ⊂ (λk) be the subsequence whose existence is established by propo-

sition 2.4. Hence, in particular, λkh
⇀ λ∞ weakly in L1(Q0) and λ∞ ∈ Ap(c

p
3K),

for some c3 = c3(n) > 0.
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Let u ∈W 1,∞(Q0; Rm) and let A ∈ A(Q0). Therefore, if F ′′ is as in (4.5) with k
replaced by kh, by (3.2) we readily get

F ′′(u,A) � lim sup
h→∞

Fkh
(u,A) � lim

h→∞
β

∫
A

λhk
(|∇u|p + 1) dx

� β

∫
A

λ∞(|∇u|p + 1) dx, (4.7)

hence (4.6) is proven for every u ∈W 1,∞(Q0; Rm).
Now let u ∈W 1,p

λ∞(Q0; Rm); then there exists (uj) ⊂ C∞(Q0; Rm) ⊂W 1,∞(Q0; Rm)
such that uj → u in W 1,p

λ∞(Q0; Rm). Hence, thanks to (4.7), to the fact that uj → u

in L1(Q0; Rm), and to the lower semicontinuity of F ′′ with respect to the strong
L1(Q0; Rm)-convergence, we obtain

F ′′(u,A) � lim inf
j→∞

F ′′(uj , A)

� lim
j→∞

β

∫
A

λ∞(|∇uj |p + 1) dx = β

∫
A

λ∞(|∇u|p + 1) dx

and thus the claim. �

The following lemma shows that Fk (almost) decreases by smooth truncations.

Lemma 4.4. Let Fk be the functionals defined in (3.4). Let A ∈ A(Q0) and let
(uk) ⊂W 1,1(Q0; Rm) be such that

sup
k∈N

(
Fk(uk, A) + ‖uk‖L1(A;Rm)

)
< +∞. (4.8)

Then for every η > 0, M > 0 and for every k ∈ N there exists a Lipschitz function
ϕk : Rm → Rm with Lipschitz constant less than or equal to 1 satisfying

ϕk(y) =

{
y if |y| � ak,

0 if |y| > bk,

for suitable constants ak, bk > 0 with M � ak < bk, such that

Fk(ϕk(uk), A) � Fk(uk, A) + η,

for every k ∈ N. Moreover, the function ϕk can be chosen in a finite family
independent of k.

Proof. The proof of this lemma is classical and follows the line of, e.g. [8, lemma 3.5]
with minor modifications. However, since we work in a different functional setting,
we repeat the proof here for the readers’ convenience.

Let η > 0 and M > 0 be fixed. Let (aj) be a strictly increasing sequence of
positive real numbers such that for every j ∈ N there exists a Lipschitz function
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ϕj : Rm → Rm with Lipschitz constant less than or equal to 1 satisfying

ϕj(y) =

{
y if |y| � aj ,

0 if |y| > aj+1.

For every k ∈ N and every j ∈ N set wjk := ϕj(uk). We have∫
A

fk(x,∇wjk) dx =
∫
A∩{|uk|�aj}

fk(x,∇uk) dx+
∫
A∩{|uk|>aj+1}

fk(x, 0) dx

+
∫
A∩{aj<|uk|�aj+1}

fk(x,∇wjk) dx

�
∫
A

fk(x,∇uk) dx+ β

∫
A∩{|uk|>aj+1}

λk dx

+ β

∫
A∩{aj<|uk|�aj+1}

λk(|∇uk|p + 1) dx,

where to establish the last inequality we have used the nonnegativity of fk, (3.2),
and the fact that ϕj has Lipschitz constant less than or equal to 1.

Let N ∈ N be arbitrary; we now want to estimate 1/N
∑N
j=1 Fk(w

j
k, A), for every

k ∈ N. To this end we start noticing that ({aj < |uk| � aj+1})j∈N is a family of
pairwise-disjoint sets. Therefore, we get

1
N

N∑
j=1

Fk(w
j
k, A) � Fk(uk, A)

+
β

N

N∑
j=1

∫
A∩{|uk|>aj+1}

λk dx+
β

N

∫
A

λk(|∇uk|p + 1) dx.

(4.9)

In view of (3.1) and (4.8) we can find a constant C > 0 such that

β

∫
A

λk(|∇uk|p + 1) dx � C, (4.10)

for every k ∈ N. Moreover, thanks to proposition 2.5 there exist c, σ > 0 such that∫
A∩{|uk|>aj+1}

λk dx � c c2|Q0|
( |A ∩ {|uk| > aj+1}|

|Q0|
)σ/(1+σ)

, (4.11)

for every k ∈ N and every j ∈ 1, . . . , N .
Therefore, we define the sequence (aj) recursively by imposing the following

condition on a1:

|A ∩ {|uk| > a1}| �
(

η

2βc c2

)(1+σ)/σ

|Q0|−σ for every k ∈ N, a1 � M, (4.12)

which is clearly possible thanks to the boundedness of (uk) in L1(A; Rm). Eventu-
ally, by choosing N ∈ N in a way such that C/N � η/2, gathering (4.9)–(4.12) we

https://doi.org/10.1017/prm.2022.3 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.3


Γ-convergence in weighted Sobolev spaces 507

obtain

1
N

N∑
j=1

Fk(w
j
k, A) � Fk(uk, A) + η.

Therefore, for every k ∈ N we can find j(k) ∈ {1, . . . , N} such that

Fk(w
j(k)
k , A) � Fk(uk, A) + η,

hence the proof is accomplished by setting ϕk := ϕj(k). Finally, we note that N is
independent of k. �

We now use lemma 4.4 to show that if u ∈W 1,∞(Q0; Rm) then for every A ∈
A(Q0) the value of the Γ-limsup F ′′(u, A) can be recovered along a sequence (wk)
which is bounded in L∞(Q0; Rm) and such that uk → u in Lq(Q0; Rm), for every
1 � q < +∞.

Proposition 4.5. Let Fk be the functionals defined in (3.4) and let u ∈
W 1,∞(Q0; Rm). Then there exists a sequence (wk) ⊂W 1,1(Q0; Rm) satisfying the
following properties:

(i) supk ‖uk‖L∞(Q0;Rm) < +∞;

(ii) wk → u in Lq(Q0; Rm) for every 1 � q < +∞;

(iii) lim supk→∞ Fk(wk, A) = F ′′(u, A), for every A ∈ A(Q0).

Proof. Let u ∈W 1,∞(Q0; Rm); by [14, proposition 8.1] there exists (uk) ⊂
W 1,1(Q0; Rm) such that uk → u in L1(Q0; Rm) and

lim sup
k→∞

Fk(uk, A) = F ′′(u,A) < +∞, (4.13)

where the last inequality follows by lemma 4.3.
Let η > 0 be fixed: by applying lemma 4.4 to the sequence (uk) with M :=

‖u‖L∞(Q0;Rm) we obtain a sequence (wk) ⊂W 1,1(Q0; Rm) ∩ L∞(Q0; Rm) which is
bounded in L∞(Q0; Rm), such that wk → u in Lq(Q0; Rm) for every 1 � q < +∞
and

Fk(wk, A) � Fk(uk, A) + η, (4.14)

for every A ∈ A(Q0). Then, taking the lim sup as k → ∞ in (4.14) and appealing
to (4.13) we obtain

lim sup
k→∞

Fk(wk, A) � F ′′(u,A) + η.

Eventually, the claim follows by the definition of F ′′ and the arbitrariness of η. �

The following proposition shows that the functionals Fk satisfy the fundamental
estimate, uniformly in k.
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Proposition 4.6 (Fundamental estimate). Let Fk be the functionals defined in
(3.4) and let A ∈ A(Q0). For every η > 0 and for every A′, A′′, B ∈ A(Q0) with
A′ ⊂⊂ A′′ ⊂⊂ A there exists a constant Mη > 0 with the following property: for
every k ∈ N and for every u, ũ ∈W 1,p

λk
(A; Rm) there exists a function ϕ ∈ C∞

0 (A′′)
with ϕ = 1 in a neighbourhood of A′ and 0 � ϕ � 1 such that

Fk(ϕu+ (1 − ϕ)ũ, A′ ∪B)

� (1 + η) (Fk(u,A′′) + Fk(ũ, B)) +Mη

(∫
S

λk|u− ũ|p dx
)

+ η,

where S := B ∩ (A′′ \A′).

Proof. Let η > 0, A, A′, A′′, B and S be as in the statement. We start observing
that by (3.1) there exists a constant C > 0 such that

∫
S

λk dx � C (4.15)

for every k ∈ N. Let N ∈ N be such that

1
N

max
{

3p−1β

α
, 3pβC

}
� η. (4.16)

Let A1, . . . , AN+1 be N + 1 open sets satisfying A′ ⊂⊂ A1 ⊂⊂ · · · ⊂⊂ AN+1 ⊂⊂
A′′, and for i = 1, . . . , N consider the function ϕi ∈ C∞

0 (A) such that suppϕi ⊂
Ai+1 and ϕi = 1 on a neighbourhood of Ai. Finally, define

Mη :=
1
N

3p−1 max
1�i�N

‖∇ϕi‖∞.

For every k ∈ N and for i = 1, . . . , N we have

Fk(ϕiu+ (1 − ϕi)ũ, A′ ∪B)

= F ∗
k (u, (A′′ ∪B) ∩Ai) + F ∗

k (ũ, B \Ai+1) + Fk(ϕiu

+ (1 − ϕi)ũ, B ∩ (Ai+1 \Ai))
� Fk(u,A′′) + Fk(ũ, B) + Fk(ϕiu+ (1 − ϕi)ũ, B ∩ (Ai+1 \Ai)), (4.17)

where F ∗
k denotes the extension of Fk to the Borel subsets of Q0.
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Denote by Ik,i the last term in (4.17). For every k ∈ N and for i = 1, . . . , N ,
using (3.2) we obtain

Ik,i � β

∫
Si

λk|∇(ϕiu+ (1 − ϕi)ũ)|p dx+ β

∫
Si

λk dx

� 3p−1β

∫
Si

λk(|∇ϕi|p|u− ũ|p + |∇u|p + |∇ũ|p) dx+ β

∫
Si

λk dx

� 3p−1β

∫
Si

λk|∇u|p dx+ 3p−1β

∫
Si

λk|∇ũ|p dx +NMη

∫
Si

λk|u− ũ|p dx

+ β

∫
Si

λk dx

� 3p−1β

∫
Si

λk(|∇u|p − 1) dx+ 3p−1β

∫
Si

λk(|∇ũ|p − 1) dx

+NMη

∫
Si

λk|u− ũ|p dx+ 3pβ
∫
Si

λk dx,

where Si := B ∩ (Ai+1 \Ai). Therefore, by the growth condition from below (3.2)
on fk we get

Ik,i � 3p−1β

α
(Fk(u, Si) + Fk(ũ, Si)) +NMη

∫
Si

λk|u− ũ|p dx+ 3pβ
∫
Si

λk(x) dx,

for every k ∈ N and for i = 1, . . . , N . Hence, there exists i0 ∈ {1, . . . , N} such that

Ik,i0 � 1
N

N∑
i=1

Ik,i � 1
N

3p−1β

α
(Fk(u, S) + Fk(ũ, S))

+Mη

∫
S

λk|u− ũ|p dx+
1
N

3pβ
∫
S

λk dx

for every k ∈ N; thus by (4.15) we get

Ik,i0 � 1
N

3p−1β

α
(Fk(u,A′′) + Fk(ũ, B)) +Mη

∫
S

λk|u− ũ|p dx+
1
N

3pβC.

Eventually, in view of (4.16) and (4.17) the proof is accomplished choosing
ϕ := ϕi0 . �

With the help of propositions 4.5 and 4.6 we can deduce the following result which
will eventually lead to the inner regularity and subadditivity of the set function
F ′′(u, ·), for every u ∈W 1,∞(Q0; Rm).

