
J. Fluid Mech. (2025), vol. 1005, A12, doi:10.1017/jfm.2024.964

Scattering of surface waves by ocean currents:
the U2H map

Han Wang1, Ana B. Villas Bôas2, Jacques Vanneste1,† and William R. Young3

1School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh,
EH9 3FD, UK
2Department of Geophysics, Colorado School of Mines, Golden, CO 80401, USA
3Scripps Institution of Oceanography, University of California at San Diego, La Jolla,
CA 92093-0213, USA

(Received 9 February 2024; revised 17 July 2024; accepted 26 August 2024)

Ocean turbulence at meso- and submesocales affects the propagation of surface waves
through refraction and scattering, inducing spatial modulations in significant wave
height (SWH). We develop a theoretical framework that relates these modulations to the
current that induces them. We exploit the asymptotic smallness of the ratio of typical
current speed to wave group speed to derive a linear map – the U2H map – between surface
current velocity and SWH anomaly. The U2H map is a convolution, non-local in space,
expressible as a product in Fourier space by a factor independent of the magnitude of the
wavenumber vector. Analytic expressions of the U2H map show how the SWH responds
differently to the vortical and divergent parts of the current, and how the anisotropy of the
wave spectrum is key to large current-induced SWH anomalies. We implement the U2H
map numerically and test its predictions against WAVEWATCH III numerical simulations
for both idealised and realistic current configurations.
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1. Introduction

Surface gravity waves (SGWs) propagate through currents resulting from ocean meso-
and submesoscale turbulence and from the surface expression of tides and internal gravity
waves. Much work, both historical and recent, has focused on the effect of internal waves
and tides on SGWs (e.g. Barber 1949; Perry & Schimke 1965; Phillips 1977; Osborne &
Burch 1980; Tolman 1990; Hao & Shen 2020; Ho, Merrifield & Pizzo 2023). Recognition
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Figure 1. (a) Surface current speed in an MITgcm simulation of the California Current system (Villas Boâs
et al. 2020), with the arrow indicating the primary direction of wave propagation; SWH anomaly computed
using (b) WW3 and (c) the U2H map. (d) Difference between (c) and (b). The background wave action
spectrum, described in Appendix B, is narrow banded in frequency (with periods around 10.3 s and wavelength
165.5 m) and angle (with peak angle θp = 0 and width parameter s = 10). Panels (a,c) can be produced from
the notebook accessible at https://www.cambridge.org/S0022112024009649/JFM-Notebooks/files/U2Hmap.

of the role of meso- and submesoscale turbulence in shaping the open-ocean surface wave
field is comparatively recent and relies on ocean observations and modelling (Holthuijsen
& Tolman 1991; Ardhuin et al. 2017; Romero, Lenain & Melville 2017; Romero, Hypolite
& McWilliams 2020; Villas Boâs et al. 2020). In this work we develop a theoretical
framework that can be used to understand the effect of meso- and submesoscale turbulence
on SGWs.

Refraction and scattering of open-ocean deepwater SGWs by eddies, fronts, filaments
and vortices results in fluctuations in significant wave height (SWH) with length scales
reflecting those of the underlying turbulent field, see figure 1. Fluctuations in SWH
modulate SGW breaking and thus affect all aspects of air–sea exchange (Cavaleri,
Fox-Kemper & Hemer 2012; Villas Bôas et al. 2019). There are also implications for the
formation of extreme waves and remote sensing.

Scale separation between SGW wavelengths and the larger spatial scale of the currents
makes it possible to adopt a phase-averaged description, focusing on the density of
wave action A(x,k, t) in the position–wavevector (x,k)-space. Action density satisfies
a transport equation which, because of its high dimensionality, poses analytic and
numerical challenges, even when linearised by neglecting wave–wave interactions. As a
result, numerous open questions remain about the relation between the currents and the
fluctuations in SWH they induce. Some of these questions can be addressed by numerical
solution of the transport equation (Villas Boâs et al. 2020). These computations are costly
and the results can be difficult to interpret.

In § 2 we develop an alternative approach that directly links SGW amplitude to current,
reducing computational costs and providing new insights. This approach relies on the
smallness of the ratio ε between the typical current speed U and the SGW group speed cg:

ε = U/cg � 1. (1.1)

The SGWs with wavelengths greater than 10 m have group speed in excess of 2 m s−1.
For these relatively long waves ε � 1 holds in all but the most extreme ocean conditions.
In a steady-state scenario and in the absence of current, that is, for ε = 0, the action
density A(x,k) can be taken as spatially uniform, Ā(k) say. For 0 < ε � 1 and neglecting
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Scattering of surface waves by ocean currents

wind forcing, dissipation and wave–wave interactions, the current induces a small, O(ε)

x-dependent modulation so that the current-perturbed action spectrum is A(x,k) =
Ā(k)+ a(x,k). At leading order, the anomaly a(x,k) is linearly related to both the surface
current U(x) and the background wave action spectrum Ā. Similarly, the anomaly of any
measure of wave amplitude deduced from A(x,k) is linearly related to U(x) and Ā(k).

We focus on SWH and obtain an explicit form for the linear map that relates the SWH
anomaly hs(x) to the current velocity U(x). This map, which we term U2H map, turns out
to be a convolution, best expressed as

ĥs

H̄s

= L̂ · Û, (1.2)

in terms of the Fourier transforms ĥs of hs and Û of U , and of the mean SWH H̄s.
In § 3 we obtain several alternative and approximate expressions for the transfer function

L̂ that embodies the U2H map. Depending on details of the currents U and the background
wave action spectrum Ā(k) one of these different expressions of L̂ may be most effective.

We show a complicated example in figure 1. Figure 1(a) shows the surface current speed
in a simulation of the California Current system. Figure 1(b) shows the SWH anomaly hs

computed using WAVEWATCH III (WAVE height, WATer depth and Current Hindcasting
third generation wave model, hereafter WW3) which solves the four-dimensional transport
equation satisfied by the action A(x,k, t) (Tolman et al. 2009). Figure 1(c) shows the
result of applying the U2H map to the current in figure 1(a). The computational details for
figure 1(b,c) are described in § 4.1. The match between the results of the (computationally
expensive) WW3 computation in (b) and of the (much cheaper) application of U2H in
(c) is excellent. Throughout the paper we assess the accuracy of the U2H map (1.2) by
comparing its predictions against numerical simulations using WW3.

