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ON A THEOREM OF RAV CONCERNING
EGYPTIAN FRACTIONS

BY
WILLIAM A. WEBB

Problems involving Egyptian fractions (rationals whose numerator is 1 and whose
denominator is a positive integer) have been extensively studied. (See [1] for a more
complete bibliography). Some of the most interesting questions, many still un-
solved, concern the solvability of
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where k is fixed.

In [2] Rav proved necessary and sufficient conditions for the solvabilty of the
above equation, as a consequence of some other theorems which are rather com-
plicated in their proofs. In this note we give a short, elementary proof of this
theorem, and at the same time generalize it slightly.

THEOREM 1.

M

if and only if there exist positive integers M and N and divisors Dy, . .., D, of
N such that M[N=m|n and D,+ Dy+- -+ D, =0 (mod M). Also, the last con-
dition can be replaced by D,+D,+- -+ Dy=M, and the condition (Dy, D, . . .,
D,)=1 may be added without affecting the validity of the theorem.

Proof. Suppose there exist M and N and divisors Dy, ..., D, of N such that
M[N=mj|n and D,+ D,+- - -+ D, =rM. Then
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and so (1) is solvable. This holds regardless of whether r=1 or whether
(Dl, .D2, DEIEEY ‘Dk)=1'
Now suppose that (1) is solvable, then
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Letting M and N be the numerator and denominator of the right hand fraction
in (3) and letting D;=x; * * * X; ;X;41 * * * X; our theorem is satisfied. Furthermore
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Di+Dy+--- Dy=M. Also, letting d=(Dy, D,, ..., D), M'=M|d, N'=N|d,
D;=D,/d then M’, N’ and the D; also satisfy the theorem, and (Dj, D5, ..., Dy)=1.

This theorem would give an effective means of deciding the solvability of (1)
if we could obtain an upper bound for the least M and N satisfying the theorem.
Letting M=Cm and N=Cn we want a bound B such that if (1) is solvable, then
our theorem is satisfied for some C<B. This is possible to do inductively, although
the bounds obtained are rather cumbersome. We illustrate with the cases k=2
and 3—these cases are the most important and have been most extensively studied
in other contexts.

THEOREM 2. Letting M=Cm and N=Cn, theorem 1 is satisfied with
@) CL<m+)/m ifk=2

() C< max "EEX e
zeln/m,3n/m] MX—N

Proof. Suppose without loss of generality that (m,n)=1 and m[n=(1/x,)+
(1/x2). In this case we know that there exist d;, d; | n such that d,+d,=tm. Then
theorem 1 is satisfied with C=t¢ and t<(n+1)/m since (d;, d;)=1 which implies
d,+d,<n+1. Examples such as 3/11 show that this is the best possible bound for
C in the case k=2.

Now suppose m/n=1/x;+1[x,+1/x;, where x;<x,<x,. By applying part (i)
to m/n—1/x, we get the bound given in (ii) since obviously x, € (n/m, 3n/m].
The maximum occurs at either x=[n/m]+1 or [3n/m] depending on the values
of m and n in the specific case considered. A simpler bound for C such as
(n+m)(n*+nm-+m)/m? could be used in (ii) although some precision would be lost.

The case where the x; are allowed to be negative is also of considerable interest.
A result completely analogous to Theorem 1 can be proved in this case with only
the most minor changes. This extends Lemmas 2 and 3 of [3].
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