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OPTIMAL RISK EXCHANGES *

HANS BUHLMANN AND WILLIAM S. JEWELL

The determination of optimal rules for sharing risks and constructing reinsurance
treaties has important practical and theoretical interest. Medolaghi, de Finetti, and
Ottaviani developed the first linear reciprocal reinsurance treaties based upon
minimizing individual and aggregate variance of risk. Borch then used the economic
concept of utility to justify choosing Pareto-optimal forms of risk exchange; in
many cases, this leads to familiar linear quota-sharing of total pooled losses, or to
stop-loss arrangements. However, this approach does not give a unique, risk-sharing
agreement, and may lead to substantial fixed side payments. Gerber showed how
to constrain a Pareto-optimal risk exchange to avoid invasion of reserves.

To these ideas, the authors have added the actuarial concept of long-run fairness
to each participant in the risk exchange; the result is a unique, Pareto-optimal
risk pool, with "quota-sharing-by-layers" of the total losses. There are many
interesting special cases, especially when all individual utility functions are of
exponential form, giving linear quota-sharing-by-layers. Algorithms and numerical
examples are given.

1. INTRODUCTION

Insurance companies and other financial risk-bearing entities may enter into
formal risk-sharing agreements for a variety of reasons, the most important
of which is the simultaneous reduction of risk for all participants. For example,
it is well known that two companies can both reduce the variance of their
risk portfolios by agreeing to cover fixed quotas ((3, l—(3) of their pooled losses
(and perhaps making a side payment to keep the pool "on fair terms"); this
joint improvement occurs for some interval of values of (3 in (0, 1), so the
actual quota must be negotiated by other considerations.

Other corporate objectives, such as market penetration or financial stability
may lead to different, non-linear forms of exchange, in which extreme, catas-
trophic losses are reallocated to the treaty members in different ways to
"spread the risk". In fact, there is no difficulty in including under risk ex-
changes such "one-sided" arrangements as a reinsurance treaty, in which one
of the participants brings no risks to the pool, but agrees to take a portion of
the excess losses above some retention limit, in exchange for a fixed fee.
Clearly it would be desirable to develop a theory which would explain the
variety of actual risk-sharing agreements observed in the real world.

Given that a group of insurance companies has agreed to enter into a risk
pool, this paper explores the general forms of exchange that result in simul-
taneous improvement of risk for all parties, under the following assumptions:
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1. All companies share the same information about the statistical nature of
the individual, possibly dependent, risks to be shared. We formalize this
by assuming that all companies work with the same probability distributions
of the risks concerned.

2. Each company measures the risk of its portfolio by an individual utility
function that is unaffected by the negotiations, i.e. there is no effort to
change attitudes.

3. The companies may also agree, through mechanisms not considered here,
on certain individual or joint side conditions, such as limits on losses paid,
or on side payments.

In a series of important papers (1960a, 1960b, 1962), Borch showed that the
use of utility functions leads to the economic concept of Pareto-optimal risk ex-
changes, in which the form of the agreements is determined by the individual
utility functions (however not by the probability distribution!). Solution
parameters are still open to competitive negotiations. In this paper we shall
add the assumption that

4. all companies wish the exchange to be fair, in the sense that, according to
a commonly accepted premium principle, all companies agree that, over
the long run, no company in the pool should profit at the expense of the
others.

We shall see that adding this insurance concept of fairness will lead to a
unique Pareto optimal risk-sharing agreement. Many familiar forms of ex-
changes then follow under special assumptions about utility functions, volume
of business, individual participation constraints, etc.

It is interesting that so far all authors have tried to arrive at a specific
element within the set of Pareto Optima by game theoretic considerations
(BORCH (1960b), LEMAIRE (1977)). Our paper achieves unicity by introducing
the actuarial concept of fairness.

2. THE MODEL

2.1. General Considerations

Consider n insurance companies, indexed i = 1, 2, . . ., n, each with a risk
portfolio characterized by

— a fixed premium income, I I | ^ o;
— a random loss (possible claims), S{ ^ o;

over some common exposure period. The set of all losses [Si] is defined over
some probability space O with known joint distribution P(co) of possible out-
comes co. Set II = HiYli and S =
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By a risk exchange or risk pool we mean any formal mutual agreement
among the n companies that, operating as an entity

/l. accepts the responsibility for paying for an input Xt = fi(S{, Hi)
I from company i, where j \ is a fixed but arbitrary function;
\2. charges company i an output Y% for accepting the input, according

(21)' t° the agreed-upon rule for sharing risks;
3. Operates on a zero-balance conservation principle

for all outcomes co e O.