Lemma 4.7. Let F ′′ be as in (4.5). Let u ∈W 1,∞(Q0; Rm) and let A′, A′′, B ∈
A(Q0) be such that A′ ⊂⊂ A′′ ⊂⊂ A; then

F ′′(u,A′ ∪B) � F ′′(u,A′′) + F ′′(u,B). (4.18)
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Proof. Let u ∈W 1,∞(Q0; Rm); by proposition 4.5 there exist (uk) ⊂W 1,p
λk

(A′′; Rm)
and (ũk) ⊂W 1,p

λk
(B; Rm) which are bounded in L∞(Q0; Rm), converge to u in

Lq(Q0; Rm) for every q � 1, and satisfy

lim sup
k→∞

Fk(uk, A′′) = F ′′(u,A′′) and lim sup
k→∞

Fk(ũk, B) = F ′′(u,B). (4.19)

Let η > 0 be fixed; then, in view of proposition 4.6 we can find a constant Mη > 0
and a sequence (ϕk) of cut-off functions between A′ and A′′ such that

Fk(ϕkuk + (1 − ϕk)ũk, A′ ∪B)

� (1 + η) (Fk(uk, A′′) + Fk(ũk, B)) +Mη

∫
S

λk|uk − ũk|p dx+ η,

where S = B ∩ (A′′ \A′). Since the sequence ϕkuk + (1 − ϕk)ũk converges to u in
L1(Q0; Rm), by (4.19) we obtain

F ′′(u,A′ ∪B) � lim sup
k→∞

Fk(ϕkuk + (1 − ϕk)ũk, A′ ∪B)

� (1 + η) (F ′′(u,A′′) + F ′′(u,B))

+Mη lim sup
k→∞

∫
S

λk|uk − ũk|p dx+ η.

Now let σ > 0 be the exponent as in theorem 2.2, using the Hölder inequality and
recalling (3.1) we get∫

S

λk|uk − ũk|p dx �
(∫

S

λ1+σ
k dx

)1/(1+σ)(∫
S

|uk − ũk|p(1+σ)/σ dx
)σ/(1+σ)

� c c2|Q0|1/(1+σ)

(∫
Q0

|uk − ũk|p(1+σ)/σ dx
)σ/(1+σ)

.

Therefore, since ‖uk − ũk‖Lq(Q0;Rm) → 0 for every q � 1, we immediately obtain

lim sup
k→∞

∫
S

λk|uk − ũk|p dx = 0.

Hence, (4.18) follows by the arbitrariness of η > 0. �

The proof of the following proposition is classical, for this reason we only sketch
it here, while we refer the reader to the monographs [7, 14] for further details.

Proposition 4.8 (Γ-convergence and measure property of the Γ-limit). Let Fk be
the functionals defined in (3.4). Then there exist a subsequence (kh) and a functional
F : W 1,∞(Q0; Rm) ×A(Q0) −→ [0, +∞) such that for every u ∈W 1,∞(Q0; Rm)
and every A ∈ A(Q0)

F (u,A) = F ′(u,A) = F ′′(u,A), (4.20)

where F ′ and F ′′ are as in (4.4) and (4.5), respectively, with k replaced by kh.
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Moreover, for every u ∈W 1,∞(Q0; Rm) the set function F (u, ·) is the restriction
to A(Q0) of a Radon measure on Q0.

Proof. Let (kh) be the subsequence whose existence is established by proposition
2.4. Thanks to the compactness of Γ-convergence [14, theorem 8.5], a standard
diagonal argument gives the existence of a further subsequence (not relabelled),
such that the corresponding functionals F ′ and F ′′ satisfy

sup{F ′(u,B) : B ∈ A(Q0), B ⊂ ⊂A}
= sup{F ′′(u,B) : B ∈ A(Q0), B ⊂ ⊂A} =: F (u,A),

for every u ∈W 1,∞(Q0; Rm) and for everyA ∈ A(Q0). We note that the set function
F (u, ·) is inner regular by definition.

Moreover, by virtue of lemma 4.7 we can reason as in [14, proposition 18.4] to
deduce that F (u, ·) is subadditive.

We now prove that (4.20), which will ensure that F is the Γ-limit of Fk on
W 1,∞(Q0; Rm).

Since by definition of F we have F � F ′ � F ′′, to get (4.20) it suffices to show
that

F ′′(u,A) � F (u,A), (4.21)

for every u ∈W 1,∞(Q0; Rm) and A ∈ A(Q0).
To prove (4.21) we consider the localized functional H : W 1,∞(Q0; Rm) ×

A(Q0) −→ [0, +∞) defined as

H(u,A) :=
∫
A

λ∞(|∇u|p + 1) dx.

Therefore, by lemma 4.3 we immediately obtain that F ′′(u, A) � H(u, A), for every
u ∈W 1,∞(Q0; Rm) and A ∈ A(Q0). For every fixed u ∈W 1,∞(Q0; Rm) the set func-
tion H(u, ·) defines a Radon measure on Q0, hence for every η > 0 fixed there exists
a compact set Kη ⊂ A such that H(u, A \Kη) < η. Let now A′, A′′ ∈ A(Q0) be
such that Kη ⊂ A′ ⊂⊂ A′′ ⊂⊂ A and let B = A \Kη. By (4.18) we have

F ′′(u,A) � F ′′(u,A′′) + F ′′(u,A \Kη).

Then by definition of F we readily obtain

F ′′(u,A) � F (u,A) +H(u,A \Kη) � F (u,A) + η,

thus (4.21) follows by the arbitrariness of η > 0.
Finally, the inner regularity and subadditivity of F (u, ·) together with remark

4.2 allow us to apply the De Giorgi–Letta measure criterion (see, e.g.[14, theorem
14.23]) to deduce that F (u, ·) is the restriction to A(Q0) of a Radon measure on
Q0, and thus to conclude. �

Remark 4.9. We observe that for every A ∈ A(Q0) the functional F (·, A) is invari-
ant under translations in u. Indeed, for given u ∈W 1,∞(Q0; Rm) and A ∈ A(Q0) let
(uk) ⊂W 1,1(Q0; Rm) be such that uk → u in L1(Q0; Rm) and limk→∞ Fk(uk, A) =

https://doi.org/10.1017/prm.2022.3 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.3


512 C. D’Onofrio and C. I. Zeppieri

F (u, A). Let now s ∈ Rm, then clearly (uk + s) converges to u+ s in L1(Q0; Rm)
and by (4.20)

F (u+ s,A) � lim inf
k→∞

Fk(uk + s,A) = lim
k→∞

Fk(uk, A) = F (u,A),

since Fk is invariant under translations in u. On the other hand, the argument
above also gives

F (u,A) = F ((u+ s) + (−s), A) � F (u+ s,A)

and thus the claim.

Theorem 4.10 (Integral representation). Let Fk be the functionals defined in (3.4).
Then there exist a subsequence (Fkh

) and a Borel function f∞ : Q0 × Rm×n →
[0, +∞), satisfying (4.2) and (4.3), such that for every u ∈W 1,∞(Q0; Rm) and
every A ∈ A(Q0) there holds

F (u,A) = Γ- lim
h→∞

Fkh
(u,A),

where F : W 1,∞(Q0; Rm) ×A(Q0) −→ [0, +∞) is given by

F (u,A) =
∫
A

f∞(x,∇u) dx. (4.22)

Proof. Proposition 4.8 ensures the existence of a subsequence (Fkh
) of (Fk) such

that Fkh
(u, A) Γ-converges to a functional F (u, A) for every u ∈W 1,∞(Q0; Rm)

and every A ∈ A(Q0). Then, it remains to prove that the functional F admits an
integral representation as in (4.22).

We will break up the proof of the integral representation into a number of steps.
Step 1. Definition of f∞. Let ξ ∈ Rm×n be fixed and set uξ(x) := ξx. By the

measure property of F established in proposition 4.8, the set function F (uξ, ·) can
be extended to a Radon measure on Q0. Moreover, thanks to lemma 4.3, F (uξ, ·)
is absolutely continuous with respect to the Lebesgue measure. For every x ∈ Q0

define

f∞(x, ξ) := lim sup
ρ→0+

F (uξ, Qρ(x))
|Qρ(x)| ,

where Qρ(x) is the cube centred at x, with side length ρ > 0, and faces parallel to
the coordinate planes. Then, f∞ is a Borel function and the Lebesgue differentiation
theorem guarantees that

F (uξ, A) =
∫
A

f∞(x, ξ) dx,

for every A ∈ A(Q0).
We now show that f∞ satisfies the growth and coercivity conditions as in (4.2).

To this end, we start observing that the growth condition from above readily follows
from lemma 4.3. In fact, choosing in (4.6) u = uξ, A = Qρ(x), with x Lebesgue point
for λ∞, the estimate from above in (4.2) follows by dividing both sides of (4.6) by
|Qρ(x)|, and eventually passing to the limit as ρ→ 0+.
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To derive the growth condition from below on f∞ let u ∈W 1,1(Q0; Rm) and
A ∈ A(Q0) be fixed. By the Hölder inequality and by the growth condition from
below in (3.2) we get

(∫
A

|∇u|dx
)p

�
(∫

A

λk|∇u|p dx
)(∫

A

λ
−1/(p−1)
k dx

)p−1

=
(∫

A

λk(|∇u|p − 1) dx
)(∫

A

λ
−1/(p−1)
k dx

)p−1

+
(∫

A

λk dx
)(∫

A

λ
−1/(p−1)
k dx

)p−1

� 1
α
Fk(u,A)

(∫
A

λ
−1/(p−1)
k dx

)p−1

+
(∫

A

λk dx
)(∫

A

λ
−1/(p−1)
k dx

)p−1

,

therefore the following lower bound

α

(∫
A

λ
−1/(p−1)
k dx

)−(p−1)(∫
A

|∇u|dx
)p

− α

(∫
A

λk dx
)

� Fk(u,A), (4.23)

for every k ∈ N. Now let u ∈W 1,∞(Q0; Rm) and let (uh) ⊂W 1,1(Q0; Rm) be such
that

uh → u in L1(Q0; Rm) and lim
h→∞

Fkh
(uh, A) = F (u,A).

Hence, by the lower semicontinuity of u �→ ∫
A
|∇u|dx with respect to the

L1(Q0; Rm)-topology and by proposition 2.4, evaluating (4.23) in (uh) and passing
to the limit as h→ ∞ we find

α

(∫
A

λ̃−1/(p−1)
∞ dx

)−(p−1)(∫
A

|∇u|dx
)p

− α

(∫
A

λ∞ dx
)

� F (u,A), (4.24)

for every u ∈W 1,∞(A; Rm) and every A ∈ A(Q0). Now let x ∈ Q0 be a Lebesgue
point for λ∞ and λ̃∞ and choose in (4.24) u = uξ and A = Qρ(x); then, dividing
both sides of (4.24) by |Qρ(x)| and passing to the limit as ρ→ 0+ give

α
(
λ̃∞(x)|ξ|p − λ∞(x)

)
� f∞(x, ξ), (4.25)

for a.e. x ∈ Q0 and every ξ ∈ Rm×n. Eventually, (2.6) entails the desired bound
from below.

Step 2. Integral representation on piecewise affine functions. Let A ∈ A(Q0) and
u ∈W 1,∞(Q0; Rm) be piecewise affine on A; i.e. there exists a finite family of
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pairwise disjoint open sets Aj such that |A \⋃Nj=1Aj | = 0 and

u(x) =
N∑
j=1

χAj
(x)(uξj + zj),

for every x ∈ A with ξj ∈ Rm×n, zj ∈ Rm for j = 1, . . . , N . By remark 4.9 and step
1, taking into account the locality of F , we have

F (u,A) =
N∑
j=1

F (u,Aj) =
N∑
j=1

∫
Aj

f∞(x, ξj) dx =
∫
A

f∞(x,∇u) dx,

that is, the integral representation (4.22) on piecewise affine functions.
Step 3. Convexity properties of f∞. For every A ∈ A(Q0) the functional F (·, A)

is lower semicontinuous on W 1,∞(Q0; Rm) with respect to the strong convergence
of L1(Q0; Rm), thus, in particular, it is lower semicontinuous with respect to the
weak∗ W 1,∞(Q0; Rm)-convergence. Therefore, the function ξ → f∞(x, ξ) is W 1,∞-
quasiconvex (and rank-1-convex) for a.e. x ∈ Q0 (see, e.g. [7, proposition 4.3,
corollary 4.12]). Then, it is easy to check that the growth condition (4.2) together
with the convexity property of f∞(x, ·) yield the local Lipschitz continuity in (4.3)
(see, e.g. [7, remark 4.13]).

