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CLIQUE COVERINGS OF GRAPHS V:
MAXIMAL-CLIQUE PARTITIONS

,J, PULLMAN, H. SHANK AND W.D. WALLIS

A maximal-clique partition of a graph G is a way of covering G

with maximal complete subgraphs, such that every edge belongs to

exactly one of the subgraphs. If G has a maximal-clique

partition, the maximal-clique partition number of G is the

smallest cardinality of such partitions. In this paper the

existence of maximal-clique partitions is discussed - for

example, we explicitly describe all graphs with maximal degree at

most four which have maximal-clique partitions - and discuss the

maximal-clique partition number and its relationship to other

clique covering and partition numbers. The number of different

maximal-clique partitions of a given graph is also discussed.

Several open problems are presented.

1. Introduction and summary

For our purposes, graphs have no self-adjacent vertices and no

multiple edges. Complete subgraphs of a graph are called cliques. The

number of vertices in a clique is its order. A clique of order n is also

called an n-alique or a K . A clique covering of G is a family C of

cliques of G such that every edge of G lies in some member of C . If

the members of C are pairwise edge-disjoint, then C is called a clique

partition. If the clique covering C has cardinality |C| and
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|C'| t |C| for all clique coverings C' of G , then C is called a

minimum clique covering and |C| is called the clique covering number of

G , denoted by cc(G) . Similarly cp(G) , the clique partition number of

G , is the cardinality of a minimum clique partition. If G has no edges,

we define cc(G) = cp(G) = 0 . Since every clique partition is also a

clique covering we have cc(G) 5 cp(G) for all graphs G . Equality holds

when (but not only when) G is triangle-free, in which case

cc(G) = cp(G) = e(G) the number of edges of G .

This subject has its origins in the problem of representing set

intersections by graphs - see Erdos, Goodman and Posa [2], Lovasz [£],

Harary [6] - and its matrix-theoretic form was studied by Ryser [15], [76].

Recently Orlin [JO], de Caen [J2], [73], Donald [?], [74] and Pullman [77],

[72], [73], [14] have developed the subject further.

When seeking a minimum clique covering we may restrict our attention

to maximal cliques (those contained in no other clique in G ). The same

is not true for clique partitions. In fact many graphs have no maximal-

clique partition (no partition of the edge-set into maximal cliques). For

example if n > k , then the graph obtained by deleting one edge from K

has none.

The purpose of this paper is to present some facts and open questions

that we have found about maximal-clique partitions.

We discuss their existence in Section 2. For example, we describe

explicitly all graphs of maximum degree A(G) 5 k that have maximal-clique

partitions (Theorem l). We also present an alternative characterization

(Theorem 2) which yields some sufficient conditions for the existence of

such partitions.

If a graph G has a maximal-clique partition, it would be natural to

ask for the minimum cardinality of such partitions, the maximal-clique

partition number of G , denoted by mcp(G) . (For convenience we define

mcp(G) = 0 if G has no edges.) Clearly whenever mcp(G) is defined we

have cc(G) 5 cp(G) 5 mcp(G) with equality when, for example, G is

triangle-free. We would expect to find that cp(G) < mcp(G) for some (if

not most) graphs, just as we would expect cc(G) < cp(G) usually. It is a

curious fact that actually cc(G) = cp(G) = mcp(G) whenever A(G) 5 h and

mcp(G) is defined. This is discussed in Section 2 also.
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(An example where cc(G) < cp(<?) < mcp(C) is given in Section k.)

In Section 3, we discuss the number M(G) of maximal-clique

partitions of G . For example, we show, in Theorem 3, that for every

k > 0 , there exists a graph G with M(G) = k . We also study the

maximum value of M(G) over all graphs on n vertices.

In Section h, we present a large class of graphs each having exactly

two maximal-clique partitions. We use them to construct various examples

and counter-examples concerning mcp(G) .

2. On the existence of maximal-clique partitions

If B is a subgraph which does not contain all of the edges of G ,

then we say that S is a proper subgraph. If a subgraph H has the

property that for every clique K in G , either every edge of K or no

edge of K lies in H , then we say that H separates the cliques of G .