Since risk pools are intended to redistribute only actual losses (and possibly
the associated premiums), but not the individual wealth of the company, one
would typically include in the exchange protocol side constraints of the form

(2.2) Yi>Ai (i = 1, 2, . . ., n)

where A% is a constant (or random variable A{(u>)), designed to limit negative
charges (payouts) to company i.

The risk agreements might also include constraints of the type

(2.3) Yi^At + Bi, (i = 1 , 2 , . . . , « ) ,

designed to directly protect the liquidity of the individual companies. It is
clear that we must have B{ > o. We shall not consider pools in which coalition
constraints, relating to subsets of the Y\, are possible. The importance of side
constraints is mentioned by Borch (1968), and first incorporated in an ex-
change model by Gerber (1978).

2.2 The Claims Pool; Linear and Quota Exchanges

An important special case is the claims pool in which companies keep their
premiums and share all their losses:

(2.4) Xi = Si;Yi^o, (i = 1 ,2 , ...,n).

One possible risk-sharing rule is a linear exchange, in which w2 constants
6y are given, so that

(2.5) Yt = S QtjXj, (i = 1,2, . . . , « ) .

To satisfy the clearing condition SY* = HArj, we must have

(2.6) S 8«,= i, (; = 1,2, . . . , » ) ,
% = 1

so that a feasible linear exchange has only n2—n free constants, o ^ 6 # ^ l.
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If the losses Xi are uncorrelated, it is easy to show (for n — z, see BEARD

(1969)) that the variance of all output losses F{Y^} can be reduced by adjusting
the constrained Oy until a Pareto-optimal frontier is reached at which a variance
reduction for one company must be traded-off against a variance increase for
another. On this frontier, there are only n exchange constants, 6y=8j, and

(2.7) Y« = e ( A ' ;o<8 i< i ;2 :8 l = i .

This arrangement is called a quota claims pool; the quota fraction 0,, taken by
the z'th company of the total losses S,is often fixed on the basis of "volume", e.g.,

(2.8) e,= n«/n.

Note that one could add conservative side payments to (2.5) to make
E{Y{} = E{Xi) without changing the variances of the quota claims pool. The
first models of linear quota pools were developed by P. Medolaghi, B. de
Finetti, and G. Ottaviani; references are given in SEAL (1969).

2.3. The Business Pool

Another important special case is when companies agree to share both pre-
miums and claims:

(2.9) Xi = Si-\li\ Yi^-U, (i = 1,2, . . . , « ) .

Notice the lower limit to prevent the invasion of reserves.
The traditional quota business pool is a linear exchange of this type, in which

(2.10) Yj = 0j(S-II); o < 0 i < i ; 26*= 1.

Observe that if these quotas are set on the basis of "volume" (2.8), then
the quota claims and quota business pools coincide, in the sense that the net
charge to company i, Yi — Xi, is the same in both cases.

2.4. The Canonical Risk Exchange {REX)

It is easy to see that if both X{ and Yi are changed by the same (possibly
random) amount, the net charges of a risk pool remain the same. To simplify
exposition in the sequel, we shall subtract out any Ai appearing in (2.2) from
the definitions of Xi and Yi in (2.1), giving Xi = fi(St, Hi) — Ai and Yj^o.
This will also affect any other side conditions, such as (2.3).

Our canonical definition will then be:

A risk exchange (REX) (X, Y) is a formal rule for changing a random vector
X = (Xi, Xi, . . ., Xn) into a random vector Y = (Yi, Y2, . . ., Yn) so that

(2.11a) 1
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(2.11b) 2. Yi^o, (i = 1,2, . . . , n ) .

( 2 . 1 1 c ) 3 . Yi^Bi, (i = i , 2 , . . . , « ) .

3. THE FAIR RISK EXCHANGE (FAIRREX)

Most insurance business is carried out using a measure of risk called premium.
If Z is any random variable defined on Q, we may define a premium principle
for Z as follows:

(3.1) Premium [2] = JZ(w)G

G(w) > 0 is a loading factor that weighs Z in a predetermined manner over
the possible outcomes. If G is the random variable with values G(co), we can
also write Premium [Z] = E{ZG). Typically, E{G} > 1; for later purposes, we
require G > o on the support of Z. Finally, if G= l for all «, then (3.1) gives
the usual fair premium E{Z}.

In establishing a risk pool, particularly a mutual agreement among similar
companies, we argue that no company should profit from any other in the long
run, no matter what form of agreement is mutually best for the outcomes in
each exposure period. This implies that each company, using a commonly
accepted premium principle, would judge that the premium of its input to the
pool should be identical with the premium of the output it actually pays, in
order that the pool is perceived to be equitable in the long run.

