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Summary

We study the dynamics under directional truncation selection of the genetic variability of a
quantitative character controlled by a finite number of possibly linked loci with additive effects.
After the first generation of selection, the build-up of linkage disequilibria (Bulmer effect) is
analytically demonstrated from a genetical point of view in an infinite population. In the following
generations, the dynamics of the system in a finite population are predicted using analytic
recurrences under a multi-normal approximation, and computer simulations. The effects of
recombination on the dynamics of linkage disequilibria induced by selection and drift, and the
consequences for the additive genetic variance are then analysed and discussed from the simulation
results. Compared to the rapid exploitation of genetic variability promoted by high recombination
rates, low recombination rates promote an early storage of genetic variability in repulsion
associations of alleles and a possible late release of genetic variance in the population, so that the
variability of the character may be maintained over a longer period of time. In some cases,
favourable recombination events in tightly linked systems induce an increase of the additive
variance of the character, which may explain some results observed in long-term selection
experiments. Our results emphasize that the joint effects of selection, linkage and drift must not be
neglected in theoretical quantitative genetics, and require further investigation.

1. Introduction

From a formal point of view, the genetics of
quantitative characters, i.e. polygenic characters,
should use the theoretical tools provided by popu-
lation genetics for the study of mono- or oligogenic
characters. This would give reliable and precise
predictions for the behaviour of allele frequencies at
all the loci involved. Unfortunately, even in the
simplest case of a character determined by genes of
purely additive effects, the complete analytic de-
scription of the system is not possible when several
loci are taken into account. This was clearly shown for
example by Turelli & Barton (1990). This impossibility
stems from the explosive increase in the number of
parameters that must be taken into account to describe
all moments of any orders between gene effects at
several loci. Hence, approximations are often made,
to reduce the number of parameters, assuming
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Gaussian distributions of breeding values (Pearson,
1896; Bulmer, 1980), or of every genetic contribution
(Lande, 1976). Gaussian distributions of breeding
values are obtained by assuming that the genes
involved are unlinked and contribute small effects to
the phenotype (infinitesimal model, Fisher, 1918).
Even though selection deviates the distribution away
from normality, it seems that in the case of unlinked
genes, deviations from normality might be neglected
even under directional truncation selection (Turelli &
Barton, 1994) and the Gaussian approximation may
hold.

Although any linkage values may a priori be
expected between the genes controlling a given
character, most of the theory in quantitative genetics
has been obtained for unlinked loci, assuming that the
effects of linkage may be neglected. This is not always
true and we have shown in a previous paper that
taking both linkage and drift into account may lead to
important discrepancies with some classical results
obtained under the assumptions of the infinitesimal
model (Hospital & Chevalet, 1993). Here, we aim to
study the effects causing these discrepancies, by
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investigating the joint effects of selection, linkage and
drift on the variability of quantitative characters.
Under selection for a polygenic trait, linkage dis-
equilibria are generated between pairs of quantitative
trait loci. In quantitative genetics, this effect was not
clearly understood before Bulmer (1971) made it
popular, even if it can be argued that Pearson (1903)
discovered the effect at the beginning of the century,
or that Lush (1945) wrote it down explicitly. In
population genetics, the build-up of linked repulsion
complexes of genes as a result of optimizing selection
was first predicted by Fisher (1930) and Mather
(1941), then further investigated by Lewontin (19644,
b, 1974) at equilibrium in an infinite population. In
any case the main body of the literature on quantitative
genetics did not take into account the role of linkage
disequilibrium in the understanding of selection. Our
approach is aimed at going from quantitative genetics
to population genetics by studying the transient
dynamics of additive genetic variance and linkage
disequilibria under directional truncation selection in
a finite population. The question is addressed using
approximate analytic models and stochastic simu-
lations.

2. Models and methods

(1) Analytic models
(@) General assumptions

We consider a single character controlled by a finite
number of possibly linked loci evenly spread on a
chromosome segment (cluster). The genotypic value
(or breeding value) is the sum of 2n random variables
g™ and g!’ representing the contributions of genes
carried by the chromosomes of paternal and maternal
origins at locus i (i = 1, ..., n). The phenotype P is the
sum of the genotypic value and a normally distributed
environmental effect, E.

P=2("+g")+E.