Step 4. Integral representation. For u ∈W 1,p
λ∞(Q0; Rm) consider the functional

u �→
∫
A

f∞(x,∇u) dx. (4.26)

We observe that the local Lipschitz condition (4.3) satisfied by f∞ ensures that,
for every A ∈ A(Q0), the functional (4.26) is continuous with respect to the strong
W 1,p
λ∞(A; Rm)-convergence. Indeed, using Hölder’s inequality we easily get∫

A

|f∞(x,∇u1) − f∞(x,∇u2)|dx

� 31/(p−1)L′
(∫

A

λ∞(|∇u1|p + |∇u2|p + 1) dx
)(p−1)/p

×
(∫

A

λ∞|∇u1 −∇u2|p dx
)1/p

for every u1, u2 ∈W 1,p
λ∞(Q0; Rm). Moreover, arguing as in the proof of lemma 4.7

we can deduce that (4.26) is also continuous with respect to the strong convergence
of W 1,q(Q0; Rm), for q � p(1 + σ)/σ.

Let u ∈W 1,∞(Q0; Rm) and A ∈ A(Q0) be given; then there exists a sequence
(uj) ⊂W 1,q(Q0; Rm) strongly converging to u in W 1,q(Q0; Rm) for any q ∈ [1, ∞)
such that its restrictions to A are piecewise affine. Since F is lower semicontinuous
with respect to the strong topology of L1(Q0; Rm), appealing to step 2 and to the
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continuity of (4.26) we then obtain

F (u,A) � lim inf
j→∞

F (uj , A) = lim inf
j→∞

∫
A

f∞(x,∇uj) dx =
∫
A

f∞(x,∇u) dx.

Hence, to represent F in an integral form it only remains to prove the oppo-
site inequality. To this end fix u ∈W 1,∞(Q0; Rm) and consider the functional
F̃ : W 1,∞(Q0; Rm) ×A(Q0) −→ [0, +∞) defined as

F̃ (v,A) := F (u+ v,A).

We observe that F̃ satisfies the same properties as F , hence there exists a
Carathéodory function h∞ : Q0 × Rm×n → [0, +∞) such that

F̃ (v,A) �
∫
A

h∞(x,∇v) dx,

for every v ∈W 1,∞(Q0; Rm) and every A ∈ A(Q0). Note that the equality holds
whenever v is piecewise affine on A.

Let (uj) be the sequence of piecewise affine functions considered above. Then∫
A

h∞(x, 0) dx = F̃ (0, A) = F (u,A) �
∫
A

f∞(x,∇u) dx

= lim
j→∞

∫
A

f∞(x,∇uj) dx = lim
j→∞

F (uj , A) = lim
j→∞

F̃ (uj − u,A)

� lim
j→∞

∫
A

h∞(x,∇(uj − u)) dx =
∫
A

h∞(x, 0) dx,

hence the equality in (4.22) holds for every u ∈W 1,∞(Q0; Rm) and every A ∈
A(Q0). �

Remark 4.11. From (4.25) it can be seen that actually f∞ satisfies the growth
conditions

α
(
λ̃∞(x)|ξ|p − λ∞(x)

)
� f∞(x, ξ) � β λ∞(x)

(|ξ|p + 1
)
,

for a.e. x ∈ Q0 and every ξ ∈ Rm×n, which then reduce to those established in [6,
9, 30] when λk ≡ 1.

5. Γ-convergence and integral representation in W 1,p
λ∞

Consider now the integral functional F∞ : W 1,1(Q0; Rm) ×A(Q0) −→ [0, +∞]
defined as

F∞(u,A) :=

⎧⎨⎩
∫
A

f∞(x,∇u) dx if u ∈W 1,p
λ∞(A; Rm),

+∞ otherwise,
(5.1)

with f∞ as in theorem 4.10.
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The purpose of this section is to show that (up to subsequences) there holds

F ′(u,A) = F ′′(u,A) = F∞(u,A), (5.2)

for every u ∈W 1,1(Q0; Rm) and every A ∈ A(Q0), where F ′ and F ′′ are as in (4.4)
and (4.5), respectively. In other words we will show that, up to subsequences, the
functionals Fk defined in (3.4) Γ-converge on the whole space W 1,1(Q0; Rm) to the
functional F∞, whose domain is the (limit) weighted Sobolev space W 1,p

λ∞(Q0; Rm).
To do so, we will make use of the following approximation result whose proof

follows the line of that of [1, theorem II.4] (see also [17, theorem 3.1]).

Theorem 5.1. Let Fk be the functionals defined in (3.4). Let A ⊂⊂ Q0 be open and
with Lipschitz boundary, let u ∈W 1,1(Q0; Rm) and let (uk) ⊂W 1,p

λk
(A; Rm) be such

that

uk → u in L1(A; Rm) and sup
k∈N

∫
A

λk|∇uk|p dx < +∞. (5.3)

Then, for every τ > 0 there exist: βτ > 0 with βτ → 0 as τ → 0+, Lτ > 0 with
Lτ → +∞ as τ → 0+, a sequence (vτk) and a function vτ in W 1,∞(Rn; Rm) with
Lipschitz constant c(n)Lτ , for some c(n) > 0 depending only on n, such that:

(1) vτk → vτ in L∞(Q0; Rm) as k → ∞;

(2) |{x ∈ A : vτ (x) 	= u(x)}| � (m+ 1)τ ;

(3) the following estimate holds for every τ > 0:

lim inf
k→∞

∫
A

fk(x,∇uk) dx � lim inf
k→∞

∫
Aτ

fk(x,∇vτk) dx− βτ , (5.4)

for some open set Aτ ⊂ A with |A \Aτ | < τ .

Proof. Without loss of generality, we can assume that liminf in the left-hand side
of (5.4) is actually a limit. Moreover, we can also assume that (uk) ⊂ C∞

0 (Rn; Rm),
supp(uk) ⊂⊂ Q0, and

sup
k∈N

∫
Rn

λk|∇uk|p dx < +∞. (5.5)

Indeed, thanks to (2.10) from (5.3) we have

sup
k∈N

‖uk‖W 1,p
λk

(A;Rm) < +∞,

then, since A ⊂⊂ Q0, the extension result [34, theorem 2.1.13] allows us to replace
(uk) with a sequence of functions in W 1,p

λk
(Rn; Rm), whose support is compactly

contained in Q0, and such that (5.5) holds. Moreover, since for fixed k the space
C∞

0 (Rn; Rm) is dense in W 1,p
λk

(Rn; Rm) (see, e.g. [34, corollary 2.1.6]), a diagonal
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argument provides us with a sequence (wk) ⊂ C∞
0 (Rn; Rm), with supp(wk) ⊂⊂ Q0,

such that

‖uk − wk‖W 1,p
λk

(Rn;Rm) <
1
k
. (5.6)

Then, we readily get

sup
k∈N

∫
Rn

λk|∇wk|p dx < +∞, (5.7)

and by the compact embedding of W 1,p
λk

(Q0; Rm) in L1(Q0; Rm), (5.6) also implies
that wk → u in L1(A; Rm).

Furthermore, we observe that uk and wk are close in energy so that once we
establish the estimate (5.4) along (wk), the same estimate will hold true along
(uk). In fact, (3.3) gives

|Fk(wk, A) − Fk(uk, A)|

� 31/(p−1)L

(∫
A

λk(|∇wk|p + |∇uk|p + 1) dx
)(p−1)/p

×
(∫

A

λk|∇wk −∇uk|p dx
)1/p

, (5.8)

hence gathering (5.6)–(5.8) yields

|Fk(wk, A) − Fk(uk, A)| < C

k
,

for some constant C > 0.
Therefore, in all that follows, with a little abuse of notation, (uk) denotes a

sequence in C∞
0 (Rn; Rm), with supp(uk) ⊂⊂ Q0, and such that (5.5) holds.

For k ∈ N and i ∈ {1, . . . , m}, let u(i)
k denote the i-th component of the vector-

valued function uk. By applying theorem 2.8 to |∇u(i)
k | ∈ L1(Rn) we deduce∫

Rn

λk(M |∇u(i)
k |)p dx � c4

∫
Rn

λk|∇u(i)
k |p dx, (5.9)

for every k ∈ N, every i = 1, . . . , m, and for some c4 > 0. Hence, by combining
(5.5) and (5.9) it follows that the sequence (λk(M |∇u(i)

h |)p) is bounded in L1(Rn),
for every i = 1, . . . , m. Let now τ > 0, then lemma 2.11 ensures the existence of a
measurable set Eτ , with

|Eτ | < τ, (5.10)

of a constant δτ > 0, and a subsequence (kτj ) such that∫
B

λkτ
j
(M |∇u(i)

kτ
j
|)p dx < τ,

for every j ∈ N, every i = 1, . . . , m, and for every measurable set B with B ∩ Eτ =
∅ and |B| < δτ .
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To simplify the notation we drop the dependence of the sequence on j and τ ,
thus we write ∫

B

λk(M |∇u(i)
k |)p dx < τ, (5.11)

for every k ∈ N, every i = 1, . . . , m, and every measurable B with B ∩ Eτ = ∅ and
|B| < δτ .

By the Hölder inequality we deduce(∫
Rn

|∇u(i)
k |dx

)p
=
(∫

Q0

|∇u(i)
k |dx

)p
�
(∫

Q0

λk|∇u(i)
k |p dx

)(∫
Q0

λ
−1/(p−1)
k dx

)p−1

, (5.12)

hence by (3.1), (5.5) and (5.12), since λk belongs to Ap(K) we get(∫
Rn

|∇u(i)
k |dx

)p
� C

K

c1
, (5.13)

for every k ∈ N, i = 1, . . . , m, and some C > 0. In its turn (5.13) together with
(2.11) provide us with a constant Lτ � (c̃/τ)(CK/c1)1/p such that for every k ∈ N,
and i = 1, . . . , m

|{x ∈ Rn : (M |∇u(i)
k |)(x) � Lτ}| � min{τ, δτ}. (5.14)

For k ∈ N, and i = 1, . . . , m define the sets

Hτ
i,k := HLτ

i,k := {x ∈ Rn : (M |∇u(i)
k |)(x) < Lτ}, Hτ

k :=
m⋂
i=1

Hτ
i,k.

Then lemma 2.9 yields

|u(i)
k (x) − u

(i)
k (y)| � c5(n)Lτ |x− y|

for every k ∈ N, i = 1, . . . , m, and every x, y ∈ Hτ
k . Namely, the functions u(i)

k are
Lipschitz continuous on Hτ

k with Lipschitz constant c5(n)Lτ , for every k ∈ N and
every i = 1, . . . , m.

Appealing to McShane’s theorem [27] we can extend u
(i)
k from Hτ

k ∩Q0 to Rn

keeping the same Lipschitz constant c5(n)Lτ . We denote this extension with v
τ,(i)
k

and note that we can assume that vτ,(i)k (x) = 0 if dist(x, Q0) > 1. We then have

v
τ,(i)
k = u

(i)
k , ∇vτ,(i)k = ∇u(i)

k a.e. in Hτ
h ∩Q0

and

‖∇vτ,(i)k ‖L∞(Rn;Rn) � c5(n)Lτ . (5.15)

Now, let x′ ∈ Rn be such that dist(x′, Q0) > 1, then

|vτ,(i)k (x)| = |vτ,(i)k (x) − v
τ,(i)
k (x′)| � c5(n)Lτ (diam(Q0) + 2), (5.16)
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for every x ∈ Q0. Hence, gathering (5.15) and (5.16) entails

sup
k

‖vτ,(i)k ‖W 1,∞(Q0) < +∞,

for every i = 1, . . . , m, and every τ > 0. Therefore, up to subsequences (not
relabelled), for every τ > 0 fixed, we get that in particular

v
τ,(i)
k → vτ,(i) in L∞(Q0)

as k → ∞, with

‖∇vτ,(i)‖L∞(Q0;Rn) � c5(n)Lτ ,

for every i = 1, . . . , m. Finally, set

vτk := (vτ,(1)k , . . . , v
τ,(m)
k ), vτ := (vτ,(1), . . . , vτ,(m)).