Therefore we define:

A REX (X, Y) is a FAIRREX if it satisfies the fairness condition

(3.2) Premium [Y«] = Premium [X{]

for each company (i = 1, 2, . . ., n), using a common premium principle (3.1).
Note that for all values of 6{ the quota business pool (2.9) is a FAIRREX
if U{ is the premium calculated on a fair premium basis. Unfortunately the
linear form of exchange is not usually optimal in the sense described in the
next section.

4. THE PARETO-OPTIMAL RISK EXCHANGE (POREX)

4.1. The Unconstrained Case

BORCH (1960a, 1960b, 1962) observed that the form of treaty acceptable to all
parties in a REX should depend upon the individual attitudes towards risk. As-
suming that each company is rational in ordering its preferences (i.e., satisfies
the Bernoulli hypothesis), then it is well-known that under weak technical as-
sumptions this implies the existence of a non-decreasing utility function Ui
for each company (i = 1,2, ...,n), and the ranking of risky outcomes
according to its expected utility U%. For example, suppose that, prior to
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joining a REX, company i held capital wealth W% against a random loss X(.
Its prior expected utility would be

(4-1) u° = E{ut<yrt-xt)}.

Posterior to the REX (2.11), its expected utility will be

(4-2) Ut = EiuiiWi - Yt(Xx, X2, .... Xn)}},

and so it will perceive the REX as advantageous for company i, if Ut > £7°.
Borch argued that if the companies acted rationally and cooperatively, they

would not agree on a REX (X, Y) if there existed another REX (X, Y) such
that the expected utility of at least one company was improved without
decreasing the expected utility of all other participants. This leads naturally
to the idea that the all interesting treaties are Pareto-optimal, defined as

A REX (X, Y) is a Pareto-Optimal Risk Exchange if there is no other
REX (X, ? ) with

(4-3) E{Ui{Wi -%)}> E{Ul{Wi ~ Yt)}

for all i, with strict inequality for at least one i.

Since we will be dealing only with non-negative losses, we can simplify our
formulae by changing to disutility functions vi and expected disutilities Vi,
measured about the current wealth:

(44) Vi(x) = -Ui{Wi-x).

(4.3) then reads E{vi(Yi)} < E{v{(Yi)}. Expected disutility for company i
(which one wants to keep small!) is denoted by Vt. We shall assume v't> 0
and v'l > 0 for all i (risk aversion). As convenient, we shall make transforma-
tions of the form a + bv{(x), with b > 0, which do not affect preference orderings.

Borch (1960a) observed that Pareto-optimality could be obtained for every
outcome, and therefore, did not depend upon the distribution of the X%. Work-
ing with unconstrained REXs (i.e. without (2.1 lb)), he characterized these solu-
tions as follows:

Theorem l

REX (X, Y) is an unconstrained POREX if and only if there exist positive
constants ki, k%, . . ., kn for which

(4.5) V i P ^ ) = *i«i ( y i ) . ( *= 1,2, . . . , « ) .

A proof is given by DuMouchel (1968). Clearly, there are only n—1 effective
constants that parametrize the possible POREXs. It also follows that the
POREX treaties Y% = yi{Xi, Xi, . . ., Xn) are scalar functions of the total
losses X only. The values x of X can replace « as the "state of the world",
and the POREX is hence described by the functions yt(x), (i = 1, 2, . . ., n).
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POREXs are pools, in which all losses are first merged, and then divided up.
Borch (1968) refers to this result as "non olet" ("l'argent n'a pas d'odeur")
with reference to the Vespasian anecdote.

The form of the unconstrained treaties follows easily from (4.5). For example,
if the companies all have utility functions that are in one of the following
classes (and their positive linear transformations)

; e atx

I 4- Ih. 4- v\C )

(—, —) for c > 1

(4 .6a) Ui{x) = ' + (bi±x)c ' ( + , + ) fo r o < c < 1

f ( - , + ) f o r c < 0

In (x + di)

then the POREX sharing rules are linear in the total losses Borch (1968),
Wilson (1968)

(4.6b) yi(x) = $tx + yit S(3j = 1, Sy« = o.

The quota share fractions (}4 and the side payments y« are determined from
the individual utility parameters in (4.6a) as well as the Pareto multipliers
from (4.5). Only in the exponential utility case are the quota-sharing fractions
independent of the kt, and hence the same for all POREXs.

(4.6b) shows a disadvantage of the Borch formulation: because the side
payments must sum to zero, there are some companies making payments to
others even when all losses are zero. This phenomenon, which one wants to
eliminate in certain cases, leads immediately to constrained optimization as
considered in the next section.

