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Abstract. In this survey paper we present some results relating the Goldie
dimension, dual Krull dimension and subdirect irreducibility in modules, torsion
theories, Grothendieck categories and lattices. Our interest in studying this topic is
rooted in a nice module theoretical result of Carl Faith [Commun. Algebra 27 (1999),
1807-1810], characterizing Noetherian modules M by means of the finiteness of the
Goldie dimension of all its quotient modules and the ACC on its subdirectly irreducible
submodules. Thus, we extend his result in a dual Krull dimension setting and consider
its dualization, not only in modules, but also in upper continuous modular lattices,
with applications to torsion theories and Grothendieck categories.
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1. Introduction. A lovely 10 years old result of Carl Faith [21, 22] states:

Faith’s Theorem (FT). A module is Noetherian if and only if it is QFD and satisfies the
ACC on subdirectly irreducible submodules.

Recall that a module My, is called quotient finite dimensional (or QFD) [17], if any
quotient module of M has finite Goldie (or uniform) dimension. If we denote for a
module M by L(M) the lattice of all its submodules and by S(M) the subset of L(M)
consisting of all subdirectly irreducible submodules of M, then the FT can be stated
as follows:

L(M) is a Noetherian poset <= M is QFD and S(M) is a Noetherian poset.

Now observe that an arbitrary poset P is Noetherian if and only if it has dual Krull
dimension k°(P) < 0. Thus, the FT can be reformulated in a dual Krull dimension
setting as follows:

FTy: K°(L(M)) < 0 < L(M) isa QFD lattice and k°(S(M)) < 0.

The following natural problems related to FT arise:
(1) Investigate whether the dual FT° of the FT hold.
(2) Do the above reformulation FT( of the FT hold for an arbitrary ordinal «
instead of 0, i.e. is the following statement

FT,: K°(L(M)) < @ <= L(M) is a QFD lattice and k°(S(M)) < «

true? A similar question for its dual FT2.
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(3) Extend (2) from the lattice £(M) to an arbitrary upper continuous modular
lattice L.
(4) Apply (3) to Grothendieck categories and to module categories equipped with
hereditary torsion theories.
The aim of this survey paper is to present the answers, we know so far, to these four
questions. We will also illustrate here a general strategy, which consists on putting
a module-theoretical theorem, in our case the Faith’s Theorem, in a latticial frame,
in order to translate that theorem to module categories equipped with a hereditary
torsion theory and to Grothendieck categories.

2. Subdirectly irreducible modules. The concept of subdirectly irreducible (SI)
appears in various circumstances: universal algebras, rings, modules, lattices, posets,
etc. Remember that a classical result of Birkhoff [15] states that any universal algebra
is a subdirect product of SI algebras.

Loosely speaking, an object of a category with direct products is called subdirectly
irreducible if it cannot be represented as a subdirect product of ‘smaller’ objects (i.e.
proper epimorphic images). We shall illustrate below more precisely this concept for
module categories.

Throughout this paper R will denote an associative ring with non-zero identity
element, and Mod-R the category of all unital right R-modules. The notation My will
be used to designate a unital right R-module M. The lattice of all submodules of a
module My will be denoted by L£L(Mg). We denote by N the set {0, 1, 2,...} ofall
natural numbers, by Z the ring of rational integers and by R the field of real numbers.

A module My is called subdirectly irreducible if any representation of M as a subdi-
rect product of other modules is trivial, i.e. for every family (M;),c; of right R-modules
and for every monomorphism & : M — [[,.; M; such that mj o ¢ is an epimorphism
Vjel, 3iel such that mjoe is an isomorphism, where m;:[[,.; M; - M;,
j € I, are the canonical projections. The concept of subdirectly irreducible module
turns out to be the dual of that of cyclic module as we will see below.

Clearly, a module My is cyclic if and only if it satisfies the following condition:

dx9 € M, VN € Mod-R, Vf € Homg(N, M) with xo € Im(f)
= f is an epimorphism.

Dually, a module My, is said to be cocyclic if it satisfies the following condition:

dxo € M, VN € Mod-R, Vg € Homg(M, N) with x, ¢ Ker(g)
= g is a monomorphism.