If some proper non-empty subgraph separates the cliques of d' , ve say G

is clique-separable. Otherwise G is clique-inseparable. If a subgraph

B separates the cliques of G , but no proper non-empty subgraph of B

does so, we call B a clique-block of G . Note that B is clique-

inseparable in itself. Therefore a subgraph B is a clique-block of G

if and only if B is a clique-inseparable graph and B is not a subgraph

of any other clique-inseparable subgraph of G . Note that if G has

isolated vertices, then they form one clique-block of G . It was shown in

[77, Lemma 2.7] that the family B(G) of clique-blocks partitions the edge

set of G . Therefore the family M(G) of maximal cliques of G is also

partitioned by B(G) and hence:

LEMMA 2.1. G has a maximal-clique partition if and only if each of

its clique-blocks has a maximal-clique partition, in which case

mcp(C) =

Therefore the study of maximal-clique partitions could be confined to

clique-inseparable graphs.

The next lemma (Theorem 1 of [7 7]) gives an explicit description of

all the clique-inseparable graphs G with maximal degree A(G) 5 h . We

refer the reader to [7 7] for the proof.

https://doi.org/10.1017/S0004972700005414 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700005414


3 4 0 N . J . P u l l m a n , H . S h a n k a n d W . D . W a I I i s

LEMMA 2 . 2 . If G is clique-inseparable and 4(C) 5 1) , then G is

K (the graph on n vertices with no edges), K , K , or one of the

graphs

G±, G2, . . . , G 1 0 ; P 1 , P 2 , . . . , P., . . . ; P£, Pj, ..., ?\, ... j

described in Figure 1.

k k-1 k-2 ' 3 2 -1 k-2 ' 3 2
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FIGURE 1
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The following is an immediate consequence of Lemmas 2.1 and 2.2.

THEOREM 1. If G has no isolated vertices and A(G) 2 It , then G

has a maximal-clique partition if and only if its clique-blocks are either

G , G , G or cliques.

The graph of Figure 2, below, has eight clique-blocks: four K 's ,

one K , one G and two G 's . Therefore by Theorem 1, it has a

maximal-clique partition. Although it would appear that Theorem 1 might be

difficult to apply to more complicated graphs, there are linear-time

algorithms for finding the clique-blocks of graphs G with A(G) 5 h ;

see [II].

FIGURE 2

It is a consequence of Lemma 2.2 that all clique-inseparable graphs G

with A(G) < U have at most one maximal-clique partition except for

G = Gr which has exactly two, and when such a G has a maximal-clique

partition it is also a minimum clique covering. Summarizing, we have:

COROLLARY 1.1. Whenever A(G) 5 h and G has a maximal-clique

partition:

(a) cc(G) = cp(G) = mcp(G) ;

(b) all maximal-clique partitions of G have the same

cardinality; and

(c) G has exactly 2 maximal-clique partitions for some

integer I > 0 .

In Sections 3 and h we will show that (a), (b) and (c) are not
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typical, in that:

(1) there exist graphs G with cc(G) < cp(C) < mcp(C) (see

Example k.3);

(2) there exist graphs having maximal-clique partitions of

different cardinality (see Example h.2); and

(3) for every k > 0 , there exist graphs having exactly k

maximal-clique partitions (see Theorem 3).

Although we were unable to obtain an explicit description of all

graphs having maximal-clique partitions (except when the maximum degree is

less than 5 ) we can present an alternative characterization. This

provides a different perspective on the problem of existence of maximal-

clique partitions and provides some sufficient conditions.

First, we associate a graph G* with G as follows. The vertices of

G* are the maximal cliques of G . Two distinct vertices of G* are

deemed adjacent in G* if they share an edge as cliques of G . We may

assume without loss of generality that every edge in G lies in at least

two maximal cliques. The set of all maximal cliques of G containing the

edge e of G are the vertices of a clique in G* . Call that clique

K*{e) .

THEOREM 2. A family A of maximal cliques of G is a maximal-

clique partition of G if and only if A is an independent set of

vertices in G* with the property that for every edge e of G , some

vertex of K*(e) is in A .

COROLLARY 2.1. If every edge of G belongs to exactly two maximal

cliques, then the following statements are equivalent:

(a) G has a maximal-clique partition;

(b) G has two maximal-clique partitions, which partition the

maximal cliques of G ; and

(c) G* is bipartite.

Proof. Use Theorem 2 to prove (c) implies (b) and to prove (a)

implies (c) .

NOTE. There may be more than one pair of maximal-clique partitions

satisfying Corollary 2.1 (b), unless G* is connected. Indeed if G* has

https://doi.org/10.1017/S0004972700005414 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700005414


Cl ique coverings of graphs 343

w connected components, then there are 2 such pairs.