In § 4 we examine the SWH anomaly hs induced by realistic flows and by simple
flows such as vortices. In § 5 we consider hs produced by special wave spectra. We
show, in particular, that hs vanishes (to leading order in ε) for isotropic wave spectra.
The complementary limit is highly directional wave spectra, characteristic of ocean swell.
Swell produces strongly anisotropic SGW anomalies aligned with the dominant direction
of wave propagation, i.e. streaks in SWH. The limit of highly directional wave spectra is
delicate in that it is non-uniform in the small parameter δ, characterising the directional
width. The results of the present paper require that δ � ε. For δ = O(ε), the SWH
response is nonlinear in the current and the assumptions leading to the U2H map break
down. An asymptotic form for the SWH in this case is derived in Wang et al. (2023) under
the additional assumption of a localised current.

2. Formulation

We start with the conservation equation

∂tA + ∇kω · ∇xA − ∇xω · ∇kA = 0, (2.1)

for the wave action density per unit mass A(x,k, t) in position–wavevector space (e.g.
Komen et al. 1996; Janssen 2004). Here ω is the absolute frequency of deep-water SGWs,
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related to the intrinsic frequency

σ(k) =
√

gk, (2.2)

with k = |k|, by

ω(x,k) = σ(k)+ k · U(x), (2.3)

where U(x) is the surface velocity of the ocean current, taken to be horizontal and time
independent. The wave energy per unit mass spectrum is related to the action density
according to

E(x,k, t) = σ(k)A(x,k, t). (2.4)

With equipartition between kinetic and potential energy of deep-water SGWs the root
mean square sea-surface displacement is related to the wave energy spectrum by

gη2
rms =

∫
E(x,k, t) dk. (2.5)

The polar representation of the wavenumber vector k is

k = k

(
cos θ
sin θ

)
, (2.6)

and integrations in the form of
∫
(·)dk (as in (2.5)) can be expressed as

∫∫
(·)kdkdθ .

Compared with conventions adopted in wave-modelling communities, our definitions of
the wave action density per unit mass A(x,k, t) and wave energy per unit mass spectrum
E(x,k, t) are related to the definitions of wave action density N(k, θ; x, t) and surface
elevation spectrum F(k, θ; x, t) that appear in WW3 (The Wavewatch III Development
Group 2016) via A(x,k, t) = gN(k, θ; x, t) and E(x,k, t) = gF(k, θ; x, t).

Our focus is on the spatial distribution of wave energy, obtained by integrating (2.4) in
k and conventionally reported in terms of the SWH defined as Hs(x, t) = 4ηrms(x, t). The
SWH can be obtained from the action spectrum with

Hs(x, t) = 4
(

g−1
∫
σ(k)A(x,k, t) dk

)1/2

. (2.7)

The action equation (2.1) relies on an assumption of spatial scale separation between
SGWs and currents. It also neglects forcing, dissipation and wave–wave interactions. We
make three further assumptions:

(i) in the absence of currents, the wave action spectrum takes a background value Ā(k)
that is independent of space and time;

(ii) the current is steady and we restrict our attention to the steady-state wave-action
response;

(iii) the typical current velocity is small compared with the typical group speed of SGWs,
so that the Doppler shift k · U(x) is a small correction to the intrinsic frequency
σ(k).

As preparation for a perturbation expansion we make assumption (iii) explicit by writing

ω(x,k) = σ(k)+ εk · U(x). (2.8)

Here we avoid a formal scaling analysis and retain dimensional variables. Thus, ε should
from now on be regarded as a bookkeeping parameter that identifies terms that are
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O(U/cg) and is ultimately set to 1. We expand the action as

A(x,k, t) = Ā(k)+ εa(x,k, t)+ O(ε2), (2.9)

assuming that the leading-order action Ā(k) is independent of space and time. The
presence of the currents leads to anomalies at order ε captured by a(x,k, t). We relate
a(x,k, t) to U(x) by introducing (2.9) into (2.1) to obtain

∂ta + cg · ∇xa = (∇kĀ · ∇x)U · k, (2.10)

where cg(k) =
√

g/4k3k is the group velocity. We focus on the steady-state response
a(x,k), independent of t. This satisfies (2.10) where the time derivative term is omitted.
Causality is enforced by adding a linear dissipation term to find

(cg · ∇x + µ)a = (∇kĀ · ∇x)U · k. (2.11)

The non-dissipative, causal solution is then obtained in the limit µ → 0+.
We solve (2.10) in terms of the Fourier transforms

â(q,k)
def=
∫

a(x,k) e−iq · x dx and Û(q)
def=
∫

U(x) e−iq · x dx. (2.12a,b)

We emphasise the distinction between the newly introduced wavevector q, which captures
spatial variations at the current scale, and the original wavevector k, which represents
spatial variations of the wave phase. Introducing (2.12a,b) into (2.11) leads to

â(q,k) = lim
µ→0+

(k · Û)(q · ∇kĀ)

cg · q − iµ
. (2.13)

The limit µ → 0+ above is taken in all expressions involving µ and we proceed with
lighter notation in which the limit is understood.

Our focus is on the SWH, which we expand as

Hs(x) = H̄s + εhs(x)+ O(ε2). (2.14)

The leading-order term H̄s is a constant. The anomaly hs(x) is deduced from a(x,k) by
Taylor expanding (2.7):

hs(x) = 8

gH̄s

∫
σ(k)a(x,k) dk. (2.15)

An analogous formula relates the Fourier transform ĥs(q) of hs(x) to â(q,k). Substituting
(2.13) into (2.15) gives

ĥs(q)

H̄s

= L̂(q) · Û(q), (2.16)

where

L̂(q) = 8

gH̄2
s

∫
q · ∇kĀ

cg · q − iµ
σk dk. (2.17)

Equation (2.16) shows that hs is obtained from U via a linear map – the U2H map. This
map is naturally expressed in terms of Fourier transforms, with the complex vector L̂(q)
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acting as a transfer function. It is clear from (2.17) that L̂ depends on the wavevector q
only through its orientation: introducing the polar representation

q = qeq
def= q

(
cosϕ
sinϕ

)
, (2.18)

with eq the unit vector in the direction of q and −π < ϕ ≤ π, we can rewrite (2.17) as

L̂(q) = L̂(ϕ) = 8

gH̄2
s

∫
eq · ∇kĀ

cg · eq − iµ
σk dk. (2.19)

It follows from the reality of hs(x) that ĥs(−q) = ĥ∗
s (q) and hence

L̂(−ϕ) = L̂∗(ϕ). (2.20)

Equation (2.19) implies that, in physical space, hs(x) is expressed as a convolution of
U(x) with a kernel L(x) – the inverse Fourier transform of L̂(q) – that is homogeneous
of degree −2, that is, L(λx) = λ−2L(x). Linear maps of this type are known as
(two-dimensional) Calderón–Zygmund transforms (e.g. Stein (1970), Ch. 2). While the
right-hand side of (2.19) appears ambiguous for q = 0 (since ϕ is then not defined),
we simply take ĥs(0) = 0, corresponding to the vanishing of the spatial mean of hs(x),
consistent with the definition of hs(x) as an anomaly.