To the best of our knowledge, the notion of cocyclic module appears for the first time
in the literature in Fuchs [23, Section 3].

The next result (see e.g. [42, 14.8]) provides various characterizations of cocyclic
modules, which will naturally lead below to the most general concept of a subdirectly
irreducible poset (see Definition 4.1).

PROPOSITION 2.1. The following statements are equivalent for a non-zero module
Mp.

(1) M is cocyclic.

@ [ x#o

0£X <M
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(3) The poset L(M)\ {0}, ordered by inclusion, has a least element.
(4) M has a simple essential socle.
(5) M is subdirectly irreducible. O

For any module Mr we have obviously M =3 ., C, and dually, less
obviously 0 = mXeS(M) X, where C(M):={C< M|Ciscyclic} and S(M):=
{X < M|M/X is cocyclic}.

Note that the elements of S(M) are called subdirectly irreducible submodules of
M in Faith [21, 22]. So, X < M is a subdirectly irreducible submodule of M if and
only if the module M/ X is subdirectly irreducible.

3. FT°. Inthissection we present a statement FT? dual to that of Faith’s Theorem
FT, which gives a characterization of Artinian modules My in terms of submodules
of M which behave dually to the submodules in S(M). Note that Artinian modules
are precisely those modules having Krull dimension < 0, hence it seems natural to
ask also for similar characterizations of modules having Krull dimension at most a
given ordinal « > 0. This Krull dimension setting will be discussed in the subsequent
sections.

We will denote by F(M) the set of all finitely generated submodules of a
module M.

THEOREM 3.1 (THE DUAL Farrn THEOREM FT?) ([8, Theorems 1.12 and 1.13]).
The following statements are equivalent for a module Mg.

(1) M is Artinian.

(2) M is QFD or SFD, and C is Artinian for any C € C(M).

(3) M is QFD or SFD°, and C(M) is an Artinian poset.

(4) M is QFD or SFD°, and F is Artinian for any F € F(M).

(5) M is QFD or SFD°, and F(M) is an Artinian poset. O

Recall that a module My, is called sub finite dual dimensional (or SFD?), if any
submodule of M has finite dual uniform (or dual Goldie, or hollow) dimension.
So, the term of a SFD® module is dual to that of a QFD module. The reader is referred
to [27, 38, 40] for the concept of dual uniform dimension of modules and modular
lattices.

As it is well known, any module with Krull (or dual Krull dimension) is QFD,
but a module with Krull dimension is not necessarily SFD?: the Abelian group Z is a
Noetherian Z -module, but it does not have dual Goldie dimension. However, if My
satisfies the property AB5* (this means that the lattice £(My) of all submodules of
M 1is lower continuous), in particular if M is linearly compact, then M is QFD if and
only if M is SFD?, by [28, Lemma 6]. Notice that any SFD® module is QFD, by [41,
Proposition 12].

4. Latticial background. For a partially ordered set, shortly poset, (P, <) and
elements ¢ < b in P we write

b/a.=[a,bl]={xeP|la< x<b},
[a,b[:={xe P|la< x < b},

la,b] . ={x € P|a < x <b}.
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All posets considered in this paper are assumed to have a least element denoted by 0
and a last element denoted by 1. If x < y are elements of a poset P and there is no
z € Psuch that x < z < y, then we say that x is covered by y, and we write x < y. An
element a € P is said to be an atom of P if 0 < a.

We denote by L (resp. M, C,U ) the class of all lattices with 0 and 1 (resp. modular
lattices with 0 and 1, complete lattices, upper continuous lattices). Throughout this
paper a lattice will always mean a member of L, and (L, <, A, V,0,1), or more
simply, just L, will always denote such a lattice. The opposite lattice of L will be
denoted by L. If L € C, then for every subset S of L we denote A\ S = A, .gx and
V'S =V.csX. An element e of a lattice L is said to be essential in L if e A x # 0
for each 0 # x € L. Dually, an element s € L is small in L if s is essential in LY, i.e.
if svx#1 forevery x# 1 in L. If L € C, then the socle Soc(L) of L is the join of
all atoms of L. A lattice L is said to be semi-Artinian if for any 1 # x € L, the lattice
1/x has at least an atom. An element ¢ of a lattice L € C is compact in L if whenever
¢ < \/,yx for asubset 4 of L, there is a finite subset F of 4 such that ¢ < \/ ., x.
The lattice L is compact if 1 is a compact element in L, and compactly generated if every
element of L is a join of compact elements.

