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Abstract

Asymptotic independence of the components of random vectors is a concept used in
many applications. The standard criteria for checking asymptotic independence are given
in terms of distribution functions (DFs). DFs are rarely available in an explicit form,
especially in the multivariate case. Often we are given the form of the density or, via the
shape of the data clouds, we can obtain a good geometric image of the asymptotic shape
of the level sets of the density. In this paper we establish a simple sufficient condition
for asymptotic independence for light-tailed densities in terms of this asymptotic shape.
This condition extends Sibuya’s classic result on asymptotic independence for Gaussian
densities.
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1. Introduction

The purpose of the present paper is to provide simple sufficient conditions that ensure
asymptotic independence of the components of random vectors whose probability distribution
is described by a density. Standard criteria for checking asymptotic independence are given in
terms of distribution functions (DFs). However, these are not always available in an explicit form
in the multivariate case, and they give little insight into what large samples from a distribution
will look like. Often we are given a density in analytic form. For light-tailed densities, the data
clouds give a good geometric image of the asymptotic shape of the level sets. Hence, it is of
interest to have conditions for asymptotic independence in terms of the shape of the level sets
of the underlying density, or in terms of a limiting shape for data clouds.

For vector-valued data, it is standard practice to plot the bivariate sample clouds for all
component pairs. In our final result it is the asymptotic behaviour of the shape of these bivariate
sample clouds, as the size of the data set increases, that determines asymptotic independence
of the coordinates for the underlying multivariate distribution.

Unimodal densities whose level sets all have the same shape are called homothetic. The
decay along any ray then is the same up to a scale constant depending on the direction, and,
hence, the concept of light and heavy tails is well defined. This remains true if we only assume
that the level sets have the same shape asymptotically. Our primary focus here is on light-tailed
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412 G. BALKEMA AND N. NOLDE

densities, but for additional insight we also include some results for the heavy-tailed case.
Throughout the paper, we assume continuity of DFs and of densities.

Intuitively, for bivariate data, asymptotic independence means that large values in one
coordinate are unlikely to be accompanied by large values in the other coordinate. Situations
with a low chance of simultaneous extremes are often encountered in practice, for example,
in applications which involve modelling environmental data (see, e.g. [16]) or network traffic
data (see, e.g. [18]); see [24] for further references. It is a well-known result, dating back to
1960 (see [25]), that the components of a vector with a Gaussian density are asymptotically
independent whatever the correlation. Asymptotic independence also holds for light-tailed
elliptical densities (see, e.g. [14]). As a further generalization, we shall show that a vector with
a continuously differentiable homothetic light-tailed density whose level sets are convex has
asymptotically independent components.

Theorem 1.1. Let D be a bounded open convex set in R
d , containing the origin, with a C1

boundary (i.e. at each boundary point there is a unique tangent plane). Let cn > 0 decrease to
0 such that cn+1/cn→ 0, and let rn be positive reals such that rn+1/rn→ 1. If X is a random
vector in R

d with a continuous probability density f whose level sets satisfy

{f > cn} = rnD, n ≥ n0, (1.1)

then the components of X are asymptotically independent.

We shall prove more general results, namely Theorems 3.1 and 3.2, below. The generaliza-
tions we introduce are simple, but they result in theorems for which some extra terminology
has to be developed.

• The condition that the level sets all be of a given shape is replaced by the condition that
the level sets can be scaled to converge to a limit shapeD. Theorem 1.1 remains valid if
we replace (1.1) by the limit relation {f > cn}/rn→ D.

• Asymptotic independence holds if it holds for the bivariate marginals; in this spirit, our
theorem imposes conditions on the projectionD12 of the setD on the (x1, x2)-coordinate
plane.

• Convex level sets are replaced by star-shaped level sets.

• The condition of a smooth (C1) boundary is replaced by a condition which only affects the
maximum: the coordinatewise supremum of the points inD12 should not be a boundary
point of D12. Such a set is called blunt.

• Our final result (Theorem 4.1) is on bivariate sample clouds. If these converge onto a
blunt star-shaped set, asymptotic independence holds.

The conditions in Theorem 1.1 above on the sequences (cn) and (rn) ensure that the density
has light tails. If cn+1/cn → 1 then the density has heavy tails, and the same condition on the
shape of the level sets implies asymptotic dependence.

The paper is organized as follows. In Section 2 we discuss the concept of asymptotic
independence. In Section 3 we introduce the class H of continuous multivariate homothetic
densities with star-shaped level sets. The simple structure of these densities makes them a
good starting point in our investigation of the relation between the shape of the level sets and
asymptotic independence. Here we formulate our main results (Theorems 3.1 and 3.2) for
light-tailed densities, and a counterpart (Theorem 3.3) for heavy-tailed densities. In Section 4
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Asymptotic independence for unimodal densities 413

we introduce sample clouds, and state conditions for asymptotic independence in terms of
their limiting shape (Theorem 4.1). Section 5 provides various examples. The appendix
clears up a number of minor points in the main text, by providing supplementary results and
counterexamples.

2. Asymptotic independence

In this section we discuss asymptotic independence for multivariate distributions. We begin
with a heuristic approach in the bivariate setting. This will clarify the significance of the concept
for risk management. We discuss the commonly used criteria for asymptotic independence,
the relation with multivariate extreme value theory, and describe possible forms of asymptotic
dependence.

2.1. Heuristics

In finance we are interested in the future value of stocks, say in one year’s time. Let X
and Y denote the future value of two stocks. Suppose that the distribution of the pair (X, Y )
is given by a DF F with continuous marginals F1 and F2. We are concerned with the risk
that the stocks have a low value at this future date. Let xp denote the p-quantile of the first
stock, X, and yp denote the p-quantile of the second stock. The probability that the values of
both stocks lie below the p-quantile for some given small value of p ∈ (0, 1) is F(xp, yp).
A risk-averse investor would like this probability (of simultaneous loss) to be small compared
to the probability p of a loss in either of the stocks. Future extreme low values of the two
stocks are said to be asymptotically independent if F(xp, yp) = o(p) for p→ 0. Asymptotic
dependence will increase risk for a portfolio containing these two stocks.

A different example of risk is presented by the yearly maxima for high water levels at
particular points on the coast of Holland, Great Britain, and the US, say IJmuiden, Harwich,
and New Orleans. Consider a data set of 200 observations stretching back to the beginning of
the nineteenth century. We assume that the data have been standardized to offset tidal effects.
Now, for each of these locations, pick the five largest values. This yields three subsets of
five elements in the set of 200 years. We would suppose that there is considerable overlap
between the five years selected for IJmuiden and for Harwich, since in both cases the cause
is the same, a North Western storm in the North Atlantic forcing water into the funnel formed
by the West coast of Holland and Belgium and the South coast of Great Britain, and opening
into the Southern Atlantic via the Channel. High water levels in New Orleans have a different
cause. So sea levels in New Orleans and in IJmuiden should be asymptotically independent,
and we would expect the corresponding five point subsets to be disjoint with high probability.
In general, given a positive integer k and a sequence of independent observations Z1,Z2, . . .

from a bivariate DF F , we could look in the sample cloud of the first n points Zi = (Xi, Yi)
at the k largest observations for the coordinate Xi and for the coordinate Yi . This yields two
subsets of the index set {1, . . . , n}. Let pn(k) denote the probability that the two subsets have
a point in common. In the case of asymptotic independence we would expect that, for fixed k,
pn(k)→ 0 as n→∞. This is indeed the case, as shown in [11, Proposition 2].

A related way to understand extremal dependence is by looking at the probability of a record,
pn(1), the probability that the coordinatewise maximum of a sample of n points is given by
one of the sample points. It was shown in [12, Theorem 2] that this probability vanishes as
n→∞ exactly when the underlying vector has asymptotically independent components. For
the sake of completeness, we give an alternative proof of this basic result in Appendix A; see
Proposition A.1.
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2.2. Sibuya’s condition

In his seminal paper [25] on multivariate extremes, Sibuya showed that the components of
bivariate vectors with normal densities, whatever their correlation, are asymptotically indepen-
dent. For a vector Z = (X, Y ) with DF F and continuous marginals F1 and F2, he introduced
a function P by

P(F1(x), F2(y)) = Pr{X > x, Y > y} = 1+ F(x, y)− F1(x)− F2(y).

The function P is well defined and continuous on the unit square. We can now give Sibuya’s
condition for asymptotic independence (see Theorem 2 of [25]).

