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ABSTRACT. How do people learn from disasters? Do they constantly develop and accu-
mulate new knowledge that enables them to address recurrent disaster risks? This paper
investigates whether social learning and, in particular, the development of earthquake-
mitigating technologies reduces earthquake-induced fatalities. Combining patent data
with a global cross-section of 894 earthquakes that occurred between 1980 and 2010,
we find that countries with more disaster-mitigating innovations and more earthquake
exposure in the past suffer fewer fatalities. This study is the first to empirically exam-
ine the role of technological change and social learning in disaster mitigation. It sheds
light on knowledge as a key element of adaptive capacity, and suggests the importance
of incorporating technology development into a long-term hazard mitigation and adap-
tation policy. The paper also contributes to the empirical disaster literature as the first to
address the problem of missing data on disaster losses.

1. Introduction
A natural disaster occurs when hazard meets vulnerability. Although most
natural disasters are triggered by exogenous shocks, their actual impacts
on societies depend on the local capacity to prepare for and cope with dis-
aster risks (Cutter et al., 2003). Why some communities suffer greater losses
and what affects their ability to tackle natural hazards are important ques-
tions in the economics of natural disasters and also highly relevant to policy
makers. To date, the empirical literature has focused mainly on two factors,
income and institutions, and has provided consistent evidence that coun-
tries with higher income and better institutions suffer fewer fatalities from
natural disasters (e.g., Kahn, 2005; Toya and Skidmore, 2007). The concep-
tual argument is that these countries generally have better infrastructure
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and mitigating technologies, and tend to adopt more effective regula-
tions and emergency management practices, as well as other precautionary
measures, which lead to better protection against disasters.

While the existing literature mostly estimates the aggregated effects of
socio-economic conditions on disaster losses, research on more disaggre-
gated mechanisms of disaster mitigation is lacking. In this paper, we go
beyond the traditional focus on income and institutions, and consider
learning and innovation as an important channel through which soci-
eties adapt to natural disasters. More specifically, we examine earthquake
losses and link them with two forms of knowledge: (1) formal/technical
knowledge (innovation), which is measured by the accumulation of patents
in earthquake-proof building technologies in a country; and (2) informal
knowledge, which is measured by a nation’s prior earthquake experiences,
because conventional wisdom holds that past disaster shocks incentivize
people to undertake or improve protective measures that can lower dam-
ages caused by future disasters. Our central prediction is that countries
with more quake-proof building innovations and greater earthquake expo-
sure in the past are better adapted to earthquakes; therefore, they suffer
fewer losses from current shocks.

Our research contributes to the disaster economics literature by explor-
ing other possible mechanisms that can reduce disaster fatalities and elu-
cidating the role of knowledge in societal adaptation to natural disasters.
One unique contribution of this research is using patent data to empirically
estimate the extent to which technical innovations reduce disaster impacts.
Although the importance of science and technology development has
been widely recognized in the disaster policy world (e.g., United Nations
International Strategy for Disaster Reduction, 2009), there is little empir-
ical research delving into this issue. The development of risk-mitigating
technologies deserves special attention for two reasons. First, technical
change may potentially serve as a separate mechanism for reducing dis-
aster risk, and investigating the disaggregated effects beyond income and
institutions allows us better to understand the determinant of adaptive
capacity and inform policy decisions. Secondly, new knowledge derived
from innovation serves as a public good because it can be adopted by
non-inventors and yields substantial social benefits at home and abroad.
In the global context, although a vast majority of the R&D activities are
performed by industrialized countries (National Science Board, 2010), the
developing world can potentially exploit the risk-mitigating knowledge
produced by their developed counterparts. Hence, in this research, we
also investigate the possibility of international knowledge spillovers by
testing whether foreign technical innovations can reduce a country’s own
earthquake losses.

In addition to formal technical knowledge, we account for social learning
in disaster mitigation by including a country’s experience with previous
earthquakes as a proxy for its informal and experiential knowledge for cop-
ing with earthquakes. Controlling for the earthquake experiences is also
important because the past events may induce the development of more
risk-mitigating technologies, as suggested in Miao and Popp (2014). Sev-
eral recent studies have examined similar questions by testing whether
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countries exposed to greater disaster risks on average suffer fewer losses
(e.g., Keefer et al., 2011; Neumayer et al., 2014; Escaleras and Register, 2016).
Most of them treat disaster exposure as a country-specific, time-constant
characteristic by summing up the frequency or magnitude of certain types
of natural hazards over an extended period. Our research differs from these
studies by considering the learning dynamics and creating a weighted
experience stock, assuming that people are more responsive to more recent
shocks.

This paper also contributes to the empirical disaster literature by
addressing the issue of missing data on disaster losses, which is a seri-
ous problem for widely used disaster databases such as the Emergency
Events Database (EM-DAT). The earthquake data used in this paper are
drawn from the National Geophysical Data Center’s (NGDC) Signifi-
cant Earthquake Database because it provides more details on earthquake
physics than the EM-DAT does. Similarly to the EM-DAT, a consider-
able proportion of the events in the NGDC database have missing values
on earthquake-related deaths and damages. Therefore, we employ mul-
tiple estimation strategies to address the missing data issue and obtain
consistent results across different models.

Using a global cross-section of 894 earthquake events that occurred in
79 countries between 1980 and 2010, our research shows that both tech-
nical knowledge stocks and past cumulative earthquake experiences play
an important role in reducing a country’s fatalities from earthquakes, after
controlling for the physical quake magnitude and other relevant national
attributes. The effect of prior experiences on risk reduction is more pro-
nounced in developed countries, while this influence largely operates
through the mechanism of technological development. We do not find con-
vincing evidence on the effects of foreign technical knowledge stocks on
reducing earthquake losses. Overall, our findings highlight the importance
of incorporating technological innovation as part of a long-term hazard
mitigation and adaptation policy, and also suggest the need for more policy
efforts at the international level to facilitate the diffusion and transfer of
risk-mitigating technologies across countries.

The remainder of this paper is organized as follows. Section 2 discusses
the relevant literature, and our conceptual framework and empirical model
are presented in section 3. This is followed by the data and estimation
strategies described in section 4. The main estimation results are presented
in section 5 and the paper concludes in section 6.

2. Relevant literature
This paper draws on a growing empirical literature on the determinants
of disaster impacts and climate adaptation (for a review of the recent
literature, see Kousky, 2014). As discussed earlier, this literature has tradi-
tionally focused on income and institutions (e.g., democracy, public sector
corruption, inequality, governance) as the key determinants of natural dis-
aster fatalities and damages (Anbarci et al., 2005; Kahn, 2005; Rashky,
2008; Keefer et al., 2011; Ferreira et al., 2013; Escaleras and Register, 2016).
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Very few studies have looked into the link between natural disasters and
technological change. One exception is Barreca et al. (2016), who examine
how the adoption of residential air conditioning reduces mortalities from
the extremely hot weather in the United States. This paper further extends
this line of research by using a cross-country sample and focusing more
specifically on technological innovation. Specifically, this paper draws on
Miao and Popp (2014), who examine the impact of three types of natural
disasters – including earthquakes, floods and droughts – on the innovation
of their relevant mitigating technologies and find consistent evidence that
recent disaster shocks spur technical innovations. While their paper sug-
gests the private sector adapts to natural hazards by innovating, this paper
goes a further step by asking whether these risk-mitigating innovations
lead to significant reductions in disaster losses.

