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ON UNIQUENESS POLYNOMIALS FOR
MEROMORPHIC FUNCTIONS

HIROTAKA FUJIMOTO

Abstract. A polynomial P(w) is called a uniqueness polynomial (or a uique-
ness polynomial in a broad sense) if P(f) = c¢P(g) (or P(f) = P(g)) implies
f = g for any nonzero constant ¢ and nonconstant meromorphic functions f and
g on C. We consider a monic polynomial P(w) without multiple zero whose
derivative has mutually distinct k zeros e; with multiplicities ¢;. Under the
assumption that P(e¢) # P(em) for all distinct ¢ and m, we prove that P(w)
is a uniqueness polynomial in a broad sense if and only if 37, qegm >, qe.
We also give some sufficient conditions for uniqueness polynomials.

§1. Introduction

In this paper, a meromorphic function means a meromorphic function
on the complex plane C. A discrete subset S of C is called a uniqueness
range set for meromorphic (or entire) functions if there exists no pair of two
distinct nonconstant meromorphic (or entire) functions such that they have
the same inverse images of S counted with multiplicities. Since F. Gross and
C. C. Yang proved that the set S := {w ; w+e* = 0} is a uniqueness range
set for entire functions ([4]), many efforts were made to find uniqueness
range sets which are as small as possible ([5], [9], [10]). In relation to this
problem, B. Shiffman, C. C. Yang and X. Hua studied polynomials P(w)
satisfying the condition that there exists no pair of two distinct nonconstant
meromorphic (or entire) functions f and g with P(f) = P(g) in their papers
[7] and [8]. For a finite set S = {a1,a2,...,a,}, it is necessary for S to
be a uniqueness range set for meromorphic (or entire) functions that the
associated polynomial

Ps(w) = (w —ar)(w = az)--- (w - aq)

satisfies this condition.
In this paper, we use the following terminology.
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DEFINITION 1.1. Let P(w) be a nonconstant monic polynomial. We
call P(w) a uniqueness polynomial if P(f) = ¢P(g) implies f = g for any
nonconstant meromorphic functions f,¢g and any nonzero constant c¢. We
also call P(w) a uniqueness polynomial in a broad sense if P(f) = P(g)
implies f = g for any nonconstant meromorphic functions f, g.

In the previous paper [1], the author gave some sufficient conditions for
uniqueness polynomials as well as for uniqueness range sets.

Let P(w) be a monic polynomial without multiple zero whose derivative
has mutually distinct k zeros eq,es,..., e, with multiplicities q1,qo, ..., qx
respectively. Under the assumption that

(H) P(ey) # P(ey,) for1<t<m<k,
he proved the following:

THEOREM 1.2. If k > 4, P(w) is a uniqueness polynomial in a broad
sense.

He also gave the following theorem for uniqueness polynomials:

THEOREM 1.3.  For a polynomial P(w) with k > 4 satisfying the hy-
pothesis (H), if
P(el) —|—P(€2) + - +P(€k) 7& O,

then P(w) is a uniqueness polynomial.

Moreover, he obtained some partial results for the case where k = 3.

The main purpose of this paper is to give new geometric proofs of the
above results in [1], which is due to the ideas used in [7, Section 4], and
some improvements in [1] for the case where k = 2, 3.

We first investigate uniqueness polynomials in a broad sense. For a
given nonconstant polynomial P(z), we consider the algebraic curve C in
P?(C) which is the closur of a plane curve {(z,w) ; (P(z) — P(w))/(z—w) =
0} in C?(C P?(C)). We can show that P(z) is a uniqueness polynomial in
a broad sense if and only if every irreducible component of C' is of genus
greater than one. Under the condition (H), we prove that C is irreducible
and give a formula for the genus of C'. These enable us to obtain the
following improvement of the above results:
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THEOREM 1.4. Let P(w) be a polynomial satisfying the above assump-
tion (H). Then, P(w) is a uniqueness polynomial in a broad sense if and

only if

k
(L.5) S aam >
=1

1<b<m<k

We can show that, for the case k > 4, the condition (1.5) is always
satisfied. Moreover, (1.5) holds when max(q1, g2, ¢q3) > 2 for the case k = 3
and when min(q1,¢2) > 2 and g1 + g2 > 5 for the case k = 2.