4.2. The Constrained Case

Gerber (1978) was the first to incorporate a non-invasion side constraint and
suggested Yi^Xi + li, where the i« are given non-negative constants; this is
a special case of our definition of a REX. Gerber also generalized Borch's
theorem (4.5) to the constrained case; for our formulation (2.11) it takes the
following form:

Theorem 2

REX (X, Y) is a constrained POREX if and only if there exist positive con-
stants ki, kz, . . ., kn and a positive random variable A (to) such that for almost
all outcomes w and all companies i = 1, 2, . . ., n

(4.7) W ^ H ) > A(") if YtH = °
/e^(Y,:(w)) sc A(w) if Y^w) = B
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"2 "3

Fig. i. Development of a constrained PORKX for Given Pareto Multipliers, k,-.

For an explicit proof, the reader is referred to Biihlmann (1978). Observe that
for a non-degenerate POREX (i.e. when no company receives a share Y( = o),
there is exactly one vector (ki, . . ., kn) (and its positive multiples) satisfying
(4-7) •

In the following, we shall always assume Z?;(ci>) = 00 although the case
where the upper bound is effective can be treated by similar methods. In
particular, Theorem 3 can also be proved for an effective upper bound on the
random vector Y = (Yi, Y2, . . ., Yn).

4.3. The Shape of a Constrained POREX

Condition (4.7) gives us an easy way to visualize and compute the shape of
the optimal treaties Vi[x). The Pareto multipliers ki are fixed arbitrarily, and
the curves k^u'^y) are plotted simultaneously for y > o with the level line
X = A (to), as shown in Figure 1 for n—3. The indices are renumbered to give
increasing intercepts X.t = k{v't[o).

Now think of X as parametrically increasing from zero. If X < Xi < X2 < X3,
it is clear from (4.7) that all y$ must equal the lower bound zero, and hence
the total losses x are also zero. Increasing X above the first intercept, so that
X1<X<X2<X:| permits k^iy^) = X and yl>o, but still y2 = y3 = o; in other
words, the first company takes all the losses y\ = x. In the next interval,
X, < X, < X < X:>, /i;1Wi(y1) = k.2v'.2{yij = X and both y1 and y2 are positive,
Vi + v-2 = x, but still y3 = o, and so forth. In other words, by parametrically
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increasing X, we pass through different layers of risk-sharing in which first
company # l, then companies # 1 and # 2 , etc., participate.

Furthermore, since at each level X the values of the yi are given directly
from the curves, we can compute the total losses # = Sy$ by "horizontal
addition". The heavy line in Fig. 1 shows the resulting parametric curve of X
versus x; note the layering constants ci = 0, c2, c%, at which each new company
begins to participate in x.

Fig. 2. Layered POREX Treaties corresponding to fig. 1.

By reading fig. 1 sideways, we can easily visualize the fractional participa-
tion y%{x)\x at each level \{x); fig. 2 then shows the actual treaties, y%{x) versus
x, corresponding to fig. 1.

To summarize, the constrained Pareto-optimal treaties consist of layered,
non-linear functions determined parametrically as follows:

1. Given the Pareto multipliers {ki} and the disutility functions {vt}, we
renumber the companies so that ^ ^X2 ^ . . . <Xm, where \t = &4w$(o).
(Take Xm+i = + 00)

2. If X;<X<Xj+i, then only companies with indices iej — {1,2, •••,]}
participate in the losses, so y*(X) > o(iej), and Vj(X) = o(i$J), (j =
1 , 2 , . . . , « ) .

3. The participations y% and total losses x in layers (X;, Xy+i] are found from
the inverse wt of v\:

(4.8a)

and

(4.8b)

y<(X) = Wi

*(X) =

• / ) .

4. Since v$ > o, this inversion is unique, and the constrained POREXs are equal-
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ly characterized by the ordered layering constants c\ = o < ci ^ c% < cn with

(4-y) ct =

Thus, in principle, the participants in a constrained POREX have to
determine, through bargaining, the n— 1 constants which determine the n
layers of total pooled loss at which each company will begin to participate;
once these values (and their order) are determined, the form of participation
is uniquely determined by the individual utility functions. Generally speaking,
a first company takes all the loss in the lowest layer, and successive companies
start in succeeding layers, with relative participation in higher layers usually
(but not necessarily!) diminishing.

4.4 The Exponential POREX

Because of simplicity and practical importance, we shall concentrate on
exponential (dis)utilities in our later examples, for which all companies have
u% proportional to — e~x/ai, and, say,

(4.10) vt(x) = Xie + x!a>; v't{x) = exhK

(This normalization makes Xj = k{.)