Definition. Let Z = (X, Y ) have DF F with continuous marginals. The components X and Y
are asymptotically independent if the function P introduced above satisfies

P(1− s, 1− s) = o(s), s > 0, s → 0. (2.1)

By an abuse of language we also say that the vector Z or the DFF is asymptotically independent.

Independence of a bivariate vector is not affected by the marginal distributions, and similarly
for asymptotic independence. It is preserved under coordinatewise increasing transformations.
Since we assume that the marginals F1 and F2 are continuous, there is a unique function C on
the unit square such that F(x, y) = C(F1(x), F2(y)). The function C is known as the copula
of the DF F . It is a DF on the unit square with uniform marginals. Sibuya’s condition is a
condition on the copulaC sinceP(u, v) = 1+C(u, v)−u−v for u, v ∈ [0, 1]. If the condition
holds for a vector (X, Y ) with a continuous DF F , it automatically holds for any vector whose
DF is continuous and has the same copula as F .

In this paper we consider asymptotic independence for maxima. For minima, we would
define asymptotic independence similarly, in terms of the copula, by C(s, s) = o(s) for s ↓ 0.

Proposition 2.1. Suppose that there exist a, b > 0 such that

P(1− as, 1− bs)
s

→ 0, s ↓ 0. (2.2)

Then asymptotic independence holds, and relation (2.2) is valid for all a, b > 0.

Proof. We may assume that a ≤ b by symmetry and a = 1 replacing s by as in the
denominator. By monotonicity, Sibuya’s condition holds. A similar argument gives (2.2) for
any positive a, b.

For a vector (X, Y ) with marginal DFs F1 and F2, Sibuya’s condition may be formulated in
terms of conditional quantile exceedances as

λU(X, Y ) := lim
q↑1

Pr{X > F←1 (q) | Y > F←2 (q)} = 0, (2.3)

where F←(q) := inf{x ∈ R | F(x) ≥ q} for q ∈ (0, 1) denotes the (minimal) q-quantile of F .
The limit λU ∈ [0, 1], if it exists, is known as the upper tail dependence coefficient. So X and
Y are asymptotically independent if and only if their upper tail dependence coefficient is 0.

Sibuya’s condition is simple, but the formulation in terms of survival probabilities is incon-
venient. The quantiles in (2.3) may be hard to determine since this amounts to computing the
inverse of the DFs. There is a simple criterion in terms of sums.
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Proposition 2.2. Let (X1, X2) have a DF with continuous marginals F1 and F2, and let 1 −
Fi(tin) = 1/n. If sn := nPr{X1 + X2 > t1n + t2n} → 0 then X1 and X2 are asymptotically
independent.

Proof. Sibuya’s function P satisfies nP (1− 1/n, 1− 1/n) = nPr{X1 > t1n, X2 > t2n} ≤
sn→ 0. This gives Sibuya’s condition (2.1).

Below we give criteria in terms of continuous curves x(t) = (x1(t), x2(t)), t ≥ 0, for which
F1(x1(t)) and F2(x2(t)) tend to 1 as t →∞.

Proposition 2.3. Let (X1, X2) have DF F with continuous marginals F1 and F2. The compo-
nents X1 and X2 are asymptotically independent if and only if, for any ε > 0, there exists a
continuous curve x(t), t ≥ 0, such that pi(t) = Pr{Xi > xi(t)} is positive and vanishes for
t →∞ for i = 1, 2, and such that

Pr{X1 > x1(t), X2 > x2(t)}
pi(t)

< ε, t > tε, i = 1, 2. (2.4)

Proof. Assume asymptotic independence. We may choose x1(t) and x2(t) continuous and
increasing such that p1(t) = p2(t) for all t . Then (2.1) gives (2.4). Now assume that (2.4)
holds. Let u ∈ (0, p0], where p0 = min{p1(t0), p2(t0)}. By symmetry we may assume that
p1(t) = u ≤ p2(t). Then

P(1− u, 1− u) ≤ Pr{X1 > x1(t), X2 > x2(t)} ≤ εp1(t) = εu.

This holds for all u ∈ (0, p0]. So Sibuya’s condition is satisfied.

Asymptotic independence is preserved under quite severe deformations of the distribution.

Corollary 2.1. Let C be a convex open cone in R
d , and let f and g be probability densities

which are positive on C, vanish off C, and for which the quotients f/g and g/f are bounded
on C. Let Z = (Z1, . . . , Zd) have density f , and let X = (X1, . . . , Xd) have density g. If Z1
and Z2 are asymptotically independent then so are X1 and X2.

Proof. The inequality f ≤ Mg implies by integration that the same inequalities hold for
the univariate and bivariate marginal densities and tail functions. So Pr{X1 > x1(t), X2 >

x2(t)} ≤ MPr{Z1 > x1(t), Z2 > x2(t)}. Similarly, the inequality g ≤ Mf gives an inequality
with the constantM for the tail probabilities: Pr{Zi > xi(t)} ≤ MPr{Xi > xi(t)} for i = 1, 2.
Now use (2.4) for (Z1, Z2) to establish the same relation for (X1, X2). The extra factor M2

has no effect in the limit.

The concept of asymptotic independence has been refined by looking at the rate at which
P(1 − s, 1 − s) vanishes for s → 0, or, more generally, by looking at the behaviour of the
survival function P(1− u, 1− v) for u, v→ 0. See [22] or [24]. This second-order theory is
called hidden regular variation. We shall not treat this subject in our paper. Since our interest
is in multivariate densities rather than DFs, we give conditions on the densities which ensure
asymptotic independence of the components. So the assumption of continuous DFs is not
restrictive. We shall also assume that the densities are continuous on a convex cone and vanish
outside this cone. In our context, this cone will typically be either the whole space R

d or the
open positive orthant (0,∞)d .
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2.3. Asymptotic independence and multivariate extreme value theory

Asymptotic independence has to do with extremes, more precisely with bivariate maxima.
Knowledge of multivariate extreme value theory is not indispensable for understanding asymp-
totic independence, but it will help to better understand asymptotic dependence.

For multivariate extreme value theory, we have to assume that each of the marginals of the
multivariate DF F lies in the domain of attraction of a univariate extreme value limit law (see,
e.g. Section 0.3 of [23] for a definition). As above, let Z1,Z2, . . . with Zn = (Xn, Yn) be
independent observations from the bivariate DF F , and write Z∨n for the nth coordinatewise
partial maximum. For simplicity, assume that the marginals are equal with the standard Fréchet
DF Fi(t) = H(t) = e−1/t on (0,∞). The normalized marginal maxima Un = X∨n/n and
Vn = Y∨n/n again have the Fréchet DFH by the scaling propertyHn(nt) = H(t). The scaled
bivariate maximum Wn = Z∨n/n has DF Gn(w) = Fn(nw). Suppose that Gn converges
weakly to a limit distribution G, known as a multivariate extreme value distribution or a max-
stable distribution. The limit vector W = (U, V ) lives on (0,∞)2, and the components U and
V have a Fréchet law. Asymptotic independence for the DF F is equivalent to independence of
the components of the limit vector (see, e.g. Proposition 5.27 of [23] or Theorem 6.2.3 of [7]).

The convergence Fn(nw)→ G(w) becomes easier to handle if we take logarithms. Write
G(w) = e−R(w). Since− logF(nw) is asymptotic to 1−F(nw) for w > 0, we may write the
limit relation as

n(1− F(nw))→ R(w), w ∈ X = [0,∞)2 \ {(0, 0)}.
The left-hand side Rn(w) = n(1 − F(nw)) is the DF of the measure ρn = nπn, where πn is
the probability distribution of the vector Z/n. So ρn is the mean measure of the sample cloud
Nn = {Z1/n, . . . ,Zn/n} and Rn(w) = ρn([0,w]c). The pointwise convergence Gn → G

on [0,∞)2 implies the pointwise convergence Rn → R on X and the vague convergence
ρn→ ρ. One can prove the weak convergence ρn→ ρ on X \ [0,w] for any w ∈ (0,∞)2. It
follows that the scaled sample clouds Nn converge in distribution to a Poisson point process N
on X weakly on the complement of centred disks. The Poisson point process N is of interest
since it gives an asymptotic description of the large vectors in the sample cloud. Moreover, the
coordinatewise maximum Wn of the scaled sample cloud Nn converges in distribution to the
coordinatewise maximum W of N as the sample size goes to infinity.

