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STRICTLY SINGULAR AND STRICTLY COSINGULAR
LINEAR RELATIONS AND THEIR CONJUGATES

TERESA ALVAREZ

In this paper various conditions are given under which the strict singularity (respec-
tively, strict cosingularity) of a linear relation implies the strict singularity (respec-
tively, strict cosingularity) of its conjugate.

1. INTRODUCTION

In ([8, 16, 17]), the authors have considered the notions of subprojective and su-
perprojective normed spaces in order to obtain duality relationships between strictly
singular and strictly cosingular operators and their conjugates. We remark that all the
above authors investigated only the case of bounded operators in Banach spaces. It is the
purpose of this paper to consider this study in the more general setting of linear relations
in arbitrary normed spaces.

In Section 2 we show that the definition of strictly cosingular linear relation gener-
alises the classical definition of Pelczynski [15], with the two definitions being equivalent
in the case of bounded operators from one Banach space into another. We present a
result which will be used extensively in the subsequent sections.

Section 3 investigates when the conjugate of a strictly singular linear relation is
strictly singular and, conversely, when the strict singularity of the conjugate implies the
strict singularity of the linear relation.

In Section 4 we analyse the strictly cosingular linear relations in a similar way. The
results obtained in Sections 3 and 4 generalise similar results of Whitley [17] and Shannon
[16] for bounded operators between Banach spaces.

NOTATIONS. We recall some basic definitions from the theory of linear relations in
normed spaces following the notation and terminology of the book [5]. Here X and
Y are normed spaces. A linear relation or multivalued linear operator T in X x Y is a
mapping from a subspace D(T) C X, called the domain of T, into P(Y)\{@} such that

T(ax1 + fix2) - aTxi + 0Tx2
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2 T. Alvarez [2]

for all nonzero scalars a, ft € K and X\,x2 € D(T). The class of such relations T is

denoted by LR(X, Y). If T maps the points of its domain to singletons, then T is said

to be a single valued or simple operator.

The graph G{T) of T e LR(X, Y) is

G(T) := {(*,!/) € * x r : a; €£>(r ) , j / e T i } ,

Let X denote the completion of the normed space X. The completion T of T £ LR(X, Y)

is the linear relation in LR(X, Y) whose graph is G(T).

Let M be a subspace of D(T). Then the restriction T \M is defined by

G(T \M) := {(m,y) :meM, ye Tm).

For any subspace M of X such that M n D(T) ^ 0, we write T |M= T \MnD(T)- The
inverse of T is the linear relation X1"1 defined by

G t T - 1 ) := {(y,x) eYxX:(x,y)e G(T)}.

If T"1 is single valued, then T is called injective, that is, T is injective if and only
if its null space N(T) := T~l(0) = {0}, and T is said to be surjective if its range
R(T) := T(D{T)) = Y. If M is a subspace of X, then Mx := {x' € X' : x'(x)
= 0 for all x e M}. The conjugate T' of T is defined by

G(T') := G^-T-1)-1 C F ' x I 1

where
((y,x),(y',x')):={x,x') + (y,y').

For a given closed subspace E oi X let Jjj (or simply, JE) denote the injection map from
E into X and Qg (or simply, Q^) denote the quotient map from X onto X/E. We shall
denote Qj^r by Qr- Clearly QTT is single valued. For

x €

and the norm of T is defined by || T ||:=|| QTT ||. We shall write J$ for the injection of
X into its completion.

The families of infinite dimensional and closed infinite codimensional subspaces of
X are denoted by I{X) and £{X) respectively. A linear relation T 6 LR(X, Y) is said to
be continuous if for each neighbourhood V in R(T), T~l(V) is a neighbourhood in D(T),
bounded if it is continuous and everywhere defined, open if its inverse is continuous,
partially continuous if there exists a finite codimensional subspace M of X such that
T \M is continuous, semicontinuous if it is of the form T = A + F, where A is continuous
and F has finite dimensional range, compact if QTT is a compact single valued, F+ if
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there exists a finite codimensional subspace M of X for which T \M is injective and open,

F_ if T" is F+. If Y is infinite dimensional, then

r'(T) := inf{|| QM4T ||: M € £ (?)},
A'(T) := sup{r'(QMT) : M €

and these quantities are defined to be zero if Y is finite dimensional.
The class of partially continuous, F+ and F_ linear relations in LR(X, Y) will be

denoted by PB(X,Y), F+(X,Y) and F.{X,Y) respectively.
As remarked by Wilcox [18], single valued maps were favoured as the natural mor-

phisms in the rigorous development of topology at the start of the 20th century. Nev-
ertheless, limits of sequences of sets were considered by Painleve in 1909 and later by
Kuratowski [11] in 1958. Furthermore, extension to problems in topology led to the
study of selections or single valued parts of upper and lower semicontinuous set valued
maps. Multivalued maps, of course, occur quite naturally, but the earnest development
of mathematical methods for set valued or multivalued problems came in the 1960's.