This utility function has the great advantage that the form of the POREX
is independent of the initial wealth Wi (being absorbed in the ki or the a);

"2 3

Fig. 3. POREX Treaties with Exponential Utilities.
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this is because the exponential is the only function with constant risk tolerance
Wilson (1968) aj is the risk tolerance unit—the larger is ««, the more risk-
tolerant is that company.

By simple calculations from the previous subsection (using In v\ and In X),
we find that, given an ordering (l, 2, . . . , « ) of the companies and the cor-
responding layering constants c\ = o < cz ^ . . . < cncn,

(4.10) yi{x) = £ %{x-Cj)+, (i = 1 , 2 , . . . , n ) ,

with
/ 0 (j < i)

U [(S a*)"1 - ( E a t ) i (;>/)
V A- - 1 t - 1

independent of the Cj.

These piecewise-linear treaties are shown in fig. 3.
Of particular interest are the quota-share fractions ("stock functions"

Wilson (1968)), Pi(A), showing the incremental participation of company i in
layer k:

(4.12) [it(k) =
dyi{x)

dx

{k < i)
x e [cfc, cfc+i) = •> , y ,, .,

In other words: in the exponential POREX, companies quota-share in
layers, with their quota-fraction equal to their unit risk tolerance, divided by
unit tolerances of all other companies participating in that layer.

5. THE FAIR, PARETO-OPTIMAL RISK EXCHANGE (FAIRPOREX)

We turn now, to the heart of our contribution. The basic difficulty of the
POREX models is that they are indeterminate and do not completely describe
the "best" treaties. Rather, they prescribe a subset of possible arrangements
(which contains any "reasonable" REX), and leave the selection of the
layering order and constants as the basic issue in the competitive bargaining.
Borch has suggested the use of the Nash equilibrium point Borch (1960a), a
market equilibrium mechanism using Arrow Certificates Borch (1960b, 1962)
and game theory Borch (1962) to resolve this problem, but none of these is
competely satisfactory.

As discussed in Section 3, we believe that mutual exchanges among in-
surance companies are governed both by a desire to modify short-term risk,
and also by an understanding that, over the long run, no single company
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shall profit from another in the sense of modifying the premium of contributed
and assumed losses. Therefore, it is of interest to see if the FAIRREX require-
ment of Section 3 can be superposed on the POREXs of Section 4 to give one
or several risk exchanges that are both fair and Pareto-optimal.

First we observe that there are effectively n—\ free layering constants {ĉ }
(if we drop the ordering convention), since one must be set to zero.

From the n FAIRREX requirements (3.2) we subtract one because of the
already satisfied conservation condition HYj = SXj, leaving n — l effective
constraints (3.2). Surprisingly, and very satisfyingly, it turns out that this is
enough to completely specify a unique FAIRPOREX! Mathematically, this
is seen as follows: For any REX (X, Y) defined in (2.11), let

(5-1) 0 > ( X , Y ) = 2 E {G •]'In v'i(y)dy}.
< - l 1

Define a FAIRREX as

(5.2) E{G-Vi (X)} = E {G • Xi} = qt, (i = 1, 2, . . . , » ) ,

where E {GX} = Xqt = q;

and define a FAIRPOREX as a FAIRREX that additionally satisfies (4.7).

Theorem 3

Suppose qt> o and v't(o) > o for all i= 1, 2, . . ., n.

Then: For any bounded X,

1. Among all FAIRREXs {X, Y) there is a FAIRREX {X, Y) that
minimizes O;

(5.3) 2. The FAIRREX (X,Y) is a FAIRPOREX;
3. If at least one v'l > 0 over its range, then the FAIRPOREX is

unique.

The proof is based upon a similar result of Gale (1977) who is concerned with
the fair distribution of desirable economic goods. The proof, which relies on the
convexity of 0 on the set of REXs, is rather delicate, and is developed in a
separate paper Buhlmann (1978). There one finds also an extension in case X
is not bounded.

The practical importance of this result is that a unique POREX can be
found which also is fair in the long run, i.e., one can be both a "rational
economic man" and a "rational actuary" in setting up a risk exchange.

6. FAIRPOREX ALGORITHMS

6.1. General n Company Algorithm

In 4.3 we have seen that a POREX can be characterized by its multiplier
constants k = (ki, fe, . . ., kn) or equivalently by its layering constants
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c = (ci, C2, ...,cn). It is evident that finding a FAIRPOREX is a root-
finding procedure where one tries to find either k or c such that for all i

(6.1) y-i (c) = Premium [y« {X/c)] becomes equal to the input premiums
qi = Premium [AY

or, equivalently, such that
(6.2) Vj (k) = Premium [yj {.X/k)] becomes equal q-i.