Although the hazard literature is largely silent on the effect of knowl-
edge, several studies have examined the ‘learning-by-doing’ effect by esti-
mating the extent to which a country’s historic earthquake exposure affects
its losses, hypothesizing that countries at higher levels of risk are better
adapted to the relevant hazards. For example, Anbarci et al. (2005) mea-
sure earthquake exposure by calculating the number of 6+ Richter scale
quakes a country has experienced over a long period, with only the latter
providing modest evidence on an inverse relationship between exposure
and fatalities. Keefer et al. (2011) take a slightly different approach by using
the sum of physical strength (explosive equivalent) of large earthquakes
between 1960 and 2008 as a proxy for a country’s earthquake propensity.
They show that not only do countries more prone to earthquakes suffer
fewer fatalities, but also that this reduction effect is larger in developed and
less corrupt nations. Neumayer et al. (2014) test a similar hypothesis in a
multi-hazard study using a global sample of earthquakes, tropical cyclones
and floods. They utilize a quantile regression and find that a country’s dis-
aster propensity has more pronounced effects in reducing economic losses
of larger events (in the upper quantile of the damage function).

Similar evidence on adaptation motivated by hazard exposure was pre-
sented in studies of other types of natural hazards (e.g., Sadowski and Sut-
ter, 2008; Schumacher and Strobl, 2011; Hsiang and Narita, 2012; Bakkensen
and Mendelsohn, 2016). However, one problem arising from most of these
studies is their measurement of hazard exposure using a summed disaster
frequency or magnitude variable over the entire study period, which in fact
is only realized at the end of the period. Even though the likelihood that a
country experiences certain natural hazards can be constant from a statisti-
cal point of view, people do not always perceive the risk at the same level
over time. Using a time-invariant risk measure to identify adaptation not
only raises measurement concerns, but also ignores the learning dynamics
by simply assuming the tendency to adapt to disasters is always constant
within a country.

In fact, disaster-induced learning has been examined in a number of
recent studies which posit that the occurrence of disasters provides new
information to update people’s risk perception and trigger changes in
their risk-taking behaviors. Specifically, research has shown that experi-
encing major flooding events increases purchases of flood insurance and
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decreases the values of properties in flood-affected areas (e.g., Atreya et al.,
2013; Gallagher, 2014; Kousky, 2016). However, these studies also find
that the learning effects only persist for a relatively short time period
and then decay to the pre-disaster levels, suggesting post-disaster learn-
ing may follow a Bayesian updating process that incorporates discounting
of earlier disaster experiences. In other words, people can accumulate
knowledge over time from their disaster experiences, but they may for-
get the earlier events or perceive them to be less relevant for judging their
current risk, which implies a depreciation of knowledge. For example,
Sadowski and Sutter (2008) find that a prior land-falling hurricane can sig-
nificantly reduce current damages but the effect largely disappears beyond
the 10-year time window. Motivated by this literature, our paper uses a dis-
counting model in calculating a country’s cumulative earthquake exposure
to measure its informal knowledge stocks.

Finally, we draw on the literature regarding knowledge spillovers to
motivate our investigation of the potential effect of technical innovations
on global disaster risk reduction. The notion is that new technologies
are public goods, meaning the knowledge embodied in technical innova-
tions can be accessed and adopted by non-inventors, thereby generating
substantial social benefits (Stephan, 1996). Most empirical studies in this
field focus on knowledge spillovers in the global context and mainly
examine two issues: the effect of technology spillovers on economic devel-
opment and productivity growth, as well as the mechanism of knowledge
spillovers (for a review of this literature, see Keller, 2001). Our research
adds to this literature by using disaster damages as a new outcome mea-
sure and examining the effects of foreign knowledge stocks on earthquake
fatalities across countries.

3. Modeling
3.1. Conceptual framework
To understand how societies acquire knowledge from their past disaster
experiences to mitigate future hazard risks, we begin with a typical disaster
damage function in which losses from a natural disaster (L) are a function
of the physical intensity of the disaster (M), the local population exposure
to the hazard (POP) and their capacity to cope with the shock (C).

L = f (M, POP, C) (1)

We conceptualize knowledge as an important component of adaptive
capacity, which includes both formal technical knowledge (TK), as mea-
sured by patented innovations, and informal knowledge (IK) of coping
with disasters. It is important to note that, although formal knowledge
is often developed by experts (e.g., seismic engineers in the case of
earthquakes), informal knowledge could be experiential, indigenous and
laymen’s understanding of disaster probabilities and severity as well as
related coping strategies. We model a country’s adaptive capacity (C) as
a function of hazard knowledge (TK, IK), income (Y ), institutions (I ) and
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other socio-economic characteristics (X ) that may influence its ability to
prepare for and respond to natural disasters.

C = f (TK, IK, Y, I, X) (2)

Two things are important to note here. First, IK is not directly observed
and thus is measured by prior disaster experiences (EXP) because we
expect people to learn from their previous disaster experiences and accu-
mulate knowledge of better protection against future disasters. Another
reason for considering how disaster experiences affect knowledge is that
the efficacy of disaster-mitigating measures (e.g., quake-proof buildings)
is unknown until a disaster occurs (Neumayer et al., 2014). Secondly,
the capacity to develop new knowledge also correlates with a country’s
income level, institutions and other socio-economic characteristics that are
determinants of adaptive capacity. Combining equations (1) and (2) and
replacing (IK) with disaster (EXP), we obtain the reduced-form relationship
as follows:

L = f (M, POP, TK, EXP, Y, I, X) (3)

based on which we posit that a country that has accumulated more hazard-
mitigating knowledge and more hazard experiences suffers fewer losses
from the current disaster shocks.1 Because the knowledge-generating pro-
cess varies across countries depending on their socio-economic status, it
is particularly important to account for other national attributes that may
simultaneously affect learning and disaster losses in the model to avoid
omitted variable bias.

3.2. Empirical model
Based on the conceptual model, we estimate the following equation:

Dect = f (Mect , POPect , TKc,t−1, EXPc,t−1, Yc,t−1,

Ic,t−1, Xc,t−1, continent , θt , εect ), (4)

where Dect is fatalities from earthquake i in country c and year t , M denotes
variables measuring the physical magnitude of the earthquake (Richter
scale and focal depth), POP is the population in the area affected by the
quake event, and a set of country-specific attributes including technical
knowledge (TK) and experience stocks (EXP), per capita income (Y ) and
political institutions (I ). X is a vector of variables measuring observed
country characteristics including human capital, urbanization, trade open-
ness, public health system, total population, land area and total patent
applications by residents, which are to control for a country’s overall
vulnerability to disaster shocks and its science and technology base.