COROLLARY 2.2. Let G be a triangulation of the plane containing no

Ki in which each edge belongs to exactly two triangles. Then G has a

maximal-clique partition (and hence two of them) if and only if G is

Eulerian.

Proof. Note that G* is a planar dual of G , so that G* is

bipartite if and only if G is Eulerian.

To what extent is the hypothesis of Corollary 2.1 necessary?

EXAMPLE 2.1. Let B be the graph illustrated in Figure 3. For each

k > 0 , add 2k vertices to the circle in B. and add kk edges, linking

the 2k vertices to 0 and 0' . According to Corollary 2.2, the

resulting graph B, has no maximal-clique partition. Nevertheless, every
K

edge in the graph lies in two maximal cliques (triangles).

FIGURE 3.

We say that G is r-partitionable if the family of all maximal

cliques of G can be partitioned into r maximal-clique partitions.

The following is a partial generalization of Corollary 2.1.

COROLLARY 2.3. If for some r > 1 , every edge of G belongs to
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exactly r maximal cliques, then G is r-partitionable if and only if

G* is r- colourable> in which case G* is r-chromatic.

Proof. If G* is r-colourable let A A , ..., A be its colour

classes. If e is any edge of G and 1 5 i £ r , then one vertex of the

r-clique K*{e) must be in A. . Therefore each A. is a maximal-clique

partition by Theorem 2. Since all the vertices of G are coloured, G is

r-partitionable. Conversely, suppose G is r-partitionable and

A , A , ..., A are its maximal-clique partitions. These define r

colour classes in G* hence x(G*) - r • B u t K*(e) is an r>-clique,

hence X,{G*) = r •

Corollary 2.3 shows that G is r-partitionable for at most one value

of r . Notice that r-partitionable graphs have the property that every

edge lies in exactly r maximal cliques. In the next section we shall

encounter graphs H-, which have some edges in 2 maximal cliques and

others in k maximal cliques. Therefore these graphs cannot be

r-partitionable (when k > 2 ) even though they have maximal-clique

partitions.

EXAMPLE 2.2. Let L be the complete tripartite graph on 3m

vertices defined by 3 edge-free m-sets for m > 1 ; then L has

precisely m maximal-clique partitions (and these partition the maximal

cliques of £ ) . To see why this is so, we apply Corollary 2.3. The

maximal cliques are all m of the triangles in L . Each edge lies on

exactly m maximal cliques (triangles). Now let U = {U. : 1 5 i 5 m] ,

V = {VV. : 1 5 i 5 m) and W = {W. • 1 2 i 5 m\ denote the three

independent disjoint vertex sets defining L and let T{i, j, t) be the

triangle whose vertices are U.V.W. . , for l<i,j,t<m. The

subscript on W is read modulo m . Each set

A = {T(i, j, t) : 1 £ i, j 5 m) is independent in L* . To verify this,

suppose T(i, j, t) has an edge in common with T(i', j', t) so

U, 3) = U', j') , (i, i+3+t) = (£', i'+j'+t) or

U, i+j+t) = (j;, i'+j'+t) ; hence i = i' , j = j' and

https://doi.org/10.1017/S0004972700005414 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700005414


Clique coverings of graphs 345

T(i, j, t) = T(i', j', t) . It also is easy to check that every vertex of

L* is some T(i, j, t) . Therefore {A^ A2, ..., A^} is an m-colouring

of L* , and hence L is m-partitionable by Corollary 2.3.
m m

Example 2.2 establishes

COROLLARY 2.4. There exists an r-partitionable graph for every

r 2 1 .

3. Graphs with a prescribed number of maximal-clique partitions

The graph G of Figure 1 has two maximal-clique partitions, that is

M[G ) = 2 . Specify one triangle t in G . Let C be the clique

partition containing t and D be the other. Let H~ be the graph

obtained by joining k replicas Gz, CT Gl of G together at t .