Matings are assumed to be at random at each
generation, so that the variance covariance matrix of
gene effects in a zygote takes the form

G O
)

where G is the variance covariance matrix between
gene effects of a gamete drawn from the reproducing
individuals in the previous generation. The elements
of matrix G are G; = Cov (g™, g™) = Cov (g{”,gi").
The first two moments of trait P are:

P=2%g, ()
Vo=V, +V, (3)
=2226ij+ VEa (4)
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where P is the phenotypic mean, g, is the mean of
gametic values g™ and g{’, V, is the phenotypic
variance, V, is the additive genetic variance, and V,
the variance of environmental effects.

The initial population is at Hardy—Weinberg equi-
librium at each locus, and all loci are in linkage
equilibrium. Thus, contributions g{™ and g!” of locus
i to the genotypic value of an individual are
independent random variables with variance 3a2. The
initial matrix G'” is diagonal with G{ = }o? and the
initial genetic variance is V¢ = X, o?. If the number »n
of loci is large, and the contribution ¢? of any locus i
to the total phenotypic variance V(¥ = ¢* is small
(o2/0* ~ 1/n), the distribution of genotypic values is
approximately Gaussian.

Truncation selection is performed, with intensity ¢,
corresponding to truncation at the point

B =tV

assuming that the mean of the population is 0, and
that £ is the truncation point in the reduced scale.
Assuming that P is normally distributed, the relevant
parameters used in analytical derivations are

(i) The selection intensity ¢, relating the change in
mean phenotypic value to the standard phenotypic
deviation:

P, —P=1/V,.

(s)
(ii) The relative change (t— £) in the variance, such
that:

Vew = (1 —1t—8) Ve,
where subscript (s) refers tu values among selected
individuals.

(b) One generation of selection

The effect of selection on the genetic variance available
for selection has been established by Bulmer (1971) in
a statistical setting (at the level of the breeding value).
We give in the Appendix a genetical derivation of this
effect (at the level of genes) that we obtained under
simple hypotheses: infinite population size, initial
linkage equilibrium and Hardy—Weinberg frequencies
of alleles at several loci, additive effects of alleles on
the breeding value. These hypotheses are less re-
strictive than Bulmer’s (see Discussion).

(¢) Several generations of selection

Going on to the next generation cannot follow the
simple rationale of the Appendix. The special joint
distribution corresponding to linkage equilibrium (i.e.
independence between allelic states at different loci)
can no longer be accepted, so that fitnesses of 1- or 2-
locus genotypes cannot be calculated. More precisely,
the step from equation (A 1) to equation (A 2) is no
longer allowed. Describing the dynamics of polygenic
systems by means of the moments of distributions has
been considered by Turelli & Barton (1990). A first
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level of approximation uses only the first and second
moments of distributions. This may be obtained by
assuming that distributions are Gaussian, as done by
Lande (1976) and Chevalet (1988, 1994). Although
Gaussian distributions are not conserved under the
processes of recombination and random mating
(Felsenstein, 1977), they allow the genetic modi-
fications induced by selection on phenotype and on
genotype to be calculated from standard regression
equations.

The predicted changes in the means, variances and
covariances of gene effects after one cycle of selection
are, from one generation (¢) to the next (z+ 1) (Lande,
1976 ; Chevalet, 1988):

1
E@gY) = E@EP) +W G? &)

1 N 6-H GG
GV = (1 N ru) Gy — (1 _N)—W

where r,, is the recombination fraction between loci i
and j, and G,, and G, are such that:

» (6)

j=n
) — () — )
G =GY = 3 G

j=1

(1) Simulation model

The computer program simulates selection in a finite
population. A diploid individual is represented by n
pairs of loci. Each locus has two alleles with additive
effects 0 and 1, so that the genotypic value of an
individual is the sum of all 1’s at his 2» loci. The
phenotypic value is the sum of the genotypic value
and a random normal variable with 0 mean and
appropriate variance ¥V, to achieve the specified
heritability A% in the first generation. The population
is split into two groups (sexes) of equal size. In each
group, at each generation (¢), a fixed proportion of
individuals is selected. For each zygote, one parent is
drawn at random from each selected group, and
produces a gamete after crossing-overs have been
generated. The procedure is repeated until the required
number of zygotes is obtained (half males and half
females). Generations are non-overlapping, and the
process starts with an initial population obtained by
drawing at random two alleles at each locus for all
individuals, with a specified frequency (0-5 for the
results shown here) of favourable alleles (alleles with
effects equal to 1). Crossing-overs are assumed to be
Poisson distributed with no interference, and the
Haldane mapping function is used. Linkage may be
represented either by the recombination fraction
between adjacent loci, or by the map length L (in
Morgans) on which the loci are evenly distributed,
with one locus standing at each end of the chromosome
segment so that:

L=—{n—1)In(1-2r).
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For each set of parameters, the program simulates
selection from a random initial population (¢ =0)
until the requested number of generations or complete
fixation at all loci is achieved, then the whole run is
replicated. The simulation data shown in Figs. 1 to
4 are the means of the studied parameters over 400
replications. The data shown in Figs. 5 and 6
correspond to one single replicate.