Sibuya’s condition holds precisely if R(u, v) = 1/u+ 1/v. (Indeed, n(1− Fi(nt))→ 1/t
for i = 1, 2, and the survival function F(x, y) = Pr{X > x, Y > y} = P(F1(x), F2(y))

satisfies nF(nw) → 0 by Sibuya’s condition and Proposition 2.1.) In this case the measure
ρ has density 0 on the open quadrant (0,∞)2 by differentiation (see also Proposition 5.24 of
[23]). So ρ is the sum of two measures, one on the positive horizontal axis and one on the
positive vertical axis, both with density 1/t2. The point process N is thus the superposition of
two Poisson point processes on these half-axes, and the two point processes are independent
since the half-axes are disjoint. This yields a simple description of the behaviour of large sample
clouds: asymptotically, there is no relation between very large observations in the horizontal
direction and very large observations in the vertical direction.

So far, we have looked at asymptotic independence for bivariate distributions. Unlike
independence, for a multivariate DF, asymptotic independence holds if it holds for the bivariate
marginals; see, e.g. Remark 6.2.5 of [7]. Here is the argument. For simplicity, assume that
F has standard Fréchet marginals, and that the multivariate maxima converge in distribution.
The scaled sample clouds Nn = {Z1/n, . . . ,Zn/n} then converge in distribution to a Poisson
point process N on X = [0,∞)d \ {0} with mean measure ρ weakly on the complement of
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any centred ball. If Sibuya’s condition holds for the bivariate marginals then the projection
ρij of ρ on the (xi, xj )-plane will live on the two positive half-axes in this plane. It follows
that ρ lives on the set of points in [0,∞)d \ {0} which have at most one positive coordinate,
the union of the d positive half-axes. The restrictions of N to these half-axes are independent
(since the d positive half-axes are disjoint). Hence, the multivariate extreme value limit vector
has independent components.

2.4. Asymptotic dependence

Asymptotic dependence is an ambiguous term. Logically, it means the absence of asymptotic
independence. We shall usually interpret it in a more constructive manner to mean the existence
of a max-stable limit law G = e−R . This in turn implies convergence in distribution of
the normalized sample clouds to a Poisson point process N , whose mean measure ρ has DF
R = − logG, as sketched above. The tail dependence coefficient λU in (2.3) gives only a
very restricted view of extremal dependence. As pointed out in Section 8.2 of [20], a positive
coefficient does not imply that the underlying distribution belongs to the maximum domain of
attraction of some extreme value limit law. The exponent measure ρ provides a much more
informative description of asymptotic dependence. Points of N which do not lie on one of the
axes denote a simultaneous occurrence of very large values in two or more coordinates in the
corresponding point of the normalized sample. Thus, the point process N (or, equivalently, ρ)
gives a complete description of how the extreme upper order statistics in the different coordinates
are linked.

3. Densities and level sets

The aim of this section is to give conditions in terms of the density which will guarantee
asymptotic independence. Two aspects of the density play an important role in our analysis:
the shape of the level sets and the tail behaviour. We consider densities which are completely
specified by just these two quantities—a shape for the level sets and a decreasing function
governing the rate of decay of the tails. In many cases of practical interest the shape is a
bounded open convex set, containing the origin. The density then is continuous if and only if
the decreasing function is continuous. We shall also consider such unimodal densities which
vanish outside the positive orthant.

3.1. Homothetic densities

Homothetic densities are densities whose level sets are scaled copies of a given open setD:

{f > c} := {x ∈ R
d | f (x) > c} = rcD, 0 < c < c0 := sup f.

We assume thatD ⊂ R
d is a bounded open star-shaped set. A star-shaped set has the property

that, with any point x, it contains all points rx for 0 < r < 1. Assume that the set D contains
the origin. If each ray intersects the boundary ∂D at one point, then the setD can be represented
using a gauge function nD : Rd → [0,∞) that satisfies (i) nD(tx) = tnD(x) for t > 0, x ∈ R

d

(homogeneity property), and (ii) D = {x ∈ R
d | nD(x) < 1}. The conditions on the set D

and the continuity of f ensure that the gauge function is continuous. If the set D is convex
then so is the gauge function. If, in addition, the set is symmetric, −D = D, then the gauge
function is a norm on R

d , and the set D is the open unit ball in this norm. For any bounded
open star-shaped set D, the sets nD, n > 0, form an increasing family. Their union D∞ is an
open cone. It is a proper cone if the origin is a boundary point of D. We may then still define
the gauge function nD . This is now a function on the open cone D∞. It is continuous on the
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cone if each ray in the cone intersects the boundary ofD at a single point; see Proposition 3.2,
below.

Gauge functions allow us to give analytic expressions for homothetic densities with the same
ease with which one handles spherically symmetric densities. Continuous homothetic densities
have the form f (x) = f0(nD(x)) for a decreasing continuous function f0 on (0,∞). This
formula holds for all x for which the ray through x intersects the set D.

Definition 3.1. Let Dd denote the class of all bounded open star-shaped setsD ⊂ R
d for which

the cone D∞ = ⋃
n nD is convex, and for which the gauge function nD is continuous on this

cone. A density f on R
d belongs to the class H(D) if the shape D belongs to the class Dd ,

and if f is of the form f (x) = f0(nD(x)), where the density generator f0 : [0,∞)→ [0,∞)
is decreasing, positive, and continuous. We set f ≡ 0 outside the coneD∞ on which the gauge
function is defined.

It is apparent from the above definition that densities in H are (star) unimodal since all the
level sets {f > c}, c ∈ (0, c0), are star shaped; cf. Section 2.2 of [8]. Typical examples of
densities in H to keep in mind are the multivariate centred normal densities and, more generally,
elliptically symmetric densities, discussed, for example, in [9]. See also ExampleA.1. In certain
applications, elliptical symmetry may be too restrictive. Densities in H give the flexibility to
model directional irregularities present in the data clouds, and to handle distributions on the
positive orthant. The regularity conditions exclude pathological sets; see Example A.2.

Before we proceed to looking at the properties of these densities, let us review some related
classes of models proposed in the literature. The �p-spherical densities (see [21]) extend the
class of spherical densities by allowing level sets to be balls in the �p-norm for any p ≥ 1.
A further generalization is given by so-called v-spherical densities (see [10]), where the scale
function v plays the same role as the gauge function nD defined above. In fact, our class H(D)

is a subclass of the v-spherical densities in that we restrict level sets to be bounded and star
shaped, and f to be continuous on D∞. In a recent paper [1], the authors advocated studying
densities in terms of their contours.

For a given shape D, what conditions does the density generator f0 have to satisfy in order
that the function f (·) = f0(nD(·)) is a probability density on R

d? By regarding the set below
the graph of f as a pile of thin D-shaped slices we obtain the following partial integration
result:

Pr{X ∈ tD} =
∫
tD

f0(nD(x)) dx

= f0(t)|tD| + |D|
∫ t

0
sd |df0(s)|

=
∫ t

0
f0(s) d|sD|, t > 0.

Observing that |sD| = sd |D| and letting t tend to∞, we obtain the condition (cf. Equation (5)
of [10]) 1 = d|D| ∫∞0 sd−1f0(s) ds.

The class of unimodal densities introduced above is invariant under linear transformations.
If the vector X has density f ∈ H(D) then the vector Y = AX has density g ∈ H(E), where
E is the image of the star-shaped (convex) setD under the linear transformationA, and, hence,
is also star shaped (convex). A nice illustration of this invariance is the extension of spherical
distributions to elliptical ones.
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For densities in H , the distinction between light and heavy tails is crucial for asymptotic
independence. It is determined by the behaviour of the generator f0 at∞. Let us recall the
definitions of regular and rapid variation.

Definition 3.2. A measurable function h : (0,∞) → (0,∞) is regularly varying at ∞ with
exponent θ if, for x > 0,

lim
t→∞

h(tx)

h(t)
= xθ , θ ∈ R.

If θ = 0 then h is called slowly varying; h is rapidly varying at∞ if

lim
t→∞

h(tx)

h(t)
=

{
∞, 0 < x < 1,

0, x > 1.

If the generator of a density f = f0(nD) varies rapidly, the density has light tails. Our
concern is with light-tailed densities for which the generator f0 is continuous, positive, and
strictly decreasing on [0,∞).

Rapid variation of f0 allows us to give strong inequalities for the measure µ with density
f = f0(nD).

Proposition 3.1. Let µ have density f ∈ H(D) with a rapidly varying density genera-
tor f0.