Next, we try to obtain some improvements of the results in [1] for
uniqueness polynomials with £ = 3. We prove the following:

THEOREM 1.6. Let P(w) be a monic polynomial with k = 3 satisfying
the condition (H). Assume that max(q1,q2,q3) > 2 and

(1.7) ]]j((::;)) 441 for1<l<m<3,
(1.8) ]f((;i)) #+ f”(g:)) for any permutation (£,m,n) of (1,2,3).

Then, P(w) is a uniqueness polynomial.

Lastly, we give some sufficient conditions for uniqueness polynomial for
the case k = 2, which is not treated in [1].

§2. Uniqueness polynomials in a broad sense

Let P(w) be a monic polynomial of degree ¢ (> 0) without multiple
zero, and let its derivative be given by

(2.1) P'(w) = q(w —e)™(w —e2)? ... (w— ey)%,

where ey, ..., e; are mutually distinct and ¢1 +q2 + - +q = ¢ — 1.

In the followings, we assume k > 2, because P(w) cannot be a unique-
ness polynomial in a broad sense for the case & = 1 (cf., [1, p. 1183]).
Furthermore, by technical reasons we assume the following:

(H) P(ey) # P(ey,) forl1<t<m<k.
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Consider the polynomial

P(z) = P(w)

zZ— W

Q(z,w) :=

in two variables z and w, and the associated homogeneous polynomial

Uy U2

Q*(UO,U1,U2) = U3Q<— —)

uo’ ()

of degree d in three variables ug, u1, uo, where d := q¢ — 1. By using this, we
define the algebraic curve

(2.2) C: Q*(ug,u1,ug) =0, (ug:uy:uz) € P*(C),
where (ug : uj : ug) denote the homogeneous coordinates on P%(C).

PROPOSITION 2.3. The algebraic curve C has ordinary singularities
with multiplicities qp at the points Py := (1 1 ey : ep) (1 <€ < k), and has
regular points at all other points.

Proof. Set Lo := {ug = 0}. We first investigate points in C'N L. By
the assumption, P(w) can be written as

P(w) = w™ + terms of lower degree
and so we have
Q" (uo, w1, up) = (uf + uf Mug + -+ uf) + ugR(uo, ur, up),

where R(ug,u1,us2) is a homogeneous polynomial of degree d — 1. Tt is
easily seen that the first term is factorized into mutually distinct d linear
functions u; — Cfus (£ = 1,2,...,d), where ¢ denotes a primitive (d 4 1)-st
root of unity. This shows that C'N L, consists of mutually distinct d points
Qe:=(0:¢":1) (¢ =1,2,...,d) and each Q, is a regular point of C.

We next investigate the singularities of C'\ Lo,. We may use inhomo-
geneous coodinates z,w. Let Py = (z0,wp) (= (1: 20 : wp)) be a singularity
of C', namely, let P, satisfy the condition

Q(Z(),'U)()) = Qz(207w0) = Qw(ZO,U}O) = 0.

Then, by differentiating the identity

P(z) = P(w) = (2 — w)Q(z, w),
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we have

q(z0 —e1)™ (20 —e2)? -+ (20 — ex)™ = (20 — wo) Q= (20, wo) + Q(20,wp) = 0.

This implies that zg = ey for some ¢ (1 < ¢ < k). By the same reason, we
see wg = e,, for some m. It then follows that

P(ey) — Plew) = (20 — wo)Q(z0, wp) = 0.

By virtue of the assumption (H), we can conclude ¢ = m. Therefore, C' has
no singulalrities outside P’s.

We next investigate shapes of C' around each point P,. Without loss of
generality, we may assume ¢ = 1 and e; = 0 after suitable translations of
coordinates. Then, by the assumption (2.1), we can write

P(w) — P(e1) = cw™ " + terms of higher degree
with a nonzero constant ¢, and so
Q(z,w) = (29 4+ 297t + - + w?) + terms of higher degree.

The first term in this expansion can be factorized into the product of mu-
tually distinct linear forms z — nfw (¢ = 1,2,...,q1) in z and w, where
7 denotes a primitive (¢; + 1)-st root of unity. This shows that P; is an
ordinary singularity of C' with multiplicity ¢; (cf., [2, p. 66]). The proof of
Proposition 2.3 is completed. b

PROPOSITION 2.4. The curve C is irreducible.

