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A given semigroup 21 is said to be embeddable in a group if there exists a 
group @ which contains a subsemigroup isomorphic to 31. 

It can easily be proved that cancellation is a necessary condition for embed-
dability. It can also be shown that we can adjoin an identity to a semigroup 
without identity in such a way that the new semigroup is embeddable if and 
only if the original was embeddable. Therefore, we can, without loss of 
generality, restrict our attention to cancellation semigroups with identity, 
whenever this is convenient. 

If 21 satisfies the cancellation law, then it can be proved that in order for 
SI to be embeddable it is sufficient that each pair of elements of 2Ï have a 
common left multiple. This condition is satisfied by any commutative semi­
group. In general a semigroup may or may not be embeddable in a group. 

Different necessary and sufficient conditions for the embeddability of a 
semigroup in a group are due to Malcev (3) and to Lambek (2). 

Part 1 of this paper describes some results of Malcev, without proofs, but 
with sufficient details to make the proofs in Part 3 meaningful. The reader 
who wants more details is referred to Tamari (5) whose proofs, although in a 
more general framework, are more readily grasped than those of Malcev. 

Part 2 states the necessary and sufficient conditions as given by Lambek. 
Instead of proving these results, we show that a closely related set of con­
ditions (in fact, a subset) is necessary and sufficient for the embeddability 
of a semigroup in a group. This approach uses only algebraic concepts in place 
of the geometric concepts used by Lambek. 

In Part 3 the sets of conditions given by Malcev and by Lambek are com­
pared. We prove that each member of the set of Lambek conditions is a 
consequence of the set of Malcev conditions and conversely. 

1. The Malcev conditions. Let 21 be a semigroup with identity e. With 
each x Ç 2Ï Malcev associated two symbols, not in SI, which he denoted by 
x+ and x~~. These he called, respectively, formal right and formal left elements 
associated with x. Let © be the set of all finite sequences, or words, consisting 
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of elements of 21 and formal elements, and which begin and end with e. The 
following transformations on a word in © are called elementary: 

(I) Between any two adjacent elements of the word a pair xx+ or x~x is 
inserted where x is any element of SI. 

(II) A pair of adjacent elements xx+ or x~x is dropped out of the word 
provided x is not the first or last element of the word (the ident i ty) . 

( I I I ) A pair of elements of 21 t h a t are adjacent in the word, bu t neither of 
which is the first or last element of the word (the identi ty) is rephiced by their 
product in 21. 

(IV) An element x £ 21 appearing in the word, other than in the first or 
last position, is replaced by a pair of elements of 21 whose product is x. 

Let a, /J be two words in ©. We say t h a t /3 is equivalent to a if it is possible 
to transform a into $ by a finite chain of e lementary t ransformations. This 
equivalence relation part i t ions © into equivalence classes. We write (a) for 
the equivalence class containing a. We define the product of two classes by 
(a) ((3) = (a/5). Under this multiplication the set of equivalence classes forms 
a group, called the formal group of the semigroup 21. (Malcev called it the quot ient 
group.) 

A necessary and sufficient condition for the embeddabi l i ty of a semigroup 
in a group is as follows: 

L E M M A 1 (Malcev). 21 is embeddable in a group if and only if two elements 
of 21 which are equivalent are also equal. 

A formal left (right) element is called left {right) normal in a chain of 
t ransformations if no transformations occur to its left (right).* A chain of 
transformations is called normal if each of its formal left elements is left normal 
and each of its formal r ight elements is r ight normal. Two chains are called 
equivalent if they have the same initial and final words. T h e following theorem 
shows t h a t we can confine our a t ten t ion to normal chains. 

T H E O R E M 1 (Malcev). Every chain of transformations whose initial and final 
words consist only of elements of 21 is equivalent to some normal chain. 

In any chain t h a t carries a word consisting only of elements of 21 into 
another word consisting only of elements of 21 it is clear t h a t each formal 
element t h a t is inserted mus t later be deleted. Each chain of t ransformations 
determines some sequence of insertions and deletions of formal left and right 
elements. For a normal chain this sequence of insertions and deletions has a 
simple form t h a t enabled Malcev to develop a catalogue of the conditions 
for embeddabi l i ty . 

