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ON THE BELLMAN EQUATIONS WITH VARYING CONTROL

SHIGEAKI KOIKE

The value function is presented by minimisation of a cost functional over admissible
controls. The associated first order Bellman equations with varying control are
treated. It turns out that the value function is a viscosity solution of the Bellman
equation and the comparison principle holds, which is an essential tool in obtaining
the uniqueness of the viscosity solutions.

1. INTRODUCTION

In this article, we consider the following Bellman equations of first order:

(1.1) sup {Xu(x)-{g(x,a),Du{x))-f(x,a)} = 0 for x G fi,

where A > 0 is a positive constant, A(x) is a subset of A for each x g fi, and
g : £1 x A —f R n and / : fi x A —> R are given continuous functions. Here, fi C R n is
a bounded open set and A a compact set in RN (for n,N £ N).

In the case when J4.(-) does not depend on x 6 fi, many authors have investigated
the Bellman equation (1.1) particularly via the viscosity solution approach. We only
refer to Fleming and Soner [3] and the references therein.

In applications, for example in [1] and references therein, it is important to study
the case when A may depend on the position x. In fact, it is well-known that, if we
consider minimisation of a cost functional at each point x 6 fi over all controls in A,
then the value function satisfies (1.1) with A(x) = A (in the viscosity sense). On the
other hand, if the available controls depend on the position of the associated states, then
it will turn out that the associated value function satisfies (1.1) with varying A(x).
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52 S. Koike [2]

Here we shall mainly treat the problems when A(-) moves "smoothly". In fact,
as we shall see in an example, we can not expect in general that the associated value
function is continuous if we do not make the smoothness assumption.

Our first aim here is to present a general setting to treat the Bellman equations
with varying control. In our framework, we show that the associated value function is
a viscosity solution of (1.1). We also establish the comparison principle for viscosity
solutions of (1.1), which implies the uniqueness and continuity of viscosity solutions. In
order to make our statement and argument simpler, we shall only consider the Dirichlet
boundary value problem although other boundary conditions may be treated. We notice
that, in order to apply the comparison principle to the uniqueness result under the
Dirichlet condition, we need to know some continuity of viscosity solutions near the
boundary. Since it seems another task, we shall not give the uniqueness result in this
note. We refer to [4, 2] and references therein for the details.

We shall moreover discuss the case when .A(-) may vary rather drastically but
the comparison principle holds. It will give new scope to the formulation of the state
constraint problem introduced in [6].

This paper is organised as follows: Section 2 is devoted to denning our value
function and to giving the dynamic programming principle for it. In Section 3 we show
that, under appropriate hypotheses, the value function is a viscosity solution of the
Bellman equation (1.1). In Section 4, we present our comparison principle for viscosity
solutions under the Dirichlet condition, which implies that the value function is the
unique viscosity solution of (1.1). In the final section, we discuss a special case when
A(-) does not vary continuously.

2. VALUE FUNCTION

First of all, we make at least the following regularity assumption for the given
functions throughout this paper:

[ (1) / £ C(nx A;R), g£C(Qx A;Rn), heC{dQ;R).

There is w £ C(R+; R + ) with w(0) = 0 such that

(2) \f(x,a) - f(x,a)\ < w{\x - x\ + \a - a\)

for x,x £ fi and a,a £ A.

(4) sup{||5(-,a)| |wl,TO(n) + | | / ( - ,a ) | | i o o ( n ) } < oo.

Here, h will be the Dirichlet data on dQ.

We shall present the value function, which satisfies (1.1) in the viscosity sense under
appropriate hypotheses. We shall only consider the Dirichlet type boundary condition
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for simplicity although other boundary conditions (oblique, state-space constraint et
cetera) may be treated under suitable hypotheses.

We denote by A the set of all measurable functions a : [0,oo) —> A. For each
a £ A and x £ 0 , we denote by X(-;x,a) the unique solution of

U'(() = j(I((),«(!)) forOO,

[X(0) = x.
We occasionally use a £ A as an element of A. For instance, we denote by

X(-; x,a) for a £ A the solution of (2.1) with a(-) = a.
We denote by r(x,a) ^ 0 the first hitting time on dfl of X(-; x,a);

T(X, a) = inf{t ^ 0 | X(t; x, a) 6 90}.

Now we define the admissible control set, over which we shall minimise a cost
functional:

A(x) = {a G .4 | a(<) G 4(X(<; *,a)) for almost all t e [0,r(x,a))}.