3. Results

(i) The reduction of additive genetic variance
(a) One generation of selection

The corresponding calculations are detailed in the
Appendix. Assuming that the total genetic variance V,
is the sum of the variances ¢ contributed by loci i, it
turns out that after one cycle of truncation selection
the contributions g, and g; of genes at two loci i and
j become correlated, so that:

gl o}

4v, "

Cov*(g, ) = —1a—£)

Although they are all small, these covariances sum up
to a macroscopic effect, so that in the next generation
one gets:

Vi=V.(l—u@—9Hh), )

where /4® is the initial heritability of the selected trait.

The detailed calculation of the Appendix shows
how the first generation of selection develops sys-
tematic negative covariances between the effects of
contributing loci. From the viewpoint of population
genetics these covariances are linkage disequilibria,
indicating a tendency of gametes to carry alleles of
opposite effects on the selected trait.

The expression (7) is derived here directly under
standard hypotheses of normal distribution of the
phenotypic values and small effects of individual loci.
It could also be obtained from the general approach
of Turelli & Barton (1990), when assuming normal
distributions of phenotypes.

(b) Several generations of selection

Considering a finite number of loci contributing
additively to the variability of quantitative trait, the
Gaussian approximation recalled in the Models and
methods section (eqns (5) and (6)), allows one to
derive the values of macroscopic parameters (eqns (2)
and (4)) at each generation, the expected mean value
of phenotypes P = 2%, and the additive genetic
variance

VO =23 T60 = VP4 CO, ®)
i

where V¥ =23,G{? is the genic variance, ie. the
additive genetic variance if all loci were in linkage
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Fig. 1. Predictions for genetic variances from analytic and
simulation models as compared to the predictions of
Bulmer (1980, eqn 9.33). Abscissa: time in generations.
Ordinate: ratio of variances at ¢ over value in initial
generation. Positive values: for each of the three models:
genic variance ¥, (dotted line, up arrow) and additive
genetic variance V, (solid line, down arrow). Negative
values: difference C = V, —V, for each of the three models
(dashed lines). n = 51 loci spread on 50 cM, r = 0-01, 100
individuals selected among 200 at each generation, A* =
0-5. The simulation results are averaged over 400
replicates.

equilibrium, and C® is a reduction term. These
equations were solved numerically.

Results from the analytical approximation and
from simulations are presented in Fig. 1 where
predictions for V¢ and V{ from both models are
plotted as well as their differences C“ and can be
compared with the predictions of Bulmer (1980, eqn
9.33).

As stated in the Appendix, the additive genetic
variance after one generation of selection does not
depend on the recombination fraction between loci,
provided the initial population is at linkage equi-
librium, so that the value predicted by the analytic
model is the same as Bulmer’s and the value predicted
by the simulations is very close. This is no longer the
case in the following generations. In Bulmer’s model,
V, remains constant and ¥, reaches a positive
equilibrium value, while in our models both ¥, and ¥,
tend towards zero, the decrease being much faster in
the simulations. Note that reduction C of variance
predicted by the analytic model and the simulations is
larger than Bulmer’s prediction in the first generations,
then becomes smaller after a number of generations
while tending towards 0.

In the additive model considered here, with allelic
effects 0 and 1 at each locus, covariances G,; between
gene effects are equal to linkage disequilibria D,; in the
sense of Lewontin & Kojima (1960). So, the genetic
variance of the character is completely determined by
the variation of gene frequencies (controlling the genic
variance V), and by linkage disequilibria between
genes at different loci (reducing ¥, to its actual value
V,). We will in the following focus on the dynamics of
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Fig. 2. Mean linka ge disequilibria between all pairs of
loci. Simulation results averaged over 400 replicates.
Variation with time of {2/[n(n—1)}}Z,, D,, for various
recombination rates r between adjacent loci. n = 51 loci,
100 individuals selected among 200 at each generation, A®
= 0-5. To be compatred to the C values plotted in Fig. 1,
the scale of the present ordinate must be multiplied by
200.

linkage disequilibria and their consequences for the
genetic variance.

Since simulations make it easier to study these
values without any approximation, and since they
provide additional features unpredicted by the analytic
approach, the following will refer to the results of our
simulation model.