Proof. Suppose that C' is reducible and so Q(z,w) can be written as

Q(Zv w) = Ql(z’ w)QQ(z’ w)

with nonconstant polynomials ()1 and )2. Consider the curves

Ci + Qf (uo, ur, ug) = ugiQi(ﬂ %> =0, (i=1,2)

uop ’ uo
in P?(C), where each d; denotes the degree of C;. We then have

CiNCy g {Pl,PQ,... ,Pk},
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because C' has a singularity at every point in C'; N Cs. Since Cy N Cy is
discrete, C; and C5 have no common irreducible component. For each /,
there is a neighborhood U of P, such that U N C' has mutually distinct g
irreducible components by virtue of Hensel’s lemma (cf., [6, p. 68]). Some of
them are included in C7 and the others are included in C's. These guarantee
that C; has at worst ordinary singularities at some of the points P,’s and
regular points elsewhere. Assume that C'; and Cs have ordinary singularities
of multiplicities 7, and sy (0 < ry,sp < q) at each Py respectively, where
an ordinary singularity of multiplicity 0 means that the curve does not
contain P,. We then have

(2.5) qg=re+s; ({=1,2,...,k).
Moreover, we can show
(2.6) dy=r1+ro+--+ry, do=51+83+ -+ 5.
To see this, we consider the diagonal line
La:up —ups=0

in P2(C). Since

Q(z,2) = lim Q(z,w) = lim Pw) - P(z)

w—z w—z w— z

=P'(2),

we have C1 N La € {P}, P,,...,P;}. The tangent lines
z—eg—ng(w—eg):0

of C' at Py do not coincide with LA, and so the intersection number of C
and L at Py is ry. By the classical Bezout’s theorem (cf., [2, p. 112]), we
get
dq =ri+ro+---+rg.
Similarly, we have do = s1 + 89 + - - - + s
On the other hand, the intersection number of C; and C5 at each point
Py is rpsp. Applying Bezout’s theorem again, we obtain

dido = 1181 + 1989 + -+ - + 1Sk

Therefore,

Z TpSm — Z WETES Z r¢Sm = 0.
l

lm l#m
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Since 1y and s, are nonnegative integers, we have necessarily rys,, = 0 for all
mutually distinct £ and m. Changing indices if necessary, we may assume
r1 # 0, because dy = > ry > 0. Then, s, = 0 for ¢ = 2,3,...,k. On the
other hand, since do = > sy > 0, we see s1 # 0. This implies that r, = 0
for £ = 2,...,k, because s1ry = 0 for ¢ = 2,...,k. By (2.5), this shows
that £ = 1, which contradicts the assumption £ > 2. Proposition 2.4 is
completely proved. []

With each irreducible algebraic curve V in P?(C) we can associate the
normalization (YN/, w) of V., namely, a compact Riemann surface V and a
holomorphic mapping p of V onto V which is injective outside the inverse
image of the singular locus of V. By definition, the genus g(V') of V' means
the genus of the compact Riemann surface V.

PROPOSITION 2.7. The genus of the curve C' defined as above is given
by
k
(d—1)(d—2) qe(qe — 1)
WO =——— -2 "5
(=1

This is an easy result of Propositions 2.3, 2.4 and the classical Pliicker’s
genus formula (cf., [2, p. 199]).

THEOREM 2.8. Let P(w) be a monic polynomial whose derivative has
k distinct zeros ey, eq, ..., e, with multiplicities q1,qo, ..., qk, respectiviey.
Assume that
P(eg) # Plen), (1<l<m<k).

If k > 4, then P(w) is a uniqueness polynomial in a broad sense.
Moreover, P(w) is a uniqueness polynomial in a broad sense when and
only when
max(q1, g2, q3) > 2

for the case k = 3, and when and only when
min(qi,q2) > 2 and q1+q2>5
for the case k = 2.

Remark. (1) In [1], the author proved Theorem 2.8 for the case k > 4
and the ‘when’ part for the case k = 3 under the additional assumption
(e1,e2,€3,00) = —1 by function-theoretic method.
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(2) For the case k = 2, there is no harm in assuming that e; = 0 and
eo = 1 after a suitable linear change of coordinate on C. In this case, P(w)
is nothing but the polynomial studied by Frank and Reinders in [3] after a
suitable multiplication of a nonzero constant. In this particular case, the
condition (H) is automatically satisfied, because

1
(1) (P(1) — P(0)) = /0 qr (1 — z)® dz > 0.

In [3], Frank and Reinders proved Theorem 2.8 for a particular case where
k =2, min(q1,q2) = 2 and ¢1 + g2 > 6.