The restriction in the definition of A(x) causes the z-dependence of the control set in
the Bellman equation (1.1) (that is A(x)), which the associated value function satisfies.
We notice that this restriction is often required in practical control problems. We refer
to [1] for our motivation. In what follows, we suppose the following:

(A2) A{x)^<b for all x £ fl.

We also denote the admissible control set up to a time s > 0 by the following:

A'{x) = {a £ A | a(t) £ A{X(i;x,a)) for almost all t £ [0,s)}.

Note that (A2) implies that, for each x £ 0 , there exists s > 0 such that A'(x) ^ 0.
Our value function is as follows:

V(x) = inf { T *'" e-

It is easy to find a bound for the value function:

PROPOSITION 2 . 1 . Under assumptions (Al) and (A2), we have

By employing the standard argument, we easily obtain the dynamic programming
principle, which will be useful in deriving our verification theorem.

PROPOSITION 2 . 2 . (See [6].) Under assumptions (Al) and (A2), for each
x £ ft, there is a small s0 > 0 such that

V{x)= inf
aeA'(

{or 3 £ (O,so).
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3. VERIFICATION

In this section, we verify that the value function in the previous section is indeed

a viscosity solution of (1.1) under appropriate hypotheses.

We denote by A(x) for x £ 0 the following subset of A:

_ / 4( z ) - j a G
T n e r e is r > 0 such that a £ A(X(t; y, a)) 1

for ie [0 , r ) znd y £ Br(x) C SI. J

We denote by B,(z) the standard open ball of R71 or R.N with the radius s > 0 and
the centre z G R n or z £ RN.

We shall assume the following hypothesis, which implies (A2):

(A2') A{x)^% for all x £ fi.

We shall utilise the following notation for simplicity:

Ba(x,r,p) - \T - (g(x,a),p) - f{x,a) and H(x,r,p) = sup Ha(x,r,p)
o€A(i)

for a G A and (x,r,p) e f i x R x R " .

We now give our definition of viscosity solution for (1.1).

DEFINITION: We call u : Q —» R a viscosity subsolution (respectively, supersolu-
tion) of (1.1) if, for any <j> G C1(fl) and for any t £ ( l such that u* — </> (respectively,
tt» — <j>) attains its local maximum (respectively, minimum) at z ,

H,(x,u*(x),D<i>(x)) < 0 (respectively, H*{x,ut(x),D<j>{x)) > 0).

We also call u : Cl —> R a viscosity solution of (1.1) if it is both a viscosity sub-

and supersolution of (1.1).

We remark that, for real valued functions, we denote their upper and lower semi-

continuous envelopes, respectively, by putting the superscript * and the subscript * as

in the standard notation of the theory of viscosity solutions. We refer to [2] for these.

In applications, it is important to treat the following case (see [l]):

EXAMPLE 1. Set A = [-1,1] C R, kt G C(p) (for i = 1,2) satisfying - 1 ^ Jfe^x) <
&2(s) ^ 1 for x £ O, A(x) = {a G A \ fci(s) < a < k2(x)}, and g(x,a) = agi{x)-\-g2{x)
for some gi £ W1'00^) (for i = 1,2).

It is easy to check that this example satisfies (Al) and (A21).

We also give an example which satisfies (Al) and (A21) but the value function is
discontinuous. The example indicates that we can not obtain the comparison principle
in general since it implies the continuity of the value function.
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EXAMPLE 2. Consider n = ( -1 ,1 ) , A = 1, h = 0 and A = {1,2}. Set g(x,l) =
1, g(x,2) = - 1 , f(x,l) = 1 and f(x,2) = be (0,1) for x £ ( -1 ,1 ) . We define

f {1} for a €• [0,1),

\ {1,2} for K g ( -1 ,0) .

Then, it is easy to check that the value function of (1.1) of the above case is explicitly
given by

fl-e1"1 for x€ [0,1],
V[x) = <

[b^-e-'-1) forxG[-l,0).
Thus, V is discontinuous at x = 0. It is also easy to verify that this is a (discontinuous)
viscosity solution of (1.1).

In order to verify that the value function is a viscosity solution of (1.1), we assume
the following condition on A(x):

( For z 6 fi, e > 0, there are r, a > 0 satisfying the following:

For any a: € Br(z) and o G A(x), there is 2 G Be(a) H A

such that S G A(X(t;z,a)) for < € [0,s).