Figure h (see p. 3^6) illustrates H . Let C. and D. be the maximal-

clique partitions in G corresponding to C and D respectively in

k
G , Define the maximal-clique partitions E = U C. and
5 ° i=i t'

E. = D. u (E \C .] for j = 1, 2, ..., k . Suppose E is any maximal-
ly J u j

clique partition of G . If t € E , then E = E If t tj. E , let e

be an edge of t . The edge e must be covered by some triangle of G - t

which must be in some D . , and hence all of D . is in E . The presence
J 3

of the triangles of D . in E precludes the presence of any triangles of
u

D. in E for i + j • Therefore the edges of H not covered by D .
^ 3

must be covered by the triangles of C.\t with i f j . Consequently

E = E. . This shows that M{HV) = k + 1 for all k > 2 . As we have
3 K-

already seen some graphs with 0 and 1 maximal-clique partitions, we

have shown:

THEOREM 3. For every k > 0 , there exists a graph with exactly k

maximal-clique partitions.

Let G(w, k) denote the set of all graphs G on n vertices with
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FIGURE 4

exactly k maximal-clique partitions. That is, G is in G(n, k) if and

only if M{G) = k and \>(G) = n . According to Theorem 3, given any

k 2 0 , there exist n such that G(n, k) is not empty.

Let M(n) denote the largest k for which G(n, k) is not empty.

Our previous results imply that M(n) = 1 for all n 2 5 and M(6) = 2 .

The graph with m connected components, each isomorphic to (?_ (see

Figure l), has 6m vertices and precisely 2 maximal-clique partitions,

L«/6J
from which it follows that M(n) > 2

bound.

But we can improve on that

We write K(k, m) for the complete fe-partite graph with each part of

size m : the vertices of K(k, m) are partitioned into k m-sets

V , V , ..., V, , and vertices are adjacent if and only if they lie in
1 t- K
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different m-sets. The graph L of Example 2.2 is K(3, m) . Let

M[K(k, m)) = M{k, m) be the number of maximal-clique partitions of

K(k, m) .

A maximal clique in K(k, m) is a k-clique with one vertex in each

part. Therefore a maximal-clique partition may be represented as a

2
k x m array A where each column represents a maximal clique:

A(i, j) = £ means that clique j contains vertex 1 from V. ; and
Is

given two rows i and i , the array formed by deleting all other rows

of A contains every possible column of two entries from tl, 2, ..., m}

exactly once. Such an object is an orthogonal array Ok\m , k, m, 2~\ of

index 1 , strength 2 with m constraints and k levels. So we seek

the number of different OA [m , k, m, 2j's (an orthogonal array derived

from another by column permutations will not be considered different).

An orthogonal array of strength 2 with k levels is equivalent to

an ordered set of k - 2 orthogonal Latin squares of side m ; rows 1

and 2 of the array are used to coordinatize the squares as two sets of

Latin squares are different if and only if the two corresponding arrays

cannot be obtained from each other by column permutations. Therefore

M(k, m) is the number of different ordered sets of k - 2 mutually

orthogonal Latin squares of order m .

A reduced Latin square on the symbols say {l, 2, ..., m] is one with

first row and column in standard order say (1, 2, ..., m) . Let I

denote the number of reduced Latin squares on m symbols; then, from [5],

so

M{3, m) = m\{m-\)\l
m

> ml(m-l)'. ... 1! for all m .

So, given n divisible by 3 , there is an M-vertex graph G with at

least (n/3)! ((«/3)-l)! I ,-, maximal-clique partitions. By attaching on

end of one (or two) - 2̂'
s t o different vertices of G we obtain graphs

with the same number of maximal-clique partitions, having n + 1 (or
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n + 2 ) vertices. This establishes

THEOREM 4 . M(n) >ml(m-l)ll where m = [n/3\ •
m

The following table gives some idea of how fast M(n) grows: (see

[3] for I. with i < 5 , [4] for I, , [7 7] for I and [J9] for la ),

TABLE 1

m

I
m

M(3m)

1

1

1

2

1

2

3

1

> 12

1+

k

> 576

5
56

> 161280

9

> 812

6

,1(08

,851,200

7
16,9^2

> 6 x

,080

1013

535

i

,281

: 1 x

3

,1(01,856

1020

Except for m 2 2 , Theorem 1* was used for the lower bound on M(3m) . The

lower bound on W(9) is also obtained from the graph L_ of Example 2.2.

4. Proper intersection graphs

Let S be a set of n > 1 elements and 5 be the family of all

r-sets in 5 for 1 2 r 2 n . Let V be any nonempty subset of S and

declare two members of V to be adjacent if their intersection has

cardinality r - 1 . We call the resulting graph G(S, V) the

intersection graph generated by S and V . For example, all line graphs

are intersection graphs. The triangle graphs (see [77]) are also inter-

section graphs.