(i) Dynamics of pairwise linkage disequilibria

We have chosen to note positively the disequilibria
corresponding to loci in coupling, and negatively the
disequilibria corresponding to loci in repulsion. The
linkage disequilibria addressed in this paper being
always negative (on an average), strong disequilibria
will mean low and negative values.

Figure 2 gives the values of {2/[n(n—1)}Z, D,
measured from the simulations for n = 51 loci and five
different recombination rates. As predicted by the
analytic model, it is found that directional selection
generates negative linkage disequilibria between the
loci controlling the character. The stronger the linkage,
the stronger are linkage disequilibria and the longer
they persist in the population. But whereas linkage
disequilibria increase at first, they later undergo a
reduction. The values plotted in Fig. 2 correspond to
the sum of linkage disequilibria between all pairs of
different loci, including disequilibria equal to zero
between pairs for which one or both loci is fixed. The
simulation results show that the time when linkage
disequilibria start decreasing corresponds to the time
when some loci reach fixation (data not shown).
Fixations, and the dependence of any measure of
linkage disequilibria on the variation of gene
frequencies (Lewontin, 1988) explain that all values
plotted in Fig. 2 eventually tend towards zero though
selection still goes on.
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Fig. 3. Mean linkage disequilibria between pairs of
polymorphic loci. Same as in Fig. 2 restricted to the pairs
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Fig. 4. Dynamics of additive genetic variance for unlinked
versus linked genetic systems. Simulation results averaged
over 400 replicates. Variation with time ¢ of ratio

YO/ VO for two numbers of loci (11 and 51) and two
recombination rates (r = 0-5, dotted lines; r = 0-01,
dashed lines). 100 individuals selected among 200 at each
generation, h? = 0-5.

The effect of fixations can be seen by comparing
Fig. 2 to Fig. 3, where only the pairs of polymorphic
loci are taken into account (pairs for which neither of
the loci is fixed). This shows that, although the
difference V,—V, tends towards zero, linkage dis-
equilibria between polymorphic loci still increase as a
consequence of directional selection. The same quali-
tative conclusion may be drawn by studying the D’
measure of linkage disequilibrium proposed by
Lewontin (1964) (results not shown). In the mid and
long term (Fig. 3), linkage disequilibrium values
corresponding to the lowest recombination rates
increase even above the value for no recombination
(data not shown), indicating that linkage disequilibria
generated by selection are then stronger than the
maximum possible value generated by the random
sampling of gametes in the initial generation.

(i) Consequences on genetic variance

The effects of linkage between quantitative loci on the
genetic variance can be seen by comparing the
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Fig. 5. Dynamics of additive genetic variance and (b)
mean of a tightly linked genetic system in a single
replicate. Simulation results. (@): variation with time ¢ of
ratio V' /V®. (b): variation with time ¢ of the mean of
the character in the population. One given replicate for

n = 51 loci, r = 0-001, 100 individuals selected among 200
at each generation, 4* = 0'5.

dynamics of V, for linked versus unlinked genetic
systems. This is done in Fig. 4 for two numbers of loci.
In the first generations, the decrease of V, is faster for
the linked systems than for the unlinked ones. On the
contrary, in the last generations, whereas the genetic
variability of the unlinked systems is almost exhausted,
the additive genetic variance of the linked systems is
sustained at a low but higher level until the end of the
process. The same qualitative behaviour is observed in
the analytical Gaussian approximation, aithough the
process is slower, so that crosses occur around
generations 200 and 450 (data not shown), instead of
12 and 28 in Fig. 4.

The data shown in Fig. 4 are the average of V¥
over 400 replicates. In a single replicate, the genetic
variance for tightly linked loci may be not only
maintained, but actually increase in the population
as is illustrated in Fig. 5a, with each increase of
variance corresponding to an acceleration of response
following a plateau on the mean (Fig. 5b). Note that
selection intensity is kept constant. This phenomenon
cannot be predicted by the Gaussian approximation.

4. Discussion
(i) The Bulmer effect

Bulmer’s result was formalized in a purely statistical
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way: the expression for the reduction of V, due to
selection (Bulmer, 1980, eqn 9.32) is obtained by
linear homoscedastic regression under the hypotheses
of the infinitesimal model (infinite number of unlinked
loci), and of joint Gaussian distribution between
phenotypic and breeding values. We show in the
Appendix that in the first generation of selection the
same result may be obtained rigorously under less
restrictive hypotheses assuming a large number of loci
and the normality of phenotypic values only. It is
important to note that the hypotheses of the Appendix
are different from the ones of the analytic model of
Fig. 1. Although the hypotheses of the Appendix are
more general, they only allow results to be obtained
for the first generation of selection, assuming that the
initial population is at linkage equilibrium. If linkage
disequilibrium is present in the initial population,
additional approximations are needed to go further,
all the more so since linkage and drift are taken into
account.