In the general n company case one works more easily with the multiplier
constants. The search is then helped by the following observations:

1. Because of the conservation condition 2 v8- (k) = H q^ for any k. So there

is no problem of "escaping values" and if one vj is too large at least one
other must be too small.

2. If one increases kj, then VJ(&) is nondecreasing (strictly increasing) for i^j;
is nonincreasing (strictly decreasing) for i—j.

The statements in parenthesis hold as soon as Y\k) is not identically zero.

Observe that these considerations do not depend on any ordering of the
constants kj, j = l, 2, . . ., n .

6.2. General Two-Company Algorithm
The search is particularly simple when n = 2. Then, for a > o, /e2f if and only if
d\. If we pick c° = (o, o) initially, then it follows from the above that one \xi (c°)
is too high, and the other is too low, and that \n decreases (increases) if its own
(the other) layering constant increases. So the algorithm is simply:

1. Set c° = (o, o) and compute the \j.t. Renumber, if necessary, the company
with \xi> qi as company # 2, the other as company # l.

2. Keeping ci = o, increase C2 until \x% decreases to qz (and \ii increases to qi).

6.3. Exponential Utility Algorithm
The computation of the fair layering constants is greatly simplified in the
exponential case because the slope of yi (x) in layer k, x e [cjc, cje+i), remains
constant at (3j (k) = a</(ai + a2+ . . . + a*), and, in the top layer \cn, 00), the
wth company participates only in this layer; thus, vn (x) = [in («) (x—cn)+.

The key idea of the algorithm below is that the company which actually
takes on this upper layer will be the one with largest resulting cn. Because
Premium [{X — c)+] is decreasing in c, this company can be found by finding
the company i that minimizes g</«i. Once this company is found (and renum-
bered #n), the losses handled in the topmost layer are removed from the
pool, and the process repeated in the layer [cn~i, cn), etc. Furthermore, the
rankings ql^jan, once made, are stable in every iteration /, so the ordering of
the companies can be fixed once and for all! The algorithm also contains some
short-cut stopping rules.
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Exponential Utility Algorithm

1. Set t-*-n, and index the companies so that:

?i qz qn
(Xi 0C2 V*n

Define q^ = en = Premium

2. At iteration t, ct is the unique solution of

qW = $t(t). {Premium [{X-ct)+] - Premium {{X - ct+i)+}}
(Note: cn+i = 00).

3. If Ct = 0 (roundoff ?), STOP! ti = c2 = . . . = c$_i = 0.

4. Define

^J*'1) = qf)-^{t) • {Premium [{X-ct)+} - Premium [{X - c
\l — 1 , Z, . . . , I— I).

(Note: qf'^ = 0 for i ^ t)

5. If qf'^ = 0 (roundoff?) for all i<t, STOP! There is no probability mass
below X = ct, and ci = c2 = . . . = C(_i = ct.

6. Set *«--* - 1. If t = 1, set ct = o and STOP!
Otherwise, GOTO Step 2.

An equivalent, and somewhat simpler algorithm is as follows:

Alternate Form

1. Set t*~ n, and index the companies so that :

OCl 0C2 OC3 (Xft

2. At iteration t, ct is the unique solution of
n

qt — flt (t) {Premium [(X — c$)+] — 2 ^ } .

3. If ct = o (roundoff ?), STOP, ci = c2 = . . . = ct-i = o.

4. If the term in braces is zero for ct, STOP!
There is no probability mass below X = ct, and ci = c2 = . . . = ct-i = c%.

5. Set t<~t- 1. If *= 1, set ci = o and STOP!
Otherwise, GOTO Step 2.

This algorithm has been implemented in APL for arbitrary p (x) over
X e [o, l, 2, . . . ] ; a copy of the program may be obtained by writing the
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authors. A numeral example, computed according to the first algorithm and
using a Pareto distribution is given in Appendix A.

7. INTERPRETATIONS OF SPECIAL CASES

With the FAIRPOREX model developed, it is of interest to show how certain
practical risk pools arise as special cases. Some of these interpretations have
been given previously by Borch (1960a) and Gerber (1978). We shall emphasize
the exponential utility case.

The first observation is that with exponential utilities we will have qi/oii =
172/1x2= . . . =qnl«-n when the "volume" of each company is the same fraction
of its unit risk tolerance. In this case, it is easy to see that c\ = c^ = . . . = cn = o,
and we have a quota claims pool (2.7), with 6j = aj / (<xi + 0C2 + . . . + aM) =
qt I {qi + 92 + • . . + qn)- All companies participate in all losses, but the most
risk-tolerant (highest premium) takes the greatest share; this justifies (2.8).
(Of course this result is trivially true if all (general) utility functions are
identical and qi = q% = ... = qn, so 0̂  = n'1.)