For all undefined notation and terminology on lattices, the reader is referred to
[16, 18, 26] and/or [39].

The next definition is inspired by Proposition 2.1.

DEFINITION 4.1. A poset P is said to be subdirectly irreducible, abbreviated SI, if
P # {0} and theset P\ {0} has a least element; i.e. there exists an element 0 # xy € P
such that xy < x for every 0 # x € P. An element s € P is said to be a subdirectly
irreducible element of P if the interval 1/s is a subdirectly irreducible poset, and the
set of all subdirectly irreducible elements of P will be denoted by S(P). 0

Observe that a module M is subdirectly irreducible if and only if the lattice £(Mg)
of all submodules of My is subdirectly irreducible, and the poset S(My) defined just
after Proposition 2.1 is exactly S(L(MR)).

DEFINITIONS 4.2. (a) A lattice L is said to be co-irreducible or uniform (resp.
completely co-irreducible or completely uniform) if L # {0} and x Ay # 0 for any
non-zero elements x, y € L (resp. /\,.;x; # 0 for any non-empty family (x;);c; of
non-zero elements x; € L).

(b) Anelement x of a lattice L is said to be irreducible, (resp. completely irreducible,
abbreviated CI) if x # 1 and whenever x =a A b for a, b€ L,then x=a or x =05
(resp. whenever x = /\;.;a; for a non-empty family (a,)ic; of elements of L, then
x = a; for some j € I). O

iel

Clearly, an element x € L is irreducible (resp. completely irreducible) if and only
if the lattice 1/x is co-irreducible (resp. completely co-irreducible). For any lattice L
we denote by Z(L) the set of all irreducible elements of L, and by Z¢(L) the set of all
completely irreducible elements of L. For any module My, weset Z(MRg) := Z(L(MRg))
and Z¢(Mg) := Z°(L(MR)).

If L € C, then clearly s € L is a subdirectly irreducible element of L if and only if
s is completely irreducible, so S(L) = Z¢(L). In the sequel, for the term of subdirectly
irreducible element of any lattice, we will occasionally use the more suggestive term of
completely irreducible (CI) element.

The next result is a lattice extension of Proposition 2.1.
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PROPOSITION 4.3 ([2, Proposition 0.5]). The following statements are equivalent for
alattice L € C, L # {0}.

(1) L is subdirectly irreducible.

@) Nseryioy x # 0.

(3) L is completely co-irreducible.

(4) L has an atom a that is essential in L.

(5) L is co-irreducible and Soc(L) # 0. |

For a poset P we denote by k(P) (resp. k°(P)) the Krull dimension (resp. the dual
Krull dimension) of P (see also [10, Section 3]). The notation k(P) < a means that P
has Krull dimension, and this is < than the ordinal «. A nice result due to Lemonnier
[31, Corollaire 6] states that an arbitrary poset P has Krull dimension if and only
if it has dual Krull dimension. Any poset having Krull dimension has also Gabriel
dimension, but in general, not conversely.

For the definition and basic properties of the Krull dimension and dual Krull
dimension (resp. Gabriel dimension) of a poset the reader is referred to [31] or [33]
(resp. to [1] or [35]).

5. QFD lattices. Let L € £ be a lattice. Recall that a set S of non-zero elements
of L is said to be independent if for every finite subset F of S and for each s € S\ F,
one has s A (\/,.px)=0.

DEFINITION 5.1. One says that a lattice L € £ has finite Goldie (or uniform)
dimension if there is no infinite independent subset of L. The lattice L is said to
have finite dual Goldie dimension if L° has finite Goldie dimension. The lattice L
is called QFD (i.e. quotients have finite Goldie dimension) if 1/x has finite Goldie
dimension for every x € L. O

The reader is referred to the survey paper [36] in this Proceedings for more about
Goldie dimension of modular lattices.