Now, define the set Bτ := {x ∈ A : vτ (x) 	= u(x)}, then it must hold

|Bτ | � (m+ 1)τ. (5.17)

To prove (5.17) we start observing that there exists a subsequence (kj) such that if

E :=
{
x ∈ A : lim

j→∞
ukj

(x) = u(x)
}

then |A \ E| = 0; hence, as a consequence, |Bτ ∩ E| = |Bτ |. Moreover, since vτk →
vτ in L∞(A; Rm) as k → ∞ we have that

lim
k→∞

vτk(x) = vτ (x) (5.18)

for every x ∈ A and hence, in particular, for every x ∈ Bτ .
Assume by contradiction that |Bτ | > (m+ 1)τ , then by (5.14) we obtain

|Bτ ∩ E ∩Hτ
kj
| = |Bτ ∩Hτ

kj
| > τ, (5.19)

for every j ∈ N. Therefore, by (5.19) and lemma 2.10 there exists (kjh) ⊂ (kj) such
that ⋂

h∈N

(Bτ ∩ E ∩Hτ
kjh

) 	= ∅.

Thus, if x belongs to the set above by (5.18) we get

vτ (x) = lim
h→∞

vτkjh
(x) = lim

j→∞
ukjh

(x) = u(x),

which is a contradiction in view of the definition of Bτ . Therefore, (5.17) holds.
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To conclude, it only remains to prove the energy estimate (5.4). Let Eτ be as in
(5.10); by the nonnegativity of fk we have∫

A

fk(x,∇uk) dx �
∫

(A\Eτ )∩Hτ
k

fk(x,∇vτk) dx

=
∫

(A\Eτ )

fk(x,∇vτk) dx−
∫

(A\Eτ )\Hτ
k

fk(x,∇vτk) dx. (5.20)

By (5.14) we get

|(A \ Eτ ) \Hτ
h | �

m∑
i=1

|(A \ Eτ ) \Hτ
i,h| < mmin{τ, δτ}, (5.21)

hence invoking (3.2), (5.15), (5.14), (5.11), (2.3), proposition 2.5 and (5.21) we
obtain∫

(A\Eτ )\Hτ
k

fk(x,∇vτk) dx � β

∫
(A\Eτ )\Hτ

k

λk(|∇vτk |p + 1) dx

� βmp−1c5(n)pLpτ

∫
(A\Eτ )\Hτ

k

λk dx+ β

∫
A\Hτ

k

λk dx

� βmp−1c5(n)pLpτ
m∑
i=1

∫
(A\Eτ )\Hτ

i,k

λk dx

+ βcc2|Q0|
( |A \Hτ

k |
|Q0|

)σ/(1+σ)

� βmp−2c5(n)p
m∑
i=1

∫
(A\Eτ )\Hτ

i,k

λk(M |∇u(i)
k |)p dx

+ βcc2|Q0|
(
mτ

|Q0|
)σ/(1+σ)

� βmp−1c5(n)pτ + ατ , (5.22)

where ατ := βcc2|Q0|(mτ/|Q0|)σ/(1+σ); thus ατ → 0, as τ → 0+.
Now let Aτ ⊂ A be an open set containing A \ Eτ and such that∣∣∣∣∣

∫
Aτ

fk(x,∇vτk) dx−
∫
A\Eτ

fk(x,∇vτk) dx

∣∣∣∣∣ < τ. (5.23)

We note that this choice is always possible thanks to the growth conditions satisfied
by fk (3.2), to (5.15), and in view of proposition 2.5. Indeed, we have∫

Aτ\(A\Eτ )

fk(x,∇vτk) dx � β(mp−1c5(n)pLpτ + 1)
∫
Aτ\(A\Eτ )

λk dx

� β(mp−1c5(n)pLpτ + 1)cc2|Q0|
( |Aτ \ (A \ Eτ )|

|Q0|
)σ/(1+σ)

,

moreover, |A \Aτ | � |Eτ | < τ .
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Eventually, by combining (5.20), (5.22) and (5.23) we deduce∫
A

fk(x,∇uk) dx �
∫
Aτ

fk(x,∇vτk) dx− ατ − τ(βmp−1c5(n)p + 1),

and hence the claim follows with βτ := ατ + τ(βmp−1c5(n)p + 1). �

We are now in a position to show that, up to subsequences, the functionals Fk
Γ-converge to F∞.

Theorem 5.2. Let Fk and F∞ be the functionals defined in (3.4) and (5.1), respec-
tively. Then there exists a subsequence (kh) such that for every u ∈W 1,1(Q0; Rm)
and for every A ∈ A(Q0) with A ⊂⊂ Q0 there holds

F ′(u,A) = F ′′(u,A) = F∞(u,A), (5.24)

where F ′ and F ′′ are, respectively, as in (4.4) and (4.5) with k replaced by kh.

Proof. In all that follows (kh) denotes the subsequence provided by theorem 4.10.
We divide the proof into two main steps.
Step 1: Lower bound. In this step, we prove that

F ′(u,A) � F∞(u,A), (5.25)

for every u ∈W 1,1(Q0; Rm) and every A ∈ A(Q0) with A ⊂⊂ Q0.
To this end, let u ∈W 1,1(Q0; Rm) and A ∈ A(Q0), A ⊂⊂ Q0 be fixed.
Substep 1.1: u ∈W 1,p

λ∞(A; Rm). By [14, proposition 8.1] there exists (uh) ⊂
W 1,1(Q0; Rm) with uh → u in L1(Q0; Rm) such that

F ′(u,A) = lim inf
h→∞

Fkh
(uh, A). (5.26)

We observe that lemma 4.3 guarantees that F ′(u, A) < +∞; therefore, (uh) ⊂
W 1,p
λh

(A; Rm) and (up to possibly passing to a subsequence) by (3.2) we get

sup
h∈N

∫
A

λkh
|∇uh|p dx < +∞.

Now let τ > 0 be fixed and arbitrary; theorem 5.1 provides us with (βτ ), infinites-
imal as τ → 0+, Aτ ⊂ A, with |A \Aτ | < τ , and (vτh), v

τ in W 1,∞(Rn; Rm), such
that vτh → vτ in L1(Q0; Rm), as h→ ∞. Moreover, by (5.26) and (5.4) we obtain

F ′(u,A) = lim inf
h→∞

∫
A

fkh
(x,∇uh) dx

� lim inf
h→∞

∫
Aτ

fkh
(x,∇vτh) dx− βτ �

∫
Aτ

f∞(x,∇vτ ) dx− βτ , (5.27)

where the last inequality follows by theorem 4.10, since vτ ∈W 1,∞(Q0; Rm).
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Now let Bτ := {x ∈ A : vτ (x) 	= u(x)} be as in the proof of theorem 5.1 and recall
that

|Bτ | � (m+ 1)τ. (5.28)

By (5.27) and the nonnegativity of f∞ we have

F ′(u,A) �
∫
Aτ\Bτ

f∞(x,∇u) dx− βτ , (5.29)

for every τ > 0. Now, since |A \Aτ | < τ , using (5.28) we get

|A \ (Aτ \Bτ )| � (m+ 2)τ, (5.30)

thus, thanks to (4.2) and (5.30), we can pass to the limit as τ → 0+ in (5.29) and
obtain

F ′(u,A) �
∫
A

f∞(x,∇u) dx = F∞(u,A), (5.31)

hence the lower bound for u ∈W 1,p
λ∞(A; Rm).

Substep 1.2: u /∈W 1,p
λ∞(A; Rm). In this case, from (5.1) we have F∞(u, A) = +∞,

hence to conclude we need to show that F ′(u, A) = +∞. Assume by contradiction
that

F ′(u,A) < +∞.

If this is the case, we may argue exactly as in substep 1.1 and get

+∞ > F ′(u,A) �
∫
Aτ\Bτ

f∞(x,∇u) dx− βτ .

By the Fatou lemma, (4.2) and proposition 2.6 this yields u ∈W 1,p
λ∞(A; Rm) and

hence a contradiction.
Step 2. Upper bound. In this step, we prove that

F ′′(u,A) � F∞(u,A), (5.32)

for every u ∈W 1,1(Q0; Rm) and every A ∈ A(Q0) with A ⊂⊂ Q0.
To this end, let u ∈W 1,1(Q0; Rm) and A ∈ A(Q0), A ⊂⊂ Q0 be fixed. We start

observing that by the definition of F∞, if u /∈W 1,p
λ∞(A; Rm) then there is nothing

to prove. Therefore, we only consider the case u ∈W 1,p
λ∞(A; Rm).

Since A is Lipschitz, by [34, theorem 2.1.13] we can find a function ũ ∈
W 1,p
λ∞(Q0; Rm) with u = ũ a.e. in A. Then, by density (see, e.g. [34, corollary

2.1.6]) there exists (uj) ⊂W 1,∞(Q0; Rm) such that uj → ũ in W 1,p
λ∞(Q0; Rm). Then,

by the locality of F ′′ and F∞, the continuity of F∞ in W 1,p
λ∞(Q0; Rm), and the

L1(Q0; Rm)-lower semicontinuity of F ′′, invoking theorem 4.10 we deduce

F∞(u,A) = F∞(ũ, A) = lim
j→∞

F∞(uj , A) = lim inf
j→∞

F ′′(uj , A) � F ′′(ũ, A) = F ′′(u,A),

thus the upper bound.
Eventually (5.24) follows by gathering (5.25) and (5.32). �
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6. Convergence of minimization problems

In this section, we modify the domain of the functionals Fk by prescribing boundary
conditions of Dirichlet type. We then study the Γ-convergence of the correspond-
ing functionals and prove a convergence result for the associated minimization
problems.

We start by proving a preliminary energy bound.

Proposition 6.1. Let Fk be the functionals defined in (3.4). Then there exist an
exponent δ > 0 and a constant C > 0 such that(∫

A

|∇u|1+δ dx
)p/(1+δ)

� C
(
Fk(u,A) + 1

)
, (6.1)

for every A ∈ A(Q0), every u ∈W 1,p
λk

(A; Rm), and every k ∈ N.

Proof. By theorem 2.2 we can deduce the existence of an exponent σ > 0 and a
constant c > 0 such that(

−
∫
Q

λ
−(1+σ)/(p−1)
k dx

)1/(1+σ)

� c

(
−
∫
Q

λ
−1/(p−1)
k dx

)
, (6.2)

for every cube Q and for every k ∈ N.
Now, let A ∈ A(Q0) and u ∈W 1,p

λk
(A; Rm) be arbitrary, and let δ > 0 to be chosen

later. By the Hölder inequality we have∫
A

|∇u|1+δ dx �
(∫

A

λk|∇u|p dx
)(1+δ)/p(∫

A

λ
−(1+δ)/(p−1−δ)
k dx

)(p−1−δ)/p
.

For δ := (p− 1)σ/(p+ σ) it is immediate to check that

1 + δ

p− 1 − δ
=

1 + σ

p− 1
; (6.3)

hence by (6.2) we readily get∫
A

|∇u|1+δ dx

� c(p−1−δ)(1+σ)/p|Q0|(p−1−δ)/p
(∫

A

λk|∇u|p dx
)(1+δ)/p

×
(
−
∫
Q0

λ
−1/(p−1)
k dx

)(p−1−δ)(1+σ)/p

.

Moreover, since λk belongs to Ap(K), by (3.1) we also deduce that(
−
∫
Q0

λ
−1/(p−1)
k dx

)p−1

� K

c1
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and therefore∫
A

|∇u|1+δ dx

� c(p−1−δ)(1+σ)/p|Q0|(p−1−δ)/p
(
K

c1

)(p−1−δ)(1+σ)/p(p−1)

×
(∫

A

λk|∇u|p dx
)(1+δ)/p

.