Proof. Suppose that P(w) is not a uniqueness polynomial in a broad
sense. By definition, there exist two distinct nonconstant meromorphic
functions f and ¢ satisfying the condition P(f) = P(g). We can write
f = fi/fo and g = fo/ fo with suitably chosen entire functions fo, f1, fo
without common zeros. Consider a holomorphic map

= (fo: fi:f2): C — P*C).

We denote by E the union of the sets of all poles of f, of all poles of g and
of all points z with f(z) = g(z). By the assumption, E is a discrete subset
of C, and we have
®(C\ E) C {(z,w) € P?(C)\ Leo ; Q(z,w) := w = o}.

Therefore, by the continuity of ® the image ®(C) is included in the algebraic
curve C' defined by (2.2). Take the normalization (6 , i) of C. Then, there
is a nonconstant holomorphic map ® of C into C with e ® = ®. For our
purpose, it suffices to seek the condition for the genus g(é ) (= g(C)) of the
compact Riemann surface C is greater than one. In fact, in this case, we
have an absurd conclusion that the map <T>, and so D, is a constant by virtue
of the classical Picard’s theorem, which asserts that every holomorphic map
of C into a compact Riemann surface of genus greater than one is necessarily
a constant. On the other hand, if g(é) is not larger than one, then C
is a torus or the Riemann sphere. Therefore, there exists a nonconstant
holomorphic map U of C into C. Consider the map ¥ = p - \T/, which
can be regarded as a holomorphic map of C into P?(C). We write ¥ =
(fy = fi + f3) with nonzero holomorphic functions which have no common
zeros. It is easily seen that f* := f{/f; and ¢g* := f5/f; are nonconstant
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distinct meromorphic functions satisfying the condition P(f*) = P(g*).
The polynomial P(w) cannot be a uniqueness polynomial in a broad sense.
On the other hand, according to Proposition 2.7 the genus of C is given by

k

k
g(C):W—ZM: > wgm— Y a+1(>0).
/=1

1<b<m<k (=1

Therefore, P(w) is a uniqueness polynomial in a broad sense if and only if
it satisfies the condition (1.5) as mentioned in Section 1.
For the case k > 4, it is easily seen that

Q(C)th(;k;qé—l)Jr( > ngm—zk:CMJrl) >k—-22>2.

2<t<m<k =2

For the case k = 3, under the assumption that at least one of g,’s is larger
than one, say g3 > 2, we have

9(C)=aq(g2+q3s—1) +(g2—1)(gz — 1) > 2.

Moreover, for the case k = 2, under the assumption min(qi,¢2) > 2 and
q1 + g2 > 5, we have

9(C) = (g1 — V(g2 — 1) > 2.

Conversely, for the case k = 3, if ¢1 = g2 = g3 = 1, we have ¢g(C) = 1. For
the case k =2, q1 =1, g2 = 1 or ¢1 + q2 < 4, then g(C) < 1. The proof of
Theorem 2.8 is completed. U

83. Uniqueness polynomials

As in the previous section, we consider a monic polynomial P(w) with-
out multiple zero whose derivative has mutually distinct & (> 1) zeros
e1,€2,...,e, with multiplicities g1, go,. .., qr respectively, and assume that
P(w) satisfies the condition (H).

In the previous paper [1], the author proved the following:

THEOREM 3.1. Assume that k > 4. If P(w) is not a uniqueness poly-

nomial, then there is a permutation (i1,12,...,ix) of (1,2,...,k) such that
Plei) _ Ple,) _ Pley) 41
Pe;)  Ples) P(ey)
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We note that Theorem 1.3 mentioned in Section 1 is an immediate
consequence of Theorem 3.1.

We now investigate the polynomial with £ = 3. Changing indices if
necessary, we assume that ¢; < ¢o < gs.

THEOREM 3.2. Assume that P(w) with k = 3 is not a uniqueness
polynomaal.

(1) If 1 > 2, then P(w) satisfies the condition
P(eil) . P(eiz) . P(€i3)
P(el) N P(eg) N P(€3)

(C1) £ 1.
for some permutation (i1,i2,13) of the indices (1,2,3).
(2) If g1 = 1 and 2 < g2 < g3, then P(w) satisfies the condition (C1)

(C2) Ples) + P(ez) = 0

(3) If g1 = g2 = 1 and q3 > 2, then P(w) satisfies the condition (C1)
or

(C3)  P(e1) + P(e3) =0, P(ey)+ P(e3) =0 or P(ey)P(ey) = P(e3)?

