
RELATIONS BETWEEN THE DIGITS OF NUMBERS 
AND EQUAL SUMS OF LIKE POWERS 

J. B. ROBERTS 

I t is straightforward, bu t tedious, to write down the integers whose repre­
sentat ions in a given base do not have part icular digits in certain positions. In 
the first section of this paper we give a computat ional scheme t h a t enables us 
to carry out such operations in a rapid and simple fashion. 

In the second section of the paper we derive a general ident i ty involving the 
digits of integers in arb i t rary Cantor systems of nota t ion. 

In the third section we apply this ident i ty and deduce a number of results 
concerned with the split t ing of integers into classes with equal power sums. 
T h e computat ional scheme of the first section leads us t o an algori thm for 
the determinat ion of such splittings. 

In the last section we again apply the ident i ty of the second section and 
derive several further consequences. 

1. Every finite a r ray of numbers of the form 

^o(O) ^ ( 0 ) Frn^(0) 

( 1 ) ^o( l ) F i ( l ) . . . F m _!( l ) 

Fo(nx - 1) ^i(>2 - 1) Fm-i(nm - 1) 

where the Fj(n) are a rb i t rary complex numbers and the tij are integers all 
> 2 , uniquely determines a sequence of n\ . . . nm numbers by a method based 
on wha t might well be called " the speedometer principle." T h e sequence is 
constructed in m steps as follows. 

T h e first s tep consists in writ ing 

F0(0) , FQ(1), • • • , F0(fn - 1). 

T h e second step consists in adding to these the numbers Fi(Q), F i ( l ) , . . . , 
Fi(n2 — 1), one by one, to obtain 

Fo(0) + Fi (0) , ^o( l ) + Fi(0) f . . . , Foin, - 1) + 7^(0), 

F0(0) + F1(1)9 . . . , Fo(«i - 1) + F i (» 2 - 1). 

We continue in the same manner , adding a t the third s tep the numbers 
^2(0), ^2(1), . . . , F2{nz — 1) to the sequence jus t obtained. After m s teps we 
arrive a t the desired sequence. 
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If we put 

po = 1, pi = ni, P2 = ni n2, . . . , pm = fix. . . wm, 

it is not difficult to verify that if the Cantor expansion of n relative to the pj is 

(2) n = a0 + d!pi + . . . + am_i pm-i, 0 < aù < nj+u 

then, denoting the sequence associated with (1) by S and its (n + l)st term 
by 5», 

(3) Sn = Fo(a0) + Fifa) + . . . + Fm-i(am-i). 

In the special case where 

(4) Fj(k) = kpJt j = 0, . . . , m - 1, 

it is clear that Sn = n and therefore 6* is just the sequence of non-negative 
integers. When (4) is the case, the array (1) becomes: 

0 0 

1 Pi 
(5) 2 2/>! 

«1—1 («2 - l)pl 

Suppose now that we replace rps in (5) by qps, where r and q (r 9e q) are fixed 
numbers from 0 to ns+i — 1 inclusive. Denote the sequences associated with 
(5), before and after the replacement, by S and S\ Then Sn = Sm' whenever n 
and m are of the form 

n = a0 + «i pi + . . . + a5_i £*_i + qps + as+i ps+i + . . . + am-i pm-u 

m = ni + rps — qps. 

Further, all numbers of the form m are missing from S'. Thus the sequence S' 
does not contain any number whose Cantor expansion (relative to the pj) 
has digit r in the (s + l)st place from the right. 

If we now delete the new qps, the sequence associated with the resulting 
array contains all the distinct terms of S' but has no repetitions. Thus, deletion 
of rps from (5) leads to the sequence of integers {from 0 to pm — 1 inclusive) 
whose Cantor expansions do not have digit r in the (s + l)st position from the 
right. 

A further deletion of tpu leads to the elimination from the remaining terms 
of all those having a t in the (u + l)st position from the right. This process 
may be continued in the same manner. 

Example 1. Calculate those integers from 0 to 100, inclusive, whose base 3 
expansions do not have units digit 2 or "hundreds" digit 0 or 2. 

0 . . . 0 
p2 . . . Pm-1 

2p2 • • • 2pm-l 

(»3 - l)p2 . . - (nm - l)pm-l 
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Since 35 > 100, we take m = 5 and write the array (5) where pi = 3, 
p2 = 32, pz = 33, pi = 34, and all nt = 3. 