Eventually, gathering (3.1), (3.2) and (6.3) gives(∫
A

|∇u|1+δ dx
)p/(1+δ)

� cp−1|Q0|(p−1)/(1+σ)

(
K

c1

)∫
A

λk(x)(|∇u|p − 1) dx

+ cp−1|Q0|(p−1)/(1+σ)

(
K

c1

)∫
A

λk(x) dx

� cp−1|Q0|(p−1)/(1+σ)

(
K

c1α

)
Fk(u,A) + cp−1|Q0|(p−1)/(1+σ)

(
K

c1

)
c2|Q0|,

for every k ∈ N. Hence, (6.1) immediately follows by choosing C := max{C1, C2}
with

C1 := cp−1|Q0|(p−1)/(1+σ)

(
K

c1α

)
and C2 := αc2|Q0|C1.

�

Let Fk be functionals defined in (3.4). We consider Fψk : W 1,1(Q0; Rm) ×
A(Q0) −→ [0, +∞] given by

Fψk (u,A) :=

{
Fk(u,A) if u ∈W 1,p

0,λk
(A; Rm) + ψ,

+∞ otherwise,
(6.4)

with ψ ∈W 1,∞(Q0; Rm).
We are now in a position to prove a Γ-convergence result for the functionals Fψk .

Theorem 6.2 (Γ-convergence with boundary data). Let Fψk be the functionals
defined in (6.4). Then there exists a subsequence (kh) such that for every A ∈ A(Q0),
A ⊂⊂ Q0

Fψ∞(·, A) = Γ- lim
h→∞

Fψkh
(·, A),

where Fψ∞ : W 1,1(Q0; Rm) ×A(Q0) −→ [0, +∞] is given by

Fψ∞(u,A) :=

{
F∞(u,A) if u ∈W 1,p

0,λ∞(A; Rm) + ψ,

+∞ otherwise,
(6.5)

with F∞ as in (5.1).
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Proof. Let u ∈W 1,1(Q0; Rm) and A ∈ A(Q0), with A ⊂⊂ Q0 be fixed and let (kh)
be the subsequence whose existence is guaranteed by theorem 5.2.

We divide the proof into two main steps.
Step 1: Lower bound. Let (uh) ⊂W 1,1(Q0; Rm) be such that uh → u in

L1(Q0; Rm). In this step, we want to show that

lim inf
h→∞

Fψkh
(uh, A) � Fψ∞(u,A). (6.6)

We note that we can always assume that

lim inf
h→∞

Fψkh
(uh, A) < +∞, (6.7)

otherwise there is nothing to prove. Moreover, without loss of generality, we may
also assume that the liminf in (6.7) is actually a limit. Then, by the definition
of Fψkh

we have that (uh) ⊂W 1,p
0,λkh

(A; Rm) + ψ; while by theorem 5.2 we get that

u ∈W 1,p
λ∞(A; Rm) and

F∞(u,A) � lim inf
h→∞

Fkh
(uh, A) = lim inf

h→∞
Fψkh

(uh, A).

Since W 1,p
0,λ∞(A; Rm) = W 1,1

0 (A; Rm) ∩W 1,p
λ∞(A; Rm), to conclude it is enough to

show that u belongs to W 1,1
0 (A; Rm) + ψ.

To this end, we start observing that thanks to (6.7), proposition 6.1 yields the
existence of an exponent δ > 0 and of a constant C > 0 such that∫

A

|∇uh|1+δ dx � C,

for every h ∈ N. Then, by Poincaré’s inequality the sequence (uh) is bounded
in W 1,1+δ(A; Rm). This readily implies that, up to subsequences, uh ⇀ u in
W 1,1+δ(A; Rm). Since (uh) ⊂W 1,1+δ

0 (A; Rm) + ψ and this space is weakly closed,
we immediately get u ∈W 1,1+δ

0 (A; Rm) + ψ, and therefore the claim.
Step 2: Upper bound. We start by considering the case u ∈ C∞

0 (A; Rm) + ψ.
By proposition 4.5 and theorem 5.2 there exists a sequence (uh) ⊂W 1,p

λkh
(A; Rm)

such that uh → u in Lq(Q0; Rm) for every 1 � q < +∞ and

lim sup
h→∞

Fkh
(uh, A) � F∞(u,A) = Fψ∞(u,A). (6.8)

Starting from uh we now want to construct a recovery sequence which also satisfies
the boundary condition. To this purpose, let η > 0 be fixed. By the equi-integrability
of the sequence (λkh

) (cf. proposition 2.5) there exists a compact set Kη ⊂ A such
that∫

A\Kη

λkh
|∇u|p dx � ‖∇u‖pL∞(A;Rm×n)

∫
A\Kη

λkh
dx < ‖∇u‖pL∞(A;Rm×n)η, (6.9)

for every h ∈ N.
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Choose A′, A′′ ∈ A(Q0) such that Kη ⊂ A′ ⊂⊂ A′′ ⊂⊂ A. Then, proposition 4.6
ensures the existence of a positive constant Mη and a sequence (ϕh) of cut-off
functions between A′ and A′′ such that

Fkh
(ϕhuh + (1 − ϕh)u,A)

� (1 + η) (Fkh
(uh, A′′) + Fkh

(u,A \Kη)) +Mη

∫
A

λkh
|uh − u|p dx+ η. (6.10)

Set wh := ϕhuh + (1 − ϕh)u; then by definition (wh) ⊂W 1,p
0,λkh

(A; Rm) + ψ and
wh → u in Lq(Q0; Rm) for every 1 � q < +∞. Moreover, by (6.10) and (3.2) we
get

Fkh
(wh, A) � (1 + η)Fkh

(uh, A)

+ (1 + η)β
∫
A\Kη

λkh
(|∇u|p + 1) dx+Mη

∫
A

λkh
|uh − u|p dx+ η.

(6.11)

Hence, by (6.8), (6.9) and (6.11) we have

Γ- lim sup
h→∞

Fψkh
(u,A) � lim sup

h→∞
Fψkh

(wh, A)

� (1 + η) lim sup
h→∞

Fkh
(uh, A)

+ (1 + η)β(‖∇u‖pL∞(A;Rm×n) + 1)η + η

� (1 + η)Fψ∞(u,A) + (1 + η)β(‖∇u‖pL∞(A;Rm×n) + 1)η + η.

Therefore, by the arbitrariness of η > 0 we conclude that

Γ- lim sup
h→∞

Fψkh
(u,A) � Fψ∞(u,A), (6.12)

for every u ∈ C∞
0 (A; Rm) + ψ.

Now, let u ∈W 1,p
0,λ∞(A; Rm) + ψ. We extend u to ψ outside A; we clearly have that

the extended function (still denoted by u) belongs to W 1,p
0,λ∞(Q0; Rm) + ψ. Now, let

(uj) ⊂ C∞
0 (Q0; Rm) be such that uj → u in W 1,p

λ∞(Q0; Rm), hence, in particular,
uj → u strongly in L1(Q0; Rm). By the W 1,p

λ∞(Q0; Rm)-continuity of Fψ∞, by (6.12),
and by the lower semicontinuity of the Γ-limsup with respect to the strong topology
of L1(Q0; Rm) we get

Fψ∞(u,A) = lim
j→∞

Fψ∞(uj , A) � lim
j→∞

Γ- lim sup
h→∞

Fψkh
(uj , A) � Γ- lim sup

h→∞
Fψkh

(u,A),

for every u ∈W 1,p
0,λ∞(A; Rm) + ψ, and therefore the upper bound. �

The following result shows that the functionals Fψk are equi-coercive with respect
to the strong L1(Q0; Rm)-topology.
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Proposition 6.3 (Equi-coerciveness). Let Fψk be functionals defined in (6.4), let
A ∈ A(Q0), A ⊂⊂ Q0, and let (uk) ⊂W 1,1(A; Rm) be such that

sup
k∈N

Fψk (uk, A) < +∞. (6.13)

Then there exist a subsequence (ukh
) ⊂ (uk) and an exponent δ > 0 such that

ukh
⇀ u weakly in W 1,1+δ(A; Rm),

with u ∈W 1,p
0,λ∞(A; Rm) + ψ. Moreover, if we extend ukh

and u to Q0 by setting
ukh

:= ψ and u := ψ in Q0 \A, respectively, then ukh
→ u in L1(Q0; Rm).

Proof. By (6.13) and by (6.4) we have uk ∈W 1,p
0,λk

(A; Rm) + ψ, for every k ∈ N.
Then, arguing exactly as in the proof of theorem 6.2 we may deduce the exis-
tence of a subsequence (ukh

) ⊂ (uk) which weakly converges in W 1,1+δ(A; Rm)
to a function u ∈W 1,1

0 (A; Rm) + ψ. Furthermore, by the compact embedding of
W 1,1+δ(A; Rm) in L1,1+δ(A; Rm) we have that, in particular, ukh

→ u in L1(A; Rm).
Now, extend ukh

and u by setting ukh
:= ψ, u := ψ in Q0 \A. Then, clearly ukh

→ u
in L1(Q0; Rm). Hence, by theorem 6.2 and by (6.13) there holds

Fψ∞(u,A) � lim inf
h→∞

Fψkh
(ukh

, A) < +∞,

thus by (6.5) we get u ∈W 1,p
0,λ∞(A; Rm) + ψ. �

Thanks to the fundamental property of Γ-convergence, by combining theorem 6.2
and proposition 6.3 we obtain the following convergence result for the associated
minimization problems.

Theorem 6.4. Let A ⊂ A(Q0) with A ⊂⊂ Q0. Let fk be functions satisfying (3.2)
and (3.3) and set

Mk := inf
{∫

A

fk(x,∇u) dx : u ∈W 1,p
0,λk

(A; Rm) + ψ

}
.

Let (uk) ⊂W 1,p
0,λk

(A; Rm) + ψ be such that

lim
k→∞

(Fψk (uk, A) −Mk) = 0.

Then, up to subsequences (not relabelled), uk → u∞ in L1(A; Rm) with u∞ solution
to

M∞ := min
{∫

A

f∞(x,∇u) dx : u ∈W 1,p
0,λ∞(A; Rm) + ψ

}
,

Moreover, we have Mk →M∞, as k → +∞.
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7. Asymptotic formula for f∞

In this section, we derive an asymptotic formula for the integrand of the Γ-limit,
f∞. This formula will be particularly useful when proving the homogenization result
in § 8.

In all that follows F∞ : W 1,1(Q0; Rm) ×A(Q0) −→ [0, +∞] denotes the Γ-limit
of (Fkh

) where (kh) as in theorem 5.2. That is, F∞ coincides with the integral
functional

F∞(u,A) =
∫
A

f∞(x,∇u) dx,

for every u ∈W 1,p
λ∞(Q0; Rm), where for a.e. x ∈ Q0 and for every ξ ∈ Rm×n

f∞(x, ξ) = lim sup
ρ→0+

F∞(uξ, Qρ(x))
|Qρ(x)| ; (7.1)

moreover, f∞ satisfies (4.2) and (4.3) (cf. theorem 4.1). We also recall that, being
F∞ a Γ-limit, it is lower semicontinuous with respect to the strong L1(Q0; Rm)-
convergence.

The following theorem is the main result of this section.

Theorem 7.1. For almost every x ∈ Q0 and every ξ ∈ Rm×n there holds

f∞(x, ξ) := lim sup
ρ→0+

mF∞(uξ, Qρ(x))
ρn

, (7.2)

where, for every A ∈ A(Q0),

mF∞(uξ, A) := min
{
F∞(v,A) : v ∈W 1,p

0,λ∞(A; Rm) + uξ
}
.

The proof of theorem 7.1 will be achieved by combining lemmas 7.3–7.5 below,
by following the same strategy as in [4, § 3] (see also [5, § 2.2]).

As an immediate corollary of theorems 6.4 and 7.1 we also obtain the following
asymptotic formula for f∞.

Corollary 7.2 (Asymptotic formula for f∞). For almost every x ∈ Q0 and every
ξ ∈ Rm×n there holds

f∞(x, ξ) := lim sup
ρ→0+

lim
h→∞

mFkh
(uξ, Qρ(x))
ρn

, (7.3)

where, for every A ∈ A(Q0),

mFkh
(uξ, A) := inf

{
Fkh

(v,A) : v ∈W 1,p
0,λkh

(A; Rm) + uξ
}
.