To avoid potential endogeneity, we lag all the country-level variables by
one year (except for the land area, which is time-invariant). Following the

1 Also note that this conceptual model focuses on a closed economy and does
not include foreign knowledge, although we include our investigation of foreign
knowledge in the results section.
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approach in prior studies (Anbarci et al., 2005; Kahn, 2005), we include
continent fixed effects to control for the geopolitical heterogeneity. It is
important to note here that we do not use the country fixed-effects model
here because the within-country variation in knowledge and experience
stocks are insufficient to identify their effects on earthquake losses. Further-
more, as Kahn (2005) points out, adjustment in socio-economic conditions
is unlikely to immediately improve the average quality of infrastructure.
This is also true for the technological change, given the certain latency
between the development of new protective technologies and their actual
diffusion. Thus, we primarily rely on the cross-country variation for identi-
fication purposes, after controlling for a wide range of variables that reflect
development and institutions.2 In the model, we also include the year
fixed effects to account for time-varying factors that may affect all coun-
tries. Because the knowledge and experience stocks generally increase over
time, having the year dummies can help rule out the possibility that the
knowledge stocks only pick up other tendencies for earthquake damages
to decrease over time. Moreover, we cluster standard errors at the country
level to address potential heteroskedasticity.

Finally, it should be noted that our unit of observation is an earthquake
event; therefore, we only include an observation when an event occurred
in a country-year.3 Repeated country-year observations are included in the
regression when the country experienced multiple events within the same
year.

4. Data and estimation
4.1. Patent data and technical knowledge
To construct technical knowledge stocks, we use the data on patents filed
in the earthquake-proof building technology from an online global patent
database, Delphion.com. These patents are identified based on the Interna-
tional Patent Code (IPC). A majority of the identified patents are for seismic
and structural engineering technologies such as damper device, vibration
absorber, quake-immune curtain wall system and building collapse control
systems. The appendix provides more details on our patent search strategy.

We construct a country’s stock of technical knowledge in quake-proof
buildings using patent counts based on the following formula (Popp, 2003;

2 To date, very few studies have included country fixed effects to estimate the effect
of a country’s socio-economic conditions on its disaster losses. For example, Kel-
lenberg and Mobarak (2008) use a fixed effects negative binomial model and find
a nonlinear relationship between income and disaster fatalities. However, their
approach does not truly control for unobserved country fixed effects. In another
recent study, Ferreira et al. (2013) employ the Poisson fixed effects model with
clustered standard errors to examine the effect of development on flood fatalities.
They show that income has a significant but indirect effect on reducing fatalities in
poor countries only, and little impact of improved governance on flood fatalities.

3 We intentionally construct the data based on earthquake events to include the
events with missing deaths (discussed in the data section).
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Popp et al., 2011):

TKc,t =
∞∑

S=0

e−β1(S)(1 − e−β2(S+1))PATc,t−s, (5)

where β1 represents a rate of decay to capture the obsolescence of older
patents, and β2 represents the rate of diffusion to capture delays in the flow
of knowledge. The rate of diffusion is multiplied by (s + 1) so diffusion is
not constrained to be zero in the current period. S is the number of years
before the current year t . PAT represents the total count of unique quake-
proof building-related patents filed in country c during the period of t − s.
We follow the convention in the literature by assuming a decay rate of 0.10
and a diffusion rate of 0.25.4

Two things are important to note here. First, although patents are a
common and direct measure used in the innovation literature to track tech-
nological innovation, it is an imperfect measure because not all inventions
get patented by inventors and the amount of patent applications is heav-
ily influenced by a country’s patent system.5 Therefore, it is important to
include the total patent applications filed by a country’s residents to control
for the cross-country heterogeneity in patent institutions and a country’s
general propensity to patent. Secondly, our sample includes certain devel-
oping countries that do not have an established patent regime; for these
countries, we coded their patent counts as zero.

4.2. Country characteristics
We collect data on real GDP per capita from the Penn World Table (7.0
version) to measure a country’s income. We use the political rights variable
from Freedom House as a proxy for the quality of political institutions,
which takes a value from 1 to 7, with higher values indicating fewer polit-
ical rights in the country. Other country controls in this study include
human capital (measured by mean years of schooling for adults aged 25
years and older), urbanization (percentage of people living in urban areas
in a country), openness (average ratio of exports and imports of goods and
services in GDP), and quality of the public health system (mortality rate
of children under the age of five). To measure a country’s patent system
and the general propensity to patent inventions, we use the total number
of patent applications filed within the country by its residents. All these
data are drawn from the World Bank Development Indicators, except for

4 The parameters (the rates of decay and diffusion) used in this paper provide a lag
peaking after four years, which is consistent with the length of lag structure for
R&D capital in the literature. For example, Griliches (1995) notes that most past
studies suggest a structuring peaking between three and five years. We also use
alternative diffusion rates (0.2 and 0.18) in constructing knowledge stocks, and
we find that they do not affect our estimates of the effect of knowledge stocks.

5 Despite these limitations, we note that patent data seem the only choice available
in this research given our focus on a specific type of technology. Data on other
alternative measures, such as R&D expenditure and engineers in technology-
specific fields, are generally unavailable for all countries.
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the human capital data, which we collect from United National Develop-
ment Programme Human Development Reports. We control for a country’s
size using data on population from the Penn World Table and the land area
from the Global Rural-Urban Mapping Project (GRUMP).

4.3. Earthquake data
The raw data on earthquake fatalities and physics are taken from the
NGDC Significant Earthquake Database. This database includes an earth-
quake event if it meets at least one of these criteria: at least US$1m damage
was incurred; 10 or more people were killed; the earthquake had a mag-
nitude 7.5 or greater or Modified Mercalli Intensity X or greater, or the
earthquake generated a tsunami.6 Our dependent variable is earthquake-
induced fatalities, which are normalized using the inverse hyperbolic sine
function (Pence, 2006) which approximates the logarithmic transformation
in its right tail and allows for including observations with zero values
(ln[deaths + (deathsˆ2 + 1)ˆ0.5]). We use the same approach to normal-
ize knowledge and experience stocks for the ease of interpretation in
percentage changes.7

Using the NGDC data set, we create an experience stock using the num-
ber of quakes above magnitude 5 that occurred since 1900 (Quakect ) based
on the perpetual inventory model (PIM), assuming the experience stock
depends on a distributed lag of the current and past events:8

EXPct = Quakect + (1 − ρ)EXPct−1, (6)

where ρ is the rate of stock depreciation, which is assumed to be 15 per
cent based on the innovation literature (Coe and Helpman, 1995; Miao and
Popp, 2014).9 As we discussed earlier, using PIM, which discounts earlier
shocks and assigns more weight to more recent earthquakes, distinguishes
our study from previous research that assumes constant tendency to adapt.

An earthquake can cause significant damages when it occurs in a heavily
populated area. To measure the size of the population exposed to individ-
ual quakes, we use the coordinates information for earthquake locations
provided by the NGDC database to calculate the number of people living

6 The NGDC earthquake data are compiled from multiple sources, including
the US Geological Survey, EM-DAT, reconnaissance reports, regional and local
earthquake catalogs, newspapers and journal articles.

7 We also used the logarithmic transformation of deaths using ln(deaths + 1) to
smooth data and keep observations with zero deaths. We find our results are
almost the same as those estimated with the inverse hyperbolic sine function.

8 We choose magnitude 5 as the threshold because earthquakes that measure 5 on
the Richter scale can cause moderate damages. We also use magnitude 6 as an
alternative threshold in creating the cumulative experience stocks, and we find
our estimation results are robust to the alternative measure of experience stock.

