
Introduction
Micro- and nanofluidic systems have

been around as long as the earliest cellular
forms of life on our planet. In many bio-
logical species, including humans, micro-
vascular systems—networks of convective
flows that permeate their volumes—pro-
vide mass transfer of chemicals to and
from certain locations. Early examples of
artificial micro- and nanofluidics include
micro syringe needles, glass capillaries,
and a wide variety of membranes with
micro- or nanopores. Advances in micro-
and nanoscale fabrication and patterning
methods have opened routes to attain
micro- and nanofluidic networks of more
sophisticated design and interconnectivity
only over the last two decades. Three
main categories of applications have in-
spired these rapid developments:
1. Microanalysis systems for purification,
separation, and/or identification pur-
poses; this was the original theme of mi-
crofluidics launched by Manz, Harrison,
and Ramsey in the early 1990s1 and has

led to a variety of clinical and diagnostic
tests, chemical and biological agent detec-
tors, and environmental tests.
2. Microreactors for chemical synthesis; this
younger field, which started in the late
1990s, has brought us, for example, meth-
ods to synthesize dangerous/unstable/
precious compounds on demand,2,3 fuel
processing systems,4 synthesis of tailored
nanoparticles,5 and microfuel cells.6
3. A wide range of enabling microfluidic
tools for biological, biotechnological, 
and biomedical applications; these tools
have burst on the scene over the past
decade for purposes ranging from inter-
acting with single cells7 to screening for
appropriate crystallization conditions for
proteins.8

Characteristics of the Microscale
Before venturing into the materials as-

pects of the design, fabrication, and use of
different micro- and nanofluidic chips,
let’s first consider the inherent implica-

tions of performing chemical and biologi-
cal processes in networks comprising
channels of sub-millimeter dimensions.
First, fluid flow is laminar (i.e., no turbulent
mixing), as flows in micro- or nanofluidic
channels are dominated by viscous dy-
namics, due to their higher surface-to-
volume ratio, and are characterized by a
Reynolds number (Re � Vh/ν � 100,
where V is the average velocity of the flow
in meters per second, h is the characteris-
tic cross-sectional dimension of the chan-
nel in meters, and ν is the kinematic
viscosity of the fluid in square meters per
second). Due to the lack of turbulence,
mixing of fluids is controlled by diffusion
only. In laminar flows, the pressure re-
quired to push fluids through a channel
scales with 1/h2 for a fixed velocity; de-
pending on the flow speed and size of the
network, this relationship may lead to
pressure requirements that are experimen-
tally inaccessible, for example, because of
material failure.

Second, the smaller dimensions lead to
higher rates of mass and heat transfer as a re-
sult of the steeper concentration and tem-
perature gradients.

Third, compared with the macroscale,
micro- and nanofluidic channels have very
high surface-to-volume ratios. Having high
surface-to-volume ratios enables, for ex-
ample, the use of electro-osmotic flow—
flow driven by the interaction of an
electric field with the net charge adjacent
to a charged surface—rather than pressure-
driven flow. On the other hand, higher
surface-to-volume ratios may be detri-
mental for certain processes because of
nonspecific adsorption, most notably in
applications involving proteins.

In any micro- or nanofluidic applica-
tion, some or all of these microscale char-
acteristics have to be accounted for—or,
ideally, exploited—in the design and
function of devices.