In order to develop this catalogue Malcev associated with each sequence 
of insertions and deletions a chain of t ransformations in general variables 

*If the same formal element appears in more than one position in a chain of transformations 
we distinguish between these by an index. They are then considered as two different formal 
elements. 
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which we represent* as xu L*, Ï*. This new chain of transformations has the 
property that any normal chain with the same sequence of insertions and 
deletions can be obtained by replacing the xt by elements of §1, L* by formal 
left elements and Ï* by formal right elements. 

This chain in the barred letters involves transformations that replace a 
product of two barred letters by another product of two barred letters. The 
set of all equations formed by equating these two products is called the normal 
system of equations of the normal chain. The first and last words in the chain 
of barred letters are products of two barred letters. The equation obtained 
by equating these two products is called the completing equation of the normal 
chain. 

Malcev's embedding theorem is as follows: 

THEOREM 2 (Malcev). In order that a semigroup with identity be embeddable 
in a group it is necessary and sufficient that the following condition be fulfilled : 
If certain elements of the semigroup satisfy some normal system of equations, 
then the corresponding elements must satisfy the completing equation of this 
system. 

2. The Lambek conditions 

2.1. T H E POLYHEDRAL CONDITION. Lambek's (2) development of necessary 
and sufficient conditions for the embeddability of a semigroup in a group is 
in terms of polyhedra on the surface of the sphere. 

A given semigroup % is said to satisfy the polyhedral condition if the following 
statement is true. If elements of 21 are assigned to all sides (each edge has two 
sides, one belonging to each of the adjoining faces) and angles of a polyhedron 
on a sphere (see Figure 1) such that to each half-edge there corresponds an 
equation xa = yb where x and y have been assigned to the sides and a and b 
have been assigned to the corresponding angles of the half-edge, then these 
2E equations, where E is the number of edges, are interdependent, that is, 
any one of them can be derived from the totality of all others. 

J% 7 

FIGURE 1 

Lambek's embedding theorem is: 

THEOREM 3 (Lambek). A semigroup can be embedded in a group if and only 
if the cancellation laws and the polyhedral condition are satisfied. 

*Malcev's notation is much more involved than this, but this serves our purposes. 

\ 
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Clearly the polyhedral condition is really an infinite set of conditions since 
there is an infinite number of such polyhedra and each leads to 2£ conditions, 
according to the choice of equation to be implied by the 2E — 1 others. Any 
one such condition obtained from some polyhedron and some choice of equation 
to be implied will be called a Lambek polyhedral condition. The term the poly­
hedral condition will refer to the totality of all Lambek polyhedral conditions. 

Lambek proved the necessity of all the Lambek polyhedral conditions, but 
his sufficiency proof uses only those conditions that serve as diagrammatic 
representations of the associative laws. The following section outlines a proof 
of the necessity and sufficiency of this subset of conditions which will be defined 
later and are called the Lambek associative conditions. This proof does not 
depend on the properties of polyhedra. 

2.2. T H E ASSOCIATIVE CONDITIONS. Let §1 be a cancellation semigroup. Let 
a, b be elements of 21. Let a/b represent the set of all pairs x, y of elements 
of 31 such that xa = yb. If a/b is not empty we call it a ratio. If two ratios 
can be put in the form a/d and d/b, where a/b is a ratio, we call a/b the con­
traction* of a/d and d/b. 

A finite sequence of ratios of the form (. . . , a/b, b/c, . . .) is said to contract 
to the sequence (. . . , a/c, . . .). Two finite sequences of ratios are called 
similar if there is a finite sequence from which both can be obtained by 
repeated contraction. This similarity can be shown to be an equivalence 
relation and hence partitions the set of ratios into equivalence classes. 

Let S* denote the class of all sequences that are similar to the sequence 
S. Define the product of two equivalence classes by S¥T* = (ST)*. Under 
this multiplication the equivalence classes form a group, called the group 
of ratios of 21. 

Let (a) represent the ratio at/t for any t Ç 21, and (a)* the class of sequences 
similar to (a). The mapping a —> (a)* of 21 into the group of ratios can easily 
be shown to be a homomorphism. We ask under what conditions this mapping 
will be an isomorphism, that is an embedding. In order for a —> (a)* to be 
one-to-one we must show that if two sequences, each consisting of a single 
ratio, are similar, then the ratios are equal. This is equivalent to the associative 
law for the contraction of ratios. 