This condition indicates that we may not choose s > 0 so that a G A'(x) uniformly
in a G A(x) but we can approximate any a G A(x) by 2 G A'(x) with a small s > 0
independent of a G -A(a:). We notice that assumption (A3) holds for Examples 1 and 2.

THEOREM 3 . 1 . Under assumptions (Al), (A2') and (A3), the vaJue function V
is a viscosity solution of (1.1).

PROOF: We only give the subsolution assertion since the other assertion can be
proved similarly.

If V is not a viscosity subsolution of (1.1), then we may suppose that there are
i 6 f l and <f> G C1 such that V*{x) - <f>{x) = max V*(j/) - <j)(y) = 0 and that

yen

H*(x,<j>(x),D(f>(x)) ^ 7 for some constant 7 > 0.

For small S > 0, we can choose xt G Bg(x) such that

(3.1) 0 > V{xs) - <t>{xB) > -6.

Moreover, by (Al)-(2) and (4), we have
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Hence, we can find as £ A(xg) such that

Haf(xf,<t>(xs),D<f>(xs))>l.

By using the uniform continuity with respect to o £ A of the given functions in

(Al)-(2) and (3), (A3) implies that there are r > 0 and as € Ar{xs) such that

By (Al)-(2) and (4), we find r 6 (0,f] such that

(3.2) H~g(Xs(t),<t>(Xs(t)),D<l>(Xs(t))) > J for < e (0,r),

where Xs(t) = X(t;xs,as)- Multiplying (3.2) by e~M and then integrating over (0,r) ,
by (2.1), we arrive at the following:

-e-Xrt(Xt(r)) + 4>{xs) - J\-Xtf(X6(t),as)dt > ^ ( l - e~Xr).

Hence, by (3.1) and the fact that V ^ <j> in fl, we have

-e-XrV(Xe(r)) + 6 + V(xt) - f e~Xif{Xs{t),as)dt > ^ ( l - e~Xr).

By taking the supremum of the above over all a £ Ar(xs), Propostion 2.2 yields

Therefore, for small 8 > 0, we get a contradiction. u

4. COMPARISON PRINCIPLE

In this section, we give the comparison principle for viscosity solutions of (1.1),
which implies that, if the value function is continuous on the boundary (that is,
V* = V* = h on dQ), then it is the unique viscosity solution of (1.1) among possibly
discontinuous solutions. (In fact, it turns out that such a value function is continuous
in Q.) We only refer to [4] for a sufficient condition which implies the continuity of the
value function on 9fi.
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IA1')

(A4)

For our comparison principle, we assume the following hypotheses, stronger than
(Al), on the regularity for the given functions:

(1) There is K > 0 such that

\g{x, a) - g(x,a)\ ^K(\x-x\ + \a ~a\)

for (x,a),(x,a) e f l x l

(2) There is w £ C(R+; R+) with w(0) = 0 such that

\f{x,a) - f(x,a)\ ^ u>(\x - x\ + \a-a\)

for (x,a),(x,a) £ ft x A.

(3) sup{||/(-,o)||ioo(n) + ||p(-,a)||LOO(n)} < oo.

We also make the following "locally Lipschitz continuity" assumption on the set-
valued mapping A(-):

For any z £ ft, and e > 0 with Be(z) C ft, there is r > 0

such that A(x) c Ar\x_y\(y) provided x,y £ Be(z),

where A,{y) — {a 6 A \ dist(a, A(y)) ^ 5} for s > 0.

THEOREM 4 . 1 . Assume (Al'), (A2') and (A4) hold. Let u and v be bounded
viscosity sub- and supersolutions of (1.1), respectively. If u* ^ v, on dft, then u* ^ vt

in ft.

PROOF: We shall write u and v instead of u* and v« , respectively.
The proof is by contradiction: Suppose max(u — v) = 7 for some 7 > 0. By a

n

perturbation technique (if necessary), we may find the unique maximum point z £ ft;

u(z) — v(z) > u(x) — v(x) for x £ !7\{z}.

Consider $(x,y) = u(x) — v(y) — (\x - j/|2J/2e for e > 0. Let (xc,yc) £ ft x ft be

the maximum point of $ over ft x ft. By the standard argument, we see

(4.1) lim x, = lim y, = z, and lim — — = 0.