Microfabrication Methods
The wide range of applications for

micro- and nanofluidic networks and the
characteristics of the microscale impose a
wide variety of constraints on the mate-
rials used in their fabrication. Historically,
the first micro- or nanofluidic systems
were fabricated in silicon using the fabri-
cation methods developed in the semicon-
ductor industry for microelectromechanical
systems (MEMS).9 The combination of
photolithography and wet anisotropic
etching allows complicated channel
geometries to be created. Glass, Pyrex, and
quartz have also long been substrates of
choice, due to their chemical inertness and
optical transparency. Glass offers an ex-
ample of a fabrication constraint associ-
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ated with a material property: the iso-
tropic character of glass etchants con-
strains the geometries that are accessible
for channels formed in glass; high-aspect-
ratio structures are difficult to form. On
the other hand, researchers have taken ad-
vantage of the isotropic etching properties
of glass to form channels with complex
cross sections, for example, a controlled
undercut of the masked areas.10 Ease of
fabrication has led many researchers to
pursue the use of polymeric materials,
shaped into microfluidic networks using
various molding strategies. The elastomer
poly(dimethylsiloxane) (PDMS)—popu-
larized by Whitesides,11 Beebe,12 and
many others—is one of the more com-
monly used polymers in microfluidics.
The desired channel designs can be ob-
tained by replica molding from a master
defined in standard photolithographic
procedures. The resulting cross-linked
material is highly transparent and seals
well against itself and other surfaces, and
the integration of pressure-fit intercon-
nects is straightforward. Incompatibility
with most organic solvents, however, has
limited the use of PDMS to aqueous-based
applications.

In addition to silicon, glass, and PDMS,
many other materials, other fabrication
methods, and combinations of materials
are being used. One up-and-coming mi-
crofabrication technique is laser microma-
chining. With two or three different laser
sources (e.g., a combination of a 197-nm
Ti:Sapphire laser and a 1064-nm YAG
laser), microfluidic channels can be ma-
chined in the surface of just about any ma-
terial with a precision of 1 µm or less.13 The
key disadvantages of laser micromachin-
ing are its high equipment cost and the se-
rial (and thus slow) nature of the process,
whereas techniques based on photolithog-
raphy, etching, or molding are parallel in
nature.

Choice of Materials
Researchers often base their choice of

materials on their familiarity with them
and the associated methods of fabrication,
or on the availability of appropriate fabri-
cation facilities. With the field moving
away from the fabrication and characteri-
zation of individual components toward a
focus on the fabrication and application of
integrated microchemical systems for spe-
cific chemical and biological purposes, de-
cisions on what material or combination
of materials to use must be based on the
often stringent requirements of the envi-
sioned application.

Material properties that have to be
taken into account when making these de-
cisions include:

� Compatibility with operating condi-
tions (e.g., pressure, temperature), media,
chemistries, and biological entities;
� Surface properties: roughness, zeta po-
tential, wettability, bio-adhesion;
� Bulk properties: mechanical strength,
transparency, thermal expansion, perme-
ability; and
� Ease of integration with other materials:
bonding/sealing possibilities.

In their article in this issue, Zhang and
Haswell include a table that compares a
range of these properties for the most fre-
quently used materials for the fabrication
of micro- and nanofluidic networks.

A DNA analysis device (Figure 1), as re-
ported by Burns et al. in 1998, was one of
the very first examples of a truly integrated
microfluidic system.14 Burns’s work ex-
ploited the wetting characteristics of his
substrates—glass and silicon—to drive
and regulate flow by capillarity. Another
example of an integrated microchemical
system in which material properties played
a crucial role is Motorola’s micro fuel
processor for the conversion of methanol
at 250�C into hydrogen for a fuel cell.4 A

fuel processing chamber, a catalytic com-
bustion chamber, a fuel vaporizer, resis-
tive heaters, pressure and temperature
sensors, and other components are inte-
grated in layers of ceramic tape that are
sintered together into a single fuel proc-
essing unit. Ceramics are known as excel-
lent substrates to serve as catalytic
supports. Key material challenges in-
cluded matching thermal expansion coef-
ficients and bonding dissimilar materials
to deal with heating and cooling cycles.

From our own work (Kenis), we illus-
trate meeting combinations of material re-
quirements for a microfluidic application
through the synthesis of ceramic catalyst
support structures for hydrocarbon re-
forming.15 To achieve high hydrocarbon-
to-hydrogen conversion per volume while
avoiding coking of the catalyst (which
takes place up to about 750�C), we set our-
selves the following requirements: (1) sur-
face area of at least 5 105 m2/m3;
(2) thermal stability above 800�C; and (3) a
high porosity to produce a low, experi-
mentally readily achievable pressure drop
across the structure. Whereas the high-