Linear relations were introduced by von Neumann [14], motivated by the need to
consider conjugates of non densely defined linear differential operators.

Problems in optimisation and control also lead to the study of set valued maps and
differential inclusions (see, for example, Aubin and Cellina [1], Clarke [2], among others).
Studies of convex processes, tangent cones, etcetera, form part of the theory of convex
analysis developed to deal with nonsmooth problems in viability and control theory, for
example. Some of the basic topological properties from this area coincide with the core
of the topological results for multivalued linear operators. Others works on multivalued
linear operators include the treatise on partial differential relations by Gromov [9] and
the application of multivalued methods to the solution of differential equations by Favini
and Yagi [7].

A recent work on linear relations of semi-Fredholm type and others classes related
to them is the book "Multivalued Linear Operators" by Cross [5]. This is the first book
that has been published on these classes of linear relations.

Finally, according to Whitley [17], a normed space X is called subprojective if
for every closed infinite dimensional subspace W of X, there exists a closed infinite
dimensional subspace W\ of W such that Wx is topological complemented in X. We
say that X is superprojective if for every M G £(X) there exists Mi € £(X) such that
M C M\ and M\ is topological complemented in X.

2. DEFINITIONS AND BASIC RESULTS

We begin by giving some auxiliary properties of strictly singular and strictly cosin-
gular linear relations which will be used extensively in the following sections.
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DEFINITION 1: ([5, V. 1.1].) A linear relation T 6 LR(X, Y) is called strictly
singular if there is no M G T(D(T)) such that T \M is injective and open.

This notion was introduced for bounded operators in Banach spaces in Kato [10]
and for unbounded operators in normed spaces in van Dulst [6] and Cross [4].

DEFINITION 2: ([5, V. 5.18].) T e LR(X,Y) is said to be strictly cosingular if
A'(T) = 0.

According to Pelczynski [15] a bounded operator T : X —> Y, where X and Y
are Banach spaces, is called strictly cosingular if there does not exist a closed infinite
codimensional subspace M of Y for which QMT is surjective. Following Labuschagne
[12] an operator T : D(T) C X -> Y (X,Y normed spaces) is denned to be strictly
cosingular if there is no M € £ (Y) such that (QMT)' has a continuous inverse. Note that
from [8, II. 4.4] it follows that this notion is equivalent to Pelczynski's.

As is illustrated by the next Proposition, the definition given for strictly cosingular
linear relations corresponds to that given by Labuschagne for strictly cosingular operators.

PROPOSITION 3 . LetT e LR(X, Y) be single valued. Then T is strictly cosin-
gular if and only if there is no M e £{Y) such that {QMT)1 has a continuous inverse.

PROOF: The result follows directly from the fact that T is not strictly cosingular in
the sense of Labuschagne if and only if there exists M € £(Y) such that QMT S f - [13,
1.2] equivalents T'(QMT) > 0. D

The families of all strictly singular and strictly cosingular linear relations in LR(X, Y)
will be denoted by SS(X, Y) and SC(X, Y) respectively.

PROPOSITION 4 . ([4, 3] and [12, V. 1.2].) Let T e LR(X, Y) be single valued
of the form T = A + F where A is a continuous operator and F is a finite rank operator.
Then:

(i) T € SS(SC) if and only if A e SS(SC).

(ii) T € SS(SC) if and only if A1 e SS(SC).

THEOREM 5 . Let T € LR{X,Y). Then:

(i) IfT is partially continuous, then T is strictly singular ifV is strictly cosingular.
(ii) If D(T') is closed and finite codimensional in Y', then T is strictly cosingular

whenever T" is strictly singular.

PROOF: (i) Let us consider the various cases for T:

CASE 1. T is a continuous single valued. In that case the assertion was proved by
Labuschagne [12, V. 3.1].

CASE 2. T is a partially continuous single valued. This is covered by Case 1 if we
combine Proposition 4 with the fact that ifT € PB(X,Y) and single valued, then
is semicontinuous [5, V. 9.2].
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C A S E 3. T is a partially continuous linear relation. We consider the single valued QTT.

Then we have that

TePB<* QTT G P£ , T G SS <=> QTT G 55

and T G SC => (QTT1)' G 5C (as (QTT)' = 7"JT(0)x [5, III. 1.10] and A'(T'7T(0)x)
<|| JT(0)J. || A'(T') [5, IV. 5.8]. Thus, substituting QTT for T, the result follows from
the Case 2.