The next result, originally proved for modules by Lemonnier (see [32, Lemme 1.1]),
is an important tool for studying the QFD property of upper continuous modular
lattices.

LEMMA 5.2 (LEMONNIER’S LEMMA) ([10, Lemma 3.4]). Let P be a property of
the class M N U of all upper continuous modular lattices, which satisfies the following
condition:

(%) If L is alattice having P, then there exist a < b in L and ¢y, c; € b/a with
caVe=b, ci Acy =a, ¢ # a, and the lattice c;/a again having the property P.
Then, any L € M NU having P is not QFD. O

We are now going to characterize QFD compactly generated modular lattices,
which generalizes a result on QFD modules due to Camillo [17].

DEFINITION 5.3. Let L be a lattice. We say that a lattice L verifies Condition (C)
(or Camillo’s Condition) if for every m € L there exists a compact element ¢ of L such
that ¢ < m and [¢, m[ has no maximal element. O

The next result, whose proof essentially uses the Lemonnier’s Lemma, is the latticial
version of [17, Theorem].
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THEOREM 5.4 ([4, Theorem 2.8]). A modular, compactly generated lattice L is
QFD if and only if L verifies Condition (C). O

For arbitrary upper continuous modular lattices, we have the following
characterization of the QFD condition.

THEOREM 5.5 ([4, Theorem 4.1]). A4 modular upper continuous lattice L is QFD
if and only if for every directed set D C L there exists dy € D such that, for every d € D
with d € [dy, \/ D[, d is small in (\/ D)/d. O

We say that a non-trivial poset P is dense if for any a, b € P with a < b there
exists ¢c € Psuch thata < ¢ < b.

THEOREM 5.6 ([4, Theorem 4.8]). Let L be an upper continuous modular lattice
and denote ¢o(x) =\/{ k | k € x/0, k compactin L}, x € L. Assume that for every
a € Lwith a > ¢(a) the interval a/¢(a) is a dense poset. Then, L is QFD if and only if L
verifies Condition (C) and does not contain a sublattice isomorphic to the lattice [0, 1]V
considered with the componentwise order, where [0, 1] C R. O

We end this section by presenting the following latticial extension of a nice
characterization of QFD modules in terms of finite meet irreducible decompositions we
recently learned from Patrick Smith in a private communication, Ankara, August 2008:

PROPOSITION 5.7. 4 lattice L € M NU is QFD if and only every element 1 # x € L
can be written as a finite meet of irreducible elements of L. O

6. FT, and FT. Taking into account that a poset P is Artinian if and only if
k(P) < 0, a part of Theorem 3.1 can be reformulated as follows:

k(Mg) < 0 <<= M is QFD and k(C(M)) < 0 <= M is QFD and k(F(M)) < 0.

Here, k(C(M)) (resp. k(F(M))) means the Krull dimension of the poset C(M) (resp.
F(M)) of all cyclic (resp. finitely generated) submodules of M, ordered by inclusion.
This reformulation suggested the following extension for an arbitrary ordinal «:

THEOREM 6.1 (THE DUAL a-FAITH THEOREM FT?) ([8, Theorem 1.17]). For any
My and any ordinal @ > 0

k(Mg) < a <= M is QFD and k(F(M)) < 0. O

Because the compact elements of the lattice £(M) of all submodules of a module
My are exactly the finitely generated submodules of M, it is natural to ask whether a
latticial extension of Theorem 6.1 is true; see Problem 8.2.

We are now going to discuss the validity of the Latticial a-Faith Theorem FT,,
that is,

FT,: kX°(L) < @ <= L isa QFD lattice and k*(S(L)) < a,

for an arbitrary lattice L € M NU and an arbitrary ordinal « > 0, where S(L) is the
set of all subdirectly elements of L, also called CI elements of L.

An essential tool in establishing our results is the following extension to posets
of the dual of a result due to Goodearl and Zimmermann-Huisgen [25] concerning
the relationship between the Krull dimension of a module and the length of reverse
well-ordered chains of its submodules.

https://doi.org/10.1017/50017089510000285 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089510000285

DUAL KRULL DIMENSION AND SUBDIRECT IRREDUCIBILITY 25

THEOREM 6.2 ([5, Theorem 1.11]). The following conditions are equivalent for a
poset P.

