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ALGEBRAIC FIBER SPACES WHOSE GENERAL

FIBERS ARE OF MAXIMAL ALBANESE DIMENSION

OSAMU FUJINO

Abstract. The main purpose of this paper is to prove the Iitaka conjecture
Cn,m on the assumption that the sufficiently general fibers have maximal Al-
banese dimension.

§0. Introduction

The main purpose of this paper is to prove the Iitaka conjecture Cn,m on

the assumption that the sufficiently general fibers have maximal Albanese

dimension. If the readers don’t know this famous conjecture Cn,m, see Con-

jecture 1.1 below. Iitaka’s conjecture Cn,m is a fundamental question in the

theory of classification of higher dimensional varieties that has attracted the

attention of many mathematicians. Positive answers to the Cn,m conjecture

have been given by Kollár (when the generic fiber is of general type) and

by Kawamata (when the generic fiber has a good minimal model). For the

details, see [Mo, Sections 6, 7].

Let us recall the definition of varieties of maximal Albanese dimension.

Definition 0.1. (Varieties of maximal Albanese dimension) Let X be
a smooth projective variety over C. Let Alb(X) be the Albanese variety of
X and albX : X → Alb(X) the corresponding Albanese map. We say that
X has maximal Albanese dimension, or is of maximal Albanese dimension,
if dim(albX(X)) = dimX.

The following is the main theorem of this paper.

Theorem 0.2. Let f : X → Y be a proper surjective morphism be-

tween non-singular projective varieties with connected fibers. Assume that

sufficiently general fibers are of maximal Albanese dimension. Then κ(X) ≥
κ(Y ) + κ(Xη), where Xη is the generic fiber of f .
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112 O. FUJINO

The proof of the main theorem was essentially given in [F1, Section 7],

which is a variant of [Ka2, Proof of Theorem 16].

As stated above, Iitaka’s conjecture Cn,m was proved on the assumption

that the general fibers are of general type by Kollár. For the details, see

[Ko] or Theorem 1.2. We will use Kollár’s theorem to prove Theorem 0.2.

By the definition of general types, pluricanonical maps are birational. So,

pluricanonical maps don’t lose birational properties of varieties of general

type. On the other hand, varieties of maximal Albanese dimension have

Albanese maps that are generically finite on their images. Therefore, Al-

banese maps lose properties of varieties of maximal Albanese dimension

little. So, it is not surprising that we can prove the above theorem.

We already know a very nice structure theorem of varieties of maximal

Albanese dimension. Let us recall it. Assume that Z is a variety of maximal

Albanese dimension. By [Ka1, Theorem 13], there exists an étale cover Z̃

of Z such that Z̃ is birationally equivalent to a product of an Abelian

variety and a variety of general type. Unfortunately, we can not use this

fact directly for the proof of the main theorem. So, we will use a canonical

bundle formula, which was obtained in [FM] and [F1].

We summarize the contents of this paper: Section 1 contains prelim-

inaries. We recall Iitaka’s conjecture Cn,m and some known results. In

Section 2, we define varieties of maximal Albanese dimension and collect

some basic properties of them. Section 3 deals with a canonical bundle

formula, which was obtained in [FM] and [F1], semistable parts and so on.

We investigate the relationship between semistable parts and variations. In

Section 4, we will prove the main theorem. As stated above, the essential

part of the proof was contained in [Ka2]. In Section 5, we treat some results

about Abelian varieties which we need in the proof of the main theorem.

Note that Theorem 0.2 was generalized in my recent preprint [F2].

Acknowledgements. I was inspired by the preprint [CH]. Some
parts of this paper were done during the visit to the Newton Institute in
the University of Cambridge. I am grateful to the institute for providing
an excellent working environment. I was partially supported by the Inoue
Foundation for Science. I would like to thank Professor Shigeru Mukai
and Doctor Hokuto Uehara for giving me some comments. I like to thank
Professor Noboru Nakayama for telling me Example 2.5 (2).

We fix the notation used in this paper.
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Notation. We will work over the complex number field C throughout
this paper.

(i) A sufficiently general point z (resp. subvariety Γ) of the variety Z
means that z (resp. Γ) is not contained in the countable union of
certain proper Zariski closed subsets.

Let f : X → Y be a morphism between varieties. A sufficiently

general fiber Xy = f−1(y) of f means that y is a sufficiently general
point in Y .