(ii) For single valued the theorem is due to Labuschagne [12, V. 3.1].
Passing to the general case, we observe that .0(7") is closed and of finite codimension

in Y' if and only if T is partially continuous and dimT(O) < oo [5, V. 11.3]. Then QTT
is a partially continuous operator which is equivalent to that D((QTT)') is closed and
finite codimensional in {QTY)' [13, 2.5], (QTT)' G SS whenever T" G SS [5, V. 2.10] and
as dim T(0) < oo we deduce from [5, IV. 5.6] that T is strictly cosingular if and only if so
is QTT. Consequently, the result follows from the corresponding result for single valued
applied to QTT. U

Any single valued T for which D(T') = {0} is not partially continuous by [13, 2.5]
and hence T g SS by [4, 6]. Clearly T € SS<1 SC and T £ SC since T" is compact and
has a continuous inverse. This remark shows that the property (i) (respectively, (ii)) of
Theorem 5 may fail if T is not assumed to be partially continuous (respectively, if D(T')
is not required closed and finite codimensional).

3. STRICTLY SINGULAR LINEAR RELATIONS AND THEIR CONJUGATES

In this section we investigate the influence of subprojectivity and superprojectivity
on the implication T G SS =*• 7" G SS and the converse, where T is a linear relation
from one normed space into another.

First we recall the following definition.

DEFINITION 6: [5, IV 3.1] Given T G LR{X, Y) let XT denote the vector space
D{T) normed by || x | | r :=| | x || + || Tx ||, x G D{T). Let GT G LR(XT,X) be the
identity injection of XT into X which is called the graph operator of T and we write
GT — G when T is understood.

Note that TG is a bounded linear relation by [5, IV. 3.2].

PROPOSITION 7 . LetY be subprojective and T G SC(X,Y) such that D{T)
is closed and ofGnite codimension in Y'. Then T G SS(X, Y).

PROOF: According to [5, V. 11.3], D(T') is closed and finite codimensional in Y' if
and only if T is partially continuous and dim T(0) < co.

First assume that T is bounded. Suppose that T £ SS{X, Y) and let M G X[X)
for which T \M is injective and open and so by [5, III. 4.6] (TJM)' is open. Since
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dim£>(T \M) + dimT \M (0) = dimD((T \M)~l) + dim(T | w ) - x (0) [5, I. 6.4], we have
that the closure of TM, say TM, is a closed infinite dimensional subspace of Y, and thus,
by the subprojectivity of Y there exists a topological complement subspace N G I(TM)

and let Z G £(Y) be a topological complement of N.

To prove that T is not strictly cosingular it is enough to show that T'(QZT) > 0 or
equivalents QZT G F_ (as d imQ z T(0) < oo and [5, V. 5.17]). Clearly QN±JZ± is an
isomorphism and thus there exists a > 0 such that

(1) a \\ y'UW y'+ N1 \\, y' G Z1 n D(T)

We shall verify that (TJM)' is an extension of QMJ.T. Prom [5, III. 1.4] and D{T)

= X (as T is bounded) we obtain that (77M)'(0) = (QMxT')(0) = {0} and by [5, III.
1.6], G(QM±T) = G{J'MT') C G((TJM)'). Now, [5, I. 2.11] yields the desired property.
From this fact combined with the openess of (TJM)' it follows that there exists ft > 0
such that

P\\y' + N((TJM)')\\ ^ ||(7VM)y||, y' 6 D((TJM)').

In particular,

(2) /?||y' + W((7VM)')|| <|| Qu^T'y' ||, j / ' e Z"-n D(T)

We observe that N((TJM)') = TM± ([5, III. 1.4])C A^x. Thus, as a consequence of
(1) and (2), we get

a0 || y' |K P II y' + ATX | |^ | | T'y' + M± | |^ | | T V ||, y' G Z x n

Hence T'7Z± G F+. But since [QZT)' = T'Q'Z = T'Jzx [5, III. 1.6 and III. 1.9], we
conclude that (QzT)' G F+ equivalently QzT G F-, as required.

Turning to the general case, if D{T') is closed and finite codimensional in Y' then
so is TG [5, V. 11.3]). Also T G 5 5 <=> TG G SS by [5, IV. 3.4] and by [5, IV. 5.8],
TG eSC if T G SC. Therefore, the result follows applying the bounded case to TG. D

THEOREM 8. Let Y be subprojective and T G SS(Y',X') such that D{T) is
closed and finite codimensional in Y'. Then T G SS{X,Y).

PROOF: Combine Theorem 5 (ii) with Proposition 7. D

This Theorem generalises the analogous result for bounded operators in Banach
spaces of Whitley [17]

PROPOSITION 9 . Let D(T) be superprojective and let T G SS{X, Y) such that
D{T) is closed and finite codimensional in Y'. Then T G SC{X, Y).