From (2.16) and (2.19) we draw the important conclusion that patterns in hs have
scales set by the scales of U (not vorticity). But the angular dependence of hs depends
(linearly) on the wave spectrum. In the next sections we refine this conclusion by obtaining
alternative and approximate expressions for L̂(q).

3. The U2H map

3.1. Alternative forms of L̂(ϕ)

A useful expression for L̂(ϕ) is obtained by substituting the identity (q · p)k = (k · q)p −
(k⊥ · p)q⊥ with p = ∇kĀ in (2.17) to obtain

L̂(ϕ) = 8

gH̄2
s

(∫
σk · q

cg · q − iµ
∇kĀ dk −

∫
σk⊥ · ∇kĀ

cg · q − iµ
dk q⊥

)
. (3.1)

Noting that cg = σk/(2k2), and that the multiplication of µ by a positive factor is
irrelevant, we rewrite (3.1) as

L̂(ϕ) = 16

gH̄2
s

(∫
k2k · q

k · q − iµ
∇kĀ dk −

∫
k2k⊥ · ∇kĀ

k · q − iµ
dk q⊥

)
. (3.2)

Now, µ can be safely set to 0 in the first integral which, on integrating by parts, reduces to
∫

k2
∇kĀ dk = −2P, (3.3)

where

P
def=
∫

Ā(k)k dk, (3.4)

is the wave momentum. For the second integral we use the polar representation (2.6) of the
SGW wavevector. Noting that ∇kĀ = ∂kĀk/k + ∂θ Āk⊥/k2 and that k · q = kq cos(θ −
1005 A12-6
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ϕ) we obtain

L̂(ϕ) = − 16

gH̄2
s

(
2P +

∫
k∂θĀ

cos(θ − ϕ)− iµ
dke⊥

q

)
, (3.5)

where

e⊥
q

def=
(

− sinϕ
cosϕ

)
, (3.6)

is the unit vector perpendicular to the wavevector q.
Starting from (3.5) we can derive an explicit expression for the transfer function L̂(ϕ)

as a Fourier series in ϕ. We rewrite (3.5) as

L̂(ϕ) = − 16

gH̄2
s

(
2P + e⊥

q ∂ϕ

∫ 2π

0

P(θ)

cos(θ − ϕ)− iµ
dθ

)
, (3.7)

where

P(θ)
def=
∫ ∞

0
Ā(k, θ)k2 dk. (3.8)

The wave momentum in (3.4) is

P =
∫ 2π

0
P(θ)

(
cos θ
sin θ

)
dθ. (3.9)

With the results above, L̂(ϕ) depends on the leading-order action spectrum Ā(k) only
through the function P(θ). This function can be expanded in Fourier series as

P(θ) =
∞∑

n=−∞
pn eniθ , with 2πpn =

∫ 2π

0
P(θ) e−niθ dθ. (3.10)

Computations detailed in Appendix A express the integral in (3.7) (as µ → 0+) in terms
of the pn. This puts the transfer function into the form

L̂(ϕ) = 16

gH̄2
s

(
e⊥

q

∞∑

n=−∞
n(−i)|n|2πpn eniϕ − 2P

)
, (3.11)

where the wave momentum is

P =
(

+ Re 2πp1
− Im 2πp1

)
. (3.12)

Equation (3.11) provides the transfer function L̂(ϕ) in a form readily computable from any
given background wave action spectrum Ā(k, θ).
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3.2. Contributions of the divergent and vortical parts of current

The two-dimensional Helmholtz decomposition of U into divergent and vortical parts is

U = ∇φ︸︷︷︸
Uφ

+∇
⊥ψ︸ ︷︷ ︸

Uψ

, (3.13)

where φ and ψ are the potential and stream function, and ∇⊥ = (−∂y, ∂x). The
corresponding decomposition of the Fourier transform Û is

Û(q) = iqφ̂(q)eq + iqψ̂(q)e⊥
q . (3.14)

In view of (2.16), we can separate the contributions of the divergent and vortical parts of
the currents by expressing the transfer function L̂(q) in terms of its components along eq

and e⊥
q . Projecting (3.11) on eq and e⊥

q gives

L̂(ϕ) = L̂‖eq + L̂⊥e⊥
q , (3.15)

where

L̂‖(ϕ) = − 32

gH̄2
s

P · eq, (3.16)

and

L̂⊥(ϕ) = 16

gH̄2
s

( ∞∑

n=−∞
n(−i)|n|2πpn eniϕ − 2P · e⊥

q

)
. (3.17)

Because e−q = −eq, the symmetry property (2.20) implies that L̂‖(−ϕ) = −L̂∗
‖(ϕ) and

L̂⊥(−ϕ) = −L̂∗
⊥(ϕ).

Combining the contributions proportional to p±1 (stemming from n = ±1 in the series
and from 2P · e⊥

q ), we can rewrite (3.17) as

L̂⊥(ϕ) = 16

gH̄2
s

∞∑

n=−∞
n(−i)|n|2πp̃n einϕ, (3.18)

where

p̃n =
{

2p±1 if n = ±1;
pn if n 6= ±1.

(3.19)

With the form (3.15) for L̂(ϕ) and the Helmholtz decomposition (3.14), the linear map
(2.16) becomes

ĥs(q)

H̄s

= iqL̂‖(ϕ)φ̂(q)+ iqL̂⊥(ϕ)ψ̂(q). (3.20)

Here L̂‖ and L̂⊥ control the dependence of hs on, respectively, the divergent and vortical
parts of the current. In general, L̂‖, L̂⊥ 6= 0, and both the divergent and vortical parts of the
current induce modulations in SWH. However, we show in § 5.3 that for highly directional
SGW spectra L̂⊥ � L̂‖, i.e. the vortical part of the current is dominant.
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4. Application to specific currents

Given the background wave action spectrum Ā(k) and the current U(x), the U2H map
ĥs/H̄s = L̂ · Û , with L̂ in (3.11) or (3.15)–(3.17), enables the computation of hs. In this
section, we carry out this computation. We first use a numerical procedure suitable for
arbitrary currents which we apply to two realistic configurations. We then consider the
idealised cases of purely divergent and purely vortical currents for which we obtain
analytic results. In all cases we compare the U2H predictions with the results of WW3
simulations.