(ii) An algebraic fiber space f : X → Y is a proper surjective morphism
between non-singular projective varieties X and Y with connected
fibers.

(iii) Let X be a smooth projective variety. If the Kodaira dimension
κ(X) > 0, then we have the Iitaka fibration f : X ′ → Y , where X ′

and Y are non-singular projective varieties, X ′ is birationally equiv-
alent to X, and Y is of dimension κ(X), such that the sufficiently
general fiber of f is smooth, irreducible with κ = 0. The Iitaka fi-
bration is determined only up to birational equivalence. Since we are
interested in questions of a birational nature, we usually assume that
X = X ′ and that Y is smooth. Note that we often modify f : X → Y
birationally without mentioning it. For the basic properties of the
Kodaira dimension and the Iitaka fibration, see [U1, Chapter III] or
[Mo, Sections 1, 2].

(iv) Let B+, B− be the effective Q-divisors on a variety X without com-
mon irreducible components such that B+−B− = B. They are called
the positive and the negative parts of B.

Let f : X → Y be a surjective morphism. Let Bh, Bv be the Q-
divisors on X with Bh +Bv = B such that an irreducible component
of SuppB is contained in SuppBh if and only if it is mapped onto Y .
They are called the horizontal and the vertical parts of B over Y . A
divisor B is said to be horizontal (resp. vertical) over Y if B = Bh

(resp. B = Bv). The phrase “over Y ” might be suppressed if there is
no danger of confusion.

(v) Let ϕ : V → W be a generically finite morphism between vari-
eties. By the exceptional locus of ϕ, we mean the subset {v ∈ V |
dimϕ−1ϕ(v) ≥ 1} of V , and denote it by Exc(ϕ).
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§1. Preliminaries

We recall the Iitaka conjecture. The following is a famous conjecture

by Iitaka [I1, p. 26, Conjecture C]. For the details, see [Mo, Sections 6, 7].

Conjecture 1.1. (Conjecture Cn,m) Let f : X → Y be an algebraic

fiber space with dimX = n and dimY = m. Then we have

κ(X) ≥ κ(Y ) + κ(Xη),

where Xη is the generic fiber of f .

We recall some known results about the above conjecture, which will

be used in the proof of the main theorem. The following is a part of [Ko,

p. 363, Theorem]. We note that a simplified proof was obtained by Viehweg

(see [V2, Theorem 1.20]).

Theorem 1.2. Let f : X → Y be an algebraic fiber space such that

the generic fiber of f is of general type. Then we have;

κ(X) ≥ κ(Y ) + κ(Xη).

Let us recall the notion of variation (cf. [V1, p. 329]).

Definition 1.3. Let f : X → Y be an algebraic fiber space. The
variation of f , which is denoted by Var(f), is defined to be the minimal
number k, such that there exists a subfield L of C(Y ) of transcendental
degree k over C and a variety F over L with F ×Spec(L) Spec(C(Y )) ∼

X ×Y Spec(C(Y )), where ∼ means “birational”.

The next theorem is in [Ka2, Corollary 14]. It is also a special case

of [Ka3, Corollary 1.2 (ii)]. See also [U2, Corollary 2.4] and [F1, Corollary

7.3].

Theorem 1.4. Let f : X → Y be an algebraic fiber space such that

the geometric generic fiber is birationally equivalent to an Abelian variety.

If κ(Y ) ≥ 0, then we have

κ(X) ≥ max{κ(Y ),Var(f)}.
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§2. Varieties of maximal Albanese dimension

Let us recall the definition of the varieties of maximal Albanese dimen-

sion. I learned it from [CH] and [HP].

Definition 2.1. (Varieties of maximal Albanese dimension) Let X be
a smooth projective variety. Let Alb(X) be the Albanese variety of X and
albX : X → Alb(X) the corresponding Albanese map. We say that X
has maximal Albanese dimension, or is of maximal Albanese dimension, if
dim(albX(X)) = dimX.

Remark 2.2. A smooth projective variety X has maximal Albanese
dimension if and only if the cotangent bundle of X is generically generated
by its global sections, that is,

H0(X,Ω1
X)⊗C OX −→ Ω1

X

is surjective at the generic point of X. It can be checked without any
difficulty.