Fix S and V arbitrarily and let G = G(S, V) . If W is any

(r-l)-set in S , let A(&0 = {T € V : W c T} and if k(W) * 0 , let X({/)

be the subgraph of G induced by MW) ; that is, A(W) = G[I\(W)] .

Define A = {A(W) : W € 5 _ } . If Z is any (r+l)-set in S , let

B(Z) = {7 € V : T c Z} and if B(Z) # 0 , let B(Z) = G[B(Z)] . Define

B = J5(Z) : Z € S } . The definition of adjacency in G implies that A

is a clique covering. Suppose W 4- W and T , T are common vertices of

A(W) and A(W') ; then for i = 1, 2 , 2\ = {/ u {x.} for some x. I W

and T. = W u {x!} for some x! t J/' . We then have

T. = (W n (/') u {a:., xl} and hence W\W = {x!} . Therefore T = To .
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Consequently A(W) and A(W') have at most one common vertex. This

establishes

LEMMA 4 . 1 . If G(S, V) is any intersection graph, then A is a

clique partition.

For each subset Y of S , l e t Y denote S\Y and l e t

V = {T : T € V} . For each Z 6 Sy+1 , l e t A~(2f) = { T E ? : Z c ? } . The

mapping Y -* Y preserves adjacency between G(S, V) and G(S, V) , and

maps A(Z) onto B(Z) . Therefore B is a clique partition of G , as

A(Z) is a clique partition of G{S, V) by Lemma U.I.

LEMMA 4.2. Let G(S, V) be any intersection graph. If A is a

member of A and B is a member of B 3 then A n B has at most one

edge.

Proof. Suppose A = A(W) , B = B(Z) and

n B(Z) = {T1, T2, . . . , Tk) .

For each i 2 1 there exist x. i S\W and y. (. Z such that

T. = W u {x.} and T. = Z\{y.} , by the definitions of A(W) and B(Z) .

We have y . £ V u ~Z and 1/ u Z" = S\{a:n , y, } . Therefore fc S 2 .

We will say that an intersection graph is proper if every (r-l)-set

in 5 contained in at least one member of V is contained in at least

three different members of V , and every (r+l)-set in 5 that contains a

member of V contains at least three different members of V . The order

of every clique in A and every clique in B is at least 3 if G{S, V)

is proper. Moreover every vertex will have exactly r members of A and

n - r members of B incident with it.

LEMMA 4.3. If G{S, V) is a proper intersection graph then A and

B are disjoint maximal-clique partitions.

Proof. It follows from the previous lemma that A n B = 0 . Let

A{W) be any member of A . Since G is proper we know that A(W) has at

least three vertices T, T , T . Suppose T is any vertex of G

adjacent to each of them. Let [x.} = T.\W for i = 1, 2, 3 , so that

T n T. = {T n W) u [T n {x.}) . If all three x. were in T , then
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{x , x x } c T so \T n W\ S v - 3 and hence \T n T.\ < r - 2 which

is impossible. Therefore some x. £ 7 , so that |f n W\ = r - 1 and

hence V <= T Consequently T is a vertex of /l(iv') . But T was

arbitrary and hence A(W) is a maximal clique. By the same argument, the

cliques of G(S, V) whose vertex-sets are 7\(Z) are maximal. Therefore

B(Z) is maximal because the mapping Y -*• 1 of G(S, V) onto G(S, V) is

adj ac ency-pre servi ng.

LEMMA 4.4. If K is any clique in a proper intersection graph G

and K has more than 2 vertices, then K is covered by some member of

A j or K is covered by some member of B ; but K cannot be covered by

a member of A and by a member of B .

Proof. First, notice that Lemma X.2. implies the last assertion of

Lemma h.k. Next we assume that K is a triangle with vertices T , T ,

T. . We have T. = W u {x.} for some W € S n and some x. \. W for
3 1, l ^J r-1 ^ r

£ = 1,2 because T is adjacent to 7 . Let Z = T n T n T . If

Z = W , then £ c A{W) . If Z * W , then 2\ = {x±, x2) u W\{y] for some

y € V . Let Q = T± u T2 . Then § € S ^ and 2\ c Q for

£ = 1, 2, 3 . Thus K c B{Q) . Therefore K is covered by a member of A

or by a member of B . This establishes Lemma 't.'t if K is a triangle.