(i) For any ε > 0,
µ(rDc)
 µ(rD \ e−εrD), r →∞. (3.1)

(ii) For any nonempty open set U ⊂ D,

µ(rDc)
 µ(rU), r →∞. (3.2)

Proof. Rapid variation implies that f0(eδt) < f0(t)/M eventually for t →∞, and, hence,
the rings Rn = enδ+δtD \ enδtD, n ≥ 0, have measure µ(Rn+2) ≤ e2dδµ(Rn)/M . The rings
Rn are disjoint, and their union is the complement of tD. On summing the odd and the even
terms, we find that, with η = e2dδ/(M − e2dδ),

µ(e2δtDc) =
∞∑
n=1

(µ(R2n)+ µ(R2n+1)) ≤ η(µ(R0)+ µ(R1)) = ηµ(e2δtD \ tD).

This gives (3.1). The integral over a thin ring is much larger than the integral over the set
outside the ring. Formally, take δ = ε/2 and r = t − ε to obtain (3.1). To prove (3.2), take a
nonempty open subset U0 ⊂ U whose closure lies in D. Then e2εU0 ⊂ D if ε is small, and,
hence, by rapid variation of f0 as above, the infimum of f over rU0 is much larger than the
supremum of f over the ring R = rD \ e−εrD. Since |R|/|rU0| is a constant, we conclude
that µ(R)
 µ(rU0), and (3.2) follows from (3.1).

We now give some extra details on star-shaped sets.

Proposition 3.2. Let D be a bounded open star-shaped set. Suppose that, for each nonzero
vector x ∈ D, there is one positive real r0 such that r0x lies on the boundary of D. Then the
gauge function nD is continuous on the cone D∞ =⋃

n nD.
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Proof. Let B denote an open unit ball. If D contains the origin, it contains a ball εB, and,
by homogeneity, nD < δ on δεB. So the gauge function is then continuous at the origin. Now
suppose that it is discontinuous at a point p outside the origin. We may assume that nD(p) = 1
and that there is a sequence pn ∈ D∞ such that pn→ p and nD(pn)→ c �= 1. Let r ∈ (0, 1)
be close to 1. Then nD(rpn) → rc, and rp ∈ D implies that rpn ∈ D eventually; hence,
rc ≤ 1 and so c < 1 since r is arbitrary. This implies that pn ∈ D eventually, and this also
holds for spn for 1 < s < 1/c. Hence, sp is a boundary point. But so is p. This contradicts
our assumption on the boundary of D.

In general, densities in H(D) are not closed under projection, even if D is convex. If a
random vector (X1, . . . , Xd) has density f ∈ H(D), then the density of (X1, . . . , Xd−1) need
not be homothetic, and the univariate marginals need not even be unimodal; see Example A.3.
There are some exceptions. Projections of spherical densities are spherical, and if the level sets
are balls in �p for somep ∈ [1,∞] then this also holds for projections along the coordinate axes.
The class Dd is itself closed under projection. If D is a bounded open convex set containing
the origin then so is the vertical projection E ofD onto the horizontal hyperplane; if the origin
is a boundary point of D, it may be an interior point of E.

Proposition 3.3. Suppose that D ∈ Dd . Let E be the vertical projection of D onto the
horizontal hyperplane. Then E ∈ Dd−1.

Proof. Write z = (x, y) to distinguish the horizontal and vertical parts of the vector z. It
is clear that E is a bounded open star-shaped set. Moreover E∞ is the projection of the cone
D∞, and, hence, an open convex cone. We have to prove continuity of the gauge function nE
on E∞. If nE is not continuous, there exists a vector x and a sequence xn → x such that
nE(x) = 1 and nE(xn) < c0 < 1 because E is open. Hence, nD(x, y) ≥ 1 for all y and there
exist yn such that nD(xn, yn) < c0. SinceD is bounded, the sequence (yn) is bounded, and we
may assume that it converges to some element y0. Then (xn, yn)→ (x, y0), and continuity of
nD implies that nD(x, y0) ≤ c0 < 1. This is a contradiction.

3.2. Densities whose level sets are asymptotically star shaped

In this section we relax the condition that all level sets have the same shape D ∈ Dd to the
condition that the level sets, properly scaled, converge to a set D ∈ Dd . We restrict attention
to the light-tailed setting.

Definition 3.3. Let D ∈ Dd . A positive probability density f on R
d belongs to the set A(D)

if there exist sequences cn > 0 and rn →∞ with cn+1/cn → 0 and rn+1 ∼ rn such that, for
any ε > 0, eventually

e−εrnD ⊂ {f > cn} ⊂ eεrnD, n ≥ n0. (3.3)

We write {f > cn}/rn → D. A continuous positive function f̃ is shape equivalent to f if its
level sets satisfy (3.3).

The sequences rn and cn determine a set of continuous decreasing functions η which satisfy
η(cn) ∼ rn. All these functions η(c) vary slowly for c→ 0+ by the assumption that cn+1/cn→
0 and rn+1/rn→ 1. It is this set of slowly varying functions rather than the particular sequences
cn and rn which is of interest.

Proposition 3.4. If the slowly varying function η above is strictly decreasing, defined on (0, cη]
for some cη > 0, and vanishes in cη, then the inverse function g0 = η← is a continuous, positive,
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strictly decreasing function on [0,∞) which varies rapidly at ∞, and g = g0(nD) is shape
equivalent to f , and, for all ε > 0,

e−ε{g > c} ⊂ {f > c} ⊂ eε{g > c}, 0 < c < cε. (3.4)

Proof. Rapid variation of the inverse function g0 follows from Theorem 2.4.7(i) of [6].
Shape equivalence holds since {g > c} = η(c)D and η(cn) ∼ rn by assumption.

Since rn → ∞, we may take a strictly increasing subsequence such that the asymptotic
equality rn+1 ∼ rn remains valid. Take c0 > c1. Any continuous strictly decreasing function
η on (0, c0] which vanishes at c0 and has the value rn at cn satisfies the conditions of the
proposition above. So there are many continuous, strictly decreasing functions g0 on [0,∞)
which vary rapidly at∞ such that g0(nD) is shape equivalent to f .

For functions in A(D), the inequalities in Proposition 3.1 also hold. Moreover, they have the
nice property that the d marginals gi of g ∈ A(D)will lie in A(Di), whereDi is the projection
of D on the ith coordinate.

Lemma 3.1. Let g ∈ A(D). Let ρr for r ≥ 1 denote the measure with density u �→
g(ru)/g(rq) for a fixed nonzero vector q. Then, for any open set U which intersects D,

ρr(D
c)
 ρr(U). (3.5)

Proof. Let f = f0(nD) be shape equivalent to g, and define µr to have density fr(u) =
f (ru)/f0(r). It suffices to prove (3.5) for the measures ρr with density gr(u) = g(ru)/f0(r).
Let V be a nonempty open subset of U which lies in the complement of δ0D for some δ0 > 0,
and whose closure lies inD. For r > r0/δ, we may apply the pointwise inequality (3.6), below,
and conclude that ρr(U) ≥ e−εdµr(eεV ), where we choose ε > 0 so small that e3εV ⊂ D.
Then, using (3.2), µr(e−εDc)
 µr(eεV ) and another application of the pointwise inequality
gives (3.5).

Proposition 3.5. Suppose that X has density f ∈ A(D). Let Y = ξ(X) be a nonzero linear
combination of the components of X. Then Y has a density g ∈ A(J ), where J is the open
interval ξ(D).

Proof. We may assume that ξ is the vertical coordinate. The condition f (eεx) < f (x)/M

for ‖x‖ ≥ r0 implies, by integration over horizontal hyperplanes, that g(eεy) < e(d−1)εg(y)/M

for |y| ≥ r0. This gives rapid variation. The thin tails of f ensure that g is continuous. Let
ξ(D) = (a, b). We claim that the average of g over r(a, a + εa) and over r(b− εb, b), say a1
and b1, is much larger than over both r(a−εa, a) and r(b, b+εb), say a2 and b2, as r →∞. It
suffices to show that Pr{ra < Y < ra+εra} and Pr{rb− rεb < Y < rb} are much larger than
Pr{X ∈ rDc}. This follows from (3.5) since the horizontal slice {ra < xd < ra+εra} contains
the open set U = rD ∩ {xd < ra + εra}, and Pr{X ∈ U} is much larger than Pr{X ∈ rDc}.
A similar argument holds for the strip {rb − εrb < xd < rb}. Let c lie between a1 ∧ a2 and
b1 ∨ b2. Then g > c on [ra − 2εra, rb + 2εrb] and g < c holds off [ra − 2εra, rb + 2εrb].
Hence, e−3εrJ ⊂ {g > c} ⊂ e3εrJ holds for small ε and sufficiently large r .