0 0 0 0 0 
1 3 9 27 81 
2 6 18 54 162 

We now delete 2 from the first column and 0 and 2.32 from the third column, 
obtaining 

0 0 9 0 0 
1 3 27 81 

6 54 162 

This leads to: 

0 ,1 

0, 1 , 3 , 4 , 6 , 7 

9, 10, 12, 13, 15, 16 

9, 10, 12, 13, 15, 16, 36, 37, 39, 40, 42, 43, 63, 64, 66, 67, 69, 70 

9, 10, 12, . . . , 69, 70, 90, 91, 93, 94, 96, 97. 

The last row is the desired set of numbers. 
Noting that whenever a column starts with a 0 the new stage begins with 

the previous sequence, the process shortens as is indicated below (we use 
semicolons at each spot where a repetition is avoided): 

0, 1;3, 4, 6, 7 

9, 10, 12, 13, 15, 16; 36, 37, 39, 40, 42, 43, 63, 64, 66, 67, 69, 70; 90, 91, 93, 

94, 96, 97. 

This last observation assures us that if the array in (1) is continued inde­
finitely to the right and all except a finite number of the Fj(0) are 0, then the 
array determines a unique infinite sequence. 

Example 2. Give an array that leads to the sequence of integers whose 
base d expansions have units digit one of the distinct numbers i0, . . . , i6_i» 
where b < d and each ij satisfies 0 < ij < d. 

We give two distinct arrays leading to this sequence. 
(a) By our earlier remarks the following array clearly leads to the desired 

sequence: 
H 0 0 0 

d d2 d* 
(6) : 2d 2d2 2d* 

H-i 

(d - l)d (d - 1)d2 (d - l ) i 3 

(b) Consider now the array 
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H 0 0 0 
; d db db2 

(7) : 2d 2db 2db2 

H~\ 

(b - l)d (b - l)db (b - \)db2 

If 5 is the associated sequence and 

n = Co + ci b + c2 b
2 + . . . + cm bm, 0 < c$ < b, 

then 
m—1 m—1 

Sn = iCo + ]C bkj+i d = iCo + d ^2 cj+i bj. 
; = 0 j=0 

Thus, Sn always differs from a multiple of d by one of io, . . . , i&_i. On the 
other hand, since 

m— 1 

runs over all non-negative integers, every number whose base d expansion 
has units digit one of io, . . . , i6_i appears in the sequence S. 

2. Throughout this section n and Sn are as given in (2) and (3) of Section 1. 
Using the multinomial theorem we find that 

/ m-i \ t ., 

Sn'= ( E F,(o,)) = E „ , „ , K'(a0) • . . K- i (« m - i ) , 

where the sum is over u\ + . . . + um = t, 0 < u\, . . . , 0 < wTO. Thus, for 
arbitrary functions / i , . . . , /m we have: 

W l — 1 W m — 1 

( 8 ) ] £ • • • £ ) / i ( a 0 ) . . . / m ( ^ m - l ) ^ n f 

ao=0 am-i=0 
, | / ill—1 \ / ram—1 \ 

= E , , • , ( E / i M K T M ) . . • ( E /m(aM-i)K-i(am_i) ), 
U\\ . . . ^ m ! \ ao=-.o / \ a m _ i=0 / 

where the sum is again over the same range as above. 
We shall be interested primarily in those special cases of (8) in which, for 

each j = 1, . . . , m, 

(9) £ fjWFUW = 0, 0 < u < a,-, 
ra=0 

where aj > — 1. (The case c^ = — 1 is interpreted as meaning that the left 
side of (9) does not vanish for u = 0.) 

Assuming (9), for all 7, we shall see that the right side of (8) vanishes for all 
t satisfying 

(10) 0 < / < ax + . . . + am + m. 
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This conclusion will follow if we can be sure that in each term at least one Uj 
is less than or equal to the corresponding ctj. But, suppose that Uj > OCJ for 
all j . Then 

/ = ux + . . . + um > «i + . . . + am + m, 

which is contrary to (10). Thus the right side, and therefore also the left side, 
of (8) vanishes for those t satisfying (10). We state this conclusion as a theorem. 

THEOREM 1. If (9) is true and n, Sn are given by (2) and (3) (i.e. Sn is the 
(n + l)st term of the sequence determined by (1)), then 

«1—1 « m - l 

(11) E ••• S /1(ao).../ra(«m-1)5/ = 0 
ao^O am-1=0 

for 0 < / < CL\ + . . . + am + m. 

It should be noted that by use of the binomial theorem we may replace (11) 
by the equivalent identity: 

(12) " £ . . . " £ /i(a0) . . .fm(am^)P(x + Sn) = 0, 
a o = 0 am-l-=0 

for P any polynomial of degree less than «i + . . . + am + m. 
When we take Fj(n) = n$jy then 

Sn = ao^o + . . . + am-i$m-i 

and (12) reduces to (5, Theorem 3). 