Our results in Fig. 1 emphasize the importance of
the Bulmer effect in the dynamics of the additive
genetic variance. However, they show two main
differences with Bulmer’s predictions.

Both the genic and genetic variances tend towards
0 in our models, whereas ¥, is constant in Bulmer’s
analysis, leading to a positive equilibrium value for V,
(Bulmer, 1980). This property holds only if both the
population size and the number of loci are infinite. In
our models, both numbers are finite.

In the first generations, the reduction C of variance
predicted by our models is more important than
predicted by Bulmer. This is an effect of linkage. It can
be seen from Fig. 2 that in the case of unlinked loci the
reduction predicted by our simulation model remains
below or equal to Bulmer’s prediction. This is also
true for the Gaussian model (Chevalet, 1994).

The faster decrease of variances shown by the
simulations as compared to the analytic results (Fig.
1) may be due to the latter relying on the multinormal
approximation assuming at each locus a distribution
of allelic effects that is unskewed and of infinite range,
whereas only two alleles per locus are considered in
the completely finite simulation model and it is known
that selection promotes skewed distributions of allelic
effects at each locus (Barton & Turelli, 1987). Also,
fixation events are taken into account in the Gaussian
equations only implicitly with the parameter N, the
actual size of the population (eqn (6)), whereas true
fixation events occur in the simulations under both
drift and selection.

(i) Dynamics of polygenic systems under selection

The consequences of selection, linkage and drift on
the genetic variance of the character can be
summarized as follows. The aim of directional
selection is to accumulate all the favourable alleles in
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the same genotype as fast as possible. In a finite
population, the probability that this goal is achieved
in the first few generations is low (unless a small
number of unlinked loci is considered), and in practice
it will seldom be the case. Hence, the gametes selected
for are not those with the best possible values, but
they are taken from best genotypes present in the
population at the time. These gametes may bear
favourable alleles at a large number of loci, and
possibly unfavourable alleles at other loci, so that
linkage disequilibrium corresponding to gametes in
repulsion will increase in the selected parent popu-
lation. These disequilibria will be reduced in the next
offspring generation as a function of the recom-
bination rate.

If the recombination rate is low, i.e. if linkage is
tight, linkage disequilibria will be slightly reduced,
and repulsion associations of alleles will remain in the
offspring population. Hence, selection for the favour-
able alleles will increase the frequencies of both
favourable and unfavourable alleles at different loci
(hitch-hiking effect). A large amount of genetic
variability will then be hidden in negative linkage
disequilibria, and the additive genetic variance V, will
be strongly reduced. In the following generations,
unfavourable alleles will be fixed at some loci, due to
hitch-hiking effects. This will definitively reduce the
level of response to selection that might be achieved at
the end of the process. At other loci where the
frequency of the unfavourable allele is high, favourable
alleles might nevertheless appear in coupling on rare
gametes of high genetic value, due to recombination.
These gametes are then likely to be selected for, so
that the frequency of the favourable alleles will
increase at such loci, leading to a release of genetic
variability in the population.

On the contrary, if linkage is loose, linkage
disequilibria will be low, corresponding to weak
hitch-hiking effects, only a small amount of
genetic variability will be hidden, and frequent recom-
bination events will lead to both a rapid exhaustion
of genetic variability and a high level of response to
selection.

This intuitive reasoning gives an interpretation of
the behaviour of the simulation model, as illustrated
in Figs. 2 to 4, and of the results observed by Hospital
& Chevalet (1993): whereas unlinked systems may
withstand strong selection intensities and still achieve
high response to selection, linked systems require low
selection intensities to reduce the rate of fixation of
unfavourable alleles due to hitch-hiking effects, and to
allow enough recombination events to take place
releasing as much genetic variability as possible. This
analysis strengthens the relevance of recurrent selec-
tion schemes to avoid the fixation of unfavourable
alleles, and to increase the ultimate response to
selection.