Now suppose that K is an arbitrary clique of order exceeding 3 and

T, T , T T are among its vertices. We will use the notation PQR to

denote the triangle whose vertices are P, Q, R . We know that the

triangle T TJT is covered by a clique J that belongs to A or to B ,

say to A . We also know that T T T is covered by a member M of A or

of B . We will show that M must be in A also. Suppose to the

contrary, that M € B . The edge ^ 2 ^
 :"'s c o v e r e d ^v some member of B ;

call it M' . Lemma U.2 implies that M n J has at most one edge, hence

M n J = T T . Therefore M' + M . Similarly, the edge TT^ is covered

by some member J' of A and J' # J . Now consider the triangle

K' H TT2T . Two of its edges T2T , TT2 are in different members of A

so K' cannot be covered by any member of A . Similarly K' cannot be

contained in any member of B . But that contradicts the fact that Lemma
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k.U holds for triangles. Therefore TT T is covered by some member J"

of A , but J" n J contains an edge T T and A is a partition of the

edges of G , so J" = J and hence TT T c J . Similarly TT .T . <=• J for

\ t~ —~ "£• J

all 1 - i, j — 3 • Since T was an arbitrary vertex of K and J was

uniquely determined by T T T it follows that K <=_ J . This

completes the proof of Lemma !*.!».

Lemmas k.3 and k.k are summarized in the following

THEOREM 5. Every proper intersection graph is two-partitionable.

EXAMPLE 4.1. If \S\ = n and V = 5^ , let G(n, r) denote

It is easy to verify that for all 1 - r 2 n , G(n, r) is an

f»-2lr(n-r)-regular graph on (̂J vertices and {!) \ edges, A consists

of cliques of order n - r + 1 and B consists of . cliques

of order r + 1 . For G(n, r) to be proper, we require n-2 > r ?. 2 .

EXAMPLE 4.2. C(5, 2) is the line graph of K (the complement of

the Petersen graph). It has 10 vertices, A consists of five ^-cliques

and B consists of 10 triangles. Therefore graphs can have maximal-

clique partitions of different cardinality. Is there a graph on fewer than

10 vertices having that property?

LEMMA 4.5. Suppose A and B are the maximal-clique partitions of

a two-partitionable graph G . If A € A , let H be the graph obtained

by replacing A by a clique A' of higher order. Then H has precisely

one maximal-clique partition A' } obtained by replacing A by A' in

A .

Proof. Evidently A' is maximal in H , A' is a maximal-clique

partition of H and ft' u B partitions the maximal cliques of H . Let

M be any maximal-clique partition of H . The clique A ' must be in M

because M covers H and no member of B covers A ' . Now

M' = (MV4') u {A} is a maximal-clique partition of G and hence is either

A or B . But A If. B , hence M' = A and M = A' .

EXAMPLE 4.3. The graph G(5, 3) has ten vertices and 30 edges. A

consists of 10 J£,'s » B of 5 K^'s . Replace one of the triangles in
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A by a new K, to obtain a graph H . By Lemma U.5, mcp(ff) = 10 . We

shall now show that mcp(#) > cp(ff) . The graph H has 33 edges. If we

let C = B u Q where Q is the set of 3 edges added to G to form H ,

then C is a clique partition of H and |C| = 8 .

Next, we show that cp(ff) = 8 . Suppose that D is any clique

partition of H , a = |D| and d. is the number of j-cliques in D for
J

each j > 2 . We have

(a) d2 + 3d3 + 6dk = 33 and

(b) d2 + d3 + d^ = c .

It follows from (a) that d^ = 0 (mod 3) . Let t = d2/3 ; then

(c) d + 2d. = 11 - t and

(d) e = 11 + 2* - d^ .

But d > 0 , so (c) implies that d, S L(ll-t)/2j . Therefore, applying

(d) , we see that c > 8 when t > 1 . If t = 0 , then d = 0 , so

Q n D = 0 . But the members of Q must be covered by D , therefore D

contains K , the new U-clique used to transform G into H . There are

only two \'s in G that do not share any of K's edges. Therefore

d 2 2 . So c ^ 9 when t = 0 , by (d). Since t > 0 , we have shown

that |D| > 8 for any clique partition D of H . But |C| = 8 .