3. For j = 1, . . . , m let /^_i be a (mod w )̂ projection map (i.e. a map of 
period nô taking all integers onto the integers 0, 1, . . . , n3 — 1), let L be the 
least common multiple of Wi, . . . , nm and put Cr for the set of n} given by (2), 
satisfying 

Lho(a0)/n1 + . . . + Lhm-i(am-i)/nm = r (mod L). 

Then putting 

fj(n) = exp(2irsihj^i(n)/nj), j = 1, . . . , mt 

we see that (9) holds for aj, = —1 or 0 depending on whether nj divides 5 
or not. Substituting these fj into (11), we obtain 

(13) E ( Z Sn
t)exp(2iT5ri/L) = 0 

for 0 < / < ax + . . . + am + m. For those / satisfying 0 < t < ax + . . . 
+ am + m for each of the s, 0 < s < L, we may equate the coefficients in 
(13). We have therefore proved the following theorem. 

THEOREM 2. J^neCr^n1 is independent of r, 0 < r < L, for each t, 0 < t < 
m — v, where v is the maximum number of tii, . . . , nm dividing an s, 0 < s < L. 

The quantity Sn
l may be replaced by P(x + Sn) for P any polynomial of 

degree smaller than m — v by using (12) rather than (11). 
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This theorem generalizes (5, Theorem 7) and (6, Theorem 3). Information 
concerning the size of v may be found in (6). 

Consider now the array (1) in which, for j = 0, . . . , m — 1, 

, . i Fj(n) = Lhj(n)/nJ+u 
{ } \kj(0) = 0. 

Then putting S' for the sequence arising from this array we have, using (3), 

m—1 m—1 

Sn' = X) F Mi) = 12 Lhjia^/tij+L 

This means that 

(15) n Ç Cr if and only if Sn' = r (mod L). 

We now introduce an array similar to (1) except that the entries are no 
longer numbers but are ordered pairs of numbers. The array of numbers 
appearing in the first spots of the ordered pairs is an array (1) with arbitrary 
Fj(n) while the array of numbers in the second spots of the ordered pairs is 
an array (1) in which the Fj(n) satisfy (14). We use Fj(n) for the typical first 
element and Hj(n) for the typical second element. Then our array of ordered 
pairs looks as follows: 

(^o(0),0) . . . CFm_!(0),0) 
(Fo(l),Ho(l)) . . . ( / ^ ( l ^ f f ^ x O L ) ) 

(16) : : 

(Fo(tii - 1), H0(m - 1)) . . . (Fm-i(nm - 1), Hm-i{nm - 1)) 

(We have replaced the Hj(0) by 0 for each j since the Hj(n) satisfy (14)— 
with F replaced by H in (14).) 

We "add" two elements of the array (16) by first adding respective com­
ponents and then replacing the second component by its least non-negative 
residue (mod L). With this addition (16) determines a sequence of ordered 
pairs just as (1) determines an ordinary sequence of numbers. Putting © for 
the sequence of ordered pairs and 5, Sf, respectively, for the sequences deter­
mined by the Fj(n), Hj{n) we have, for n G Cr, 

(17) ©, = (5ni Sn') 

This gives us a mechanical method for the determination of the numbers 
in the various classes Cr: The numbers in Cr are simply the first components 
of those elements of @ whose second component is r. 

Example. Consider the array 

(1,0) (0,0) (0,0) 
(18) (2,1) (8,1) (16,1) 

(3, 2) (12, 2) (48, 2) 
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The sequence it determines is: 

(1, 0), (2, 1), (3, 2); (9, 1), (10, 2), (11, 0), (13, 2), (14, 0), (15, 1); (17, 1), 

(18,2), (19,0), (25,2), (26,0), (27,1), (29,0), (30,1), (31,2), (49,2), 

(50, 0), (51, 1), (57, 0), (58, 1), (59, 2), (61, 1), (62, 2), (63, 0). 

Thus 

Co = {1, 11, 14, 19, 26, 29, 50, 57, 63}, 

d = {2,9 ,15,17,27,30,51,58,61}, 

C2 = {3, 10, 13, 18, 25, 31, 49, 59, 62}. 

By Theorem 2, since n\ = n2 = w3 = 3 and v = 0, we see that these classes 
have equal tth power sums for 0 < t < 2. 