The value of the previous analysis is confirmed by
the behaviour of genetic structures in single replicates.
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Asillustrated in Fig. 5, the release of genetic variability
due to recombination may lead to an increase of V.
The distribution of gamete frequencies corresponding
to the same replicate is shown in Fig. 6. It is seen that
the increase of variance in Fig. 5 corresponds to the
invasion of an advantageous gamete in the population,
after it appeared at a low frequency through re-
combination. From generation 0 to 10, the initial,
approximately normal distribution of gametic types
becomes skewed, two gametic types (of values 36 and
37) becoming predominant in the population. Then,
during the first peak of variance between generations
10 and 40, these gametic types are replaced by a
gamete of higher value (42) not present in the initial
population. Note that if one gametic type is pre-
dominant in the population, the zygote bearing two
copies of it is also likely to be predominant so that the
same results are obtained for zygotic types (data
not shown).

Although the example shown in Fig. 5 and 6 was
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chosen to be particularly characteristic, it is important
to note that such an increase of variance was often
observed in a given replicate in our simulations, under
various conditions provided that the recombination
rate is not too high, the population size and the
number of loci are not too small, the heritability and
selection intensity are not too high. The magnitude of
the increase of variance may be different among
replicates with the same initial conditions. More
importantly the increase may take place at various
times so that the phenomenon is masked under a slow
continuous decrease of V, when the results of several
replicates are averaged.

The relevance of this increase of variance is twofold.
Firstly, it is not taken into account in any present
analytic model. Secondly, without calling upon
mutations, the phenomenon provides an interpret-
ation of the stop and start response observed in some
long-term selection experiments (selection for wing
vein length in Drosophila, Scharloo, 1987; selection
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for oil and protein in maize, Dudley & Lambert,
1992).

Although we emphasized the role of linkage, as
compared to the hypotheses of the infinitesimal model,
the above observations are clearly consequences of the
joint effects of linkage, drift and selection. If the
population size is too small, or if selection is too
strong, hitch-hiking effects will be of great importance
and hardly balanced by favourable recombination
events, so that few or no genetic variability may be
released in the population, and the gametic type fixed
at the limit may be close to the best gametic type
present in the initial population.

(ii) Other effects

In the present paper, we focused on the control of
genetic variance by linkage disequilibria. It is im-
portant to keep in mind that other effects influencing
the dynamics of the genetic variance were not studied
in detail although they were implicitly present in the
simulation model.

(a) Dynamics of the genic variance

Whereas linkage disequilibria control the difference
between the additive genetic variance V, and the genic
variance V,, the variations of V, itself are of im-
portance. Most models in quantitative genetics either
assume that ¥, is constant (Bulmer, 1980) or consider
only the variations of ¥, due to drift (Robertson,
1970). The genic variance is determined by the
variation of gene frequencies at all the loci, which are
affected not only by drift, but also by the various
effects of selection investigated in this paper. Further
theory is hence needed to predict the joint dynamics of
gene frequencies in polygenic systems undergoing
selection.

(b) Departure from random mating

Since random mating was assumed in our models,
covariances between the effects of genes located on
different gametes are equal to zero, leading to the
relatively simple expressions (1) and (8). It can be
checked from the simulations that the difference
between the genetic and the genic variance (Fig. 1)
equals the sum 2Z,,, D, of linkage disequilibria
between all pairs of different loci (Fig. 2). Covariances
between gene effects at loci on different gametes may
be neglected, as far as the means of these parameters
over several replicates are considered. It is important
to note that this is not true in any given replicate,
especially for the first generations. This is due to
stochastic departures from random mating between
males and females. Whereas these effects do not affect
our results, they should be taken into consideration
when single replicates are considered, as is the case in
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practical experiments, or in the case of non random
mating.

(iv) The models

In the present paper, we referred to two different
models: an analytic model based on the multi-normal
approximation of the distribution of gene effects, and
a stochastic simulation model with two alleles per
locus. Both models give some insight into the joint
effects of selection, linkage and drift on the variability
of quantitative characters over several generations.
Yet, both models involve hypotheses that keep them
away from what might be the real conditions. The
stochastic process of drift may be considered as better
dealt with in the simulations where a true finite
number of events is drawn at random amongst
possibilities, whereas the Gaussian approximation
introduces a virtual infinite range of states and deals
only with expected values. A consequence is that rare
genetic combinations of high value are always taken
into account, even at low frequency, in the analytic
approximation, whereas their low probability will
almost always prevent them from being realized in the
simulation process. Also, a deterministic modelling
cannot be used to characterize the properties of
unique trajectories, as it is possible in simulations
(Figs. 5 and 6).

On the contrary, the simulation process deals with
the limited amount of variability present in the initial
population, so that the studied effects may only be
evaluated in the way they affect the ability of selection
to produce the best possible genetic combinations
before complete loss of variability due to drift. In this,
the simulation model lacks generality. New variability
should be added in the system, for example by
mutation as considered by Keightley & Hill (1987),
or many more loci should be considered (Robertson,
1977; Robertson & Hill, 1983).