It is not known whether a similar result holds for the bivariate marginals of f .
We can also define shape equivalence for functions with heavy tails. In this case shape

equivalence is the same as asymptotic equality at∞; see Proposition A.2. For light tails, the
behaviour of the quotient of two shape-equivalent functions may be very erratic. Example A.4
inAppendixA lists some functions which are shape equivalent to the bivariate Gaussian density.
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The level set inequalities in (3.4) imply the pointwise inequalities:

f (eεx) ≤ g(x) ≤ f (e−εx), x ∈ rεDc. (3.6)

This shows that a function g = qf is shape equivalent to f = f0(nD) for q = eψ and f0 = e−ϕ
if, for every ε > 0,

ϕ(r)− ϕ(eεr) ≤ ψ(x) ≤ ϕ(r)− ϕ(e−εr), x ∈ ∂rD, r ≥ rε. (3.7)

Rapid variation implies that the left-hand side goes to −∞ and the right-hand side goes to∞.
Hence we obtain the following proposition.

Proposition 3.6. If q is positive and log q is bounded, then g ∈ A(D) is shape equivalent to
g̃ = qg.

For Weibull-like functions of the form f = f0(nD), where f0 = e−ϕ for a continuous,
strictly increasing function ϕ which varies regularly with positive exponent, there is a simple
alternative description of shape equivalence.

Lemma 3.2. Suppose that f0 = e−ϕ , where ϕ is continuous, strictly increasing, and varies
regularly at∞ with exponent θ > 0. Then f0 varies rapidly at∞ and g = e−γ ∈ A(D) is
shape equivalent to f0(nD) if and only if γ (xn) ∼ ϕ(nD(xn)) holds whenever ‖xn‖ → ∞.

Proof. Regular variation of ϕ gives ϕ(eεr)− ϕ(r) ∼ (eθε − 1)ϕ(r) and ϕ(r)− ϕ(e−εr) ∼
(1− e−θε)ϕ(r) for r →∞. The claim then follows from (3.7) with γ = ϕ − ψ .

Proposition 3.7. Suppose that g = e−γ is a continuous positive density on R
d . Let there exist

a function ν on R
d which is positive outside a bounded set, and a nonzero vector q such that

γ (tnun)

γ (tnq)
→ ν(u), tn→∞, un→ u, u ∈ R

d . (3.8)

Then there exist a set D ∈ Dd containing the origin, a positive constant θ such that ν = nθD ,
and a continuous, strictly increasing function ϕ on [0,∞)which varies regularly with exponent
θ at∞ such that γ is asymptotic to ϕ(nD) at∞, and g is shape equivalent to f0(nD), where
f0 = e−ϕ .

Proof. Set a(t) = γ (tq). Then a varies regularly at ∞ with exponent θ ≥ 0. For any
unit vector ω, the function t �→ γ (tω) varies regularly at∞ since γ (tωn)/a(t) has a positive
limit ν(ω) for ωn → ω and t → ∞. Uniform convergence on compact sets implies that ν
is continuous on the unit sphere, and a(st)/a(t) → sθ implies that γ (stω)/a(t) → ν(ω)sθ .
This proves that ν(rω) = rθ ν(ω), and γ (rω) ∼ a(r)ν(ω) � a(r) for ‖rω‖ → ∞ since (3.8)
implies uniform convergence on compact sets, and ν is continuous and, hence, bounded on
compact sets. Hence, a(r) → ∞ and (3.8) with un = 0 gives ν(0) = 0, and continuity of ν
implies that θ > 0. Set D = {ν < 1}. Then ν = nθD . Let p ∈ ∂D. Then t �→ γ (tp) varies
regularly with exponent θ , and we may choose ϕ positive, continuous, and strictly increasing,
and asymptotic to this function for t →∞. Then γ (rω) ∼ a(r)ν(ω) gives γ (w) ∼ ϕ(nD(w))
for ‖w‖ → ∞. Lemma 3.2 then shows that g is shape equivalent to e−ϕ(nD), and, since e−ϕ
varies rapidly, if ϕ varies regularly with exponent θ > 0, it follows that g ∈ A(D).

Remark 3.1. Condition (3.8) is related to multivariate regular variation; see, e.g. Section 5.4.2
of [23].
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3.3. Criteria for asymptotic independence

A random vector X with a spherically symmetric density f (x) = f0(‖x‖2) will have
asymptotically independent components if the generator f0 varies rapidly, and it will have
asymptotically dependent components if f0 varies regularly (see, e.g. Theorem 4.3 of [14], or
Proposition 3.2 of [13]). These results remain valid for f ∈ A(B), where B denotes the open
unit ball. We may replace B by certain bounded open star-shaped sets D, as will be shown in
Theorems 3.2 and 3.3, below.

With any bounded open set D we may associate the open intervals Di = (ai, bi), i =
1, . . . , d, obtained by projecting D onto the ith coordinate. Then (a, b) is the smallest open
box containingD, and b = (b1, . . . , bd) = supD is the coordinatewise supremum of all points
in D (and a = (a1, . . . , ad) = inf D).

Asymptotic independence depends on the bivariate marginal distributions. Hence, we
introduce the projections of D on the (xi, xj ) coordinates. For 1 ≤ i < j ≤ d, we denote by
Dij ⊂ R

2 the projection ofD onto the two-dimensional space spanned by the unit base vectors
ei and ej . The sets Dij lie in D2 by Proposition 3.3, and Dij fits exactly into the rectangle
(ai, bi) × (aj , bj ). The cone generated by Dij is the projection of the cone D∞ generated
by D.

Definition 3.4. The setD ∈ D2 is blunt if the point (b1, b2) = supD does not lie in the closure
of D.

A bounded open convex set D in R
d is smooth at the boundary point p if there is a unique

hyperplane which contains p, but which does not intersectD, the tangent plane toD at p. For
a planar setD, this means that p is not a vertex. If the convex hull ofD is smooth at all points
then all bivariate projections Dij are blunt.

We can now state our main results for asymptotic independence in terms of densities.

Theorem 3.1. If X has a light-tailed homothetic density f ∈ H(D), and D is convex with a
smooth boundary, then, for any two distinct unit vectors a and b, the random variables a�X and
b�X are asymptotically independent. The result remains valid if the density of X is in A(D).

Proof. First assume that a and b are linearly independent. Introduce new coordinates such
that a and b become the first two base vectors e1 and e2. It suffices to check that the assumption
holds for vertical tangent planes, hyperplanes which project onto a line in the two-dimensional
(x1, x2)-plane. The characterization of D is geometrical and so it is preserved under linear
transformations. The projectionD12 in the new coordinates is also convex and smooth. Hence,
D12 is blunt, and we may apply Theorem 3.2, below. If b = −a, the bivariate distribution
lies on the counterdiagonal, y = −x, and asymptotic independence is trivial by applying
Proposition 2.3 with x(t) = (t, t) for t ≥ 0.

Theorem 3.2. Suppose that X has density g ∈ A(D). If the bivariate projection D12 is blunt
then X1 and X2 are asymptotically independent.

Proof. There is a simple analytic argument. Let supD12 = (b1, b2). The sum Y = X1+X2
has density g ∈ A(J ) by Proposition 3.5, where J has upper endpoint b = sup{x+y | (x, y) ∈
D12} and b < b1 + b2 by bluntness. Now use Sibuya’s condition for sums in Proposition 2.2.
We give a more probabilistic proof in Section 4.
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3.4. Criteria for asymptotic dependence

We now give the counterpart to Theorem 3.2 for heavy-tailed densities. We are interested
in the case where the partial maxima go to ∞ for all coordinates. If the shape D lies in the
negative orthant then the coordinatewise maxima converge to 0; if it lies in a negative coordinate
half-space {xi < 0}, all partial maxima will lie in this half-space too. We exclude these cases
in the theorem below.

Theorem 3.3. Suppose that X has density f ∼ f0(nD) with D ∈ Dd and that f0 is a
continuous, strictly decreasing positive function on [0,∞) which varies regularly at∞ with
exponent −(λ + d) for some λ > 0. Assume that, for each coordinate i ∈ {1, . . . , d}, the set
D contains a point whose ith component is positive. The components of X are asymptotically
dependent unless D is contained in the set S of points with at most one positive coordinate, a
union of d + 1 orthants. The partial maxima X∨n may be scaled to converge in law to a vector
W whose components have DF Pr{Wi ≤ t} = e−(ai/t)λ for positive constants a1, . . . , ad . The
exponent measure ρ+ of W is the image under the map x �→ x+ = (x1 ∨ 0, . . . , xd ∨ 0) of the
excess measure ρ with intensity c/nλ+dD . We may take c = 1 by a suitable choice of the scaling
constants for the maxima.