For the basic properties of Albanese mappings, see [U1, Chapter IV,

Section 9].

Proposition 2.3. The following properties are easy to check by the

definition.

(1) The notion of maximal Albanese dimension is birationally invariant.

(2) Let X be an Abelian variety. Then X ' Alb(X). Of course, it has

maximal Albanese dimension.

(3) Let X be a variety of maximal Albanese dimension. Let Y be a

smooth projective variety and ϕ : Y → X a morphism such that

dimY = dimϕ(Y ). If ϕ(Y ) 6⊂ Exc(albX), then Y has maximal Al-

banese dimension.

Proof of (3). By the universality of Albanese mappings, we have the
following commutative diagram:

Y
albY

−−−→ Alb(Y )

ϕ

y ϕ∗

y

X
albX

−−−→ Alb(X).
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So, we have that ϕ∗(albY (Y )) = albX(ϕ(Y )). By the assump-
tion, dim(albX(ϕ(Y ))) = dimY holds. Therefore, we have that
dim(albY (Y )) = dimY . This means that Y has maximal Albanese
dimension.

(4) Let X and Y be varieties of maximal Albanese dimension. Then, so

is X × Y . It is obvious since Alb(X × Y ) ' Alb(X)×Alb(Y ).

(5) Let X be a variety of maximal Albanese dimension. Then the Kodaira

dimension κ(X) ≥ 0. If κ(X) = 0, then X is birationally equivalent

to Alb(X) by [Ka1, Theorem 1].

The following proposition is [HP, Proposition 2.1]. See also [Ka1, The-

orem 13].

Proposition 2.4. Let X be a smooth projective variety of maximal

Albanese dimension, and let f : X → Y be the Iitaka fibration. We can

assume that Y is smooth by using Hironaka’s desingularization theorem (see
Notation (iii) and Proposition 2.3 (1)). We have the following commutative

diagram by the universal property of Albanese varieties:

X
albX

−−−→ Alb(X)

f

y f∗

y

Y
albY

−−−→ Alb(Y ).

Then we have:

(a) Y has maximal Albanese dimension;

(b) f∗ is surjective and ker f∗ is connected, of dimension dim(X)−κ(X);

(c) there exists an Abelian variety P isogenous to ker f∗ such that the

sufficiently general fiber of f is birationally equivalent to P .

Sketch of the proof. By Proposition 2.3 (3) and (5), we can check that
the sufficiently general fibers of f are birationally equivalent to an Abelian
variety. By easy dimension count, we can prove (a) and (b) without diffi-
culty. For the details, see [HP, Proposition 2.1].

The next example helps the readers to understand Proposition 2.4.
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Example 2.5. (1) Let C be a smooth projective curve with genus
g(C) ≥ 1. Then albC : C → Alb(C) is an embedding by Abel’s
theorem. Therefore, C has maximal Albanese dimension.

(2) Let C be a smooth projective curve with g(C) ≥ 2. We assume that
there exists an involution ι1 on C such that Y := C/ι1 is an elliptic
curve. Let E be an elliptic curve and a ∈ E a non-zero 2-torsion
point. We define ι2 := Ta : E → E, where ι2(b) = b + a for every
b ∈ E. Then E ′ := E/ι2 is an elliptic curve. We put S := C × E. It
is obvious that κ(S) = 1 and S has maximal Albanese dimension by
Proposition 2.3 (2), (4) and Example 2.5 (1). Let ι := ι1× ι2 : S → S.
Then ι is an involution. We put X := S/ι. Since the action is free, X
is smooth and κ(X) = 1. We can check that the projection f : X → Y
is the Iitaka fibration. We note that κ(X) = 1 and general fibers of f
are isomorphic to E. By the following commutative diagram,

E −−−→ E′
id

−−−→ E′ = Alb(E′)
x

x
x

S −−−→ X
albX

−−−→ Alb(X)
y

yf

y

C −−−→ Y
id

−−−→ Y = Alb(Y ).

we can check that S → X → Alb(X) is a finite morphism. In particu-
lar, albX : X → Alb(X) is finite. Therefore, X has maximal Albanese
dimension and κ(X) = 1 such that f : X → Y is the Iitaka fibration,
where Y is an elliptic curve.