The details of the foregoing can be found in Lambek's paper (2). In order 
to prove the associative law he used the polyhedral condition. Our approach 
is somewhat different. We represent each associative law for n contractions 
by a 2n-tuple of integers. From this 2w-tuple we obtain 6n equations. Necessary 
and sufficient conditions for the embeddability of a semigroup in a group are 
given in terms of the interdependence of these equations. 

Consider a chain of contractions that reduces a sequence of n + 1 ratios 

*Under suitable conditions the contraction is in fact a unique product. Lambek used two 
Lambek polyhedral conditions to prove it here. We need only similarity, not equality of con­
tractions, a t this point. Uniqueness of the product follows from Theorem 4. 
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to a single ratio. We want to represent this by an n-tuple of integers 
(«!, «2, . . . , an). If the first contraction operates on the kih and (k + l)th 
ratios, we set ai = k. There are now n ratios in the sequence. If the second 
contraction operates on the rath and (ra + l)th ratios we set a2 = ra. We 
proceed in this way until values are determined for all the as. Each associa­
tive law is the equality of the results of two repeated contractions on the 
same sequence. If we include the trivial or identical associative laws (such 
as (AB)C = (AB)C) and distinguish between A(BC) = (AB)C and 
(AB)C = A(BC), etc., then there is a one-to-one correspondence between 
the associative laws for n + 1 factors and the 2^-tuples (au a2, . . . , a 2 J , 
where 

«i = 1, 2, . . . , n, 
a2 = 1, 2, . . . , n — 1, 

«« = 1, 
an+i = 1 , 2 , 
an+2 = 1 , 2 , 

<*2n = 1 . 

For example, the associative law A(B(CD)) = (AB)(CD) is represented by 
the 6-tuple (3,2, 1 : 1, 2, 1). 

In order to obtain equations from such a 2w-tuple we treat the initial n 
elements (au a2} . . . , an) first. As an initial step we replace this n-tuple by 
a 3»-tuple (0i, /52, . . . , j#3w). I n order to do this we write out the integers 

(1) 1,2, . . . , » + l 

and define (0i, 02, 03) = («i, «i + 1, —1). We then rewrite (1), replacing the 
pair «i, «i + 1 by — 1, to get 

1,2, . . . , « ! - 1, - l , a x + 2, . . . , » + l, 

which we denote by 

(2) 12, 22, . . . , n2. 

For our example, (1) is 1, 2, 3, 4 and (01,02,0s) = (3,4, - 1 ) . Then (2) 
becomes 1, 2, —1. 

We define (04, 05, 06) = ((«2)2, («2 + 1)2, —2). In (2) we replace the pair 
(0:2)2, (OL2 + 1)2 by —2 and denote the result by 

(3) 13, 23, . . . , in- 1)3. 

For our example (04, 0g, 06) = (2, — 1, —2). 
We define (07, 08, 0g) = ((«3)3, («3 + 1)3, —3) and continue until we have 

(») In, 2». 

Then we define (03w-2, 03n-i, 03W) = (ln, 2n, — »). 

. . , », 

. . , w — 1, 
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For our example n = 3, (3) is 1, — 2 and hence (p7j p8, P$) = (1, — 2, —3). 
This 3?z-tuple now represents the ratios involved in the various contrac­

tions. For example, the elements (/33r_2, Pzr-h for) are associated with a single 
contraction. Here /33r is always negative and — /33r is the number of the con­
traction being performed. 

In our example, (3, 4, —1) is associated with the first contraction, (2, —1, 
— 2) with the second contraction, and (1, —2, —3) with the third. 

If ^3r-2 > 0, then the first ratio entering into the contraction is the (/33r_2)th 
ratio of the original sequence. If /33r_2 < 0, then the first ratio entering into 
the contraction is the result of the ( — jS3r_2)th contraction. Similarly /33?— 1 
represents the second ratio entering into the contraction. 

In our example (3, 4, —1) indicates that the first contraction involves the 
third and fourth ratios of the original sequence; (2, —1, —2) indicates that 
the second contraction involves the second ratio of the original sequence and 
the result of the first contraction. 

From this 3w-tuple we obtain 3n equations. For example, from the three 
elements (/33r_2, for-i, for) we get 

^here 

for-2 Cr = for-2 0>r, 

Ptr-1 bT — P'sr-i Cr, 

Urbr = vrâT, 

= fa* if fo > 0, 
\u-8i if fo < 0; 

= fa if fo > 0, 
\v-8i if Pi < 0. 