We now turn to the proof of theorem 7.1; to this end, we need to introduce the
following notation. Set A∗ := {Qρ(x) : x ∈ Q0, ρ > 0} and let δ > 0. ForA ∈ A(Q0)
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define

mδ
F∞(uξ, A) := inf

{ ∞∑
i=1

mF∞(uξ, Qi) : Qi ∈ A∗, Qi ∩Qj = ∅,

diam(Qi) < δ, |A \ ∪∞
i=1Qi| = 0

}
.

We note that mδ
F∞ is decreasing in δ; hence for every A ∈ A(Q0) we can consider

m∗
F∞(uξ, A) := lim

δ→0+
mδ
F∞(uξ, A). (7.4)

We start by proving the following technical lemma which is an adaptation from
[4, lemma 3.3] to the setting of weighted Sobolev spaces.

Lemma 7.3. Let A ∈ A(Q0), A ⊂⊂ Q0; there holds

F∞(uξ, A) = m∗
F∞(uξ, A).

Proof. We observe that the inequality

F∞(uξ, A) � m∗
F∞(uξ, A) (7.5)

is an immediate consequence of the definition of m∗
F∞ . Indeed, let δ > 0 be fixed

and let (Qi) be an admissible sequence in the sense of the definition of mδ
F∞(uξ, A),

then

mδ
F∞(uξ, A) �

∞∑
i=1

mF∞(uξ, Qi) �
∞∑
i=1

F∞(uξ, Qi) = F∞(uξ, A),

thus (7.5) follows by taking the limit as δ → 0+.
We now prove the converse inequality; i.e.

F∞(uξ, A) � m∗
F∞(uξ, A). (7.6)

To this end, let δ > 0 be fixed and let (Qδi ) be an admissible sequence in the
definition of mδ

F∞(uξ, A) such that

∞∑
i=1

mF∞(uξ, Qδi ) � mδ
F∞(uξ, A) + δ. (7.7)

By definition of mF∞ , for every i ∈ N we can choose vδi ∈W 1,p
0,λ∞(Qδi ; R

m) + uξ such
that

F∞(vδi , Q
δ
i ) � mF∞(uξ, Qδi ) + δ|Qδi |. (7.8)

Set

vδ :=
∞∑
i=1

vδi χQδ
i

+ uξχQ0\∪∞
i=1Q

δ
i
;
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we claim that vδ ∈W 1,p
λ∞(Q0; Rm). To prove the claim define

vδ,N :=
N∑
i=1

vδi χQδ
i

+ uξχQ0\∪N
i=1Q

δ
i
,

clearly vδ,N ∈W 1,p
λ∞(Q0; Rm) and vδ,N → vδ a.e. in Q0, as N → ∞. Since vδi ∈

W 1,p
0,λ∞(Qδi ; R

m) + uξ for every i = 1, . . . , N , by the Poincaré inequality in weighted
Sobolev spaces (see, e.g. [23, corollary 1]) we have

‖vδ,N − uξ‖pW 1,p
λ∞ (Q0;Rm)

=
N∑
i=1

‖vδi − uξ‖pW 1,p
λ∞ (Qδ

i ;Rm)

� C(δ, p)
N∑
i=1

‖∇vδi − ξ‖p
Lp

λ∞ (Qδ
i ;Rm×n)

,

for some C(δ, p) > 0. By (4.2), (7.7) and (7.8) we get

‖vδ,N − uξ‖pW 1,p
λ∞ (Q0;Rm)

� C(δ, p)

(
K

N∑
i=1

∫
Qδ

i

λ∞

(
1
K

|∇vδi |p − 1
)

dx+ (K + |ξ|p)
N∑
i=1

∫
Qδ

i

λ∞ dx

)

� C(δ, p)

(
K

α

∞∑
i=1

F∞(vδi , Q
δ
i ) + (K + |ξ|p)‖λ∞‖L1(A)

)
� C(δ, p,K, α)

(
mδ
F∞(uξ, A) + δ + δ|A| + (1 + |ξ|p)‖λ∞‖L1(A)

)
.

Hence, for δ > 0 fixed, the sequence (vδ,N ) is bounded in W 1,p
λ∞(Q0; Rm), uniformly

in N . Then, by [25, theorem 1.32] vδ belongs to W 1,p
λ∞(Q0; Rm) and the claim is

proven. Moreover, we have

F∞(vδ, A \ ∪∞
i=1Q

δ
i ) = 0; (7.9)

indeed, by (4.2)

F∞(vδ, A \ ∪∞
i=1Q

δ
i ) � β(|ξ|p + 1)

∫
A\∪∞

i=1Q
δ
i

λ∞ dx = 0

since λ∞ ∈ L1(Q0) and |A \ ∪∞
i=1Q

δ
i | = 0. By combining (7.7)–(7.9) we deduce that

F∞(vδ, A) =
∞∑
i=1

F∞(vδi , Q
δ
i ) + F∞(vδ, A \ ∪∞

i=1Q
δ
i ) �

∞∑
i=1

mF∞(uξ, Qδi ) + δ

∞∑
i=1

|Qδi |

� mδ
F∞(uξ, A) + δ + δ|A|. (7.10)

We now claim that vδ → uξ in L1(Q0; Rm). If so, by virtue of the lower semicon-
tinuity of F∞ with respect to the strong L1(Q0; Rm)-convergence, passing to the
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limit as δ → 0+ in (7.10) would give

F∞(uξ, A) � lim inf
δ→0+

F∞(vδ, A) � lim
δ→0+

mδ
F∞(uξ, A) = m∗

F∞(uξ, A)

and therefore (7.6). Hence, to conclude the proof it only remains to show that vδ →
uξ in L1(Q0; Rm). Since, in particular, vδi ∈W 1,1

0 (Qδi ; R
m) + uξ, by the Poincaré

inequality in W 1,1(Qi; Rm) there exists a constant C > 0 such that

‖vδ − uξ‖L1(Q0;Rm) = ‖vδ − uξ‖L1(A;Rm) =
∞∑
i=1

‖vδi − uξ‖L1(Qδ
i ;Rm)

� Cδ

∞∑
i=1

‖∇vδi − ξ‖L1(Qδ
i ;Rm×n). (7.11)

Moreover, arguing similarly as above, by (4.2), (7.7) and (7.8) we deduce

∞∑
i=1

‖∇vδi − ξ‖p
Lp

λ∞ (Qδ
i ;Rm×n)

� K

α

∞∑
i=1

F∞(vδi , Q
δ
i ) + (K + |ξ|p)‖λ∞‖L1(A)

� mδ
F∞(uξ, A) + δ + δ|A| + (1 + |ξ|p)‖λ∞‖L1(A).

(7.12)

Therefore, gathering (7.4), (7.11) and (7.12) gives the desired convergence and
completes the proof. �

We also need the following lemma.

Lemma 7.4. Let A ∈ A(Q0), δ > 0 and define Aδ := {x ∈ A : dist(x, ∂A) > δ}.
Then

lim
δ→0+

mF∞(uξ, Aδ) = mF∞(uξ, A).

Proof. Let δ, η > 0. By the definition of mF∞ , we can choose v ∈W 1,p
0,λ∞(Aδ; Rm) +

uξ such that

F∞(v,Aδ) � mF∞(uξ, Aδ) + η. (7.13)

Set

w =

{
v in Aδ,
uξ in Q0 \Aδ,

clearly w ∈W 1,p
0,λ∞(A; Rm) + uξ. Using (4.2) and (7.13) we have

mF∞(uξ, A) � F∞(w,A) = F∞(v,Aδ) + F∞(uξ, A \Aδ)

� F∞(v,Aδ) + β(|ξ|p + 1)
∫
A\Aδ

λ∞ dx

� mF∞(uξ, Aδ) + η + β(|ξ|p + 1)
∫
A\Aδ

λ∞ dx.
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Letting η → 0+ we conclude that

mF∞(uξ, A) � mF∞(uξ, Aδ) + β(|ξ|p + 1)
∫
A\Aδ

λ∞ dx,

and therefore

mF∞(uξ, A) � lim inf
δ→0+

mF∞(uξ, Aδ),

since λ∞ ∈ L1(A).
Conversely, let η > 0 and choose v ∈W 1,p

0,λ∞(A; Rm) + uξ such that

F∞(v,A) � mF∞(uξ, A) + η. (7.14)

Let (vj) ⊂ C∞
0 (A; Rm) + uξ be such that vj → v in W 1,p

λ∞(A; Rm). We can find δ0 >
0 small enough so that (vj) ⊂ C∞

0 (Aδ; Rm) + uξ for every 0 < δ < δ0, hence

mF∞(uξ, Aδ) � F∞(vj , Aδ) (7.15)

for every j ∈ N. By the continuity of F∞(·, A) with respect to the strong
convergence of W 1,p

λ∞(A; Rm), (7.14) and (7.15) we deduce that

mF∞(uξ, Aδ) � lim
j→∞

F∞(vj , Aδ) = F∞(v,Aδ) � F∞(v,A) � mF∞(uξ, A) + η.

(7.16)
Letting first δ → 0+ and then η → 0+ we eventually get

lim sup
δ→0+

mF∞(uξ, Aδ) � mF∞(uξ, A).

�

Eventually, we are in a position to prove the following lemma which, in its turn,
yields the desired derivation formula (7.2) (cf. (7.1)).

Lemma 7.5. For a.e. x ∈ Q0 there holds

lim sup
ρ→0+

F∞(uξ, Qρ(x))
|Qρ(x0)| = lim sup

ρ→0+

mF∞(uξ, Qρ(x))
|Qρ(x)| .

Proof. The proof follows arguing exactly as in [4, lemma 3.5], now using lemmas
7.3 and 7.4. �

8. Stochastic homogenization

In this last section, we illustrate an application of the Γ-convergence result theorem
3.2 to the case of stochastic homogenization.

We start by recalling some basic notions and results from ergodic theory.
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8.1. Ergodic theory

Let d � 1 be an integer; in all that follows Bd denotes the Borel σ-algebra of Rd;
if d = 1 we set B := B1.

Let (Ω, F , P ) be a probability space and let τ = (τy)y∈Rn denote a group of P -
preserving transformations on (Ω, F , P ); i.e. τ is a family of measurable mappings
τy : Ω → Ω satisfying the following properties:

• τyτy′ = τy+y′ , τ−1
y = τ−y, for every y, y′ ∈ Rn;

• the map τy preserves the probability measure P ; i.e. P (τyE) = P (E), for every
y ∈ Rn and every E ∈ F ;

• for any measurable function ϕ on Ω, the function φ(ω, x) := ϕ(τyω) is F ⊗
Bn-measurable on Ω × Rn.

If in addition every τ -invariant set E ∈ F has either probabilty 0 or 1, then τ is
called ergodic.

We also need to recall the notion of subadditive process. In what follows A0

denotes the family of all open, bounded subsets of Rn with Lipschitz boundary.

Definition 8.1 (Subadditive process). Let τ = (τy)y∈Rn be a group of P -preserving
transformations on (Ω, F , P ). A subadditive process is a function μ : Ω ×A0 →
[0, +∞) satisfying the following properties:

(1) for every A ∈ A0, μ(·, A) is F-measurable;

(2) for every ω ∈ Ω, A ∈ A0, and y ∈ Rn

μ(ω,A+ y) = μ(τyω,A);

(3) for every ω ∈ Ω, for every A ∈ A0, and for every finite family (Ai)i∈I ⊂ A0 of
pairwise disjoint sets such that Ai ⊂ A for every i ∈ I and |A \ ∪i∈IAi| = 0,
there holds

μ(ω,A) �
∑
i∈I

μ(ω,Ai);

(4) there exists a constant c > 0 such that for every A ∈ A0

0 �
∫

Ω

μ(ω,A) dP � c|A|.

Moreover, if τ := (τy)y∈Rn is ergodic then μ is called a subadditive ergodic process.

We now state a version of the subadditive ergodic theorem, originally proven by
Akcoglu and Krengel [2], which is suitable for our purposes (see [26, theorem 4.3]).

Theorem 8.2. Let μ : Ω ×A0 → [0, +∞) be a subadditive process. Then there exist
a F-measurable function φ : Ω → [0, +∞) and a set Ω′ ∈ F with P (Ω′) = 1 such
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that

lim
t→∞

μ(ω, tQ)
|tQ| = φ(ω),

for every ω ∈ Ω′ and for every cube Q in Rn with faces parallel to the coordinate
planes.