9 For robustness check we create alternative measures of experience stocks assum-
ing ρ = 0.1 and ρ = 0.2. We find that our results are robust to using different
values of the depreciation rate.
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within a 100 km radius around the epicenter using the Gridded Population
of the World (GPW) spatial population data.10

One problem with the NGDC database is that a considerable propor-
tion of the earthquake events recorded by NGDC have missing values for
fatalities and monetary damages.11 Specifically, nearly 55 per cent of the
earthquakes in our sample countries do not have information on deaths;
the reasons for the missing data are as follows: (1) Coding error – when
an earthquake caused no deaths, it is coded as missing rather than zero;
therefore, the NGDC data do not have any events coded with zero deaths
or damages; and (2) truly missing. There is no information available about
the exact losses.12 Note that this issue is not specific to the NGDC data
set, but is essentially common in other disaster databases such as the EM-
DAT.13 If the data on the dependent variable are missing completely at
random (i.e., the probability of having missing values is neither depen-
dent on other observed variables nor the on value of the variable itself),
the analysis should still provide unbiased estimates. However, the missing
data are not random here because the missing values include earthquakes
that resulted in zero deaths or damages (but we do not know exactly which
portion of the missing data are true zeros or truly missing); moreover, we
find that lower intensity earthquakes are more likely to have missing val-
ues on deaths and damages. This suggests the mechanism that generates
missing data could that be these earthquakes caused very few losses, which
are therefore unreported. In other words, the missingness depends on the
value of our outcome variable itself.

4.4. Estimation
The issue of missing data on disaster damages has rarely been dealt with
seriously in previous studies, and most researchers treated missing deaths
as zero, especially when they collapsed events to the country-year obser-
vations. Because the NGDC’s missing data do include zero deaths and are
also associated with smaller and less destructive earthquakes, it seems rel-
atively safe to assume that these missing values may indicate very few
deaths. Therefore, we begin with the strongest assumption (i.e., missing is
zero) and estimate equation (4) using an ordinary least squares (OLS) and

10 This procedure is done using the ArcMAP by intersecting the population data
with the earthquake event layer. We used the population data of 1995 and inter-
polated the annual data on the local population exposure variable based on a
country’s average population growth.

11 In this paper, we use fatalities only as the measure of earthquake losses. Although
the NGDC also contains data on monetary damage, an even higher proportion
of earthquakes has missing values on dollar damages compared to those with
missing deaths, which made the damage data less reliable for use.

12 These explanations were provided by the NGDC data manager, Paula Dunbar,
through personal communication.

13 On its website, the EM-DAT states that ‘0’ does not represent a value and can
mean no information available.
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Tobit model.14 We then relax this assumption by left censoring all the miss-
ing deaths at 10, because 10 deaths is one of the thresholds for including
an earthquake in the NGDC database.15 Under this assumption, we esti-
mate the same equation using a censored normal regression, which is one
variation of the Tobit model.16

Finally, we use the Heckman selection model (Heckman, 1979) to first
predict the events that have non-missing deaths and then model the earth-
quake fatalities in the second stage.17 One advantage of using a selection
model is that it does not involve any imputation of the missing values.
To model the first-stage selection process, we use a tsunami indicator (a
binary variable coded as 1 if the earthquake has generated a tsunami and
0 otherwise) as an instrumental variable. Recall that the occurrence of a
tsunami is one of the criteria for including an earthquake in the NGDC
database. In particular, there are a considerable number of earthquakes
in this database that were tsunamigenic but with no information on their
actual impacts. Therefore, the tsunami indicator qualifies as an instrument
because, as a criterion imposed by data collectors, it affects the selection
process by bringing in many non-destructive events with missing deaths.
Moreover, it does not directly correlate with our dependent variable, which
includes direct deaths from earthquakes only.18

4.5. Sample and descriptive statistics
Considering the fact that small-scale earthquakes may cause only minor
damages (Keefer et al., 2011; Neumayer et al., 2014), we limit our sample
to earthquakes of magnitude 5 and above. Our study sample includes a
total of 894 earthquakes that occurred in 79 countries over the period 1980–
2010. We choose 1980 as the starting year to allow the accumulation of
knowledge stocks before entering the regression because the patent data
generally became available in the mid-1970s.

14 Because the earthquake deaths and damages can never be negative, this ‘cor-
ner solution situation’ generally renders OLS inappropriate as an estimation
methodology and makes a Tobit estimator preferable (Wooldridge, 2006).

15 Note that this approach assumes all the events with missing deaths have killed
no more than 10 people. It is more conservative to use a wider range (<10 deaths)
than to assign a specific value (zero).

16 We estimate the model using the ‘cnreg’ command in Stata.
17 Specifically, the first stage is run on the full sample of earthquake events using a

Probit model, and models the events that have non-missing deaths, considering
that this group is systematically different from the group with missing deaths. The
second stage, the conditional equation, is an OLS model run only on the events
with non-missing deaths and also includes a variable, the inverse Mills ratio,
which is obtained in the first stage and controls for selection into this subsam-
ple. The Heckman selection model imposes exclusion restrictions, which means
that we need to identify an instrument variable that determines the probability of
having missing values but does not directly affect the earthquake losses.

18 The NGDC distinguishes the losses from earthquakes directly and losses from the
secondary effect of earthquakes such as tsunamis.
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Table 1. Earthquake and patent statistics for sample nations

# of 5+ Total deaths # of # of 5+ Total deaths # of
Country quakes (persons) patents Country quakes (persons) patents

Afghanistan 26 9, 204 0 Jordan 1 0 0
Albania 3 0 0 Kazakhstan 1 1 0
Algeria 10 7, 509 0 Kyrgyzstan 8 131 0
Argentina 5 9 10 Laos 1 0 0
Armenia 1 0 0 Lebanon 1 0 0
Australia 4 12 12 Macedonia 3 1 0
Austria 1 1 7 Malawi 3 13 0
Azerbaijan 2 32 0 Mexico 27 9, 962 10
Bangladesh 4 5 0 Morocco 1 628 0
Belgium 1 2 8 Mozambique 1 4 0
Bhutan 5 11 0 Nepal 3 1, 291 0
Bolivia 1 105 0 Netherlands 1 1 11
Bulgaria 1 3 8 New Zealand 17 3 29
Canada 2 0 35 Nicaragua 4 7 0
Chile 27 605 0 Pakistan 16 86, 556 0
China 94 92, 072 291 Panama 8 2 0
Colombia 11 1551 0 Papua New

Guinea
20 87 0

Congo, Dem.
Rep.