(a) k°(P) exists and is countable.

(b) A(P) is countable.
In case conditions (a) and (b) are met and k°(P) = « > 0, then

o < MP) < ot forall ordinals B < a.

In case « is finite, the lower bound for A(P) can be improved to o* < A(P). |

For a poset P we have denoted by A(P) the so called codepth of P; i.e. the
least ordinal that does not embed in P. See also [30], where the term of depth of P,
denoted by 8(P), has been defined as the least ordinal that does not embed in P°. We
have also denoted by w the first transfinite ordinal, which is the order type of the set
N = {0, 1, 2,...} of natural numbers. For basic properties of the arithmetic of ordinal
numbers, the reader is referred to [37].

Note that for any module Mg, the lattice £(M) of all submodules of M has the
property that for each N < P in £L(M), the quotient module P/N has a subdirectly
quotient module P/Q, so we may say that the lattice £(M) is ‘rich in subdirectly
irreducibles’. We take this property as definition for an arbitrary lattice or poset.

DEFINITION 6.3. A lattice L is said to be rich in subdirectly irreducibles, abbreviated
RSI, if for every a < b in L, the interval b/a has a subdirectly irreducible quotient
interval b/c C b/a. O

The property of a lattice L being RSI is related to the property of L being a lattice
with completely irreducible decomposition, which means that every 1 # a € L can be
written as a meet of a family, not necessarily finite, of CI elements of L (see [2, Remarks
0.15]). Other recent results on completely irreducible submodules and their connections
with primal submodules, primary submodules and their meet decompositions may be
found in [12], [13].

The next result characterizes RSI lattices in terms of Gabriel dimension, so
providing large classes of such lattices.

PROPOSITION 6.4 ([5, Proposition 1.2]). A lattice L € M N U is RSI if and only if
foreach a < b in L there exist x <y in b/a such that y/x has Gabriel dimension. So,
if L has Gabriel dimension, then L is RSL. In particular, if L is Artinian, semi-Artinian,
Noetherian, or has (dual) Krull dimension, then L is RSL O

Now, we are going to show that the Latticial FT, holds for any finite ordinal «
and for any upper continuous modular lattice L which is RSI. In doing so, we have to
characterize the existence and magnitude of k°(L) in terms of the existence and size
of k°(S(L)). This task is achieved by the following very technical Lemma.

LEMMA 6.5 ([5, Lemmas 1.13 and 1.17]). Let Le M N U be a QFD lattice
which is RSI. Then, the following assertions hold.
(1) If L contains a chain of order type w* for some ordinal a > 1, then S(L)
contains a chain of order type w®.
(2) If S(L) has countable dual Krull dimension, then L has (dual) Krull
dimension. a

THEOREM 6.6 ([S, Theorem 1.15]). Let L € M N U, be such that k°(L) =« isa
countable ordinal.
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() If 1 €a <o orif a is alimit ordinal, then k°(S(L)) = a.
Q) If a =8+ 1 for some 8§ > —1, then k%(S(L)) =8 or K%(S(L)) =8 + 1.

Proof. Clearly k°(S(L)) exists and k%(S(L)) = y < « for some ordinal y. The
conclusions of the theorem are trivial for « = 0; so we assume that « > 1. By Theorem
6.2, we have A(S(L)) < o’*! < 0**!, 0 < A(L) for each B < a, and w* < A(L)
if « is finite. Thus L contains a chain of type w? for each B < « and a chain of
type * if « is finite. By Lemma 6.5 (1), S(L) also has chains of these types. Hence
of < MS(L)) < o't < w*t! foreach B < «, and 0 < A(S(L))if « is finite. Now,
(1) and (2) follow easily. (I

THEOREM 6.7 ([S, Theeorem 1.18]). The following conditions are equivalent for
LeMnU.

(1) K°(L) exists and is countable.

(2) L is both QFD and RSI, and k°(S(L)) exists and is countable.
If conditions (1) or (2) are met and —1 < k°(S(L)) = «, then k(L) = a or K°(L) =
o + 1. Moreover, kO(L) =aif 0<a<o.