For the proof of Theorem 3.2, we assume that there are distinct non-
constant meromorphic functions f and g and a nonzero constant ¢ such
that P(f) = cP(g). For all cases of Theorem 3.2, the assumptions of The-
orem 2.8 are satisfied and so P(w) is a uniqueness polynomial in a broad
sense. Therefore, we have necessarily ¢ # 1. As in the previous paper ([1]),
we set

A= {(t,m) ; Pleg) = cP(en)}.

We give the following lemma, which is an improvement of [1, Lemma 5.3].

LEMMA 3.3. Assume that k =3 and qg, > 2 for some ly. Then, there
are some indices m and m' such that ({y,m) € A and (m’,4y) € A.

Proof. This is proved by the same argument as in the proof of
Lemma 5.3 of [1] with some simple modifications. For reader’s convenience,
we state the outline of the proof. We assume that (¢g,m) ¢ A for any
m. For each point zo with f(z0) = ey, we see g(z0) # e for any m.
Since P'(f)f" = cP'(g)g’, we have necessarily ¢’(z9) = 0. This implies that
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N(r, uf ) S N(r,vy|f=e,,)- Here, N(r, V?O) and N(r, vy |r=c, ) denote the
counting functions of zeros of f — ey, counted with multiplicities and of
zeros z of ¢’ counted with multiplicities such that f(z) = ey, and g(z) # e,
for any m, respectively. Assume that there are constants co (# 0) and ¢;
with ¢ = ¢of + ¢1. Then, the assumption P(f) = ¢P(g) implies

(f —e)™(f —e2)®(f —e3)®
= CCo(Cof +c1 — 61)q1 (C()f +c — 62)q2 (C()f +c — 63)q3

Since f is not a constant, this is regarded as an identity of polynomials with
indeterminate f. Using the unique factorization theorem as in [1, p. 1191],
we can easily show that, for every ¢, there is some m with (¢, m) € A, which
contradicts the assumption. Hence, there does not exist such constants cg
and ¢1. As in [1, p. 1184], we set kg = #A. By the assumption we see
ko < 2, and so we can apply Lemma 3.8 of [1] to obtain N(r, 1/ | = ety ) =
S(r, f) + S(r,g). Therefore, N(r, V?O) =S(r, f)+ S(r,9).

Consider the polynomial Q(w) := P(w)—P(ey,) and Q*(w) := cP(w)—
P(eg,). We denote all distinct zeros of Q(w) and Q*(w) by a1 (= eqg,),
Qg,...,o, and B, B2, ..., B, respectively. Since ) has a zero of multi-
plicity g¢, + 1 at a1, we have m < ¢ — q4y < g — 2. Moreover, each [3;
(1 < j < n)is not equal to e, for any m, because Q*(e,,) = 0 implies
(€p,m) € A. This shows that all 8;’s are simple zeros of Q*(w) and so
n = ¢. On the other hand, if ¢ = 3; for some j at a point zg, then
P(f(z0)) = cP(g(20)) = cP(B;) = P(eq,) and so f(z9) = «; for some i. By
the second main theorem in value distribution theory, we obtain

q
(¢g—2)T'(r,9) SZ 7"119 )+ S(r,9)

< (m - 1)T(T7 f) + S(Thg)?

where N (r, 1/g 7) denotes the counting functions of the points z with g(z) =
Bj counted without multiplicities. This gives an absurd conclusion g — 2 <
m — 1 < ¢ — 3. Therefore, there is some m with (¢g, m) € A. The proof of
the existence of m’ with (m/, £p) is similar. Thus, we get Lemma 3.3.

Now, we start to inquire into the assertion (1) of Theorem 3.2, namely,
the case min(qi,g2,q3) > 2. By Lemma 3.3 there are indices i1, i3, i3 such
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that (¢,i0) € A (¢ = 1,2,3). In this situation, it is easily seen that these
i1,12,13 are mutually distinct by Lemma 3.5 of [1]. As its consequence, we
have the desired conclusion for the case (1).

We next inquire into the assertion (2), namely, the case ¢ = 1 and
2 < q2 < g3. In this case, there are indices i9, 73 and ja, j3 such that

(2,i2) € A, (3,i3) € A, (j2,2) € A, (J3,3) € A.