4 54 0 Peru 26 853 0

Costa Rica 9 130 0 Philippines 28 2, 685 0
Croatia 1 0 0 Portugal 4 79 0
Cuba 1 0 0 Republic of

Korea
1 0 217

Cyprus 1 2 0 Romania 7 18 23
Dominican

Republic
2 8 0 Russia 14 2, 018 79

Ecuador 10 1, 050 0 Saudi Arabia 1 0 0
Egypt 3 557 0 Slovenia 1 1 0
El Salvador 5 2, 303 0 Solomon

Islands
15 55 0

Ethiopia 2 0 0 South Africa 1 15 0
Fiji 5 5 0 Sudan 3 33 0
France 1 0 134 Tajikistan 5 68 0
Georgia 1 0 0 Tanzania 2 2 0
Greece 29 218 31 Thailand 1 0 0
Guatemala 9 33 0 Tonga 1 0 0
Haiti 2 222, 574 0 Trinidad and

Tobago
3 1 0

Honduras 4 12 0 Turkey 39 20, 442 0
Iceland 3 0 0 Turkmenistan 1 11 0
India 27 33, 217 0 Uganda 1 7 0
Indonesia 107 11, 742 0 United States 59 149 323
Iran 74 81, 214 0 Vanuatu 14 5 0
Italy 15 5, 060 42 Venezuela 10 98 0
Japan 65 5, 769 9, 928

Notes: While the earthquake counts and impact data cover the period
1980–2010, my patent data reflect the total counts of patent applications filed
between 1974 and 2009.
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Table 1 provides the national summary statistics reporting the sampled
country’s total earthquake counts, total earthquake-related deaths and total
counts of patents in quake-proof building technologies over our study
period. Notably, 17 countries out of the sample have patents in the given
technology field, and among all the patenting countries, Japan, the United
States, China and the Republic of Korea have filed the most patent applica-
tions.19 Table 2 reports the descriptive statistics of the main variables used
in this research.

5. Results
5.1. The effect of domestic knowledge
Table 3 presents the regression results for equation (4) using different esti-
mation strategies, which provide strong and consistent evidence that both
the technical knowledge and experience stocks have statistically signifi-
cant and negative correlations with earthquake fatalities. The estimated
coefficients indicate that, all else constant, a 10 per cent increase in the
patent knowledge stock is on average associated with a 1.9–3.9 per cent
decrease in expected earthquake fatalities, and a 10 per cent increase in the
experience stock is associated with a 3.4–5.6 per cent decrease in expected
fatalities. Notably, using the Tobit model and Heckman selection model
yields slightly higher estimated coefficients for knowledge and experience
stocks relative to the other two models.

As discussed earlier, in this paper we create the experience stock using a
PIM model, which assigns more weight to more recent earthquake events
to account for learning from disasters. To compare the effect of our time-
varying experience stock variable with the summed historic earthquake
frequency used in prior studies (Anbarci et al., 2005; Keefer et al., 2011; Neu-
mayer et al., 2014), we include both such variables in the same regressions.
In the results available upon request, we find that the estimated coeffi-
cient for the earthquake experience stocks remains significant, while the
time-invariant frequency measure is overall insignificant. This finding sug-
gests the stronger explanatory power of the weighted past experiences for
current earthquake losses, and also provides support for our conceptual
argument that adapting to natural disasters is a dynamic process involving
both knowledge updating and depreciation.

All the quake-related variables (magnitude, focal depth, and popula-
tion exposed to individual earthquakes) are statistically significant for
explaining fatalities, and have the expected sign. With respect to other
socio-economic controls at the country level, we find that income has little

19 Japan has significantly more patents than other countries because its patent sys-
tems require inventors to file multiple patents for the same invention that would
be covered by a single patent in other countries. This suggests the importance of
controlling for a country’s patent institutions as we have done in this study. Also
note that, despite the substantial variation across countries in their earthquake
patents, we do not use patent counts directly as an independent variable. Instead,
we compute the knowledge stock based on patent counts and normalize the stock
variable to alleviate the concerns regarding outliers.
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Table 2. Main variables and descriptive statistics

Definition Data sources Operational variables Mean SD Min Max

Earthquake losses NGDC Earthquake fatalitiesb 1.519 2.259 0 13.006
Past earthquake experiences NGDC Experience stocks (EXP)a,b 2.437 1.137 0 4.324
Patent knowledge stock in

quake-proof building
technologies

Delphion.com Domestic knowledge stocks
(TK)a,b

1.249 2.097 0 7.966

Foreign patent knowledge stock Delphion.com Foreign knowledge stocks (FTK)b 1.95 0.675 0.263 3.763
Earthquake magnitude NGDC Magnitude (Richter scale) 6.241 0.817 5 9.1
Earthquake magnitude NGDC Focal depth (km) 31.693 53.941 0 675
Population exposure NGDC, Gridded Population of

the World (GPW)
Log(exposed population)b 19.621 3.414 0 24.255

Income World Bank log(GDP per capita)a 8.665 1.072 5.231 10.692
Political institution Freedom House Political rightsa 3.408 2.152 1 7
Country population Penn World Table log(population)a 17.859 2.025 11.545 21.004
Urbanization World Bank Percent of urban population (%) 53.854 21.708 5.839 95.601
Human capital UNDP Human Development

Reports
Mean years of schooling for

adults aged 25 years and older
7.053 2.834 0.6 12.9

Public health World Bank Mortality rate of children under
the age of five (%)a

4.357 3.535 0.29 23.44

Openness World Bank Average ratio of exports and
imports of goods and services
in GDP (%)a

26.047 12.974 6.173 82.692

Patent institution World Bank log(residents-filed patent
applications)b

6.142 3.747 0 12.859

Land area Global Rural-Urban Mapping
Project

log(area) 13.702 1.739 6.498 16.630

Notes: aVariables are one-year lagged. bVariables are normalized using the inverse hyperbolic sine function (Pence, 2006).

https://doi.org/10.1017/S1355770X1700002X Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1355770X1700002X


Environment and Development Economics 263

Table 3. Modeling the effect of domestic knowledge on earthquake fatalities

(1) (2) (3) (4)
Independent variables OLS Tobit Censored normal Selection

EXP (t − 1) −0.339∗∗∗ −0.441∗∗ −0.399∗∗∗ −0.559∗∗∗
(0.0966) (0.172) (0.109) (0.203)

TK (t − 1) −0.187∗∗ −0.393∗∗∗ −0.225∗∗∗ −0.294∗
(0.0724) (0.133) (0.082) (0.173)

Magnitude 1.421∗∗∗ 2.610∗∗∗ 1.890∗∗∗ 2.819∗∗∗
(0.186) (0.241) (0.217) (0.429)

Focal depth −0.00371∗∗∗ −0.0138∗∗∗ −0.00959∗∗∗ −0.0133∗∗∗
(0.00116) (0.00404) (0.00250) (0.00399)

log(exposed
population)

0.174∗∗∗ 0.557∗∗∗ 0.366∗∗∗ 0.552∗∗∗
(0.0333) (0.133) (0.0851) (0.118)

log(GDP per capita)
(t − 1)

0.838 0.687 1.617 2.403
(1.325) (2.368) (1.494) (2.470)

[log(GDP per capita)]2

(t − 1)
−0.0309 −0.0140 −0.0807 −0.128
(0.0805) (0.148) (0.0944) (0.150)

Political rights (t − 1) 0.143∗∗ 0.236∗∗ 0.141∗ 0.236∗∗
(0.0607) (0.111) (0.0770) (0.102)

log(population) (t − 1) 0.215 0.241 0.105 0.104
(0.168) (0.329) (0.216) (0.273)

Human capital (t − 1) −0.0712 −0.0346 −0.0686 −0.0727
(0.0661) (0.131) (0.0798) (0.113)

Urbanization (t − 1) 0.00803 0.00984 0.00608 0.0101
(0.00954) (0.0174) (0.0120) (0.0170)

Health (t − 1) 0.0871 0.192∗∗ 0.0867∗ 0.149
(0.0524) (0.0813) (0.0524) (0.0908)