Proof. Choose a point w0 in the cone D∞ on the boundary of D, and, for r ≥ 1, set
hr(w) = f (rw)/f (rw0) = f0(rnD(w))/f0(r). By regular variation for w ∈ D∞, w �= 0,

hrn(wn)→ h(w) = nD(w)−(λ+d), wn→ w, rn→∞.
The convergence hr → h holds uniformly on the intersection of the cone D∞ with any ring
rB \ εB, where B denotes the open unit ball. (The function 1/nD is bounded on such sets.)
By Potter’s theorem (see Theorem 1.5.6 of [6]), for any ε > 0, there exists rε such that

f0(rs)

f0(r)
≤ 2sε

sλ+d
, r ≥ rε, s ≥ 1.

This yields an integrable majorant for the convergence hr → h on D∞ \ B. Lebesgue’s
dominated convergence theorem implies that hr → h in L1 on D∞ \ B and, because of the
uniform convergence above, also on D∞ \ εB for any ε > 0.

Let ρ(r) be the finite measure with density hr , and choose rn so that ρ(rn) has mass n.
Then ρ(rn) is the mean measure of the scaled sample cloud Nn = {X1/rn, . . . ,Xn/rn}, and
ρ(rn) → ρ weakly on D∞ \ εB implies that Nn ⇒ N weakly on D∞ \ εB, where N is the
Poisson point process on D∞ with intensity h. This tells us that the maxima converge. The
measure ρ is an excess measure on R

d \ {0}:

ρ(rA) = ρ(A)

rλ
, r > 0, A a Borel set in R

d \ {0}.
For half-spaces A = {xi ≥ 1} or A = {xi ≤ −1}, this relation also holds and implies that the
marginals ρi of ρ satisfy the same relation, and, hence, there exist nonnegative constants c±i
such that

ρi[r,∞) = c+i
rλ
, ρi(−∞,−r] = c−i

rλ
, r > 0. (3.9)

For the coordinatewise maxima of heavy-tailed distributions, it is convenient to work on the
nonnegative orthant, and replace the vector X by X+, where we use the continuous map
(x1, . . . , xd) = x �→ x+ = (x1 ∨ 0, . . . , xd ∨ 0). We shall writeN+n andN+ for the images of
Nn and N under this map, and denote the mean measures by ρ+n and ρ+. By assumption, each
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component has a positive probability of being positive. Hence, Wn := maxN+n = maxNn ⇒
maxN = maxN+ =: W . Write R(w) = ρ((−∞,w]c) = ρ+([0,w]c), 0 �= w ≥ 0. Then
the limit distribution H of the coordinatewise maxima is

Pr{W ≤ w} = Pr{N([0,w]c) = 0} = e−ρ+([0,w]c) = e−R(w).

Using (3.9), the same argument gives the marginalsHi(t) = e−ρi [t,∞) = e−c
+
i /t

λ
with aλi = c+i .

Since x+ lies on a coordinate axis precisely if x ∈ S, the exponent measure ρ+ lives on the
positive half-axes if and only if D ⊂ S.

4. Sample clouds

In this section we look at the asymptotic behaviour of clouds of independent observations
from a given light-tailed distribution as the number of data points in the sample approaches
infinity. In particular, we are interested in the limiting shape of these sample clouds under
suitable scaling. We remark that sample clouds can be viewed as finite point processes with
a fixed number of points. The motivation for looking at sample clouds is threefold. First of
all, there is a relation between the asymptotic shape of the level sets of the underlying light-
tailed density and the limit set onto which corresponding scaled sample clouds converge; see
Proposition 4.2, below. Secondly, the point process approach will yield an intuitive proof of our
main results. Finally, for sample clouds, projection onto lower-dimensional coordinate planes
is simple: just delete the redundant coordinates in each sample point.

As before, we consider a sequence of independent and identically distributed random vectors
{X1,X2, . . . } from a continuous distribution on R

d with density f . Let

Nn = {X1/sn, . . . ,Xn/sn}
denote a scaled n-point random sample (or sample cloud) with the scaling constant sn > 0,
sn→∞ for n→∞. Alternatively, for any Borel set A ⊂ R

d ,

Nn(A) =
n∑
i=1

1A

(
Xi

sn

)
.

The mean measure ofNn is given by ρn = nπn, where πn is the distribution of the scaled vector
X1/sn. The intensity of the n-point sample cloud Nn is hn(u) = nsdnf (snu) for u ∈ R

d .
Under a suitable choice of sn, the scaled observations Xi/sn from a density f ∈ A(D)

with high probability will fill out the closure of the shape set D in the sense of the following
definition.

Definition 4.1. LetE be a compact set in R
d , and let theµn be finite measures. We say that the

measuresµn converge ontoE ifµn(p+εB)→∞ for any ε-ball centred at a point p ∈ E, and if
µn(U

c)→ 0 for all open setsU containingE. The finite point processesNn converge ontoE if
Pr{Nn(U c) > 0} → 0 for open setsU containingE, and if Pr{Nn(p+εB) > m} → 1, m ≥ 1,
ε > 0, p ∈ E.

We call the set E in the definition above the limit set. In fact, the limit set, if it exists, is
always star shaped (see Proposition 4.1 of [15]). The following simple criterion is useful for
checking convergence (in probability) of scaled sample clouds (see [5] for a proof).

Proposition 4.1. If Nn is an n-point sample cloud from a probability distribution πn on R
d ,

then Nn converges onto E if the mean measures µn = nπn converge onto E.
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The next theorem gives a sufficient condition for asymptotic independence of a distribution
in terms of the limit set of the associated sample clouds. We first prove a lemma.

Lemma 4.1. Let Wn = (Un, Vn) be the componentwise maximum of the sample

Nn = {Zn1, . . . ,Znn}
from the distribution πn on R

2. Suppose that nπn{(0,∞)2} → 0, nπn{u > 0} → ∞, and
nπn{v > 0} → ∞. Then the probability pn = Pr{Wn ∈ Nn} that the coordinatewise maximum
is a sample point vanishes for n→∞.

Proof. Since Wn lies in the positive quadrant or Un ≤ 0 or Vn ≤ 0, we find that

Pr{Wn ∈ Nn} ≤ Pr{Nn((0,∞)2) > 0} + Pr{Nn({u > 0}) = 0} + Pr{Nn({v > 0}) = 0}.
These three binomial probabilities all vanish for n→∞.

Theorem 4.1. Let X1,X2, . . . be independent observations from a continuous DF F on R
2.

Let D be an open bounded star-shaped set which belongs to D2. Suppose that there exist
scaling constants sn such that the scaled sample clouds Nn = {X1/sn, . . .Xn/sn} converge
onto the closure of D. If D is blunt, the two coordinates of the vector X1 are asymptotically
independent.

Proof. Let b = (b1, b2) denote the coordinatewise supremum of D. Since D is blunt,
there exists a δ > 0 such that the shifted quadrant (e−δb,∞) and the set eδD are disjoint (see
Figure 1). Let nπn be the mean measure of Nn. Then nπn(e−δb,∞) ≤ nπn(eδD)c → 0 and
both nπn(D∩{v > e−δb1}) and nπn(D∩{u > e−δb2}) go to∞ by Definition 4.1. The lemma
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Figure 1: Points at the edge of simulated sample clouds of size n = 105 from (a) a bivariate normal
distribution with mean 0 and correlation ρ = 0.1, and (b) a bivariate meta-Cauchy distribution with
standard normal marginals, restricted to (0,∞)2 in both cases. Sample points are scaled by a factor
sn = √2 log n. The filled circles indicate the coordinatewise maxima for these samples. The boundaries of
the corresponding limit setsE = {x2−2ρxy+y2 ≤ 1−ρ2} for (a) andE = {|x|2+|y|2+1 ≥ 3‖(x, y)‖2∞}

for (b) are depicted by solid curves. The sample points inside the dashed curves are not displayed.
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above applied to the shifted clouds shows that the probability pn of a record in the sample cloud
Nn vanishes for n→∞. This gives asymptotic independence; see [12] or Proposition A.1.