4.1. Numerical implementation for arbitrary current

The velocity field U(x) is discretised on a regular grid and its Fourier transform Û(q)
is obtained on the dual Fourier grid by a fast Fourier transform. To prevent numerical
artefacts due to the non-periodicity of the currents, we use a large computational domain,
zero-padding U in the periphery. The inverse fast Fourier transform of the product
ĥs(q)/H̄s = L̂(ϕ) · Û(q) yields hs(x) on the spatial grid. A Jupyter Notebook of this
implementation is available at https://shorturl.at/bef14, where users can customise the
input currents and background wave spectrum. We refer the reader to this Notebook for
complete implementation details.

For the examples of this paper, we take the background wave action spectrum Ā(k, θ)

of the separable (in k and θ ) form detailed in Appendix B. The wavenumber dependence
is defined by a truncated Gaussian in σ(k) and the angular dependence D(θ) follows the
model of Longuet-Higgins, Cartwright & Smith (1963, LHCS hereafter)

D(θ) ∝ cos2s((θ − θp)/2), (4.1)

where θp is the primary angle of wave propagation, measured from the x-axis and in the
direction of k, and the parameter s controls the directional spread. Large values, say s &
10, correspond to swell-like sea states. For integer s, the coefficients pn in (3.10) required
for L̂(ϕ) have a simple closed form and vanish for |n| > s (see Appendix B).

For comparison with U2H, we carry out WW3 simulations that approximate a steady
solution of the linear action (2.1). The set-up is as described in Wang et al. (2023) except
for two aspects of the wave forcing. First, the forcing imposes the background wave action
spectrum Ā(k) on the entire boundary, i.e. waves enter the rectangular domain from all
four sides. This improved formulation ensures that the wave spectrum in the absence
of currents is uniform even for spectra with broad directional spread. (In Wang et al.

(2023) waves enter the computational domain only from the western boundary. Even in
the complete absence of currents the resulting steady-state solution decreases with x as
‘wave shadows’ from the northern and southern boundaries encroach into the centre of
the domain.) Second, to ensure consistency with U2H, we zero-pad the domain of the
currents in strips with widths of four grid spacings so that waves are forced at current-free
boundaries. For both U2H and WW3 we report SWH anomalies obtained by subtracting
the spatial average over the (unpadded) domain shown in the figures.

We apply the U2H and the WW3 implementations on two examples of realistic currents.
The first example, already shown in figure 1, uses a snapshot of currents in the California
Current system simulated from MITgcm, as configured in Villas Boâs et al. (2020). The
current speed reaches 0.65 m s−1 at its maximum. The waves are forced with peak period
10.3 s corresponding to a wavelength of 166 m and a group speed of 8 m s−1. The waves
are swell-like with parameter s = 10, and propagate primarily in the direction θp = 0. The
U2H prediction of hs (figure 1c) is in good agreements with that from WW3 (figure 1b),
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Figure 2. Estimated probability densities for hs computed using the U2H map (red lines) and WW3 model
(yellow lines), for the example shown in (a) figure 1 and (b) figure 3. Probability densities are estimated by
grouping the values of hs/H̄s within the unpadded domains into 100 bins.
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Figure 3. (a) Surface current speed in an MITgcm simulation of the Gulf Stream, with the arrow indicating
the primary direction of wave propagation; SWH anomaly computed using (b) WW3 and (c) the U2H map.
(d) Difference between (c) and (b). The background wave action spectrum uses the LHCS model spectrum
(B1) with s = 16 and peak angle θp = 191◦.

with difference field (figure 1d) lower than 7 % in amplitude of hs/H̄s. The SWH anomalies
predicted by U2H have larger overall amplitudes than of WW3. This is reflected in the
probability densities shown in figure 2(a), which confirm that U2H predicts more extreme
values than WW3. We tentatively attribute this to numerical damping effects from WW3.
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Scattering of surface waves by ocean currents

The second example, shown in figure 3, uses a Gulf Stream current’s snapshot
from the MITgcm simulation in figure 1 of Ardhuin et al. (2017). The current speed
reaches 2.9 m s−1 at their maximum. The waves are forced with peak period of 14.3 s
corresponding to a wavelength of 319 m and group speed of 11 m s−1, and are swell-like,
with parameter s = 16 and θp = 191◦. These parameters are estimated from buoy data for
the same time as for figure 1 in Ardhuin et al. (2017). Although we use a similar current
snapshot and wave forcing as Ardhuin et al. (2017), our WW3 configuration is different
from theirs, and disagreements in hs are expected. In this example, the SWH anomalies
are large, with hs/H̄s exceeding 50 % in some locations, challenging our assumption of
linearity. Nonetheless, there is a good qualitative match between the WW3 and U2H
results. The largest differences arise in regions of high-speed currents. The probability
density functions from the U2H and WW3 outcomes (figure 2b) are skewed differently.
These differences may be attributed to higher-order terms neglected by U2H.

We now consider idealised scenarios to gain insight into the dependence of hs on U .

4.2. Divergent current

For a purely divergent current, with Uψ = 0, (3.20) reduces to

ĥs(q) = − 32

gH̄s

iqφ̂(q)P · eq. (4.2)

Since iqeq = iq, the inverse Fourier transform of (4.2) is

hs = − 32

gH̄s

Uφ · P. (4.3)

Thus, the SWH anomaly that arises in response to a divergent current is proportional to
the component of current velocity along the wave momentum. In particular, the response
is local and vanishes where the current vanishes.

We illustrate (4.3) with a simple axisymmetric, divergent current whose divergence is
the Gaussian

∇ · U = ∇2φ = κ

2πr2
v

e−r2/2r2
v , (4.4)

where rv = 25 km is the characteristic radius and κ is the area flux, set such that the
maximum current speed Um =

√
U2 + V2 is 0.8 m s−1.

Figure 4 compares the U2H prediction (4.3) for this current with results from WW3
simulations for three values of the directionality parameter s. Figure 4 confirms the
validity of the U2H prediction and the local nature of the SWH response. This response
to divergent currents has a spatial structure independent of the directional spread of wave
energy, i.e. hs in (4.3) depends only on P. This striking result is in sharp contrast with the
response to vortical currents as we show next.