Openness (t − 1) −0.0140∗ −0.0103 −0.0152 −0.0239
(0.00745) (0.0173) (0.00969) (0.0164)

log(patent applications)
(t − 1)

0.0265 0.0894 0.0327 0.0764
(0.0596) (0.113) (0.0677) (0.110)

log(area) −0.0743 0.0354 0.0754 0.0546
(0.168) (0.284) (0.206) (0.227)

Constant −17.42∗∗∗ −36.52∗∗∗ −27.04∗∗∗ −41.07∗∗∗
(5.939) (11.18) (6.906) (12.56)

Left censored 465 465
N 894 894 894 894

Notes: All the models include continent fixed effects, and year fixed effects, with
robust standard errors clustered at the country level. ∗∗∗ p < 0.01; ∗∗ p < 0.05;
∗ p < 0.1.

impact on earthquake fatalities, which seems to contradict the prior finding
that rich countries are better adapted to natural disasters and suffer fewer
losses than poor countries. Note that in all models we include the logged
GDP per capita and its squared term to allow for the nonlinear relationship
between income and earthquake fatalities, as suggested by Kellenberg and
Mobarak (2008). The estimated coefficients on both variables are statisti-
cally insignificant, and an F-test also shows that these two variables are not
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jointly significant.20 Interestingly, we find that the GDP variables become
statistically significant and exhibit the similar inverse U-shaped relation-
ship with fatalities as found in Kellenberg and Mobarak (2008), if we
remove the knowledge stock variable, which presumably correlates with
a country’s income level (in the appendix). In other words, the inclusion of
knowledge stocks has actually lowered the explanatory power of income
for earthquake fatalities. We believe this comparison empirically confirms
the importance of risk-mitigating innovation and knowledge accumula-
tion as a separate mechanism for reducing disaster losses and provides a
plausible explanation for why economic development can mitigate natural
disaster fatalities.

With respect to other country characteristics, we find that countries with
greater political rights suffer significantly fewer deaths from earthquakes,
which resonates with prior findings in disaster research (e.g., Kahn, 2005;
Toya and Skidmore, 2007; Keefer et al., 2011). Another variable that is sta-
tistically significant (or marginally significant) in multiple specifications
is child mortality rate, with a positive estimated effect. This suggests that
earthquakes of the same intensity result in more fatalities in countries with
poorer public health systems. None of the previous studies has examined
this factor, and we believe that the effect of health conditions on disaster
risk deserves more attention in future empirical research in this field.21

Prior research suggests that developing and developed nations differ
in their capacity to adapt to natural disasters, and disaster losses are less
responsive to past hazard exposure in poor nations (Keefer et al., 2011). In
this research, we take a further step to examine whether technical innova-
tion explains why developed countries are better adapted conditioning on
the same level of disaster experiences or risk exposure. In table 4, Panel A,
we first follow Keefer et al. (2011) by interacting the experience stocks with
two binary variables indicating developed countries and developing coun-
tries (using the World Bank 2009 classification), respectively, which allows
for estimating the effects of experience stocks separately for the two coun-
try groups. Without accounting for the knowledge stocks, we are able to
replicate the finding of Keefer et al. (2011) that increasing experience stocks
reduce earthquake fatalities in both rich and poor countries, but with a
larger effect in rich countries. Moreover, we find that the estimated coef-
ficients of the two interaction terms are significantly different from one
another in all specifications. This suggests that developed countries are
generally more responsive to their past earthquake experiences and that
they have stronger adaptive capacity in translating their experiences into
more effective protection against subsequent disaster shocks.

In table 4, Panel B, we show that with the inclusion of knowledge stocks,
the effect of prior earthquake experiences becomes no longer significant

20 We also estimate the regression using the linear per capita GDP only, and find that
the variable is statistically insignificant.

21 In all regressions, we control for continent fixed effects and omit Africa as the
baseline category. Here we do not report the estimated coefficients on the conti-
nent dummies (most of which are statistically insignificant) to keep the brevity of
our results.
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Table 4. Interacting experience with developed and developing country dummies

(1) (2) (3) (4)
Independent variables OLS Tobit Censored normal Selection

Panel A
Developed × EXP (t − 1) −0.57∗∗ −0.932∗∗∗ −0.71∗∗∗ −1.012∗∗∗

(0.153) (0.316) (0.181) (0.294)
Developing × EXP (t − 1) −0.274∗∗∗ −0.325∗ −0.331∗∗∗ −0.442∗∗∗

(0.105) (0.171) (0.118) (0.189)
Test the equality of the two

coefficients(prob > F)
0.051 0.054 0.038 0.036

N 894 894 894 894

Panel B
Developed × EXP (t − 1) −0.372∗∗ −0.517 −0.492 −0.68

(0.155) (0.375) (0.334) (0.360)
Developing × EXP (t − 1) −0.324∗∗∗ −0.421∗∗ −0.379∗∗∗ −0.522∗∗

(0.0986) (0.164) (0.110) (0.217)
Test the equality of the two

coefficients(prob > F)
0.754 0.793 0.623 0.648

TK (t − 1) −0.189∗∗ −0.374∗∗ −0.194∗ −0.331∗
(0.076) (0.152) (0.108) (0.180)

N 894 894 894 894

Notes: All the models include continent fixed effects and year fixed effects,
with robust standard errors clustered at the country level. All the specifications
include all the other control variables. ***p < 0.01; **p < 0.05; *p < 0.1.

in most specifications, while the same effect remains largely the same
for developing countries. This result is not surprising because developed
countries have more patented innovations, which make the interacted term
with the developed country dummy highly correlate with the knowledge
stock variable. Notably, the estimated coefficients on knowledge stocks are
still significant and negative, although their significance declines slightly
compared to the results in table 3. Based on the results in Panels A and
B, we infer that technological innovation serves as one important channel
through which rich countries learn from their previous disaster experiences
and adapt to future natural disaster risks.

As noted earlier, in this paper we primarily rely on the cross-country
variation to identify the effects of knowledge and experience stocks on
earthquake fatalities, and our empirical strategy does not control for
the unobserved country characteristics. In the results presented in the
appendix, we estimate both the country random effects (RE) and coun-
try fixed effects (FE) models using OLS and clustered standard errors. We
observe that the RE estimated coefficients on both experience and knowl-
edge stocks remain statistically significant, with their magnitude similar to
our baseline estimates, whereas the FE estimators on both variables become
insignificant, largely because of the insufficient within-country variation.
However, we note that the magnitudes of the FE estimators do not differ
much from our baseline estimates, only with increased standard errors. We
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also performed a Hausman test to compare the FE and RE estimates and
found no significant differences between the two models.22

5.2. The effect of foreign knowledge stocks
Because our baseline results indicate that countries that have accumulated
more technical knowledge in earthquake-proof building suffer fewer fatal-
ities, we take a further step by asking whether one country’s technical
innovations benefit other countries in reducing their own disaster risks,
considering the public good nature of knowledge and technical innova-
tion. To investigate the possibility of international knowledge spillovers,
we estimate equation (4) by including the variable of foreign knowledge
stocks, which is calculated using equation (5) with the counts of foreign
patents available to a country (i.e., total global patents minus the coun-
try’s own patents in a given year). Because the cross-country heterogeneity
in patent systems makes it problematic to value each patent equally, we
weight patent counts by their patent family size following Popp et al.
(2011), before calculating the foreign knowledge stocks.23