If min(ig,i3) > 2, then we have necessarily io = 3 and i3 = 2 by Lemma 3.5
of [1] because ¢ # 1. Therefore, we get

_ Plea)  P(es)
P(eg) P(eg)’

and so P(e2)? = P(e3)?. Since P(e2) # P(es) by the assumption (H), we
have the conclusion (C2). It remains to consider the case io = 1 or i3 = 1.
Changing indices if necessary, we assume that io = 1, namely, (2,1) € A.
This implies that i3 = 2, namely, (3,2) € A, because i3 # 1,3 by Lemma 3.5
of [1] and the fact ¢ # 1. Moreover, we have (1,3) € A by the same reason.
Therefore, we have (C1).

Lastly, we inquire into the assertion (3), namely, the case ¢ = g2 = 1
and g3 > 2. In this case, there are indices ¢ and j such that (3,7) € A and
(7,3) € A. Then, we may assume ¢ = 1 and so (3,1) € A by exchanging the
role of indices 1 and 2 if necessary. If j = 1, then we have P(e;)+ P(e3) =0
and, if j = 2, then we have P(e;)P(es) = P(e3)?. The proof of Theorem 3.2
is completed. []

We note here that Theorem 1.6 mentioned in Section 1 is an easy con-
sequence of Theorem 3.2.

For the case k = 2, we can prove the following:

THEOREM 3.4. Assume that the derivative P'(w) has two distinct ze-
ros ey and ez with multiplicities q1 and qo respectively and assume that
q1 < qo. If it satisfies one of the conditions

(1) ¢1 > 3 and P(e1) + P(ez) # 0,
(2) 1 =22 and g2 > 1 + 3,

then P(w) is a uniqueness polynomial.

Proof. Assume that P(w) is not a uniqueness polynomial. Then, there
are nonconstant distinct meromorphic functions f, g and a nonzero constant
¢ such that P(f) = cP(g). By virtue of Theorem 2.8 we have ¢ # 1.

We first show the following:
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LEMMA 3.5. Ifc# P(e2)/P(e1), then g2 < 2.

Proof. As in the proof of Lemma 3.3, we consider the polynomials
Q(w) := P(w) — P(e2) and Q*(w) := c¢P(w) — P(e2), and denote all zeros
of Q(w) and Q*(w) by ay (= e32), aa, ..., and By, B2, . .., OBn, respectively.
Then, oy is a zero of Q(w) with multiplicity g2 + 1 and «; are simple zeros
of it for i = 2,3,...,m. Moreover, by the assumption, all 5; (1 < j < n)
are simple zeros of @*(w). Therefore, m =q—q2 = ¢ +1 and n = q. We
now apply the second main theorem to the function g and ¢ values ;s to
obtain

q
(¢g—2)T ZNTVQ )+ S(r,g),
7=1
For every point zg with g(z0) = f;, we have P(f(z29)) = cP(9(20)) =

cP(B3;) = P(e2) and so f(zo) is equal to one of the values aq, o, ..., 0.
Noting that T'(r, f) = T'(r,g) + O(1) by Lemma 3.2 of [1], we obtain

Z (r, I/f S(r, f)

T(r, )+ 50 f)
(QI + 1)T(Ta g) + S(T’ g)'

(¢q—2)T

| A

VARVA

This concludes that ¢ —2 =¢q1 + g2 +1 — 2 < ¢; + 1, whence ¢o < 2. O

We continue the proof of Theorem 3.4. Under the assumption of (1),
we have either ¢ # P(es)/P(e1) or ¢ # P(e1)/P(e2), because otherwise

which contradicts to the assumption P(e;) + P(e2) # 0. Therefore, ¢; < 2
or g2 < 2 as a consequence of Lemma 3.5. Thus, we have the assertion (1).

The proof of the assertion (2) is given by the the same argument as in [3,
191]. For readers’ convenience, we repeat it here. By virtue of Lemma 3.5,
it suffices to consider the only case ¢ = P(es)/P(e1). By the same argument
as in the proof of Lemma 3.5, Q(w) := P(w) — P(e2) has mutually distinct
m = q1 + 1 zeros ay,...,q, and Q*(w) := c¢P(w) — P(e2) has mutually
distinct n := g2 + 1 zeros B1,...,B,. In this case, if g(z9) = 3; for some
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29 € C and some j, then f(z9) = a; for some i. Therefore, we have

(g2 + 1) = 2)T(r,9) < S N(r,7) + 5(r, )
=1

<
Il

NE

N(r,75) + S(r.9)
1

< (@ +1)T(r,g) + S(r,9).

This concludes ¢ — 1 < g1 + 1, which contradicts the assumption. The

proof of Theorem 3.4 is completed. U
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