PROOF: Proceeding as in the proof of Theorem 5, we may suppose (substituting
QTT for T if necessary) that T is single valued. Whithout loss of generality let D(T) = X.
Since

T' = (J$T)'t TeSS&J%Te SS
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and T is strictly cosingular if so is J$T (as A'(T) ^ A'(J^T) by [5, IV. 5.12]), we may
suppose that Y is complete. Now, T is partially continuous (as T is strictly singular)
and thus T is semicontinuous by [5, V. 9.2]. Hence by Proposition 4 we may assume T
to be continuous and since Y is Banach, there exists an unique continuous extension of
T to all of X, say T, such that T 6 SS{SC) « T e SS(SC) by [3, 1.11] and [4, 2.7]. In
consequence it is enough to consider the case when T € LR(X, Y) is a bounded strictly
singular operator, X and Y are complete and X is superprojective. But, in this case the
result was proved by Whitley [17]. D

PROPOSITION 1 0 . [5, IV. 3.17] Let T € LR{X, Y). There exists a normed

space Z and a bounded operator HT mapping Y onto Z with the following properties:

(i) HTT is a continuous single valued.

(ii) Z' = DT,, H'T = G-r and hence (HTT)' = T'GT..

THEOREM 1 1 . LetT e LR(X, Y) such that D(V) is a superprojective Banach
space with dimY'/D{T') < co and V G SS(Y',X'). Then T € SS{X, Y).

PROOF: First assume that T is single valued. In that case T" is continuous and
single valued (as D(T') is closed and finite codimensional <=> T is partially continuous by
[13, 2.5] and the conjugate of a partially continuous linear relation is continuous by [5,
V. 9.6]). The result follows as an immediate consequence of Proposition 9 applied to T'
and Theorem 5 (i).

Now let T be an arbitrary linear relation. Since R{HT) = DT< = D((HTT)') is
isomorphic to D(T') under the operator HT> (Proposition 10), we have that D((HTT)') is
a superprojective Banach space of finite codimension and HT € F_ equivalently HT € F+.
Furthermore, T 6 SS if and only if T'GT> = (HTT)' G SS by [5, IV. 3.4] and hence from
what has been proved for the single valued case, HTT is strictly singular. Suppose that T
is not strictly singular and let M € l(D(T)) for which T |M€ F+. Then, since HT € F+
we deduce from [18, 5.4.1] that HTT |A/G F+ and so HTT is not strictly singular. D

For bounded operators in Banach spaces this Theorem was obtained by Whitley
[17].

THEOREM 12 . LetT e SS(X, Y) such that D(T) is reflexive and D(T) is su-
perprojective. Then T € SS(Y', X')

PROOF: Since HTT is strictly singular if so is T, T' is strictly singular if and only if
(HTT)' is strictly singular and since T = (J$T)' with T € 55 if and only if J$T € SS,
we may thus suppose without loss of generality that T is continuous single valued and Y
is complete. The proof now reduces to the standard one for bounded operators in Banach
spaces of Whitley [17]. D
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4. STRICTLY COSINGULAR LINEAR RELATIONS AND THEIR CONJUGATES

In this section we study the strictly cosingular linear relations, paralleling our inves-
tigation of strictly singular linear relations of the previous section.

THEOREM 13 . Let T e LR(X, Y) such that D(T)' is subprojective, D{T) is
closed and of finite codimension in Y' and T" is strictly cosingular. Then T is strictly
cosingular.

PROOF: Proceeding as in the proof of Theorem 5, we may assume (substituting
QTT for T if necessary) that T is single valued. In that case, the result follows directly
from Theorem 5 (ii) and Proposition 7 upon observing the fact that T" is continuous and
single valued (as T is partially continuous) if and only if T" is bounded [5, VIII. 1.5]. D

For bounded operators in Banach spaces, the corresponding result was proved by
Shannon [16].

THEOREM 14. Let T € LR(X, Y) such that D(T) is a superprojective space,
T e SC(Y',X') with D(T') a closed subspace of Y' and dimY'/D(T) < oo. Then
TeSC{X,Y).

PROOF: Consider Theorem 5 (i) alongside Proposition 9. D

This Theorem is a generalisation of Shannon [16] in the sense that T is not required
to be a continuous operator.

THEOREM 15 . LetT € LR(X, Y) with X and Y reflexive and D(T') is a super-
projective space, closed and finite codimensional in Y'. Then T" is strictly cosingular if
T is strictly cosingular and everywhere defined.

PROOF: Since D(T') is closed and finite codimensional in Y' and D(T) = X we
have that f is bounded and dimf(O) < oo (by [5, V. 11.3]), f € SC <* Qff e SC (by
[5, IV. 5.6]), T is a continuous single_valued with {Qff)" = T" (by [5, VIII. 1.3 and
VIII. 1.5]). Furthermore, as X and Y/T(0) are reflexive, it is clear that the operator QfT
is strictly cosingular if and only if so is (QfT)". The result now follows from Theorem
14. D
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