It should be noted that the foreign knowledge stock is, by construc-
tion, more or less the same for all countries, because each of them only
contributes a relatively small number of patents to the global pool. In
particular, the variable is equivalent to the global knowledge stocks for
all non-patenting countries. However, countries may differ in their access
to foreign technical innovations as well as their capacities to exploit for-
eign knowledge for reducing domestic disaster risks. In other words, the
effect of foreign knowledge stocks could vary according to the charac-
teristics of the recipient countries and the level of interaction between
countries. The literature on international technology diffusion suggests
knowledge spillovers are often likely to occur throughout international
trade (Coe and Helpman, 1995). Therefore, in this paper we weight the
foreign knowledge stocks by the bilateral trade flows, using the historic
international trade data from CEPII (Fouquin and Hugot, 2016). Specifi-
cally, we calculated a weighted sum of foreign knowledge stock for each
of the sampled countries in a given year by multiplying the bilateral trade
weight (i.e., the bilateral trade flows as the percentage of a recipient coun-
try’s total trade flow) with each trading country’s own knowledge stock in
earthquake-proof building technologies.

Moreover, we note that it always takes time for technical innovations
to diffuse from one country to the other. Although we use one-year lagged
values of the domestic knowledge stocks, it is reasonable to assume that the
effect of foreign knowledge would take longer than one year to be realized.
In table 5, Panel A, we report the estimation results based on equation (4)
with the inclusion of foreign knowledge stocks, lagged by five years. We

22 In addition, we also estimated the model excluding the large patenting countries
(Japan, United States, China) in our concerned technological field and find that
the knowledge stocks remain marginally significant, with almost no changes in
their magnitudes.

23 The foreign knowledge stock variable is also normalized using the inverse
hyperbolic sine function (Popp et al., 2011) before entering the regression.
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show that the estimated coefficients on foreign knowledge are negative but
insignificant across all specifications, which provides little evidence on the
mitigating effect of foreign knowledge. Also, note that including foreign
knowledge stocks does not change the significance and magnitude of the
estimated coefficients of domestic knowledge stocks. In results available on
request, we have also conducted a set of sensitivity tests with alternative
numbers of lags (three years and 10 years) and do not find any significant
effect of foreign knowledge either.24

It is possible that countries more prone to earthquakes are more inter-
ested in introducing new quake-mitigating technologies that have been
developed abroad. Their past earthquake ‘endowment’ may also enable
them to better absorb and exploit foreign knowledge of mitigating earth-
quake risks. To examine the potential moderating effect of domestic earth-
quake experience, we add the interaction term between foreign knowledge
stocks and a country’s own experience stocks in table 5, Panel B. Again, our
results do not provide any evidence on international knowledge spillovers
or that past earthquake experiences moderate the effect of foreign technical
knowledge. The estimated coefficients on both foreign knowledge stocks
and the interaction terms are consistently insignificant across all specifi-
cations. The experience stock variables also lose their significance, largely
due to multicollinearity.

These findings suggest that, compared to domestic knowledge stocks,
foreign knowledge is less effective in reducing a country’s disaster risk.
This might be because the quake-proof building technologies are specific
to local geography (Lanjouw and Mody, 1996) or that building and infras-
tructure construction is largely a local industry, both of which make it more
difficult for these specific innovations to diffuse across countries.

Another reason that may cause the insignificance of foreign knowledge is
multicollinearity, because the stock variable gradually increases over time
and correlates with the year dummies. We also examine whether there has
been a global downward trend in earthquake fatalities, if technologies, not
necessarily limited to the quake-proof buildings but also other types of
earthquake-mitigating measures (e.g., earthquake detection, early warning
and debris removal), can gradually improve the adaptive capacity at the
global scale.

In table 5, Panel C, we re-estimate the models by replacing the for-
eign knowledge stock with linear and quadratic year trend variables,
which account for the general global technological progress in mitigating
earthquake impacts. We show that the time variables are still statistically
insignificant, suggesting that in the past 30 years there has been no sig-
nificant decrease in earthquake fatalities worldwide after controlling for
country characteristics. This finding suggests disaster mitigation has, by

24 In addition to weighting foreign knowledge by bilateral trade flows, we create
alternative bilateral spatial weights following the approach in Aichele and Fel-
bermayr (2012), which allows foreign knowledge stock to diminish with bilateral
distances and increase with the origin country’s population size. We still do not
find any significant result using this measure. This may, in turn, suggest the
robustness of our results.
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Table 5. Modeling the effect of foreign knowledge on earthquake fatalities

(1) (2) (3) (4)
Independent variables OLS Tobit Censored normal Selection

Panel A: Including foreign knowledge stocks weighted by bilateral trade flows
EXP (t − 1) −0.374∗∗∗ −0.416∗∗ −0.381∗∗∗ −0.515∗∗

(0.102) (0.192) (0.116) (0.248)
TK (t − 1) −0.182∗∗ −0.374∗∗ −0.204∗∗ −0.375∗∗

(0.0775) (0.145) (0.0877) (0.177)
FTK (t − 5) −0.0150 −0.498 −0.275 −0.591

(0.199) (0.385) (0.239) (0.473)
N 894 894 894 894

Panel B: Foreign knowledge interacted with own earthquake experience stocks
EXP (t − 1) −0.169 −0.093 −0.132 −0.291

(0.274) (0.470) (0.293) (0.459)
TK (t − 1) −0.174∗∗∗ −0.362∗∗∗ −0.202∗∗∗ −0.378∗∗

(0.0777) (0.147) (0.0874) (0.177)
FTK (t − 5) × EXP (t − 1) −0.0992 −0.168 −0.128 −0.115

(0.123) (0.213) (0.131) (0.194)
FTK (t − 5) 0.220 −0.104 0.0226 −0.323

(0.336) (0.638) (0.359) (0.655)
N 894 894 894 894

Panel C: Replace foreign knowledge stocks with time trend variables
EXP (t − 1) −0.312∗∗∗ −0.386∗∗ −0.346∗∗∗ −0.481∗∗

(0.0984) (0.180) (0.117) (0.238)
TK (t − 1) −0.207∗∗∗ −0.416∗∗∗ −0.246∗∗∗ −0.461∗∗

(0.0674) (0.130) (0.0778) (0.191)
Year trend −0.00449 −0.00056 −0.0229 −0.0231

(0.0381) (0.0573) (0.0426) (0.0819)
Year trendˆ2 0.0001 −0.0008 0.0006 0.00005

(0.0011) (0.00181) (0.00135) (0.00248)
N 894 894 894 894

Notes: Regressions in Panel A and B include continent dummies and year fixed
effects, with robust standard errors clustered at the country level. Regressions
in Panel C replace the year fixed effects with year trend and its square terms to
examine the effect of global technological progress on earthquake fatalities. All
regressions include all the other control variables. ***p < 0.01; **p < 0.05.

far, relied more on the self-efforts of the affected countries than on external
technological advancement.