For simplicity, we shall write x and y in place of xc and yc, respectively.
From the definition, for 6 > 0, we can choose (xs,rs,ps),{ys,ss,qs) £ fi x R x Rn

such that

(4.2)

(4.3)

and

(4.4)

lim x6 = x, lim ys = y, pm (\rs\ + \ss\ + \ps\ + \qs\) = 0,
6—«0 «-«0 S—>0

-8
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From (4.4), we can choose as € A(yg) such that

(4.5) -26 < Has(ys,v{y) + ss,{x - y)/e + qs).

By (A4), we choose r0 > 0 such that ag € ATQ\X6_ys\{x{). Hence, from (4.3) and
( A l ' ) - ( l ) and (2), we have

6 + w(r0 \xt -ys\) + Kr0 \x, - y6\ (^-^- + \ps\\

> Has(xs,u(x) + rs,(x - y)/e + ps).

Combining (4.5) with this, we have

X(u(x) - „ ( » ) ) - 3* - C(|r , | + \ss\ + \PS\ + \qs\)

< w(\xs - ys\) +"(ro \xs - yg\) + K{\ + r 0 ) ^ ^ \xt - ys\.

Here and later, C denotes various positive constants depending only on known quanti-
ties. Sending 8 —> 0 with (4.2) in the above, we have

A(u(x) - 7,(1/)) 4 w(|* - 2/1) + "(r0 I* - »|) 1* y l

Using $(x,y) ^ 7 and sending e —» 0 in the above with (4.1), we have A7 ^ 0, which
is a contradiction. U

5. A CASE WITHOUT ASSUMPTION (A4)

In this section, we discuss the case when A(-) does not satisfy the continuity
assumption (A4). As indicated in Example 2, we can not expect in general to obtain
the comparison principle.

For simplicity, in this section, we only consider the case when 17 consists of several
nice components: Set L = {1 ,2 , . . . , /} for some integer / € N .

(1) There are {£lk}keL such that Qk n ^ = 0, for ifc ^ k,

int(nfc) ^ 0, for he L, and |J (7* = £7.
(A4')

(2) For any z £ Clk and e > 0, there is r > 0

such that A(x) C Ar\x_y\(y) provided x,y £ Bc(z) fl Qk.

We also suppose that at most two of {Qk}k£L have nonempty intersection and,
at such a point, we assume some order of the sets of available controls in the following
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manner:

(!) ki=<D for any distinct Jfei,fc2,Jfes €
t = i

(2) For z G dttkl D 9fi*3 with fcj < jb2 and for e > 0,

there is r > 0 such that A(y) C Ac(x) holds

for x G fijbt (~l Br(z) and y G fit, D BT(z).

We moreover assume certain condition on the vector fields g near the intersection

of {dQk}k€L:

For z G d£lkl n dn*3 with h <k2, there are r , 9 e (0,1)

and £ G Sn~1 satisfying the following properties:

Bte{x + <0 C fijt! for x £ fifcl n Br(z).
(A6) (1)

0<i<r

(2) y(x,a)
*>o

Bte(-t£) for any a €

with x G fljfe! n Br(z) and j / G fijb3 fl 5 r (z ) .

Notice that Example 2 does not satisfy (A6). In fact, this condition requires that

A(x) (x G fii^ n BT(z)) can only have more controls than A(y) (y £ Clk2 n Br(2))

which directs inside fijtj .

We also suppose that the vector fields on the intersection of {fijt}fce£ do not vanish:

{ There are r > 0 and r > 0 such that, if z G d£lkl D 9f2/tj

with fci < fc2, then |5(z,a)| > r for any a G A(x)\A(y)

with x G ft*! H jBr(^) and y G fit, f~l fir(z).

We remark that, under these assumptions, we can treat the state-space constraint
problem in control theory as follows:

EXAMPLE 3. Let fii C 0 be a (smooth) open set with fti C Cl and fi2 = Q\Qi.
Suppose A(x) = A for x G fti and A(x) = {o £ A | (g(x,a),n(x)) < 0 for x £ 9fii} ^
0 for x G fJ2. Here, n{x) denotes the exterior unit normal vector at x G dCli relative
to Qi . If we restrict ourselves to considering the value function in fix, then it is the
unique viscosity solution of (1.1) in fii under suitable hypotheses. We refer to [6] for
the details of the state-space constraint problems and their appropriate formulation.