In our example we have associated with (3,4, —1) the equations 

XZCi = 2/3<Zi, 

x2bi = 2/2C1, 

ûibi = v i â i , 

and with (2, —1, —2) the equations 

X2C2 = #2^2 , 

Û162 = V1C2, 

Û2S2 = v2â2. 

From (an+i, . . . , a2n) we obtain Sn equations in the same way except that 
instead of âu bi} ct we write dit ëu fu i = 1, 2, . . . , n; and instead of ûj} vjf 

we write sjy tj, j = 1, 2, . . . , n — 1. We note that um vn are not replaced 
by sn, tn. 
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A semigroup 21 is said to satisfy the Lambek associative condition L(ai, 
a2, . • • , an: an+lj . . . , a2n) if whenever elements of 31 are subst i tuted for the 
symbols in the equations associated with the 2n-tuple (ah a2, . . . , a2n) in 
such a way t h a t the first 6n — 1 equations are satisfied, then the Qnth equation 
must also be satisfied. 

T h e proof of the following theorem is omit ted. I t is somewhat lengthy, bu t 
presents no great difficulty. I t consists of a consideration of the various equa­
tions t h a t must hold if a contraction is to take place and the observation 
t h a t the set of equations required for two repeated contractions to t ake place 
is essentially the set of equations in a Lambek associative condition. T h e 
details are given in the au thor ' s thesis (1). 

T H E O R E M 4. If §1 satisfies all the Lambek associative conditions, then all the 
associative laws hold in the set of ratios, that is, if a sequence of ratios can be 
contracted to a single ratio, then that ratio is unique. 

From this the sufficiency of all the Lambek associative conditions follows 
easily. T h e necessity can be proved by direct calculation in any group in 
which the given semigroup is embedded. This gives a modified form of Lam-
bek's embedding theorem: 

T H E O R E M 5. A cancellation semigroup is embeddable in a group if and only 
if it satisfies all the Lambek associative conditions. 

3. Comparison of the Malcev and Lambek conditions. We shall 
prove a simple lemma which will be used in both of the theorems in this 
section. 

L E M M A 2. Let 2Ï be a cancellation semigroup generated by Si, s2, . . . and with 
defining relations gk(sh s2, . . .) = hk(sly s2, . . .), k = 1, 2, . . . . Let 2T be a 
cancellation semigroup including among its elements Si , s2,... such that 
gk(si, s2, . . .) = hk(si, s2, . . .), k = 1, 2, . . . . Letg(su s2, . . .) = h(slf s2, . . .) 
be any relationship that holds in 21. Then g(si, s2, . . .) = h(si , s2 , . . .) holds 
in » ' . 

Proof. If g(si, s2, . . .) = h(sh s2, . . .) holds in 21, then it can be obtained 
from gh(si, s2, . . .) = hk{si, s2, . . .), k = 1, 2, . . . , by a finite sequence of 
semigroup operations, t h a t is, multiplication, cancellation, and subst i tut ion. 
These same semigroup operations applied to gk(si, s2, . . .) = hk(si, s2, . . . ) , 
k = 1, 2, . . . , mus t produce g(si, s2, . . .) = h(si, s2, . . .). 

Let K be a set of equations, each of which equates two products of symbols 
â, b, c, . . . and let il? be a single equation of this same type. We say t h a t 
the condition K => M is satisfied by a semigroup if for each choice of elements 
from the semigroup for which the equations K hold, the equation M mus t 
also hold. We say t h a t the condition K\ ==> Mi is a consequence of the con­
dition K => M if Ki => Mi is satisfied by every semigroup t h a t satisfies 
K=*M. 
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The following theorem developed out of an attempt to provide more details 
for one of Malcev's theorems (4, Theorem 4a). In his proof he made a state­
ment that is stronger than our theorem, but which seems to be inaccurate 
and for which he offered no proof.* Our theorem is sufficient for the use that 
Malcev made of this statement. 

THEOREM 6. Let K be a system of equations, each equating two products of the 
symbols â, 5, c, . . . , and let M be a single equation of the same form. If the 
condition K => M is satisfied by every semigroup that is embeddable in a group, 
then K => M is a consequence of some Malcev condition. 

Proof. Let § be the cancellation semigroup generated by a, b, c, . . . with 
defining relations K, that is, the equations of K with â replaced by a, etc. 
Let ® be the formal group of § as defined in § 1. Then the equations K hold 
in ®. 