6. Conclusion
Considerable work has been devoted in the past decade to understanding
the determinants of the social impact of natural disasters. While the vast
majority of the literature has focused on the aggregated impacts of income
and institutions, little research has investigated the disaggregated effects of
other development-related factors. Our paper fills this gap by considering
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knowledge as an important determinant of societal adaptation to natural
disasters. Specifically, we make the first attempt to empirically examine the
role of technical innovation in disaster risk mitigation by utilizing patent
data to track the technological change in quake-proof buildings. Addi-
tionally, we account for a country’s prior experiences with earthquakes,
considering it as not only the motivation for adaptation, but also a mea-
sure of the unobserved informal knowledge enabling countries to better
cope with earthquakes. Our results provide strong evidence that countries
that have accumulated more innovations in quake-proof building technolo-
gies and greater exposure to past earthquakes suffer significantly fewer
fatalities from later earthquakes. Moreover, we show that previous quake
experiences result in a larger mitigating effect in developed countries than
in developing countries and, more importantly, such a difference could be
partially explained by the capacity of industrialized nations to develop new
and better risk-mitigating technologies.

An important distinction between this study and prior research that
examines disaster exposure is placing disaster mitigation within a learn-
ing framework, and using a PIM model to account for the post-disaster
learning dynamics. Our finding not only provides a better understanding
of what drives society to adapt to environmental changes and shocks, but
also sheds light on adaptation as a dynamic learning process that involves
behavioral biases. This research may further inform the modeling of poten-
tial future climate damages and climate adaptation (e.g., Bosello et al.,
2009), because our results may suggest past experiences with climate vari-
ability and extreme weather events would motivate adaptation, which in
turn reduces the future damages of climate change.

This paper also makes an important methodological contribution to the
empirical natural hazard literature by addressing the issue of missing data
on disaster fatalities and damages. Moreover, we use multiple estimation
strategies to model earthquake fatalities, which produce consistent results
across different specifications. Because the EM-DAT data that are most
commonly used in current disaster research also have this data limitation,
it is important for researchers to take this into account when making their
choice of models and data structure. We expect this study to offer a start-
ing point for more discussion and investigation of this specific empirical
challenge.

Finally, our research has significant implications for disaster and cli-
mate adaptation policy at both the local and global levels. It highlights
the importance of incorporating technology development into an inte-
grated policy approach to mitigate natural hazard and climate risks. While
the prior literature suggests that economic development and improve-
ment in institutions provide ‘implicit insurance’ against natural disasters
(Kahn, 2005), this research suggests that countries adjust their alloca-
tion of resources in investing mitigation-specific measures and put more
effort into encouraging the development of risk-mitigating technologies.
Although we do not find strong evidence on the spillover effect of foreign
knowledge in this paper, this does not mean foreign knowledge does not
matter. Given the highly localized nature of earthquakes, it is possible that
countries rely more on their domestic knowledge in risk mitigation and
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have not yet fully exploited the technical innovations available abroad. If
this is the case, one recommendation is that more policy efforts be made at
the international level to encourage and facilitate technology diffusion and
transfer of the risk-mitigating technologies across the world. Such policies
will have important development implications and, in particular, provide
benefits to developing countries that lack the capacity to innovate and
adapt to natural disasters. Despite the insignificant finding from this study,
there is some anecdotal evidence on the disaster-mitigating benefits asso-
ciated with foreign knowledge spillovers. For example, the Maldives, an
island nation in the Indian Ocean, was much less impacted by the 2004
Southeast Asian tsunami relative to other nations in that region such as
Indonesia. This is partially because of the protection by a massive sea wall
around the capital of Male, which was constructed with technology and
assistance offered by the Japanese government (Toya and Skidmore, 2007).
The potential role of technological development and diffusion in the global
context deserves more investigation in future research.
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Appendix
Patent search codes
In search of the quake-proof building patents, we used the following code
on delphion.com:

((E04H 00902) <in> IC).

E04H 00902: Buildings, groups of buildings, or shelters, adapted to with-
stand or provide protection against, abnormal external influences (e.g.
warlike action, earthquake, extreme climate) withstanding earthquake or
sinking of ground.

Table A1. Regression results excluding domestic knowledge stocks

(1) (2) (3) (4)
Independent variables OLS Tobit Censored normal Selection

EXP (t − 1) −0.360∗∗∗ −0.463∗∗∗ −0.415∗∗∗ −0.564∗∗∗
(0.0997) (0.177) (0.116) (0.189)

log(GDP per capita) (t − 1) 2.473∗ 3.997∗ 3.149∗∗ 4.688∗∗
(1.284) (2.333) (1.366) (2.017)

[log(GDP per capita)]2(t − 1) −0.134∗ −0.225 −0.179∗∗ −0.276∗∗
(0.0790) (0.149) (0.0865) (0.120)

Constant −23.72∗∗∗ −48.81∗∗∗ −32.68∗∗∗ −48.12∗∗∗
(5.606) (10.37) (6.391) (12.08)

Left censored 465 465
N 894 894 894 894

Notes: All the models include continent fixed effects and year fixed effects, with
robust standard errors clustered at the country level. Note that by excluding the
domestic knowledge stock variables, we find that the per capita GDP variables
become statistically significant and exhibit an inverse U-shaped relationship
with earthquake fatalities, which resonates with the findings in Kellenberg and
Mobarak (2008). ***p < 0.01; **p < 0.05; *p < 0.1.
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Table A2. OLS with country random effects and fixed effects

(1) (2)
Independent variables Random effects Fixed effects

EXP (t − 1) −0.245∗∗ −0.210
(0.102) (0.247)

TK (t − 1) −0.197∗∗ −0.200
(0.0862) (0.211)

Magnitude 1.507∗∗∗ 1.621∗∗∗
(0.190) (0.204)

Focal depth −0.00391∗∗∗ −0.00412∗∗∗
(0.00111) (0.000994)

log(exposed population) 0.173∗∗∗ 0.176∗∗∗
(0.0324) (0.0336)

log(GDP per capita) (t − 1) 1.093 1.746
(1.125) (2.352)

[log(GDP per capita)]2(t − 1) −0.0488 −0.113
(0.0674) (0.159)

Political rights (t − 1) 0.0714 −0.0259
(0.0645) (0.0606)

log(population) (t − 1) 0.375∗∗∗ −0.815
(0.124) (1.439)

Human capital (t − 1) −0.0219 −0.108
(0.0681) (0.135)

Urbanization (t − 1) 0.0107 0.0441
(0.00809) (0.0349)

Health (t − 1) 0.146∗∗∗ 0.157∗
(0.0497) (0.0925)

Openness (t − 1) −0.00908 −0.0179
(0.00851) (0.0118)

log(patent applications) (t − 1) 0.00804 −0.0316
(0.0589) (0.0789)

log(area) −0.216
(0.132)

Constant −20.58∗∗∗ −4.764
(5.534) (24.26)

N 894 894

Notes: Both regressions include year fixed effects, with robust standard errors
clustered at the country level. The random effects model also includes conti-
nent dummies. Our results with the country random effects show that both
experience stock and knowledge stock variables are statistically significant
and negatively correlate with earthquake fatalities, which are consistent with
the pooled cross-sectional estimation results. However, both variables become
insignificant in the fixed effects model, because of the insufficient within-
country variation. However, it should be noted that the estimated coefficients
on both experience and knowledge stock do not differ much between the two
models, while the standard errors increase substantially in the fixed effects
model. We have also performed the Hausman test, which shows no significant
difference between the RE and FE estimators. ***p < 0.01; **p < 0.05; *p < 0.1.
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