In this example we used canonical (mod 3) projection maps (i.e. ones that 
mapped each of 0, 1,2 onto itself). We would get a similar splitting of the 
same numbers by using any of the other seven possible combinations of 
(mod 3) projection maps (with the hj(0) always 0). For a proof that among 
these eight splittings there are at least four distinct ones see (6). 

Noting that the array (5) with m = 3, n± = n2 = tit = 4, is: 

0 0 0 
1 4 16 
2 8 32 
3 12 48 

we see that the array of first elements in (18) yields a sequence of numbers 
whose base 4 expansion has no 0 in the right-hand place, no 1 in the second 
place from the right, and no 2 in the third place from the right, i.e. the splitting 
derived from (18) is a splitting of all numbers from 0 to 63 whose base 4 
expansions agree in no digit with 210. 

This result is a special case of the following theorem. 

THEOREM 3. The integers from 0 to bm — 1, inclusive, whose base b expansions 
agree in no digit with cw_i cm-2. . . c0 may be split into b classes such that the 
sum of the tth powers of the elements in a given class is the same for all classes for 
all t from 0 to m — 1 inclusive, and the splitting may be accomplished in 
(b — I)!™-1 ways by making use of (16). 

Except for the number of ways the splitting may be accomplished, the proof 
in no way differs from that given in the special case. The number of such 
splittings for arbitrary Fj(n) is greater than or equal to the number of distinct 
ways one can choose the Hj(n) in (16) so as to obtain distinct splittings of 
the Fj(n) when the Fj(n) are chosen in such a way as to lead to the sequence 
of natural numbers from 0 to bm — 1. This was shown to be greater than or 
equal to (b - 1) I1"-1 in (6). 

A similar result holds when the n$ are not equal. 

https://doi.org/10.4153/CJM-1964-063-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1964-063-7


DIGITS OF NUMBERS 633 

Using the first m + 1 columns of the array (7) for the first elements in our 
pairs we prove the following result in exactly the same way. 

THEOREM 4. The integers from 0 to dbm — 1, inclusive, whose base d expan­
sions do not have a units digit equal to any one of a fixed, but arbitrary, set of 
d — b of the integers 0, 1, . . . , d — 1 may be split into b classes such that the 
sum of the t-th powers of the elements in a given class is the same for all classes for 
all t from 0 to m — 1, inclusive, and the splitting may be accomplished in 
(b — l)!m _ 1 ways by making use of (16). 

As may be seen from the more specialized discussion in (6), we cannot 
expect the number (b — l)!™"-1 appearing in the last two results to be best 
possible. 

We derive one more consequence of Theorem 2. It will not involve the 
array (16). 

It is well known that 

(19) f) (-l)-(7)*l = 0 ior0<t<m. 

We generalize this formula to the multinomial coefficients. Taking all nj 
= b > 2 and F^n) = n in (13) we obtain: 

For each t, J2necr(ao + . . . + flm-i)' is independent of r; 0 < r < b, 
0 < t <m. 

let < > denote the number of numbers 0 to bm — 1, inclusive, whose base b 

The aj are, of course, the coefficients in the base b expansion of n. We now 
(m\ 

digit sum is s. Using this notation the above result becomes: 

(20) For each t, Y^\ \ sl is independent of r; 0 < r < b, 0 < t < m. 

Here the sum is over s = r (mod b). 

i m I 
Now < > is merely the number of ways we can write 5 as the sum of jo 

ones, j i twos, j 2 threes, . . . ,j6_2 {b — l) 's, where 

(21) jo + 2/i + " . . . + ( * - l)j6_2 = s. 

That is 

(22) {7} i=E«!/io!. . . i»-i!, 
where j 6 _i = m — jo — . . . — 7*6_2 and the sum is taken over all non-negative 
j t satisfying (21). 

Substituting into (20) we obtain for the sum 

JLZ(M\/jol...j,-ll)s' 
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where the inside sum is over j 0 + 2/i + . . . + (b — l)j&_2 = s and the outside 
sum is over s = r (mod b). 

Finally we have the following theorem. 

THEOREM 5. For each t, 

7.Î 

, - ^ - 1 ( j 0 + 2 j 1 + . . . + ( ô - l ) i & _ 2 ) f 

— Jo! . . . J 6 - i ! 

is independent oj r; 0 < r < b, 0 < / < m. Here the sum is over 

jo + 2ji + • • . + (b - l)jb-2 = r (mod b). 

When b is taken to be 2 we obtain a proposition equivalent to (19) and 
therefore Theorem 5 is an actual extension of (19). 

(Because of (22) one immediately sees the truth of the identity 
m(b-l) ( ) 

(23) (1 + x + x2 + . . . + x6-1)™ E ) ( xS, 

i m I 
which provides us with a generating function for the \ > .) 