If in addition μ is ergodic, then φ is constant.

For later use we also recall the Birkhoff ergodic theorem. To this end, we prelim-
inarily need to fix some notation. Let ϕ be a measurable function on (Ω, F , P ); we
denote with E[ϕ] the expected value of ϕ; i.e.

E[ϕ] :=
∫

Ω

ϕ(ω)dP.

For every ϕ ∈ L1(Ω) and for every σ-algebra F ′ ⊂ F , we denote with E[ϕ|F ′] the
conditional expectation of ϕ with respect to F ′. We recall that E[ϕ|F ′] is the unique
L1(Ω)-function satisfying∫

E

E[ϕ|F ′](ω) dP =
∫
E

ϕ(ω) dP,

for every E ∈ F ′.
We now state the following version of the Birkhoff ergodic theorem which is

convenient for our purposes.

Theorem 8.3 (Birkhoff’s ergodic theorem). Let ϕ ∈ L1(Ω), let τ = (τy)y∈Rn be a
group of P -preserving transformations on (Ω, F , P ), and let Fτ denote the σ-
algebra of τ -invariants sets. Then there exists a set Ω̃ ∈ F with P (Ω̃) = 1 such
that

lim
t→∞−

∫
B

ϕ(τtyω) dy = E[ϕ|Fτ ](ω), (8.1)

for every ω ∈ Ω̃ and for every measurable bounded set B ⊂ Rn with |B| > 0.

Remark 8.4. We note that if τ is ergodic, then Fτ reduces to the trivial σ-algebra,
therefore (8.1) becomes

lim
t→∞−

∫
B

ϕ(τtyω) dy = E[ϕ]. (8.2)

8.2. Setting of the problem and main results

In this section, we introduce the random integral functionals we are going to
analyse. To this end, we preliminarily need to define the class of admissible random
weights.

Assumption 8.5 (Admissible random weights). Let τ = (τy)y∈Rn be a group of P -
preserving transformations on (Ω, F , P ). A function λ : Ω × Rn → [0, +∞) is an
admissible weight if:
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• λ is F ⊗ Bn-measurable;

• λ is stationary; i.e. λ(ω, x+ y) = λ(τyω, x), for every ω ∈ Ω, x, y ∈ Rn;

• λ(ω, ·) ∈ Ap(K), for every ω ∈ Ω;

• λ(·, 0) > 0 in Ω;

• λ(·, 0), λ(·, 0)−1/(p−1) ∈ L1(Ω).

Remark 8.6. We note that λ = λ(ω, x) is τ -stationary if and only if for every
ω ∈ Ω and every x ∈ Rn there holds

λ(ω, x) = λ̂(τxω), (8.3)

with λ̂(ω) := λ(ω, 0).
Since by assumption λ(ω, 0) > 0 for every ω ∈ Ω, we then have E[λ̂|F ′](ω) > 0,

for every F ′ ⊂ F . Moreover, we also observe that if we assume λ̂, λ̂−1/(p−1) ∈ L1(Ω),
then the Fubini theorem yields λ(ω, ·), λ−1/(p−1)(ω, ·) ∈ L1

loc(R
n), for every ω ∈ Ω.

However, in order to apply theorem 3.2 we need the stronger condition λ(ω, ·) ∈
Ap(K), for every ω ∈ Ω.

Below we introduce the notion of stationary random integrand.

Definition 8.7 (Stationary random integrand). Let τ = (τy)y∈Rn be a group of
P -preserving transformations on (Ω, F , P ) and let λ : Ω × Rn → [0, +∞) satisfy
assumption 8.5.

(i) We say that f : Ω × Rn × Rm×n → [0, +∞) is a random integrand if:

• f is (F ⊗ Bn ⊗ Bm×n, B)-measurable;

• for every ω ∈ Ω and for every x ∈ Rn, the two following conditions hold:

αλ(ω, x)(|ξ|p − 1) � f(ω, x, ξ) � βλ(ω, x)(|ξ|p + 1), (8.4)

for every ξ ∈ Rm×n and for some 0 < α � β < +∞, and

|f(ω, x, ξ1) − f(ω, x, ξ2)| � Lλ(ω, x)(|ξ1|p−1 + |ξ2|p−1 + 1)|ξ1 − ξ2|, (8.5)

for every ξ1, ξ2 ∈ Rm×n and for some L > 0.

(ii) We say that a random integrand f is stationary if for every ω ∈ Ω, for every
x, y ∈ Rn and every ξ ∈ Rm×n it holds:

• f(ω, x+ y, ξ) = f(τyω, x, ξ).

(iii) We say that a stationary random integrand f is ergodic if τ = (τy)y∈Rn is
ergodic.

Let f be a stationary random integrand in the sense of definition 8.7. Let ω ∈ Ω be
fixed and consider the integral functional F (ω) : W 1,1

loc (Rn; Rm) ×A0 −→ [0, +∞]
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defined as

F (ω)(u,A) :=

⎧⎨⎩
∫
A

f(ω, x,∇u) dx if u ∈W 1,p
λ (A; Rm),

+∞ otherwise.
(8.6)

Moreover, for every ω ∈ Ω, A ∈ A0, and ξ ∈ Rm×n set

mF (ω)(uξ, A) := inf
{∫

A

f(ω, x,∇u) dx : u ∈W 1,p
0,λ (A; Rm) + uξ

}
(8.7)

= inf
{∫

A

f(ω, x,∇u+ ξ) dx : u ∈W 1,p
0,λ (A; Rm)

}
.

The following proposition shows that for every fixed ξ ∈ Rm×n, the minimization
problem in (8.7) defines a subadditive process.

Proposition 8.8. Let f be a stationary random integrand; let F (ω) and mF (ω) be
as in (8.6) and (8.7), respectively. Then for every ξ ∈ Rm×n the function

(ω,A) �→ mF (ω)(uξ, A)

defines a subadditive process on (Ω, F , P ).
Moreover, for every ξ ∈ Rm×n and A ∈ A0

0 �
∫

Ω

mF (ω)(uξ, A) dP � β(|ξ|p + 1)E[λ̂]|A|, (8.8)

where λ̂ is as in (8.3).

Proof. Let ξ ∈ Rm×n and A ∈ A0 be fixed. We first show that ω �→ mF (ω)(uξ, A)
is F-measurable. To this end fix u ∈W 1,p

λ (A; Rm), then the function (ω, x) �→
f(ω, x, ∇u+ ξ) is F ⊗ Ln-measurable, hence by Fubini’s theorem

ω �→ F (ω)(u+ uξ, A) =
∫
A

f(ω, x,∇u+ ξ) dx

is F-measurable. Observe now that W 1,p
0,λ (A; Rm) endowed with the norm ‖∇ ·

‖Lp
λ(A;Rm×n) is a separable Banach space and that, by virtue of (8.5), the map

u �→ F (ω)(u+ uξ, A) is continuous with respect to the same norm. Then there
exists a countable dense set D ⊂W 1,p

0,λ (A; Rm) such that

mF (ω)(uξ, A) = inf
u∈D

F (ω)(u+ uξ, A),

hence the map ω �→ mF (ω)(uξ, A) is F-measurable.
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We now show that for every fixed ξ ∈ Rm×n there holds

mF (ω)(uξ, A+ y) = mF (τyω)(uξ, A),

for every ω ∈ Ω, A ∈ A0 and y ∈ Rn. Indeed, a change of variables and the
stationarity of f yield

mF (ω)(uξ, A+ y) = inf
{∫

A

f(ω, x+ y,∇u+ ξ) dx : u ∈W 1,p
0,λ(ω,x+y)(A; Rm)

}
= inf

{∫
A

f(τyω, x,∇u+ ξ) dx : u ∈W 1,p
0,λ(τyω,x)

(A; Rm)
}

= mF (τyω)(uξ, A).

Let ξ ∈ Rm×n and ω ∈ Ω be fixed. We now prove that the function A �→
mF (ω)(uξ, A) is subadditive in the sense of definition 8.1. To this end, let A ∈ A0

and let (Ai)i∈I be a finite family of pairwise disjoint sets in A0 such that Ai ⊂ A,
for every i ∈ I, and |A \ ∪i∈IAi| = 0. Let η > 0 and choose ui ∈W 1,p

0,λ (Ai, Rm) such
that F (ω)(ui + uξ, Ai) � mF (ω)(uξ, Ai) + η. Define u ∈W 1,p

0,λ (A; Rm) by setting
u :=

∑
i∈I uiχAi

. Then by the locality of F (ω) we have

mF (ω)(uξ, A) � F (ω)(u+ uξ, A) =
∑
i∈I

F (ω)(ui + uξ, Ai) �
∑
i∈I

mF (ω)(uξ, Ai) + η,

which proves the subadditivity thanks to the arbitrariness of η > 0.
Finally, by definition of mF (uξ, A), choosing u = 0, by (8.4) we have

0 � mF (ω)(uξ, A) � β(|ξ|p + 1)
∫
A

λ(ω, x) dx, (8.9)

for every ξ ∈ Rm×n, every ω ∈ Ω, and every A ∈ A0. Therefore, integrating on Ω
both sides of (8.9) and using the stationarity of λ we get

0 �
∫

Ω

mF (ω)(uξ, A) dP � β(|ξ|p + 1)
∫

Ω

∫
A

λ̂(τxω) dxdP = β(|ξ|p + 1)E[λ̂]|A|,

where to establish the last equality we have used the Tonelli theorem together with
a change of variables in ω. Eventually, we deduce both (8.8) and that (ω, A) �→
mF (ω)(uξ, A) is a subadditive process. �

By combining proposition 8.8 together with the subadditive ergodic theorem 8.2
we are now able to establish the existence of the homogenization formula which will
eventually define the integrand of the Γ-limit (cf. theorem 8.12 below).

Proposition 8.9. Let f be a stationary random integrand. Then there exist a set
Ω′ ∈ F with P (Ω′) = 1 and a F ⊗ Bm×n-measurable function fhom : Ω × Rm×n →
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[0, +∞) such that for every ω ∈ Ω′, ξ ∈ Rm×n, and every cube Q in Rn there holds

fhom(ω, ξ) := lim
t→∞

mF (ω)(uξ, tQ)
tn|Q| .

Moreover, for every ω ∈ Ω′, fhom satisfies the following conditions:

αE[λ̂|Fτ ](ω)
(

1
K

|ξ|p − 1
)

� fhom(ω, ξ) � β E[λ̂|Fτ ](ω)(|ξ|p + 1), (8.10)

|fhom(ω, ξ1) − fhom(ω, ξ2)| � L′ E[λ̂|Fτ ](ω)(|ξ1|p−1 + |ξ2|p−1 + 1)|ξ1 − ξ2|, (8.11)

for every ξ, ξ1, ξ2 ∈ Rm×n and for some L′ > 0, where λ̂ is as in (8.3).
If in addition f is ergodic, then fhom does not depend on ω and

fhom(ξ) = lim
t→∞

1
tn

∫
Ω

mF (ω)(uξ, Qt(0)) dP, (8.12)

for every ξ ∈ Rm×n. Moreover, in this case (8.10) and (8.11) become, respectively,

αE[λ̂]
(

1
K

|ξ|p − 1
)

� fhom(ξ) � β E[λ̂](|ξ|p + 1) (8.13)

and

|fhom(ξ1) − fhom(ξ2)| � L′ E[λ̂](|ξ1|p−1 + |ξ2|p−1 + 1)|ξ1 − ξ2|, (8.14)

for every ξ, ξ1, ξ2 ∈ Rm×n.

Proof. Let ξ ∈ Rm×n be fixed; theorem 8.2 and proposition 8.8 ensure the existence
of a set Ωξ ∈ F with P (Ωξ) = 1 and of a F-measurable function φξ : Ω −→ [0, +∞)
such that

φξ(ω) = lim
t→∞

mF (ω)(uξ, tQ)
|tQ| , (8.15)

for every ω ∈ Ωξ and for every cube Q in Rn.
Now, let t > 0 and denote with Qt = Qt(0) the cube centred at the origin and

with side length t. Let fhom : Ω × Rm×n → [0, +∞) be the function defined as

fhom(ω, ξ) := lim sup
t→∞

mF (ω)(uξ, Qt)
|Qt| .