4.3. Vortical current

For a purely vortical currents, Uφ = 0 in (3.13) and the U2H map in (3.20) is determined
by the scalar transfer function L̂⊥(ϕ), which is explicitly computed from the series in
(3.18). As a demonstration, we consider a Gaussian vortex, with zero divergence and
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Figure 4. The SWH anomaly for the divergent flow with Gaussian divergence (4.4) with characteristic radius
rv = 25 km (indicated by the dashed circle) and maximum speed 0.8 m s−1. The results of WW3 simulations
(a,c,e) are compared with the U2H prediction (4.3) (b,d, f ) for three values of the parameter s characterising
the directional width of the wave spectrum.

vorticity in physical and Fourier space given by

ζ(x) = κ

2πr2
v

e−r2/(2r2
v) and ζ̂ (q) = κe−r2

vq2/2, (4.5a,b)

where κ is the circulation. We take advantage of the axisymmetry of this flow to carry out
the Fourier inversion leading to hs(x) analytically. Calculations detailed in Appendix D
yield the explicit expression

hs(x) = − 16i

gH̄s

κ

rv

√
π

2
e−r2/4r2

v

∞∑

n=−∞
n p̃n I|n|/2(r

2/4r2
v) einν, (4.6)

where x = r(cos ν, sin ν) and the I|n| are modified Bessel functions. The coefficients p̃n

depend only on the wave spectrum and are related to the already obtained pn according
to (3.19). Equation (4.6) has the advantage over the general implementation of the U2H
map described in § 4.1 in that it gives hs(x) at any location without the need for entire
computational domains in both physical and Fourier domains.

Figure 5 compares the SWH anomaly (4.6) with that obtained in WW3 simulations. The
parameters rv = 25 km and Um = 0.8 m s−1 are the same as those of the divergent flow
in § 4.2. The SWH response in figure 5 is very different from the response to divergent
currents in figure 4. The SWH anomaly in figure 5 extends beyond the vortex. For the
swell-like case s = 10 there is a wake-like feature decaying slowly in the direction of wave
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Figure 5. Same as figure 4 but for the Gaussian vortex with ζ(r) in (4.5a,b).

propagation. This physically important limiting case is discussed in § 5.3 and in Wang
et al. (2023).

5. Particular wave spectra

In this section we examine the role of the background wave action spectrum Ā(k) in
shaping the SWH anomaly by considering special and limiting cases.

5.1. Isotropic wave spectrum

Equation (3.5) shows that L̂(ϕ) = 0 if the background wave action (or energy) spectrum
is isotropic since ∂θ Ā(k) = 0 and P = 0 as a consequence. Thus, if the wave spectrum is
isotropic, currents do not induce modulations of the SWHs (at the order we consider).

To verify this, we run WW3 simulations with the isotropic wave spectrum obtained
by setting s = 0 in the LHCS model of Appendix B and the currents from either the
MITgcm simulation in figure 1 or the Gaussian vortex of figure 5. The SWH anomaly
hs in both cases is at most 3 %, much smaller than found for anisotropic spectra. The small
but non-zero hs for isotropic spectra is the result of effects quadratic in U . This O(ε2)-term
is not captured by the linear U2H map. We confirm this by increasing the velocity of the
Gaussian vortex by a factor of 2 (setting Um = 1.6 m s−1 instead of 0.8 m s−1) so that hs

increases by a factor 4, see figure 6. (The MITgcm outcome is not shown.)
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Figure 6. The SWH anomaly computed using WW3 for an isotropic wave spectrum (s = 0 in the LHCS
model) with the Gaussian vortex ζ(r) in (4.5a,b). (a) Contour of hs for Um = 0.8 m s−1, with the dashed circle
indicating the vortex radius rv . (b) Cross-section of hs at x = 0 (slicing through the centre of the vortex) for
Um = 1.6 m s−1 (blue solid curve) and Um = 0.8 m s−1 (yellow solid curve). The yellow dashed curve is
obtained by multiplying hs for Um = 0.8 m s−1 by 4.

5.2. Mildly anisotropic wave spectrum

The U2H map is particularly simple for the spectrum

Ā(k) = A0(k)+ Ac(k) cos θ, (5.1)

e.g. as in the LHCS spectrum with s = 1 used for figures 4(a,b) and 5(a,b). For the action
spectrum in (5.1) the wave momentum (3.4) can be written as

P = |P|
(

1
0

)
= |P| cosϕeq − |P| sinϕe⊥

q , (5.2)

where

|P| = π

∫
Ac(k)k

2dk. (5.3)

The function P(θ) defined in (3.8) is then

P(θ) =
∫

A0(k)k
2dk + |P|

π

cos θ, (5.4)

and 2πp1 = 2πp−1 = |P|. The transfer function in (3.11) reduces to

L̂(ϕ) = 32

gH̄2
s

|P|(2 sin ϕe⊥
q − cosϕeq). (5.5)

With the Helmholtz decomposition (3.14), the U2H map is

ĥs(q)

H̄s

= L̂(q) · Û(q), (5.6)

= 32

gH̄2
s

(2|P| iq sin ϕ ψ̂ − |P| iq cosϕ φ̂). (5.7)
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Scattering of surface waves by ocean currents

The inverse Fourier transform can be taken by inspection and the result written as

hs = − 32

gH̄s

(2Uψ · P + Uφ · P). (5.8)

In this simple case, only the component of current along P produces a SWH anomaly
which turns out to be local, vanishing where the current vanishes. In (5.8) the vortical
part of the current, Uψ , is twice as effective as the divergent part, Uφ . The divergent
contribution in (5.8) is identical to that in (4.3) which applies to arbitrary wave spectra.
This example, which corresponds to figures 4(a,b) and 5(a,b), shows that the response
to divergent currents is not always negligible relative to the vortical response. This is in
contrast with Villas Boâs et al.’s (2020) suggestion that only the vortical part of the current
affects hs. The next section, however, shows that the imprint of the vortical part of the
current is much larger than that of the divergent part for highly directional wave spectra.

5.3. Highly directional wave spectrum

We conclude above that hs is small for an isotropic wave spectrum. It is of interest to
examine the opposite limit of a highly directional wave spectrum. This limit corresponds
to an action spectrum of the form

Ā(k, θ) = δ−1
Ā(k,Θ), where Θ = θ/δ, (5.9)

with δ � 1 the relevant small parameter, and we assume that θ = 0 is the primary
propagation direction. The prefactor δ−1 ensures that the action spectrum integrated over
θ is O(1). Correspondingly, we have

P(θ) = δ−1
P(Θ). (5.10)

For simplicity, we abuse notation by using the same symbols Ā and P on both sides of
(5.9) and (5.10), distinguishing them by their arguments. Similar to the treatment of ε in
(2.8), we use δ as a bookkeeping parameter that is set to 1 in the end.

Taking (3.7) as a starting point, we obtain an asymptotic approximation to L̂(ϕ) in
Appendix C. There we show that the dominant contribution to L̂(ϕ) comes from the
integral term and is large in small regions around ϕ = ±π/2. In terms of the rescaled
variable

Φ± = (ϕ ∓ π/2)/δ = O(1), (5.11)

the leading-order approximation to the transfer function in these regions is

L̂(ϕ) ∼ L̂⊥(ϕ)

(
∓1
0

)
∼ 16

gH̄2
s δ

2
∂Φ±

∫ ∞

−∞

P(Θ)

Θ −Φ± ∓ iµ
dΘ

(
1
0

)
. (5.12)

Thus, L̂(ϕ) is dominant and O(δ−2) in narrow, O(δ), sectors around ϕ = ±π/2. We
conclude the following.