In order to complete the proof ofTheorem 3.2, we now establish a link between the asymptotic
shape of the scaled level sets of a light-tailed density and the shape of the limit set of the
associated sample clouds.

Proposition 4.2. Let X1,X2, . . . denote independent and identically distributed random vec-
tors from a density g ∈ A(D). Then the sequence of scaled sample clouds Nn = {X1/sn, . . . ,

Xn/sn} converges onto the closure of the setD as n→∞ if the scaling constants sn are chosen
appropriately.

Proof. The density g is shape equivalent to f = f0(nD); see Proposition 3.4. The function
fr(u) = f (ru)/f0(r) also lies in H(D), and by rapid variation and monotonicity of f0, for
any M > 1 and ε > 0, eventually fr > M on e−εD and fr < 1/M off eεD. By the pointwise
inequality (3.6), the functions gr(u) = g(ru)/f0(r) satisfy the same inequalities eventually if
we replace ε by 2ε. The measure ρr with density gr satisfies ρr(Dc) 
 ρr(U), r → ∞, for
any open set U which intersects D by Lemma 3.1. Choose sn such that nsdnf0(sn) = 1 for
n ≥ n0. Then ρsn is the mean measure of the sample cloud Nn, and by Proposition 4.1, the
sample clouds Nn converge onto D since their mean measures do.

5. Examples

In this section we illustrate the applicability of Theorems 3.1, 3.2, and 4.1 in determining
whether a given distribution has asymptotically independent components. We also wish to see
whether the conditions are sharp.

For any open bounded convex set D in the plane whose closure contains the origin, the
function e−nD is integrable and, hence, f (x) = c0e−nD(x) for suitable c0 > 0 is a probability
density. Along rays it is an exponential function. If U is uniformly distributed on D then
it is simple to decide when the coordinates U1 and U2 are asymptotically independent, but
asymptotic independence of the coordinates of the vector X with density f is a different
matter, even in the simple example whereD is the intersection of a disk of radius r = 2 centred
at (1,−1) and the open set above the diagonal. The light-tailed examples below are of a more
general nature.

Example 5.1. (Rotund-exponential densities.) Let X have a continuous homothetic density
f with convex shape D and generating function f0. If D has a C1 boundary and f0 varies
rapidly, the coordinates are asymptotically independent, and the sample clouds, properly scaled,
converge onto the closure of the set D by Theorem 3.1 and Proposition 3.7. Now assume that
D is rotund, i.e. the boundary ∂D is C2 with positive definite curvature at every point. Also,
assume that the generating function f0 is asymptotic to a von Mises function e−ψ . Then f
is a so-called rotund-exponential density; see [3, Sections 9 and 10]. If we zoom in onto a
boundary point ofD so as to distinguish individual sample points, the sample clouds converge
to a Gauss-exponential point process: Nn ⇒ N vaguely on R

d . The limit N is a Poisson point
process with intensity

g(u) = e−ud e−(u
2
1+···+u2

d−1)/2

(2π)(d−1)/2

if we choose the normalization appropriately. Weak convergence holds on all half-spaces

{ud ≥ c0 + c1u1 + · · · + cd−1ud−1}.
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The restriction of g to the upper half-space {ud ≥ 0} is a probability density. The corresponding
vector has independent components. This vector is the limit of the high risk scenarios XH ,
properly normalized, where XH is the vector X conditioned to lie in the half-space H , and
H moves off to infinity in the sense that Pr{X ∈ H } → 0. These results remain valid
under certain perturbations (if the density f = e−ψ(nD) is multiplied by a flat function L, see
Section 11 of [3]). Such a perturbation does not affect the asymptotic behaviour of the exponent
ψ , but may affect the limit shape. (Take ψ = log2(1 + r) with r2 = x2 + y2 and L = eλ

with λ = log(1 + 2r + cx), c ∈ [−1, 1]. If we choose c = c(r) = sin(log log r) then
L is still flat, but the shape of the level sets no longer converges.) See Proposition 14.1 of
[3]. So we see that, under the extra conditions on the homothetic density f , there are three
alternative asymptotic descriptions of large sample clouds from this density. Convergence onto
the closure of the setD describes the global behaviour of the sample clouds; weak convergence
in the space X = [−∞,∞]d \ {−∞} to a Poisson point process whose mean measure is the
exponent measure of an extreme value limit law (Gumbel with independent components); weak
convergence to the Gauss-exponential Poisson point processN on certain half-spaces describes
the local behaviour at boundary points of D.

Example 5.2. (Skew-normal densities.) A symmetric density g satisfies g(−x) = g(x). It
may be transformed into an asymmetric density by multiplication with a positive continuous
asymmetric function θ which satisfies θ(x) + θ(−x) = 2. The skew-normal distributions
SN(�,α) introduced in [2] have a density f which is the product of a centred Gaussian
density with covariance � and the function x �→ 2�(α�x), where � is the standard normal
DF and α is a nonzero linear functional. These densities are log-concave (since (− log�)′′ is
positive) and, hence, have convex level sets.

We claim that f ∈ A(D) for a convex set D with C1 boundary. Write f = e−h. The
function− log�(t) is asymptotic to t2/2 for t →−∞ and vanishes for t →∞. Let u0 satisfy
α�u0 > 0 and u�0 �−1u0 = 1. Then h(tu0)/t

2 → 1
2 and

h(tu)

h(tu0)
→ ν(u) =

{
u��−1u for α�u ≥ 0,

u��−1u+ (α�u)2 for α�u < 0,
t →∞.

It follows from Proposition 3.7 that there is a limit shape,D = {ν < 1}, which is the covariance
ellipsoid on the half-space where α�u is positive, and a flattened version of this ellipsoid on
the complementary half-space; see Figure 2. The set D is convex. To see that the boundary is
C1, choose coordinates such that the underlying Gaussian density is standard, with spherical
level sets, and then choose the vertical coordinate in the direction of α. At these coordinatesD
agrees with the unit ball B on the upper half-space, and with the cylinder symmetric ellipsoid
{x2

1 + · · · + x2
d−1 + (1 + c2)x2

d < 1} for some c > 0 on the lower half-space {xd ≤ 0}. For
boundary points p in the horizontal coordinate plane, the tangent plane is vertical: p�x = 1.
Theorem 3.1 applies. If X has a skew-normal distribution then the random variables ξ1(X), . . . ,

ξm(X) are asymptotically independent whenever the linear functionals ξ1, . . . , ξm are linearly
independent. Asymptotic independence of the skew-normal distribution has been partially
proven in [17] using a direct analytic approach based on Sibuya’s condition.

Example 5.3. Densities of the form f (x) = f0(‖x‖p) forp > 0 have level sets which are balls
in �p. Lower-dimensional marginals have the same form but with a different generator, since the
projection of the d-dimensional unit ball on the space spanned by the first m coordinates is the
m-dimensional unit ball. The two-dimensional unit ball is blunt for all p ∈ [1,∞), and, hence,
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Figure 2: (a) Contours of the density of the SN2(α;ω) distribution with ω = 0.5 and α = (−1, 3);
levels are indicated as powers of 10−1. (b) Asymptotic shape of the scaled level sets (solid curve); the

dash-dotted straight line is given by the equation α�u = 0.

vectors X with light-tailed densities f as above have asymptotically independent coordinates.
However, for p = ∞, the supnorm, the unit ball is a cube (−1, 1)d , and the square is not blunt.
The components of X are still asymptotically independent, but we need extra work to prove this.
The bivariate marginals of f (x) = f0(‖x‖∞) have the same form with a different generator f0
which is still continuous, strictly decreasing, and rapidly varying at∞. (The cubic slices are
replaced by square slices.) It suffices to consider bivariate densities f (x, y) = f0(|x| ∨ |y|)
for continuous, strictly decreasing positive functions f0 on [0,∞) which vary rapidly at ∞.
The marginals fi of f, i = 1, 2, are equal by symmetry, and f2(y) = 2yf0(y)+ 2R(y), where
R(y) = ∫∞

y
f0(t) dt 
 yf0(y) by rapid variation of f0. Hence, 2R(t)/f1(t)→ 0 for t →∞,

and, by l’Hôpital’s rule, also the quotient Pr{X > t, Y > t}/Pr{X > t}. Thus, Sibuya’s
condition holds. However, asymptotic independence need not hold if the level sets are only
asymptotically cubic; see [4, Example 2].

Another example showing that results for H(D) do not need to carry over to A(D) is given
in Example A.5, below. Our last example illustrates an asymptotically dependent distribution
with a density in A(D) where bivariate projections of D are nonblunt.