Let ω ∈ Ω and A ∈ A0 be fixed; we start by showing that the function

ξ �→ mF (ω)(uξ, A)
|A|

is locally Lipschitz continuous. To this end, let ξ1, ξ2 ∈ Rm×n, let η > 0 be arbitrary,
and let u ∈W 1,p

0,λ (A; Rm) be such that

F (ω)(u+ uξ2 , A) � mF (ω)(uξ2 , A) + η.
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Then, appealing to (8.5) and to the Hölder inequality we deduce

mF (ω)(uξ1 , A)
|A| − mF (ω)(uξ2 , A)

|A|

� 1
|A|
(
F (ω)(u+ uξ1 , A) − F (ω)(u+ uξ2 , A) + η

)
� 1

|A|
∫
A

|f(ω, x,∇u+ ξ1) − f(ω, x,∇u+ ξ2)|dx+
η

|A|

� L

|A|
∫
A

λ(ω, x)|ξ1 − ξ2|(|∇u+ ξ1|p−1 + |∇u+ ξ2|p−1 + 1) dx+
η

|A|

� L

|A|C(p)|ξ1 − ξ2|
(∫

A

λ(ω, x) dx
)1/p

×
(∫

A

λ(ω, x)(|ξ1|p + |ξ2|p + |∇u+ ξ2|p + 1) dx
) p−1

p

+
η

|A| , (8.16)

where C(p) > 0 depends only on p. By using (8.4) (see also (8.9)) we get

α

∫
A

λ(ω, x)(|∇u+ ξ2|p − 1) dx � F (ω)(u+ uξ2 , A) � mF (ω)(uξ2 , A) + η

� β(|ξ2|p + 1)
∫
A

λ(ω, x) dx+ η. (8.17)

Therefore, plugging (8.17) into (8.16) gives

mF (ω)(uξ1 , A)
|A| − mF (ω)(uξ2 , A)

|A|

� C L

|A| |ξ1 − ξ2|
(∫

A

λ(ω, x) dx
)1/p

×
(

(|ξ1|p−1 + |ξ2|p−1 + 1)
(∫

A

λ(ω, x) dx
)(p−1)/p

+ η(p−1)/p

)
+

η

|A| ,

where C > 0 depends on p, α, β. Hence, by the arbitrariness of η > 0 we get

mF (ω)(uξ1 , A)
|A| − mF (ω)(uξ2 , A)

|A| � L′ −
∫
A

λ(ω, x) dx
(|ξ1|p−1 + |ξ2|p−1 + 1

)|ξ1 − ξ2|.
(8.18)

Thus, the claim simply follows by interchanging the role of ξ1 and ξ2.
Now, choose A = tQ in (8.18) with Q cube of Rn and t > 0. By the stationarity

of λ and a change of variables we obtain

mF (ω)(uξ1 , tQ)
|tQ| − mF (ω)(uξ2 , tQ)

|tQ|

� L′ −
∫
Q

λ̂(τtxω) dx
(|ξ1|p−1 + |ξ2|p−1 + 1

)|ξ1 − ξ2| (8.19)
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and, as above, the other inequality follows by exchanging the role of ξ1 and ξ2.
Therefore, taking the lim sup as t→ ∞ and invoking theorem 8.3, we deduce the
existence of a set Ω̃ ∈ F with P (Ω̃) = 1 such that

lim sup
t→∞

∣∣∣∣mF (ω)(uξ1 , tQ)
|tQ| − mF (ω)(uξ2 , tQ)

|tQ|
∣∣∣∣

� L′ E[λ̂|Fτ ](ω)
(|ξ1|p−1 + |ξ2|p−1 + 1

)|ξ1 − ξ2|, (8.20)

for every ω ∈ Ω̃. We also observe that choosing in (8.19) Q = Q1(0), it is immediate
to check that fhom(ω, ·) satisfies the local Lipschitz condition (8.20), for every
ω ∈ Ω̃.

Set Ω′ := (∩ξ∈Qm×nΩξ) ∩ Ω̃, clearly P (Ω′) = 1 and (8.15) holds true for every
fixed ξ ∈ Qm×n and every ω ∈ Ω′. Let now ξ ∈ Rm×n be fixed and let (ξj) ⊂ Qm×n

be such that ξj → ξ, as j → ∞. For ω ∈ Ω′ we have∣∣∣∣fhom(ω, ξ) − mF (ω)(uξ, tQ)
|tQ|

∣∣∣∣ � |fhom(ω, ξ) − fhom(ω, ξj)|

+
∣∣∣∣fhom(ω, ξj) −

mF (ω)(uξj
, tQ)

|tQ|
∣∣∣∣+ ∣∣∣∣mF (ω)(uξj

, tQ)
|tQ| − mF (ω)(uξ, tQ)

|tQ|
∣∣∣∣ .

Then, view of (8.11), (8.15), and (8.20) we get that for every j ∈ N there holds

lim sup
t→∞

∣∣∣∣fhom(ω, ξ) − mF (ω)(uξ, tQ)
|tQ|

∣∣∣∣
� 2L′ E[λ̂|Fτ ](ω)

(|ξ|p−1 + |ξj |p−1 + 1
)|ξ − ξj |.

Thus, by letting j → ∞ we obtain

fhom(ω, ξ) = lim
t→∞

mF (ω)(uξ, tQ)
tn|Q| ,

for every ω ∈ Ω′ and every ξ ∈ Rm×n, as desired.
Then, it only remains to show that fhom(ω, ·) satisfies the growth condition (8.10)

for every ω ∈ Ω′. The growth condition from above readily follows from

mF (ω)(uξ, tQ)
tn|Q| � β(|ξ|p + 1)−

∫
tQ

λ(ω, x) dx = β(|ξ|p + 1)−
∫
Q

λ̂(τtxω) dx (8.21)

passing to the limit as t→ ∞, and using theorem 8.3.
We now establish the growth condition from below. To this end let u ∈

W 1,p
0,λ (tQ; Rm) be arbitrary; then Hölder’s inequality and (8.4) give

α |ξ|p|tQ|p = α

(∫
tQ

|∇u+ ξ|dx
)p

� F (ω)(u+ uξ, tQ)
(∫

tQ

λ(ω, x)−1/(p−1) dx
)p−1

+ α

(∫
tQ

λ(ω, x) dx
)(∫

tQ

λ(ω, x)−1/(p−1) dx
)p−1

.
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Dividing both sides by |tQ|p and taking the infimum over W 1,p
0,λ (tQ; Rm) we get

α|ξ|p
(
−
∫
tQ

λ(ω, x)−1/(p−1) dx
)−(p−1)

− α

(
−
∫
tQ

λ(ω, x) dx
)

�
mF (ω)(uξ, tQ)

|tQ| ,

then, recalling that λ(ω, ·) ∈ Ap(K) we find

α

(
−
∫
tQ

λ(ω, x) dx
) (

1
K

|ξ|p − 1
)

�
mF (ω)(uξ, tQ)

|tQ| .

Therefore, passing to the limit as t→ ∞ and using again the Birkhoff ergodic
theorem we finally obtain the growth conditions from below in (8.10).

We note that the F ⊗ Bm×n-measurability of fhom follows from the F-
measurability of ω �→ fhom(ω, ξ) and the continuity of ξ �→ fhom(ω, ξ).

If f is ergodic, then theorem 8.2 ensures that fhom does not depend on ω. More-
over, by (8.21) and the Birkhoff ergodic theorem we can invoke a generalized version
of the dominated convergence theorem to deduce (8.12). Eventually, (8.13) and
(8.14) follow, respectively, by integrating (8.10) and (8.11) on Ω and using the
definition of conditional expectation. �

Remark 8.10. From the proof of proposition 8.9 it can be actually seen that in the
ergodic case fhom satisfies the standard growth conditions

αE[λ̂−1/(p−1)]1−p(|ξ|p − 1) � fhom(ξ) � β E[λ̂](|ξ|p + 1),

for every ξ ∈ Rm×n (and similarly in the general stationary case), which then reduce
to those established in [15, 16, 28] when λ ≡ 1.

Now, let (εk) ↘ 0 be a vanishing sequence of strictly positive real numbers and let
f be a stationary random integrand. For ω ∈ Ω let Fk(ω) : W 1,1

loc (Rn; Rm) ×A0 −→
[0, +∞] be the functionals defined as

Fk(ω)(u,A) :=

⎧⎨⎩
∫
A

f

(
ω,

x

εk
,∇u

)
dx if u ∈W 1,p

λk
(A; Rm),

+∞ otherwise,
(8.22)

where for every ω ∈ Ω and x ∈ Rn we set

λk(ω, x) := λ

(
ω,

x

εk

)
, (8.23)

with λ satisfying assumption 8.5.

Remark 8.11. If λk is as in (8.23) then by assumption 8.5 and the Birkhoff ergodic
theorem there exists Ω′ ∈ F with P (Ω′) = 1 such that (3.8) holds true for every
ω ∈ Ω′.

The following homogenization theorem is the main result of this section.
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Theorem 8.12 (Stochastic homogenization). Let f be a stationary random inte-
grand and let Fk(ω) be as in (8.22). Then there exists Ω′ ∈ F with P (Ω′) = 1 such
that for every ω ∈ Ω′ and every A ∈ A0

Γ(L1
loc(R

n; Rm))- lim
k→∞

Fk(ω)(u,A) = Fhom(ω)(u,A),

where Fhom(ω) : W 1,1
loc (Rn; Rm) ×A0 −→ [0, +∞] is the random functional defined

as

Fhom(ω)(u,A) :=

⎧⎨⎩
∫
A

fhom(ω,∇u) dx if u ∈W 1,p(A; Rm),

+∞ otherwise,
(8.24)

with fhom as in proposition 8.9.
If in addition f is ergodic, then Fhom is deterministic with integrand given by

fhom(ξ) = lim
t→∞

1
tn

∫
Ω

inf

{∫
Qt(0)

f(ω, x,∇u+ ξ) dx : u ∈W 1,p
0,λ (Qt(0); Rm)

}
dP,

for every ξ ∈ Rm×n.

Proof. Let Ω′ ∈ F be the measurable set whose existence is ensured by proposition
8.9. In all that follows we fix ω in Ω′.

In view of remark 8.11, theorem 3.2 provides us with a subsequence (kh) such that
for every A ∈ A0 the functionals Fkh

(ω)(·, A) Γ-converge to the integral functional
F∞(ω)(·, A) with respect to the strong L1

loc(R
n; Rm)-convergence, where F∞(ω) :

W 1,1
loc (Rn; Rm) ×A0 −→ [0, +∞] is given by

F∞(ω)(u,A) :=

⎧⎨⎩
∫
A

f∞(ω, x,∇u) dx if u ∈W 1,p(A; Rm),

+∞ otherwise,

we note that f∞ is nondegenerate since, by assumption, E[λ̂|Fτ ](ω) > 0. Moreover,
again invoking theorem 3.2, we have

f∞(ω, x, ξ) = lim sup
ρ→0+

1
ρn

lim
h→∞

mFkh
(ω)(uξ, Qρ(x)), (8.25)

for a.e. x ∈ Rn and for every ξ ∈ Rm×n. Hence, from (8.25) by a change of variables
we immediately get

f∞(ω, x, ξ) = lim sup
ρ→0+

lim
h→∞

εnkh

ρn
mF (ω)

(
uξ, Qρ/εkh

(
x

εkh

))
= lim
t→∞

1
tn
mF (ω)(uξ, Qt(0)) = fhom(ω, ξ), (8.26)

where (8.26) follows by proposition 8.9 by setting t := ρ/εkh
→ ∞, as h→ ∞.

As a consequence, we deduce that f∞ is independent of the subsequence (kh)
and hence the Urysohn property of Γ-convergence (see [14, proposition 8.3]) allows
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us to conclude that the whole sequence (Fk(ω)) Γ-converges to Fhom(ω), for every
ω ∈ Ω′.

Eventually, in the ergodic case the claim readily follows from the corresponding
statement in proposition 8.9. �
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