(i) For typical Û(q), patterns of hs take the form of structures elongated in the direction
of propagation of the waves, i.e. streaks, with an O(δ) aspect ratio.

(ii) Magnitudes of the two scalar transfer functions are related via L̂⊥ = O(δ−2)L̂‖,
since L̂‖ = O(1) (see (C4)). According to (3.20), this implies that the divergent-free,
vortical part of the velocity field U has an asymptotically larger impact on hs than
the potential part.
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Figure 7. Magnitudes of the transfer functions L̂⊥(ϕ) (a) and L̂‖(ϕ) (b) associated with the vortical and
potential part of the current as functions of ϕ for the LHCS spectrum with directionality parameter s = 1, 10
and 15. The exact values computed from (3.16) and (3.17) are shown by the dashed lines; the solid lines in (a)
show the large-s approximation (5.15) for L̂⊥(ϕ). We take advantage of the symmetry (2.20) to show only the
range ϕ ∈ [0,π].

(iii) Highly directional waves produce SWH anomalies larger by a factor δ−1 than those
induced for spectra with O(1) directional spread. (This estimate accounts for both
the factor δ−2 in (C4) and the O(δ) width of the support of L̂⊥(ϕ) implied by (5.11).)

(iv) As a result of (iii), the linear approximation that underpins U2H requires that ε � δ

in addition to ε � 1. We discuss this further at the end of the section.

We illustrate the asymptotic result (C4) by considering the limit s → ∞ of the LHCS
spectrum. Taking this limit in (B2) gives

P(Θ) = α√
2π

e−Θ2/2, where δ =
√

2/s, (5.13)

and α a constant determined by the dependence of the spectrum on k. Using (5.13) and the
Sokhotski–Plemelj theorem, we rewrite the integral term in (C4) as

∫ ∞

−∞

P(Θ)

Θ −Φ± ∓ iµ
dΘ = α√

2π

(
±iπ e−Φ2

±/2 + −
∫ ∞

−∞

e−Θ2/2

Θ −Φ±
dΘ

)

= α(±i
√

π/2 e−Φ2
±/2 −

√
2 daw(Φ±/

√
2)), (5.14)

where −
∫

denotes the Cauchy principal value and daw(·) denotes the Dawson function
(DLMF 2023). Using that daw′(x) = 1 − 2x daw(x) (DLMF 2023) we can evaluate the
right-hand side of (C4) to find

L̂⊥(ϕ) = 16α

gH̄2
s δ

2

{
i
√

π/2Φ+ e−Φ2
+/2 + 1 −

√
2Φ+ daw(Φ+/

√
2), for 0 ≤ ϕ < π;

i
√

π/2Φ− e−Φ2
−/2 − 1 +

√
2Φ− daw(Φ−/

√
2), for − π < ϕ < 0.

(5.15)
Figure 7 compares the asymptotic approximation (5.15) of L̂⊥ with the exact values

obtained from (3.17) for s = 1, 10 and 15. It shows the asymptotic approximation to be
reasonably accurate for s = 10. We have checked that the error scales as O(δ2). The figure
also shows L̂‖ in (3.16) to confirm that L̂⊥ � L̂‖, and hence that vortical part of the current
dominates over the divergent part, for s � 1.

As an application of (5.15), in figure 8 we compare the predictions of the U2H map
for the MITgcm simulation current of figure 1 computed with the exact L̂ and with the
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Figure 8. The SWH anomaly for a highly directional (s = 10) wave spectrum and MITgcm current of
figure 1 computed with the full U2H map (panel (a) identical to figure 1c), and with the s � 1 asymptotic
approximation (b). This figure can be produced from the notebook accessible at https://www.cambridge.org/
S0022112024009649/JFM-Notebooks/files/U2Hmap.

asymptotic approximation (5.15). The match is very good, even though for s = 10, δ ≈
0.45 is only marginally small. The code applying the expression (5.15) is available on
the Jupyter Notebook https://shorturl.at/bef14, where readers can also experiment with
different choices of the parameter s to observe how the agreements get better/worse with
larger/smaller s.

We conclude by connecting the results of this section with those of Wang et al. (2023).
They focus on the regime δ � 1 and on localised currents. Using matched asymptotics,
they obtain an asymptotic expression for the total SWH, Hs = H̄s + hs, in the presence of
currents. This expression holds without the linearity assumption hs � H̄s that underpins
the U2H map. Specifically, they consider the distinguished limit δ = O(ε) which leads
to hs/H̄s = O(1). Wang et al. (2023) give a simplified form valid when ε � δ � 1. In
Appendix C we show that U2H in the approximation (C4) reduces to this form for localised
currents.

6. Discussion and conclusion

In the oceanographic regime with U/cg � 1 the effect of currents on an underlying
spatially uniform action spectrum Ā(k) can be determined by solving the linear problem in
(2.10) and (2.11) for the anomaly in action density a(x,k). We have focused on extraction
of the anomaly in SWH, hs(x), via the weighted k-integral of a(x,k) in (2.15). The
results are in good agreement with numerical solutions of WW3. There is a significant
generalisation of this procedure: given a(x,k), other important SGW properties, such as
the current-induced anomaly in the Stokes drift, are only a k-integral away.

Assumptions involved in the U2H map, listed in § 2, are violated in several
ocean-relevant scenarios: interactions of surface waves with tidal and near-inertial currents
violate the assumption of steady current (e.g. Tolman 1988, 1990; Gemmrich & Garrett
2012; Ho et al. 2023; Halsne et al. 2024); short surface waves in the saturation range of
the wave spectrum violate the assumptions of scale separation and large group speed (e.g.
Rascle et al. 2017; Lenain & Pizzo 2021; Vrećica, Pizzo & Lenain 2022); and conditions
of active wave generation and dissipation make the source terms non-negligible (e.g.
Holthuijsen & Tolman 1991; Chen et al. 2007; Romero et al. 2017). These scenarios are
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not explored in this work. Nevertheless, for relatively long surface waves interacting with
open-ocean currents, our assumptions are often satisfied.

Linearity of the partial differential equation (2.10) implies that there is a linear
map from U to hs. Can this U2H map be inverted to produce an H2U map? Not in
general: U2H maps a vector field to a scalar field, so cannot be expected to have an
inverse. The non-invertibility of U2H is illustrated by considering the mildly anisotropic
spectrum of § 5.2: (5.7) implies that hs = 0 for a velocity field with potential and stream
function satisfying 2ψy − φx = 0, demonstrating the non-uniqueness of U for a given hs.
Observations of hs, however, provide partial information about U . For swell-like waves,
in particular, § 5.3 shows that hs can be approximated by a linear operator acting on the
vortical component of the current; in this case, we can infer vorticity from hs.