Therefore cp(ff) = 8 . Finally, we show that cc(#) = 6 . Let

E = B u {K} ; then E is a clique covering of H and |E| = 6 . Any

clique in H is contained in some f*-clique, so any clique covering can be

replaced by one of the same cardinality containing only U-cliques. But

all the U-cliques of H lie in E and no proper subfamily of E covers

H . Thus cc(#) = 6 . Therefore cc(ff) < cp(#) < mcp(fl) . Is there a

graph G on fewer than 11 vertices having cc(G) < cp(G) < mcp(G) ?

EXAMPLE 4.4. Let S be the set of points in PG(m, s) , the

protective m-space of order s . Let V be the family of all

independent r-sets in S for 1 2 r 2 m+1 , that is, an r-set of S is

in V if it is contained in no (r-2)-flat of the geometry. The
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intersection graph P(m, s, r) = G[S, V ) is proper if r > 3 . For any

r > 1 , P(m, s, r) has v(m, s, r) vertices where

v = a 2 (S
m+1-l) {sm-l) ... (sm-r+2-l)/r!(S-l)

r .

This formula for \V \ = v(m, s, r) is derived in [IS, p. 52]; note that

the factor (k+l)\ was omitted from the denominators of the last

expression on page 52 and the first expression on page 53. Given any

(r-l)-set W of S , A(V) = 0 if W is dependent. If W is

independent, let F denote the (r-2)-flat generated by W ; then

j A( f/)| , the number of independent r-sets containing W , is

\S\F\ = (sm+1-l)/(s-l) - (s^^-lj/Cs-l) . Therefore every member of A is

a clique of order t = (s -s J/(s-l) . But just before Lemma h.3 we

noted that every vertex of a proper intersection graph is incident with

precisely r cliques of A when its vertices are r-sets. It follows

that the degree of each vertex of P{m, s, r) is d = r(t-l) and hence

for all r > 1 , P(m, s, r) is regular of degree

r[sm+ -s ~ -s+l)/(s-l) . We also know that |A| = v(m, s, r-l) because

the members of A are in a one-to-one correspondence with the independent

(i'-l)-sets. The B cliques are not necessarily all of the same order.

For example, B consists of 28 3-cliques and 7 U-cliques in

P(2, 2, 3) .

Similar examples can be obtained by using affine m-space of order s

for S .

EXAMPLE 4.5. Tree graphs of matroids (matroid basis graphs) are

further examples of intersection graphs. The following is a paraphrase of

the definition given by Holzmann and Harary [7]. Let S be a finite,

nonempty set and V a family of subsets of S satisfying

(1) no member of V properly contains another, and

(2) if T , T2 € V , then for every x € T there exists

y € T such that [(T \{x}) u {y}) € V .

The members of V are called the bases of M = (S, V) . Next, let 1(M)

be the graph whose vertices are the bases of U , with two bases T, T'
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deemed adjacent if for some x, y in S , T\{x] = T'\{y] . Axiom (2)

ensures that all bases of M have the same cardinality, r . The

definition of adjacency implies that two bases are adjacent if and only if

their intersection has cardinality r - 1 . Therefore T(M) is the inter-

section graph G(S, V) .

To what extent is the converse true? Matroid basis graphs are

connected (see, for example, [9]), but not all intersection graphs are

connected. (it is easy to see that G(S, V) is disconnected if and only

if for some proper subset V of V , \T n T | < v - 1 for all T € V

and all T € v\V .) However, even if we limit our attention to connected

intersection graphs G{S, V) we can find examples for which (5, V) does

not satisfy axiom (2). The folloving is such an example.

EXAMPLE 4.6. L e t S = {i, 2, 3, ..., 18} and

A. = {x € S : x = I (mod 3)) for i = 0, 1 and 2 . Let V be the family

of all 6-sets T in S , except those such that

\T n A I = 12" n A I = 2 . Evidently G(S, V) is a proper intersection

graph. It can be shown that this graph is connected. (First show that the

2
subgraph H generated by U {T € V : A. n T = 0} is connected, then

i=o z

2
show that every member of U {T £ V : \T n A.| = 2} is connected to

i=0

# J On the other hand, if we let T = {3, 1, *t, 2, 5, 8} and 2" = A ,

then 2" T are in F but

((ri\{8)) u {y}) I 7 for all «/ € 2"2 .

Therefore (S, V) does not satisfy axiom (2).
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