Proof. (1) = (2) is trivial, and (2) = (1) follows by combining Lemma 6.5 and
Theorem 6.2. The final assertions are immediate from Theorem 6.6. ]

COROLLARY 6.8 (THE LATTICIAL FT),). Forany Le M N U and n e N,

kK°(L) < n <= L isboth QFD and RSI, and k°(S(L)) < n. O

Since the lattice L(Mg) is always RSI, we obtain at once the FT, for any module
and any n € N:

COROLLARY 6.9 (FT,) ([5, Corollary 1.19]). Let My be a module, and let n € N.
Then

K'(MR) < n<= My is QFD and K°(S(My)) < n. O

In particular, for n = 0, Corollary 6.9 gives precisely the Faith’s Theorem FT.

The next result provides an evaluation of the dual Krull dimension k°(L) of
a lattice L in terms of irreducible and completely irreducibles elements of L. Note
that the proof of (1) <= (2) in theorem below is based on two main ingredients: the
Lemonnier’s Lemma (see Lemma 5.2) and a corrected version of [10, Proposition 3.10]
(see [11]) involving the subclass

WKL (:={(X e M|Ya<bin X, 3cela b, Kc/a) <)

of the class M of all modular lattices with 0 and 1.

THEOREM 6.10 ([5, Theorems 1.21 and 1.22]). The following statements are
equivalent for an arbitrary ordinal o > 0 and a lattice L € M N U.

() (L) <.

(2) Lis QFD, L is RSI, and k°(1/x) < « for all x € S(L).

(3) Lis QFD and k°(1/x) < « for all x € Z(L). g

COROLLARY 6.11 ([5, Corollary 1.24]). The following statements are equivalent for
amodule Mg and an arbitrary ordinal o > 0.
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(1) K'(Mp) < a.
(2) My is QFD and K°%(M/N) < « for every (completely) irreducible submodule N
of M. O

Using Theorem 5.5 we obtain the following evaluation of k°(L) in terms of small
elements of L.

THEOREM 6.12 ([5, Theorem 1.28]). The following statements are equivalent for a
lattice L € M N U and an arbitrary ordinal a > 0.
(1) K(L) < a.
(2) For every x € L, there exists s < x such that s is small in x/0 and k°(x/s) <
o. (Il

An immediate consequence of Theorem 6.12 is the following dual of a result due
to Huynh, Dung and Smith [29, Lemma 6] (see also [19, Theorem 6.3]) which answers
in the positive an Open Problem raised by Albu and Rizvi [8, p. 1923]:

COROLLARY 6.13 ([5, Corollary 1.29]). The following statements are equivalent for
amodule My and an ordinal o > 0.

(1) k(M) < a.

(2) Every submodule X of M has a small submodule S with k°(X/S) < a. O

7. Applications to torsion theories and Grothendieck categories. Throughout this
section T = (7, F) will be a fixed hereditary torsion theory on Mod-R. The set F, :=
{I < Rr| R/I € T} is called the Gabriel topology associated with 7. For any Mg
we denote Sat, (M) = {N|N <M, M/N € F}, and for any N < M we denote
by N = (MCINS C M, M/C e F} the t-closure of N in M. It is known that
Sat, (M) is an upper continuous modular lattice for any Mg (see [39, Chapter 9,
Proposition 4.1]).

Asin [4, 5], amodule My is said to be 7-QFD if the lattice Sat, (M) is QFD. More
generally, if P is any property on lattices, we say that a module My is/has t-P if
the lattice Sat, (M) is/has [P. Thus, we obtain the concepts of a t-Artinian module,
t-Noetherian module, t-RSI module, etc. The t-Krull dimension k. (M) (resp. t-dual
Krull dimension k%(M)) of M is defined as the Krull dimension (resp. dual Krull
dimension) of the lattice Sat,(M).

For all undefined notation and terminology on torsion theories the reader is
referred to [7, 24] and/or [39].

An important problem in Module Theory appeared about 40 years ago is to
relativize a certain property, that is,

Given a property P in the lattice L(MR), investigate the property P
in the lattice Sat,(MRg);

in other words,
Having a theorem T on modules, investigate its relativization t-T.