If companies have the same premiums qi, but differing ocj, then they will
take higher layers, the larger their risk tolerance is. If both qi and <XJ vary,
then it is the ranking of qi\v.i that selects the layering order. It is difficult
to give closed formulae for the layers, but one can show that,

< _ -.

(7.1) Premium [{X - ct)+] - Premium [{X-ct+i)+] = Y oj - - —

so the larger a«+i, the wider the tth. layer, [ct,
As the ocw of one company becomes very large compared to the risk tolerance

of other companies, it is clear that it will take up the uppermost layer, and
take a larger and larger share of it, reaching finally Yn= l. (X—cn)+, with
Premium [(X — cn)

+] = qn. This is, of course, a (full) stop loss cover, with
this company acting like a reinsurer. However, we shall see in the next section
that such a company might not be interested in participating this pool on
fair terms.

The opposite case is a highly risk-adverse company, with oa very small.
In the limit <xi=o it takes all the losses in [0, ci), leaving [X — ci)+ to the
other companies.

If there are many companies participating, then, of course, there are many
layers. However, in practice similar companies (with comparable qija-i) could
probably share the same layers, and lower-level companies could probably be
involved in only a few layers (rather than continuing to the end with very
small PJ (_;')), without seriously violating both Pareto-optimality and fairness.
This would greatly simplify the administration of the pool. On the other
hand our model seems to explain the many practical interlocking hierarchies
of pools of different sized carriers.

1 7
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8. THE DESIRABILITY OF FAIRPOREX

By merging its original loss Xi with the pool, company i accepts a new loss
Yt = yt (X), where utility is the "best possible" in the Pareto-optimal
sense, i.e. for the grand coalition of all companies. Also for all values of X,
the treaty terms have been adjusted so that the premiums of all companies
are unchanged in the long run. But, is it, in the individual sense, always
advantageous to join a FAIRPOREX ? Unfortunately, the answer is, no.

If we re-examine our development, we see that nowhere was the range of
our Pareto-optimal fraction restricted to guarantee that V% = E {vj (Yi)} ^
V\ = E {vi {Xt)} for each participant; in fact, there is no reference to the
original marginal distribution (except for the means qi), and the distribution
of the pooled losses X is used only to set the layering constants. The strict
requirement of fairness may select a Pareto-optimal solution which has
Vi > V° for some company, who would then prefer to "go it alone". Typically
this happens to the larger, risk-tolerant company, who is asked to team up
with a smaller, risk-averse company. This forces the larger company to take
the tail of the total losses, which may appear worse than not joining the pool.

Fig. 4. Numerical Example with Xi, Xz Geometrically Distributed, qi = qz = 20,
and Exponential Utilities, Showing Layer Values and Certainty Equivalent for

Company # 1.

Fig. 4 shows the result of several computer analyses for two companies
with exponential disutilities; ai is fixed at 10 units, and a.2 varies parametri-
cally from 2 to 30 units. The distributions of Xi and X2 are geometric over
the integers, with means qi = qi — 20 units; X\ and X2 are assumed independent,
so the distribution of X is negative binomial. Thus for 002 < 10, company # 1
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takes the upper layer, with the values of ci shown; for c*2> 10, company # 2
takes the upper layer, with the values of ci shown, (CJ on righthand scale).

Expected disutilities are expressed in terms of certainty equivalents:

(8.1) vt (CEt) = E {v{ {yt (X))}; vt (CEj) = E {vt (X,)};

or, in the case of exponential disutilities:

(8.2) CEt = a, In E {exp (y, (*)/«<)}; CE°f = a, In E {exp (ZJa,)}.

Without a pool, CE\ = CE\ = 34.14, i.e. then original random losses are
equivalent to a deterministic loss of 34.14 units.

In a pool with a2=oci= 10, the certainty equivalents drop to CEi — CEi =
24.57, a large improvement for both companies. Now, let oca decrease, i.e. let
company # 2 become more risk-averse. Fig. 4 shows that CEi begins to
increase as it is forced to take a larger fraction of a higher layer; finally, at
about <x2=4, CE\ = CE\, and company # 1 decides the FAIRPOREX is not
worth it.

Conversely, if company # 2 becomes more risk tolerant, then CEi decreases
somewhat from 24.57 as 0.2 increases, until finally at about <X2=28, company
# 2 decides to leave the pool. (Calculations not shown.)