5. Conclusion

Most of the mechanisms investigated in the present
paper, such as the hitch-hiking effect generated by
drift and linkage disequilibrium, are the same as the
ones intensively studied by theoretical population
genetics in the one and two locus cases. However,
analytic extensions of such available approaches to
polygenic characters reach the limits of mathematical
tractability, and do not deal with the stochastic
features of the system. Yet, it could be argued that
natural, or at least artificial selection is remarkably
efficient regardless of the mathematical complexity of
the problem. Hence, instead of making the problem
more complex, one may wish to simplify it by seeking
some general laws that would both describe the
dynamics of the macroscopic parameters of the system
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without referencing to individual genes, and be
consistent with the results of the present paper. In
this, we follow the analogy of Lewontin (1974) with
thermodynamics. In the present paper, our approach
started from an analytic model, which predictions
were checked and analysed by simulations. It appears
that some features of the simulation results were not
predicted by the analytic model. In a forthcoming
paper, we plan to proceed from these simulations to
seek simple macroscopic parameters to be used to
refine the analytic predictions.

We wish to thank I. Goldringer, Y. Michalakis, M. Slatkin
and N. Barton for helpful comments on earlier versions of
this manuscript. Thanks are also due to J. Deatrick for
trying to improve our English.

Appendix

Linkage disequilibrium under selection for a polygenic
trait: a genetic approach to Bulmer’s effect

We give here a genetic demonstration of Bulmer’s
effect for the first generation of selection assuming a
large population size and a large number » of loci. In
this population, contributions g¢™ and g\ are
independent random variables taking values a,, with
probability g, where g, is the frequency of the /-th
allele 4,, at locus i. The variance of g!™ is equal to 3o?.
For the sake of simplicity we assume in the following
that g™, g’ and P have zero mean, and the
phenotypic variance V, is denoted o>

Calculations are performed in three steps: (i)
evaluate the changes in allele frequencies and in
haplotype frequencies due to selection, (ii) calculate
the new allele and haplotype frequencies in the next
generation, and (iii) derive the new additive genetic
variance in the next generation.

Previous derivations (Griffing, 1960) have given the
first-order approximations for the changes in allele
frequencies (step (i)). However, second-order approxi-
mations (in 1/4/#) are needed to exhibit the joint
effects of many small second-order contributions of
selection to the covariances between gene effects at
different loci, the sum of which is finite and yield the
total contribution of gamete disequilibria to the
additive genetic variance. The important point in step
(ii) is linkage equilibrium in the initial population,
that makes the result in first generation independent
of recombination fractions between loci.

(i) Change of allele frequencies under selection

An individual with phenotype P has a fitness function
equal to W(P) = Y(P—£o) where Y(.) is the step
function. The relative fitness of a zygote carrying
genotype A, A4,, is:

W, = Pr(P > gaIAllAlm)
tm T PP > Lo)
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We can write
Pr(P > to| A, Aip) Pr(4,A;)
= Pr({P > £o} A {4, A;n})
= Pr({P > o} A {g™ +g8) = a,+a,,}
AN{A,A4,,}D)
= Pr{P—(g{™ +&") > o —(a, +a,,)}
A{A 4D (A1)

Since the distribution of P—(g{™ + g{?) is independent
of the state at locus i, we have:
Pr(P > £o| A, A,,)

= Pr(P—(g™ +g") > Eo—(a, +a,,)) (A2)

P—(g!™+g\) is a Gaussian variable with mean 0 and
variance 7° = ¢® —o?, so that:

1 @ 1,.2,2
W, im = e Mdx
H (\/2777 Jga-—au—aim )
1 i
- —27 17" d
(vmf ,© ‘)
~(J,eral(]; =¥ ax).

d £

where

(A3)

- fo—ay,—a,,
—

g*

Noting that o/7—1 is of order 1/n, and that g, /o is
of order 1/+/n, a development to the second order in
1/+/n gives:

a,+a, 1 ¢ 1
£ = g 2T of )
Equation (A 3) becomes:

(@, + ;)" — ‘Tt2

ail atm 1
=1
+2 g 5 +

Wom = 141 (A4)