�
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Figure 1. (a) Schematic illustration of an integrated microfluidic device with two liquid
samples and electrophoresis gel present.The only electronic component not fabricated on
the silicon substrate, except for control and data-processing electronics, is an excitation
light source placed above the electrophoresis channel. Color code: blue, liquid sample
(ready for metering); green, hydrophobic surfaces; purple, polyacrylamide gel. (b) Optical
micrograph of the device from above. Wire bonds to the printed circuit board can be seen
along the top edge of the device.The color arises from the interference filter reflecting the
short-wavelength light.The pressure manifold and buffer wells that fit over the entry holes at
each end of the device are not shown.14
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surface-area features of oxides such as an-
odized alumina typically do not survive
temperatures above 700�C, the non-
oxides, such as zeolites, typically do not
meet the low-pressure-drop requirement.
Figure 2 shows the highly porous, in-
verted beaded structure made out of SiC
that we synthesized by infiltrating beds of
packed polystyrene spheres with a pre-
ceramic polymer, followed by curing and
sintering.15 Such SiC or SiCN catalyst sup-
port structures have surface areas as high
as 7.4 107 m2/m3, are stable up to at
least 1200�C, and have a porosity of �0.7,
which ensures a low pressure drop. The
integration of these catalyst structures into
alumina reactor housings leads to inte-
grated microfluidic reactors for hydrogen
generation at �99.8% conversion using
ammonia as the fuel.

Many microfluidic designs are capable
of performing only a few tasks at the same
time. Performing many tasks in parallel,
as desired in screening tools, was made
possible by the advent of very large-scale
integrated microfluidic networks (VLSI-
mFNs) of PDMS (Figure 3) in which the
elastomeric properties of PDMS are used
to create arrays of integrated pneumatic
valves that can also be used to create
pumps and multiplexers all fabricated out
of the same material.16,17 In each valve, two
channels cross but are separated by a thin
membrane of PDMS. If one of the chan-
nels is pressurized, the membrane bulges
out into the second channel and closes it
off (like stepping on a garden hose). Con-
secutive actuation of three pneumatic
valves creates a peristaltic pumping
mechanism. Such VLSI-mFNs have been
used, for example, for DNA sequencing18

and protein crystallization.19 A startup
company, Fluidigm, has already intro-
duced VLSI-mFN–based microfluidic sys-
tems to the market that screen for suitable
crystallization conditions.20

�

Micro- and nanofluidic systems have
also been extensively integrated with elec-
tronics and photonics for detection and ac-
tuation purposes. In a recent report, a
microfluidic device with integrated chem-
ical sensing and electrowetting actuation
on chemoreceptive neuron metal oxide
semiconductor transistors was reported.21

Chemical sensing can also be accom-
plished through the integration of pho-
tonic crystal-based nanolasers.22

Several additional examples of inte-
grated micro- and nanofluidic systems
will be covered in the articles that follow
this general introduction. In picking topics
for these articles, we focused on covering
a wide range of different materials, in-
cluding silicon, glass, polymers, and hy-
drogels, as they are currently being used
in micro- and nanofluidics. As the reader
will see, the wide range of potential appli-
cations for microfluidic systems, ranging
from analysis systems for pathogen detec-
tion to chemical synthesis and spectro-
scopic study tools, has been made possible
by these developments. Each article dis-
cusses micro- and/or nanofluidic appli-
cations in light of various materials
aspects, including the various compatibil-
ities (conditions, chemistries), integra-
tion/bonding challenges, surface properties,
and bulk properties briefly mentioned
previously.

Zhang and Haswell provide a general
review of how materials matter in the fab-
rication and operation of microfluidic sys-
tems. They look in more detail at the most
popular materials and methods currently
being used for chip fabrication. They also
provide a treatment of how the high
surface-area-to-volume ratios of microflu-
idic systems have been and can be ex-
ploited for various purposes.