4. In this section we derive several more consequences of Theorem 1. These 
will all be independent of the derivations in Section 3. 

1. Put 

/,(«) = ( - l ) n l n ' n *J. J = l , . . . ,m. 

Then for arbitrary Fj(n) we know that (9) holds at least for ctj = 0. Therefore, 
substituting into (11) yields 

(24) J?... "g1 (_i)"--"— (Ml - l) . . . (w« - J)5B' = 0 
ao=0 am-l = 0 \ ao / \am — 1/ 

for 0 < t < ai + . . . + oim + m. 
In particular, if Fj(n) = n/3j, j = 1, . . . , m, the aj of (9) are equal to 

fij — 2 (as can be seen by using (19)). Thus 

(25) S ' • • • i f (-l)fl0 + - — (ni " X ) . . . (nm " J ) 
a o=0 flm_i=0 \ ao / \ a m — 1 / 

X (a0 ]8o + . . . + am_i /3m_i)f = 0 for 0 < / < »i + . . . + nm — m. 

This special case of (24) is equivalent to (5, Theorem 5) and when all tij 
are equal to b and /3j = bj is equivalent to (3, equation (7)). 

2. Put 
fj(n) = n - (nj - l ) /2 , j = 1, . . . , m. 

Then for arbitrary F3(n), equation (9) is valid for a7 = 0 for all j . Hence, 
from (11) we obtain 
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(26) 
ao-0 am-i=0 \ Z / \ L / 

0 <t <m. 

(a) When all », = 2, 

i _ A fora, = 1, 
aj 2 " l - è fora, = 0, 

and, putting Vz(n) for the sum of the digits in the base 2 expansion of n, from 
(26) (suppressing a factor of 1/2W), we find: 

2w_i 

(27) r ( - i r ( B ) S n
! = 0, 0<t<m. 

When F,(#) = npjy then Sn = n and (27) is a special case of (25). This 
very special case gives another proof of the following well-known theorem. 

THEOREM 6. For each t, 0 < t < m, the sum of the t-th powers of the integers 
from 0 to 2m — 1, inclusive, with an odd number of ones in their base 2 expansions 
equals the sum of the t-th powers of those integers in the same range with an even 
number of ones in their base 2 expansions. 

A numerical example for m = 3 is: 

0* + 3< + 5 ' + 6* = l< + 2< + 4< + 7<, t = 0, 1,2. 

(b) When all nj = 3, 

aj — I = 

! " • 

for aj = 0, 
for a j = 1, 
for a j• = 2; 

so, from (26) we find tha t 

3 ™ - l -w—1 

(28) E 11 (a,-
n=0 ,==0 

l)Sn' = 0, 0 < t < m. 

The only non-zero terms in (28) arise from those n whose base 3 expansions 
have no digit 1. 

In the special case Fj(n) = npjy then Sn = n and the above result yields the 
following theorem. 

THEOREM 7. For each t, 0 < / < m, the sum of the t-th powers of the integers 
from 0 to 3W — 1, inclusive, having no ones and an odd number of twos in their 
base 3 expansions equals the sum of the t-th powers of those integers in the same 
range having no ones and an even number of twos. 

A numerical example for m = 3 is: 

0 ' + 8< + 20* + 24< = 2< + 6< + 18* + 26', / = 0, 1, 2. 
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3. Put 
/ , (») = ( - l ) » - l / » „ j = l,...,tn, 

and suppose that all % are odd and equal to 2k + 1. When Fj(n) = nfij, then 

= dt-i-^n ((0" + 2" + 4" + . . . + (2k)u) - ^ (1" + 3" + . . . 

+ (2ft - 1)")) 
= 0 for u = 0, 1, 
7± 0 for « = 2. 

Thus, each aj in (9) is equal to 1. Denoting the number of odd digits in the 
base 2k + 1 expansion of n by 02/M-I(^), we find from (11) (suppressing a 
factor of 2k/(2k + 1)): 

(2A+1)"»-1 

(29) S (-(* + l)A)*2*+l(n)V = 0, 0 < t < 2m. 
tt=0 

In the very special case /57- = p$, k = 1 we find that 

( _ 2 ) M » > = ( _ l ) ^ ) ( o o 2 ) - > < ( a ^ l ) ) 

where Vz(n) is the sum of the base 3 digits of n. In this particular case (29) 
is equivalent to (25) when all tij are taken equal to 3. I t should be noted, 
however, that when Pj = pjy k = 2, equation (29) is not contained in (25). 
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