Now we shall present our comparison principle:

THEOREM 5 . 1 . Assume (Al'), (A2'), (A4') and (A5)-(A7) hold. Let u and v
be bounded viscosity sub- and supersolutions of (1.1), respectively. If u* ^ v» on d£l,
then u* ^ w, in fl.

PROOF: We shall write u and v instead of u* and «„, respectively, for simplicity.

https://doi.org/10.1017/S0004972700016713 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700016713


60 S. Koike [10]

The proof is by contradiction: Suppose max(w — v) = 7 > 0. We may suppose
n

that there is a unique maximum point z £ SI as in the proof of Theorem 4.1.
If z £ int(fJjfe) for some k £ L, then the same argument as in the proof of Theorem

4.1 leads to a contradiction. Thus, we may assume z £ dili ("I d£li.

Now we choose r,6 6 (0,1) and f £ 5""1 satisfying (A6) for z £ dfii H 9O2.
Using this notation, we can find the following function:

LEMMA 5 . 2 . (Lemma 6.1 in [7].) There exists </> £ C^R") sucA that

(5.1) a'1 | x | 2 < </>(x) ^<T\X\2, \D<f>(x)\ < < r | * | for s o m e <r > 1,

and

(5.2) (V,DW*)) > 0 for 7/ £ |J -M-t£) and * ^ | J 5te(<0-
t>o *>o

Define the function $ : Q x fi —+ R by

$(x,y) = u(x) - v(y) - -<t>{x -y)+ fJ.{£,x-y),

where y, > 0 will be fixed later.

Let (xe,ye) £ fl x f2 be the maximum point of $ over f2 x fl. The standard
argument implies that

(5.3) lim xe = lim ye — z, and lim — — = 0.

For the sake of simplicity, we shall write x and y instead of xc and yc.

We first note that the definition of u yields

Thus, for small 8 > 0, there exist (x{,r(,ps) £ n X R X R n such that

(5.4) hm xs = x, lim (|r«| + \Ps\) = 0,
o—>u 0—»o

and

(5.5) 6^ sup
(

Similarly, we can find {ys,»s,qs) £ 0 x R- x Rn such that

(5.6) lim w = y, lim (|«,| + \qt\) = 0,
0—>o 0—>o

and

(5.7) - i ^ sup
(
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We first note that it is easy to get a contradiction in the case when (xs,ys) G fii
for t = 1 or 2 by the same argument as in the proof of Theorem 4.1.

Next, we note that if xs G Oi and ye G ft2 for any 6 > 0, then we easily obtain a
contradiction. Indeed, in this case, from (5.7), we find as £ A(ys) such that

(5.8) -26 < Has{ys,v(y) + as,D4>{x - y)/e - rf + qs).

For any fixed r > 0, we find ? > 0 such that A(yt) C Ar(xs) for 6 G (o,S\ . Hence,

we can choose as G A(xs) such that \as — as| < r. Therefore, combining (5.5) with

(5.8), by (Al ' ) , we have

X(u(x) - v(y)) - C(\PS\ + \qS\ + \rs\ + \*s\)

^C\xs- ys\ ( ^ ^ + M ) + w(l*« - ys\) + Or.

Sending 5 —• 0 with (5.4) and (5.6) in the above, we have

A(u(x) - v(y)) ^ C \x - y\ 0 ^ ^ +A+ "(|z - y\) + Cr.

Using (5.1) and $(z ,y) ^ 7 , and sending e —» 0 in the above with (5.3), we have
A7 $J Cr, which is a contradiction for small r > 0.

Thus, we may suppose that xs G Q2 and ys G fii for any S > 0.

Fix a G A(ys)\A(xs). We claim that there exists /x > 0 such that

(5.9) My)-(9{y6,a),D<j>(x-y)/e-fi( + qs)-f{y6,a)<-6

for small 6 > 0 and e > 0. Indeed, noting xs - ys i- U Btg(t() (by (A6)-(l)) and
t>o

g(ys,a) G U Bte{—1£), we can estimate the left hand side of (5.9) from above by
t>o

C + /i(p(3/«,o),0 • Hence, by (A7), we can estimate this from above by

provided e and S are small enough. Therefore, for a fixed /x > 0, we have shown that
(5.9) holds.

Noting (5.9) in (5.7), we have

-6 < sup Ha{ys,v(y) + ss,D<t>(x-y)/e-nt + qs).

Therefore, combining (5.5) with this, we can proceed by the same argument as in the
proof of Theorem 4.1 to get a contradiction. D
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