This change in the desirability of a FAIRPOREX can lead to interesting
questions of coalition stability with three or more companies. For example,
let companies A, B, C, each have geometric losses with q^ = qB=qc=z 10, and
exponential utilities 0^ = 3, 1X3=10, and occ=20. Initially, CE°A= 20.53,
CE°B= 13.71, a.ndCE°c= 11.77.

Now, through the use of the algorithm, one can show that company A is
not acceptable to B, and certainly not acceptable to C in a two-party agreement.
B and C are compatible, however, and it turns out that: CB = O, CC = 5-19,
CEB= 10.84, CEc= u.48, when they share the sum of two random geometric
losses.

And surprisingly, the three-party exchange is also satisfactory to all parties
concerned since: CA = O, ^ = 7.07, cc= 14.10, CEA= 10.38, CEB= 11.08,

CEc= 11.72, when sharing the sum of three random geometric losses.
Note that the "outcast" A gained the most over his initial independent

position in the triad, and that B and C were forced to give up some gains
from their diad, although they are still better off than going it alone. This
suggests that a weak partner should always try to get in at the beginning of
the negotiations, and prevent his stronger partners from computing what
they can do without him!

We have been unable to form a stable triad from among companies who
did not wish to form any diads among themselves.
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9. THE POSSIBILITY OF SIDE PAYMENTS

If a FAIRPOREX will not form because of inequities in the sizes of the
participants, or because some company feels that it profits insufficiently, a
possible generalization of our model is to introduce fixed side payments m,
such that company i actually pays m + yi (X), with STÎ  = 0 and with y< [X) as
before. For an exponential utility, this has the quick comparison advantage
of increasing the certainty equivalent by m. In many cases there is a range
of side payments that will bring recalcitrant members back into the exchange,
and still leave an improvement in utility for everyone.

For instance, in the example above, A could give 0.24 units to B and 0.24
units to C to induce them to form a triad, and still have a certainty equivalent
left of CEA= 10.38 + 0.48= 10.82, well below being left out at CEA = 20.53.
In fact, he has 20.53 — 10.82 = 9.71 more units of side payment left to "sweeten
the pot" if B and C prove stubborn.

Of course, by introducing side payments we abandon the basic idea of
fairness. If you want so, this is where the snake bites its own tail. We started
by constructing fair risk exchanges and now we modify them to become
unfair again!

This just proves that—in our model as in the real world—fair pools will
not always form!

APPENDIX A

Numerical Example (Exponential disutilities)

1. We demonstrate the calculation of the unconstrained FAIRPOREX
(business pool), the constrained FAIRPOREX (claims pool), for a total
input variable X = Z— 1 where Z has density fz{x) = 2#~3, (x^ l), (Z~
Pareto on [1, 00) with parameter 3 to guarantee a finite mean E[Z] = 2).
We also define Premium [Y] = E [Y] for any random variable Y.

2. For the unconstrained FAIRPOREX we have [see (4.6)]

y* (*) = —— x + y*

where Y< is computed from the fairness condition

E [Yi] = qt = > Yi = qi-$i-

3. For the constrained FAIRPOREX we compute according to the "Ex-
ponential Utility Algorithm" (first version) as explained in 6.3.
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THE F A I R P O R E X IS COMPUTED FOR FIVE COMPANIES WITH GIVEN at- AND qf.

i

5
4
3
2

1

a

1OO

5o
15
5
1

•3
. 2

. 2

. 2

. 1

C5 =

B(»

•585
.292
.088
.029
.006

•95

—

.050
•155
.185
.097

C4:

P(.)

7O4
.211
.071
.014

= . 7 l

?(3)

.14O

.18O

.O96

C:

•714
.238
.048

, = .28

—
•133
.087

B,-2)

.833

.167

2 = .o63

—
.06 1

1 = .0007

Note that in our example
1

Premium [{X - ct)+] =

1 1 \ 1 q[l)

J >„ + 1

and f or i < t — 1

1l — 1i ~ Pi \l)

The computation of ci serves for checking, of course we must have ci = o.

4. The results can be rearranged in the following final form:

Business pool

Claims pool

company

5
4
3
2

1

layer
interval

company

5
4
3
2
1

layer 5

58.8%
29.2%
8.8%
2.9%
0.6%

[•95, =°)

claims quota

58.5%
29.2%

8.8%
2.9%
0.6%

layer 4

7°-4%
21.1%

7-1%
i-4%

[•71- -95)

fixed payment (+
(—

layer 3

71-
23-i

4-i

[.28,

\%
3%
3%

•71)

- 2 8 . 5 %
- 9-2%
+ 11.2%
+ i7-i%
+ 9-4%

layer 2

83-3%
16.7%

[.063, .28)

pament)
receipt)

layer 1

100%

[0, .063)
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