An important qualitative result emerging quickly from the analysis is that the transfer
function, L̂ in (2.19), does not depend on the magnitude q of the current wavenumber q,
but only on its direction ϕ. This implies that the spatial scale of variations in hs is set by
those of the current U , e.g. power-law U-spectra result in power-law hs-spectra with the
same slope (Ardhuin et al. 2017; Romero et al. 2020; Villas Boâs et al. 2020). Using (3.20)
we are now exploring the ramifications of this result.

Supplementary material. Computational Notebook files are available as supplementary material at https://
doi.org/10.1017/jfm.2024.964 and online at https://www.cambridge.org/S0022112024009649/JFM-Notebooks
and https://github.com/hannnwang/The-U2H-map.
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Appendix A. Computable form of the transfer function L̂

Introducing (3.10) into the integral in (3.7) and changing the integration variable from θ

to θ + ϕ gives

∫ 2π

0

P(θ)

cos(θ − ϕ)− iµ
dθ =

∞∑

n=−∞

(∫ 2π

0

eniθ

cos θ − iµ
dθ

)
pn eniϕ . (A1)

1005 A12-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

96
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.964
https://doi.org/10.1017/jfm.2024.964
https://www.cambridge.org/S0022112024009649/JFM-Notebooks
https://github.com/hannnwang/The-U2H-map
https://www.cambridge.org/S0022112024009649/JFM-Notebooks
https://www.cambridge.org/S0022112024009649/JFM-Notebooks
https://github.com/hannnwang/The-U2H-map
https://github.com/biavillasboas/U2H
https://orcid.org/0000-0002-5841-5474
https://orcid.org/0000-0002-5841-5474
https://orcid.org/0000-0001-6767-6556
https://orcid.org/0000-0001-6767-6556
https://orcid.org/0000-0002-0319-589X
https://orcid.org/0000-0002-0319-589X
https://orcid.org/0000-0002-1842-3197
https://orcid.org/0000-0002-1842-3197
https://doi.org/10.1017/jfm.2024.964


Scattering of surface waves by ocean currents

The integrals on the right-hand side can be evaluated explicitly using contour integration
in the complex plane. Consider first n ≥ 0 and let z = eiθ so that

∫ 2π

0

eniθ

cos θ − iµ
dθ = −2i

∮
zn

z2 − 2iµz + 1
dz. (A2)

We can now use the residue theorem, noting that the integrand has the two poles z± =
±i + iµ+ O(µ2) and that only z− is enclosed by the integration contour since µ → 0+.
This leads to

lim
µ→0+

∫ 2π

0

eniθ

cos θ − iµ
dθ = 2π(−i)n−1 for n ≥ 0. (A3)

For n < 0, we can let θ 7→ −θ on the left-hand side of (A2) to conclude that (A3) holds
with n 7→ −n. Hence, for any n,

lim
µ→0+

∫ 2π

0

eniθ

cos θ − iµ
dθ = 2π(−i)|n|−1, (A4)

and (A1) reduces in the limit µ → 0+ to

lim
µ→0+

∫ 2π

0

P(θ)

cos(θ − ϕ)− iµ
dθ = 2π

∞∑

n=−∞
(−i)|n|−1pn eniϕ . (A5)

Taking the derivative in ϕ leads to the coefficient in front of e⊥
q in (3.11).

The computation of the wave momentum P in terms of the Fourier coefficients of the
action spectrum is straightforward: using (3.4), (2.6), (3.8) and (3.10) we find

P =
∫ ∞

0

∫ 2π

0
A(k, θ)k2

(
cos θ
sin θ

)
dkdθ =

∫ 2π

0
P(θ)

(
cos θ
sin θ

)
dθ

=
∞∑

n=−∞

∫ 2π

0

(
cos θ
sin θ

)
eniθ dθ pn =

(
+ Re 2πp1
− Im 2πp1

)
. (A6)

Substituting (A5)–(A6) into (3.5) yields (3.11).

Appendix B. The LHCS spectrum

We use the spectrum proposed by Longuet-Higgins et al. (1963). This takes the separable
form

Ā(k, θ) = f (k)× Γ (s + 1)

2
√

πΓ (s + 1/2)
cos2s((θ − θp)/2)

︸ ︷︷ ︸
D(θ)

. (B1)

For convenience, we assume that the peak angle θp = 0 in this appendix. (For θp /= 0, the
final expression for pn should be multiplied by e−inθp .) In (B1) the parameter s ≥ 0 controls
the directional spread around the primary direction of wave propagation conventionally
taken along the positive x-axis. The wavenumber function f (k) is chosen so that the
frequency spectrum is a truncated Gaussian with standard deviation of 0.040 rad s−1 and
peak angular frequencies at σ = 0.44 rad s−1 (corresponding to peak period at 14.3 s) for
the Gulf Stream example in figure 2, or at σ = 0.61 rad s−1 (corresponding to peak period
at 10.3s) for all the other examples.
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We take advantage of linearity to report all numerical results in terms of the relative
SWH anomaly hs/H̄s so the amplitude of the Gaussian in (B1), proportional to H̄s, is
unimportant in this paper.

With (B1), the function P(θ) in (3.8) becomes

P(θ) = αD(θ), where α
def=
∫ ∞

0
f (k)k2dk. (B2)

The Fourier coefficients of D(θ), denoted pn in (3.10), are real and satisfy p−n = pn.
When s is an integer, Γ (s + 1/2) can be expressed in terms of factorials and then these
coefficients are

pn = α

2π





(s!)2

(s + n)!(s − n)!
for |n| ≤ s;

0 for |n| > s.

(B3)

The wave momentum is

P = αs

s + 1

(
1
0

)
. (B4)

The spectrum (5.1) is a particular case of (B1) with s = 1.