The condition K => M is satisfied by every embeddable semigroup, hence 
by every group, and in particular by ®. But K, a substitution of elements 
of § into K, holds in ®. Therefore M, the corresponding substitution into 
M, holds in @. But M involves only the symbols of K and K involves only 
the elements of § . Therefore M involves only the elements of § . 

By the definition of the formal group ©, the two sides of the equation M 
must be connected by a chain of transformations of the forms: 

(a) insertion of //* or L*L where /*, L* are formal right and left elements, 
(b) deletion of //* or L*L, 
(c) replacement of a word in § by an equal word in § . 
By Theorem 1 we see that we can replace this chain by a normal chain. 

The sequence of insertions and deletions of formal elements determines a 
chain of transformations in the barred symbols used in § 1 and this chain in 
turn determines a normal system of equations. Since the two sides of the 
equation M form the first and last wx>rds of the normal chain in ®, we can 
choose our notation so that the completing equation is M. Let N represent 
the normal system of equations in this notation. 

We have now associated with the given condition K => M a Malcev con­
dition N => M. The normal chain in ® provides a substitution of elements 
of § for the symbols of the normal system N such that the corresponding 
equations N hold in § . 

Let 21 be a cancellation semigroup satisfying the Malcev condition N => M. 
We want to show that 21 also satisfies K => M. Let K' be some substitution 
of elements of 21 for the symbols of K such that all the equations hold in 21. 
Now § has the defining relations K, and in 21 the corresponding equations 
K' hold. Also the equations in N hold in § . Therefore by Lemma 2 the corre­
sponding equations Nf hold in 21. But N' is a substitution of elements of 21 
into N. Also N => M in 2Ï and hence AT, the corresponding substitution into 

*See the author's thesis (1) for a discussion of this apparently false statement. 

https://doi.org/10.4153/CJM-1963-006-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1963-006-x


EMBEDDING THEOREMS 57 

M, holds in St. Thus K => M is satisfied in 21, and hence is a consequence of 
the Malcev condition iV => M. 

Since every Lambek polyhedral condition (and hence every Lambek 
associative condition) has the form K => M, we have the following obvious 
application of the theorem. 

COROLLARY 1. Every Lambek polyhedral (or associative) condition is a conse­
quence of a single Malcev condition. 

The corollary to the following theorem shows that the converse is also 
true. 

THEOREM 7. Let K be a set of equations and M a single equation as in Theorem 
6. If the condition K => M is satisfied by every semigroup that is embeddable in 
a group, then K =» M is a consequence of some Lambek associative condition. 

Proof. Let § be the cancellation semigroup as defined in the proof of Theorem 
6. Let $ be the group of ratios of § as defined in § 2. The equations K, that 
is, K with à replaced by a, etc., hold in § and hence in $. The condition 
K => M is satisfied in any embeddable semigroup, hence in any group, and 
in particular in )̂3. But K is a substitution of elements of § for the symbols 
of K and hence the corresponding equation M holds in ty. Also M involves 
only elements of § , that is, M equates two ratios. Two elements are equal 
in 3̂ if and only if they can both be obtained from the same finite sequence 
of ratios of elements of § . The two repeated contractions to produce the 
two sides of the equation M can be associated with a Lambek associative 
condition as in § 2. Let J => M be this Lambek condition. 

The particular contractions used to obtain M determine one or more 
substitutions of elements of § for the symbols of J such that all the equations 
hold in § . Choose any one of the substitutions and let /represent the resulting 
equations. 

Let S3 be a cancellation semigroup satisfying J =» M. We want to show 
that 33 also satisfies K => M. Let K" be a substitution of elements of S3 into 
the equations K such that all the equations are satisfied. Now § has the 
defining relations K and the corresponding equations K" hold in S3. Also 
the equations J hold in § . Thus by Lemma 2 the corresponding equations 
J" hold in S3. But J" is a substitution of elements of © into J and J => M 
in S3. Hence M", the corresponding substitution into M, holds in S3. Thus 
K => M is satisfied in S3 and hence is a consequence of the Lambek associative 
condition J => M. 

Since every Malcev condition has the form K =» M, the following applica­
tion of the theorem is obvious. 

COROLLARY 2. Every Malcev condition is a consequence of a single Lambek 
associative condition. 
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The Lambek and Malcev conditions have now been shown to be conse­
quences of each other. But the two sets of conditions are not identical. This 
is shown by means of counterexamples in the author's thesis (1). 
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