The best illustration of this problem is the relativization of the renowned Hopkins—
Levitzki Theorem, abbreviated H-LT:

H-LT: Any right Artinian ring R with identity is right Noetherian.

https://doi.org/10.1017/50017089510000285 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089510000285

28 TOMA ALBU

The relativization of this theorem with respect to a hereditary torsion theory T on
Mod-R:

t-H-LT: Any right t-Artinian ring R with identity is right t-Noetherian,

is also known as the Teply—Miller Theorem.

Let us mention that the module-theoretical proofs available in the literature of
the Relative H-LT (t-H-LT), namely the original one in 1979 due to Miller and
Teply [34, Theorem 1.4], and another one in 1982 due to Faith [20, Theorem 7.1 and
Corollary 7.2], are very long and complicated; so, the relativization of a result on
modules is not always a simple job, and sometimes it may be even impossible. A very
simple and natural approach to the 7-H-LT is to formulate and prove it in the most
general latticial setting of an arbitrary modular lattice with 0 and 1, and then to apply
it for the lattice Sat,(Rg). This has been done by Albu and Smith [9, Theorem 1.9]. For
a very thorough discussion on the various aspects of the H-LT and the connections
between them, see the survey paper [3].

As we have already seen, our characterizations of upper continuous modular
lattices L with k°(L) < « require the lattice L to be RSI. This condition is automatically
satisfied for the lattice of submodules of any module M. But, for an arbitrary hereditary
torsion theory t on Mod-R, the lattice Sat, (M) may fail to be RSI. Therefore, we first
look for sufficient conditions on 7 to insure that, for any module My, the lattice
Sat. (M) is RSI, i.e. any module My is t-RSI.

We denote by Max, (R) the set of all maximal elements of the poset

(Sat:(Rr) \ {R}, ©).

Note that we may have Max,(R) = @ (see, e.g. [6, Remarques 2.5 (2)]). However, if
the Gabriel topology F; has a basis of finitely generated right ideals, then, the poset
(Sat.(Rg) \ {R}, ©) isinductive, and so, a t-relative Krull Lemma holds:

@) VI € Sat.(Rg) \ {R}, 3J € Max,(R) such that I C J,

and, in particular, we have Max,(R) # . Recall that by a basis of the Gabriel topology
F, we mean a subset B of F; such that every right ideal in F; contains some J € B.
For such torsion theories t satisfying the condition (}), any module My is 7-RSI
by [5, Proposition 2.5]. On the contrary, if Max,(R) = &, then the module Rg is not
7-RSL

The latticial results from the previous sections can be now easily specialized from
an arbitrary upper continuous modular lattice L to lattices of type Sat.(Mpz). We
present below only three of them, and leave to the reader the pleasure to do it for the
remaining ones.

THEOREM 7.1 (z-FT) ([5, Corollary 2.9]). Assume that the Gabriel topology F, for
the hereditary torsion theory t has a basis of finitely generated right ideals. Then the
Jfollowing assertions are equivalent for a module M.

(1) M is T-Noetherian.

(1) M is ©-QFD and Sat,(Mg) has ACC on its subdirectly irreducible elements. [

COROLLARY 7.2 ([S, Corollary 2.10]). A ring R is right t-Noetherian if and only if
the following conditions are satisfied.
(a) Rris t-QFD;
(b) Sat.(Rg) has ACC on its subdirectly irreducible elements;
(¢) the Gabriel topology F. has a basis of finitely generated right ideals. O
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THEOREM 7.3 (t-FT,). Let t be a hereditary torsion theory on Mod-R satisfying
the t-Krull Lemma condition (}). Then, for any module Mg and any n € N we have:

K'(Mg) <n <= Mz is -QFD and k°(S(Sat,(M)) < n. O

For the remaining of this section G will denote a fixed Grothendieck category,
that is, an Abelian category with exact direct limits and with a generator. For any
object X € G, L(X) will denote the lattice of all subobjects of X. It is well known
that £(X) is an upper continuous modular lattice (see e.g. [39, Chapter 4, Proposition
5.3, and Chapter 5, Section 1]. For all undefined notation and terminology on Abelian
categories the reader is referred to [7] and/or [39].