Similarly, the fitness of a single allele 4,, is

a, 1 _a’—3ic?
w2 g2ty
’ o 2 o

and that of the haplotype A, A, for two loci i and j is:

ag+a,

2 1 2 12
(a,+a;)" — 307 —30]
p= 2

Wi ™ 14+

1
+51g +...
(note that fitnesses of two-loci genotypes such as A4,
A,/ A, Ay, can be computed in the same way). From
the previous expressions of fitnesses are derived the
following starred frequencies of alleles and of haplo-
types among the reproducing individuals:

* _
9u = 4uWa

* -
Qi.l;i.k =Wk


https://doi.org/10.1017/S0016672300033498

F. Hospital and C. Chevalet

(i) Allele and haplotype frequencies
in the next generation

The hypothesis that linkage equilibrium holds in the
initial generation allows us to write down directly that
the frequencies of gametic types produced by the
selected individuals are equal to those in the selected
population of parents, so that the previous expressions
g* and Q* are also the frequencies in the gametes
uniting to form the next generation.

This can be checked as follows. Consider two loci i
and j, with recombination fraction r. Let F,,,,., ., be
the frequency of selected individuals of genotype A,,
A, /A, A, carrying a paternal chromosome of type
A, A, and a maternal chromosome of type 4,,, 4,,.
Such a genotype produces gametes of type 4,, 4;, with
probability equal to #1—r), while the symmetric
genotype 4, A4,/ A, A, produces gametes of type 4,
A, with probability equal to 3. Hence, the frequency

P; ,.; of gametes of type 4,4, is:
4
Piljk ")Z ZPilmjlch
m¥Flj+k
-r E Z i,im;j,hk
mElhtk

1 1
+§ Z Rf,ll;j,kh+§ Z Pi,ll;j.hk
htk hEk

Z lmjkk+22szljkk

m+l
+ Pl,ll;j.lclc‘

One can note that the frequency of chromosome
types A, A, among parents is given by the same
expression, provided that r is taken equal to 0. The
difference between this chromosome frequency and
P, is:

%" > 2 (R!,lm;j,kh

m$lh+k

_Pi,lm;j,hlc)’

and is zero in the case of linkage equilibrium in the
parent population, for any value of the recombination
rate. Hence the frequencies of gametic types are equal
to the previous Q* expressions, since fitnesses of
symmetrical genotypes A, A4, /A, A, and A, 4,,/A,,
A,, are equal.

(iii) Genetic variance in the next generation

We can now calculate the mean and variance of
genotypic values G in the next generation, in which
frequencies of alleles and haplotypes have changed.
The first two moments of G are, E* standing for
expectations in the new generation

EXG) =23 E*(g,)

Var*(G) =2 E Var*(g)+2% 3] Cov*(g,, 8))-

i J%i
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Taking account of the new frequencies of alleles we
have

E*g) = > a,q;,
1

1 a't 2 ail qu

= 0+ §
Note that this expansion introduces the third moment
of the distribution of gene effects, which is nearly zero
under the assumptions that the distribution of G is
nearly Gaussian. The variance of g, is derived in the
same way

4 1.4
E¥gl) =lot+ L S g + g Iy
o Lo
which introduces the fourth moment. Under the
hypothesis of small effects of loci, the genetic
distribution is nearly Gaussian, so that the reduced
fourth moment is small. Grouping terms according to
their order of magnitude, we have

14
Var*(g,) =¢T?+;Z a?z 9a

z anqzz 3o i+

~z(1—g) il
Note that the second term is of order o?/n®* and the
last two terms are of order o /n®, so that summing up
n variance terms will not contribute a significant
change to the genic variance —the sum of variances
contributed by all loci. Concerning covariances we
have

s HaE—

E*(gigj) =24, D Oy Gy
Ik

14
+ p (2 29 G5 Ay Az (ay, + a]k))
k

20'
X [(ail+ajk) _50" —“ ])

= 0+0+5—2224u %kau ajk+

1 173
(E 24y Dix Cu Gy

so that

14
Con*(s, &) = 723003~ E*(8) E*(g)),

which yields if third and higher moments are neglected

alo?
COU*(gl:gj) ~—1(1—§) 4ia.2j .

For each variance and covariance, the change
developed under selection is thus very small, of order
a?/n?. The change on the variance at each locus is
negligible, as told above. The same effect on the
covariances between gene effects at different loci has
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on the contrary a macroscopic effect obtained by
summing up n(n—1) ~ n? contributions. We get:

Var¥(G) = 2 Var*(g,)+2 % 3 Cov*(g,, g;)

i oji

2 .2
a.
i 77
L+ ...

=Soi-u-9Tx7

p 7 4o
~ gt —L(—§) h'o®
= k(1 -G —§E) 1),

which is exactly Bulmer’s expression.
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