Example 5.4. Let Z have a bivariate t density with λ > 0 degrees of freedom. Transform
the marginals to obtain a vector X with standard Gaussian components. The new density g is
called a meta-t density; see [19, p. 193]. It has normal marginals, but the copula of the elliptic
t distribution. The shape of the level sets of the density g converges to the symmetric subset
D = {u2

1 + u2
2 + λ > (λ+ 2)‖(u1, u2)‖2∞} of the square (−1, 1)2; see [5]. Figure 1(b) shows

a detail of the limit set D. The set D is not blunt, and the components of X are asymptotically
dependent since those of Z are.

6. Conclusion

We have explored conditions for asymptotic independence of the components of a multivari-
ate random vector expressed in terms of the limiting shape of the level sets of the underlying

https://doi.org/10.1239/aap/1275055236 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1275055236


430 G. BALKEMA AND N. NOLDE

density. A distinction had to be made between light and heavy tails. For light-tailed densities,
the limiting shape of level sets is essential in determining whether asymptotic independence
holds. In contrast, for heavy-tailed densities, the (limiting) shape of level sets is irrelevant
as long as the shape intersects the positive orthant. In the light-tailed case there is a simple
sufficient condition for asymptotic independence of two components in terms of the corre-
sponding bivariate projection of the shape. This subset of the plane has to be blunt. The more
delicate question of the relation between shape and asymptotic independence when the bivariate
projection is not blunt will be treated in a future publication.

Asymptotic dependence is a basic concern in multivariate risk analysis. The light-tailed
densities studied in this paper have the property that sample clouds will have the same shape
as the level sets of the density asymptotically. For sample clouds, persistence of the shape, as
the number of sample points increases, opens the possibility of using the shape to construct
densities over the whole space. This makes it possible to estimate probabilities of regions far
out which contain only a few or no sample points.

Appendix A

A.1. Supplementary results

Proposition A.1. Let X1,X2, . . . be independent observations from the continuous DF F

on R
2. The probability of a record amongst the first n observations goes to 0 if and only if F

is asymptotically independent.

Proof. We may assume thatF is a copula. Set cn = nP (1−1/n, 1−1/n). Then the Poisson
approximation gives a probabilitypn = cne−cne−(1−cn)e−(1−cn) = cnecn−2 to the event: among
the first n observations there is exactly one in the complement of [0, 1 − 1/n]2, and that
observation lies in the square (1−1/n, 1]2. In the case of asymptotic dependence, ckn → c > 0
for some subsequence, and, hence, the probability of a record in a sample of size kn will exceed
cec−2/2 eventually. Conversely, asymptotic independence implies that nP (1 − M/n, 1 −
M/n) → 0 for any M > 1, whereas the marginals satisfy nP (0, 1 − M/n) = M . As in
Lemma 4.1, the probability of a record vanishes.

Proposition A.2. Suppose that f ∈ H(D) and that the generator f0 varies regularly or
satisfies O-variation:

rn+1 ∼ rn→∞⇒ f0(rn+1) ∼ f0(rn). (A.1)

Then g is shape equivalent to f if and only if g ∼ f .

Proof. Condition (A.1) implies that, for every ε > 0, there exists δ > 0 such that f0(eεr) >
e−δf0(r) for all r > 1. Suppose that g is shape equivalent to f . Let nD(xn)→∞. Suppose
that g(xn) = f0(rn). Then, for any ε > 0, the point xn eventually lies in the ring eδrnD\e−δrnD
on which f fluctuates by a factor at most eε. To show the converse, suppose that g ∼ f . Let
g(xn) ∼ f (xn) = f0(rn) ∼ f0(rn+1) for rn+1 ∼ rn→∞. Then, for any ε, ε1 > 0, eventually

(1− ε1)f0(e
εrn) ≤ (1− ε1)f0(rn+1)

≤ g(xn) ≤ (1+ ε1)f0(rn+1) ≤ (1+ ε1)f0(e
−εrn), n ≥ n0.

Since ε1 is arbitrary, we have f (eεxn) ≤ g(xn) ≤ f (e−εxn) for n ≥ n0, as required for shape
equivalence by (3.3).
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A.2. Counterexamples

This section contains counterexamples mentioned in the main text.

Example A.1. A density f ∈ H(D)may have spherical level sets without exhibiting spherical

symmetry. This will be the case ifD is an off-centre ball with nD(x) =
√
‖x‖22 + β�x−β�x

for some β ∈ R
d . To be star shaped, the origin has to lie in D, or be a boundary point. In the

latter case the set {f > 0} is a ball (if {f0 > 0} is a bounded interval) or an open half-space.

Example A.2. For any ε > 0, there exists a bounded open star-shaped set D which contains
the origin, whose closure is the cube K = [−1, 1]d , and such that the volume of D is small,
|D| < ε. To construct such a star-shaped set, take a dense sequence xn on the boundary ∂K ,
and define U ⊂ ∂K as the union of open disks with centre xn and radius εn, where εn→ 0 so
fast that the area of U is ε/2. Now letD be the union of an open centred ball with volume ε/2
and the set of all points ru with 0 < r < 1 and u ∈ U .

Example A.3. Consider a continuous, strictly positive density f on R
3 whose level sets {f >

c} = rcD all have the same shape. The set D is convex, even rotund, and the function c �→ rc
is continuous and strictly increasing. The marginal densities are not necessarily all unimodal.

Start with the uniform distribution on the tetrahedron T0 with two vertices in the horizontal
plane, say e1 and e2. The other two vertices are e3/m and −e3. Here m is a positive integer to
be chosen later. The marginal along the vertical axis has a continuous density g0 on (−1, 1/m)
which is parabolic on the interval (−1, 0) and on (0, 1/m), vanishing at the endpoints of the
interval and with a maximum at the origin. The shifted tetrahedron T = T0+e3/2−(e1+e2)/8
contains the origin as an interior point. Its vertical marginal density g is g0 shifted upwards
over 1

2 and has its maximum at 1
2 . The vertical marginal density g̃ of the uniform distribution

on the tetrahedron T/2 has its maximum at 1
4 . The fair mixture of the uniform distribution on

T and T/2 has a density f̂ whose marginal ĝ = (g+ g̃)/2 is not convex ifm is large (since the
left derivative of g̃ at 1

4 is large). Now choose rotund setsDn converging to T and densities fn
converging to f̂ which satisfy the conditions of the example. If infinitely many of the vertical
marginals gn were unimodal then the limit ĝ would be. We conclude that eventually gn is not
unimodal.

Example A.4. Here are some examples of functions h = qg which are shape equivalent to
the standard normal density g on the plane. In view of Lemma 3.2, we see that qg is shape
equivalent to g for a continuous function q = eψ precisely if |ψ(x)| ≤ χ(‖x‖2) for a function
χ(r)
 r2. We may take q to be one of the following functions: 1+|x|, (1+ r2)m withm ≥ 1,
er , ex−|y|3/2 , where r2 = x2 + y2. These functions may be multiplied with a function like
exp(sin πex

2
sin πey

6
) which fluctuates rapidly but is weakly asymptotic to a constant. The

level sets {h > c} will then look locally like a shore with many small islands, and lakes, even
though the sets are asymptotic to disks {x2 + y2 < r2} with r = √

2 log(1/c).

Example A.5. LetD be the open triangle with vertices (1, 1), (−1, 0), and (0,−1). It contains
the origin. Let f ∈ A(D) have convex level sets and be shape equivalent to g = e−nD . It
is possible that f is asymptotically independent. The function g has triangular level sets
{g > e−t } = tD. Let f have level sets {f > e−t } = Dt = tD \ {x + y ≥ 2t − √t}. Then
Dt/t agrees with the triangle D except that the extreme top has been sliced off. If we choose
p(t) = (t, t)− (√t,√t)/2, then

ht (u) = f (p(t)+ u)

f (p(t))
→ h(u), t →∞,

https://doi.org/10.1239/aap/1275055236 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1275055236


432 G. BALKEMA AND N. NOLDE

where {h > e−t } = C + (t, t) for the half-space C = {u + v < 0}. Let ρt have density
ht , and let ρ have density h. Then ρt → ρ weakly on [0,∞)2. Since ρ[0,∞)2 is finite and
ρ gives infinite weight to the half-spaces {y ≥ 0} and {x ≥ 0}, Sibuya’s condition holds by
Proposition 2.3 with curve p(t), t ≥ 1.
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