We say that an object X € G is subdirectly irreducible, abbreviated SI, if the lattice
L(X) is subdirectly irreducible. More generally, if P is any property on lattices, we
say that an object X € G is/has P if the lattice £(X) is/has P. Thus, we obtain the
concepts of co-irreducible (uniform) object, object rich in subdirectly irreducibles (RSI),
object of finite Goldie dimension, object with (dual) Krull dimension, QFD object, etc.
If X has Krull dimension (resp. dual Krull dimension), we write k(X) := k(L(X))
(resp. K°(X) := k°(L(X)). Similarly, a subobject Y of an object X € G is/has P if
the element Y of the lattice £(X) is/has PP. We denote by

S(X):=S(L(X) ={Y < X|X/Y is SI}

the set of all CI subobjects of an object X € G, which were called ‘subdirectly
irreducible subobjects’ of X in [5].

The existence of CI subobjects of an object X € G is intimately related to the
existence of simple objects of G. It may happen that G has no simple object (see
e.g. [14, p. 1539]). For such a category G, the only object in G having (dual) Krull
dimension is the zero object of G, and no non-zero object of G is RSI.

The next result characterizes those Grothendieck categories G having a finitely
generated generator. Recall that an object C € G is called finitely generated if C is a
compact element of the lattice £(C) of all subobjects of C.

PROPOSITION 7.4 ([S, Proposition 2.12]). The following assertions are equivalent for
a Grothendieck category G.
(1) G has a finitely generated generator.
(2) There exists a unital ring A and a hereditary torsion theory y = (H,E) on
Mod-A4 such that G ~ Mod-A/H and the Gabriel topology F, has a basis of
finitely generated right ideals of A. |

By Proposition 7.4, any Grothendieck category G having a finitely generated
generator has simple objects, and any X € G is RSI. A recent result of Albu and
Van Den Berg [14, p. 1545]) provides an example of an indecomposable non-locally
finitely generated Grothendieck category with a single simple object, and answers in
the negative a sharper form of Question 2.14 raised by Albu et al. [S] asking whether a
Grothendieck category having simple objects has a finitely generated generator.

We end this paper by presenting specializations of a few latticial results of the
previous sections from an arbitrary upper continuous modular lattice L to lattices
of type L(X), X object of a Grothendieck category G having a finitely generated
generator. As observed just after Proposition 7.4, any object of such a category is RSI,
so the three results below are immediate consequences of the corresponding latticial
results. Notice that there is a slight change of terminology in the next two results
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when comparing them with the original ones of [5]: instead of the term of ‘subdirectly
irreducible subobject” we use the more appropriate term of ‘completely irreducible
subobject’, abbreviated CI.

THEOREM 7.5 ([5, Corollary 2.18]). The following assertions are equivalent for a
Grothendieck category G having a finitely generated generator, an object X € G, and an
ordinal o > 0.

(1) K(X) < a.

(2) X is QFD and k°(X/Y) < a for every (completely) irreducible subobject Y of

X. O

THEOREM 7.6 (CATEGORICAL FT) ([5, Corollary 2.19]). The following assertions
are equivalent for a Grothendieck category G having a finitely generated generator and
an object X € G.

(1) X is Noetherian.

(2) X is QFD and has ACC on its CI subobjects. O

THEOREM 7.7 (CATEGORICAL FT,). Let G be a Grothendieck category having a
finitely generated generator. Then, for any object X € G and any n € N we have:

K(X) <n<= X is QFD and Kk'(S(X)) <n. O

8. Some open questions.
PrOBLEM 8.1. Can F(M) be replaced in Theorem 6.1 by its subset C(M)?

PROBLEM 8.2 (THE LATTICIAL FTY). Let L € M N U, and denote by C(L) the set
of all compact elements of L. Then

KL)<a < Lis QFD and k(C(L) < a.

In particular, L is Artinian <= L is QFD and C(L) is an Artinian poset.

PrOBLEM 8.3 (THE LATTICIAL FT,). Forany L € M N U and any ordinal « > 0,

k°(L) < « &= L is both QFD and RSI, and k°(S(L)) < a.

PRrROBLEM 8.4. Do dual characterizations to those in Theorem 6.10 hold for L €
M N U having k(L) < o?
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