Appendix C. The U2H map for highly directional spectra

We derive an asymptotic approximation for L̂(ϕ) in (3.7) for a spectrum (5.9) in the limit
δ → 0. We first note that

P =
∫

π/δ

−π/δ

P(Θ)

(
cos(δΘ)
sin(δΘ)

)
dΘ = 2πp0

(
1
0

)
+ O(δ). (C1)

Thus, the first term in (3.7) makes an O(1) contribution to L̂(ϕ). To evaluate the second
term, we approximate the integral involved as∫

P(Θ)

cos(δΘ − ϕ)− iµ
dΘ = 1

cosϕ

∫
P(Θ) dΘ + O(δ)

= 2πp0

cosϕ
+ O(δ). (C2)

This is also O(1) except near ϕ = ±π/2. There we use the rescaled variables Φ± = (ϕ ∓
π/2)/δ to write∫

P(Θ)

cos(δΘ − ϕ)− iµ
dΘ = ±

∫
P(Θ)

sin(δΘ − δΦ±)∓ iµ
dΘ

= ±δ−1
∫

P(Θ)

Θ −Φ± ∓ iµ
dΘ + O(δ). (C3)

Introducing (C1), (C2) and (C3) into (3.7), we find

L̂(ϕ) ∼ 16

gH̄2
s

×





−δ−2∂Φ+

∫ ∞

−∞

P(Θ)

Θ −Φ+ − iµ
dΘ e⊥

q + O(1) for |ϕ − π/2| = O(δ);

δ−2∂Φ−

∫ ∞

−∞

P(Θ)

Θ −Φ− + iµ
dΘ e⊥

q + O(1) for |ϕ + π/2| = O(δ);

−2πp0

(
sinϕ

cos2 ϕ
e⊥

q +
(

2
0

))
for |ϕ ∓ π/2| = O(1).

(C4)
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Scattering of surface waves by ocean currents

Under the assumption of a localised current, we now derive an approximation for hs(x)
by introducing (C4) in the inverse Fourier transform

hs(x)/H̄s = 1

(2π)2

∫
L̂(ϕ) · Û(q) eiq · x dq, (C5)

of (2.16). We compute explicitly the contribution of the boundary layer at ϕ = π/2; the
contribution of the other boundary layer is its complex conjugate, denoted by c.c., and is
added. Using the polar representation of q and the approximation

q = q(−δΦ, 1)+ O(δ2), (C6)

where we denote Φ+ by Φ for simplicity, we obtain

hs(x) ∼ 16δ−1

(2π)2gH̄s

∫ ∞

0
Û(0, q)q eiqy dq

∫ (
d

dΦ

∫
P(Θ)

Θ −Φ − iµ
dΘ
)

e−iδqxΦ dΦ + c.c.

(C7)

Here we implicitly assume that x = O(δ−1) since this turns out to be the range of x for
which hs is the largest. Integrating by parts in Φ and swapping the order of the Θ and Φ
integrations produces

hs(x) ∼ 16ix

(2π)2 gH̄s

∫ ∞

0
Û(0, q)q2 eiqy dq

∫
P(Θ)

(∫
dΦ

Θ −Φ − iµ
e−iqδxΦ

)
dΘ + c.c.

(C8)
The Φ-integral can be evaluated as a contour integral. For x ≥ 0, we close the contour in
the lower half-plane where the simple pole Φ = Θ − iµ is located. In the limit µ → 0+

the integral becomes 2πie−iqδxΘ , leading to

hs(x) ∼ − 8x

πgH̄s

∫ ∞

0
Û(0, q)q2 eiqy dq

∫
P(Θ) e−iqδxΘ dΘ + c.c. (C9)

Recognising the integral with respect to Θ as the Fourier transform P̂(qδx) of P(Θ), we
obtain the compact expression

hs(x) ∼ − 8x

πgH̄s

∫ ∞

0
Û(0, q)P̂(qδx)q2 eiqy dq + c.c. for x ≥ 0. (C10)

For x < 0, the integration contour can be closed in the upper half-plane of Φ, where there
are no poles, hence hs(x) = 0 for x < 0. The reality conditions (Û∗(0, q)) = (Û(0,−q))

and P̂∗(qδx) = P̂(−qδx) can then be used to reduce the result to

hs(x) ∼ − 8x

πgH̄s

∫ ∞

−∞
Û(0, q)P̂(qδx)q2 eiqy dq for x ≥ 0, (C11)

and hs(x) = 0 for x < 0.
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We now show that (C11) is equivalent to the result obtained by Wang et al. (2023) in the
linear regime ε � δ � 1. In the notation of the present paper, their result reads

hs(x) = − H̄s

2

∫
D′(Θ)1( y − xΘ) dΘ for x ≥ 0, (C12)

where D(Θ) is the (normalised) angular distribution of the spectrum and

1( y)
def= 1

cg?

∫ ∞

−∞
ζ(x, y) dx, (C13)

with cg? the peak group speed. The function 1( y) can be written in terms of the Fourier
transform of the current as

1( y) = − i
2πcg?

∫
q2Û(0, q2) eiq2y dq2. (C14)

Introducing (C14) into (C12)

hs = − H̄sx

4πcg?

∫
Û(0, q)D̂(qx)q2 eiqy dq for x ≥ 0. (C15)

The result in (C15) is shown to be identical to (C11) by noting that

H̄2
s D(θ) = 16g−1

∫∫
σ(k)Āk dk dθD(θ) = 32g−1

∫∫
cgĀk2 dk dθ

≈ 32g−1cg?P(θ). (C16)

Here we use the definition (3.8) of P(θ) in the case of a separable spectrum and we
approximate cg(k) ≈ cg? as appropriate for a highly directional spectrum.

Appendix D. Axisymmetric vortex

For a purely vortical, axisymmetric flow, with φ̂(q) = 0 and ψ̂(q) = −q−2ζ̂ (q),
combining (3.18) into (3.20) yields

hs(q) = − 16i

gH̄s

∞∑

n=−∞
n(−i)|n|2πp̃n einϕq−1ζ̂ (q). (D1)

The inverse Fourier transform is

hs(x) = − 16i

gH̄s

∞∑

n=−∞
n(−i)|n| 2πp̃n

2π

∫ ∞

0
ζ̂ (q)

∫ 2π

0
eiqr cos(ϕ−ν)+inϕ dϕ

2π

dq. (D2)

In the ϕ-integral above, ν is the polar angle in physical space. The ϕ-integral can be
reduced to Bessel functions

∫ 2π

0
eiqr cos(ϕ−ν)+inϕ dϕ

2π

=
∫ 2π

0
eiqr cosα cos(nα)

dα
2π

einν

= i|n|J|n|(qr) einν . (D3)

Substituting (D3) into (D2) we obtain

hs(x) = − 16i

gH̄s

∞∑

n=−∞
np̃n

∫ ∞

0
ζ̂ (q)J|n|(qr) dq einν, (D4)

valid for any vortical axisymmetric flow.
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For the Gaussian vortex in (4.5a,b) the q-integral reduces to

∫ ∞

0
J|n|(qr)ζ̂ (q) dq = κ

∫ ∞

0
J|n|(qr)e−r2

vq2/2 dq

= κ

rv

√
π

2
e−r2/4r2

v I|n|/2(r
2/4r2

v), (D5)

where I|n|/2 is the modified Bessel function. This simplifies hs(x) in (D4) to (4.6).
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