After introducing the various advan-
tages and disadvantages of metals, ceram-
ics, glass, and polymers for various
microfluidic applications, Jensen focuses
on the use of silicon as the material of
choice for a variety of applications: these
range from chemical synthesis (screening
of reaction conditions, synthesis of quan-
tum dots) to heterogeneous catalysis (hy-
drocarbon fuel conversion, hydrogen
purification). The challenges involved in
the fabrication and operation of hybrid
structures composed of more than one
material are exemplified by the integra-
tion of various sensors (pressure, temper-
ature, chemical composition) and meeting
the requirements of optical transparency
for spectroscopic applications (UV, IR).

Bakajin and Austin compare the bene-
fits and drawbacks of elastomeric and non-
elastomeric materials in the development
of micro- and nanofluidic devices for
DNA/RNA analysis and protein-folding
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Figure 2. Scanning electron micrograph
of a highly porous SiC catalyst support
structure with thermal stability to over
800�C.15

Figure 3. Optical micrograph of part of a very large-scale integrated microfluidic network
(from S. Quake’s research group, Stanford University): Three independently addressable
networks (red, blue, green) of pneumatic valves (rectangles connected via very thin
channels) enable pumping of fluid through the microfluidic channels (filled with clear
solution) by consecutive actuation.16,17 The fluid channels are 50–100 µm wide. Photo by
Sebastian Maerkl.
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studies. The authors provide a primer on
the considerations of surface forces and
solid mechanics in choosing materials for
micro- and nanofluidic systems. Addition-
ally, they emphasize the specific challenges
that arise when precise submicrometer
structures are required, and when applica-
tions using living cells are involved.

Stroock and Cabodi review initial ef-
forts to implement microfluidic networks
as synthetic vascular systems to control
the chemical state inside materials used in
biomedical applications. They highlight
challenges that arise in microfabrication
involving soft, organic biomaterials. Using
tissue engineering and wound treatment
as target applications, they illustrate basic
design considerations that are relevant to
the creation of these chemically active ma-
terials. Finally, they point toward the out-
standing challenges in this emerging
application of microfluidic technology.

Lastly, Simmons et al. discuss the fabri-
cation and performance of microfluidic
analysis systems in which species are sep-
arated using insulator-based dielectrophore-
sis (iDEP). These chips may find application
in pathogen/bacterial analysis, sample
preparation in microanalysis systems, and
biomedical diagnostics. Their theoretical
and experimental comparison of surface
and bulk material properties shows how
the choice of material (glass or polymer)
can have a significant effect on through-
put, detection efficiency, and cost of the
microfluidic application.

Current and Future Challenges
The field of microchemical systems is

increasingly focused on the creation of in-
tegrated systems for specific chemical or
biological applications. Their develop-
ment requires a balancing act to meet the
often contradicting material requirements
for the specific series of tasks. The lack of
materials with specific combinations of
properties also encourages innovation. For
example, multiple new surface-modification
approaches and bonding/sealing meth-
ods have emerged. Also, the incompatibil-
ity of PDMS with many organic solvents
(which can cause swelling and dissolu-
tion) has spurred the development of
perfluorocarbon-based elastomeric mate-
rials23 that are more compatible with typi-
cal organic solvents. Another emerging
direction is the development of methods
to fabricate arbitrary three-dimensional

networks. Until recently, most approaches
to obtain “3D” microfluidic networks in-
volved sealing of layers, resulting in
“2.5D” networks—essentially a series of
connected 2D layers. Recently, the fabrica-
tion of 3D networks with arbitrary mi-
crofluidic interconnectivities using a
direct-write approach has been reported.24

In addition, Ke et al. have recently re-
ported another promising method to di-
rectly machine nanofluidic channels
inside glass substrates through the use of
a highly focused laser beam.25

With researchers in academia and in-
dustry pursuing such a wide range of ap-
plications for microchemical systems, the
rate of novel, ingenious materials solu-
tions being reported will only increase.
This issue of MRS Bulletin will review the
wide range of materials aspects that need
to be taken into account in the develop-
ment of micro- and nanofluidic applica-
tions. Many examples are described,
including several in which novel material
solutions were crucial to their inception.
We hope that these articles provide not
just a good overview of the central role of
materials in the development of micro-
chemical systems, but also spur ideas for
the ingenious use of new materials and
methods of processing to allow for ever
more integrated micro- and nanofluidic
systems.
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