§3. Semistable parts and variations

We review the basic definitions and properties of the semistable part

Lss
X/Y without proof. For the details, we recommend the reader to see [FM,

Sections 2, 4] and [F1, Sections 3, 4].

3.1. Let f : X → Y be an algebraic fiber space such that the Kodaira
dimension of the generic fiber of f is zero, that is, κ(Xη) = 0. We fix the
smallest b ∈ N such that the b-th plurigenus Pb(Xη) is non-zero.
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Proposition 3.2. ([FM, Proposition 2.2]) There exists one and only

one Q-divisor D modulo linear equivalence on Y with a graded OY -algebra

isomorphism ⊕

i≥0

OY (biDc) '
⊕

i≥0

(f∗OX(ibKX/Y ))∗∗,

where M ∗∗ denotes the double dual of M .

Furthermore, the above isomorphism induces the equality

bKX = f∗(bKY +D) +B,

where B is a Q-divisor on X such that f∗OX(biB+c) ' OY (∀i > 0) and

codimY f(SuppB−) ≥ 2. We note that for an arbitrary open set U of Y ,

D|U and B|f−1(U) depend only on f |f−1(U).

If furthermore b = 1 and fibers of f over codimension one points of Y
are all reduced, then the divisor D is a Weil divisor.

Definition 3.3. Under the notation of 3.2, we denote D by LX/Y . It
is obvious that LX/Y depends only on the birational equivalence class of X
over Y .

The following definition is a special case of [FM, Definition 4.3] (see

also [FM, Proposition 4.7]).

Definition 3.4. We set sP := b(1− tP ), where tP is the log-canonical
threshold of f ∗P with respect to (X,−(1/b)B) over the generic point ηP of
P :

tP := max{t ∈ R | (X,−(1/b)B + tf ∗P ) is log-canonical over ηP }.

Note that tP ∈ Q and that sP 6= 0 only for a finite number of codimension
one points P because there exists a nonempty Zariski open set U ⊂ Y such
that sP = 0 for every prime divisor P with P ∩ U 6= ∅. We note that sP

depends only on f |f−1(U) where U is an open set containing P .
We set Lss

X/Y := LX/Y −
∑

P sPP and call it the semistable part of
KX/Y .

We note that D, LX/Y , sP , tP and Lss
X/Y are birational invariants of X

over Y .
Putting the above symbols together, we have the canonical bundle for-

mula for X over Y :

bKX = f∗(bKY + Lss
X/Y ) +

∑

P

sPf
∗P +B,
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where B is a Q-divisor on X such that f∗OX(biB+c) ' OY (∀i > 0) and
codimY f(SuppB−) ≥ 2.

Definition 3.5. (Canonical cover of the generic fiber) Under the no-
tation of 3.1, consider the following construction. Since dim |bKXη | = 0,
there exists a Weil divisor W on X such that

(i) W h is effective and f∗OX(iW h) ' OY for all i > 0, and

(ii) bKX−W is a principal divisor (ψ) for some non-zero rational function
ψ on X.

Let s : Z → X be the normalization of X in C(X)(ψ1/b). We call
Z → X → Y a canonical cover of X → Y . We often call Z ′ → X a
canonical cover after replacing Z with its resolution Z ′.

By using 3.5 and replacing f : X → Y birationally, we always make the

situation as in 3.6 (see [Mo, (5.15.2)]).

3.6. Let f : X → Y and h : W → Y be algebraic fiber spaces such
that

(i) the algebraic fiber space f is as in 3.1,

(ii) h factors as

h : W
g

−−−→ X
f

−−−→ Y,

where g is generically finite,

(iii) there is a simple normal crossing divisor Σ on Y such that f and h
are smooth over Y0 := Y \ Σ,

(iv) the Kodaira dimension of the generic fiber Wη is zero and the geo-
metric genus pg(Wη) = 1, where η is the generic point of Y .

3.7. By the definition of Var(f), there are an algebraic fiber space
f ′ : X ′ → Y ′ with C(Y ′) = L, a generically finite and generically surjective
morphism π : Y → Y and a generically surjective morphism ρ : Y → Y ′

such that the induced algebraic fiber space f : X → Y from f by π is
birationally equivalent to that from f ′ by ρ as in the following commutative
diagram:

X ←−−− X −−−→ X ′

f

y
yf

yf ′

Y ←−−−
π

Y −−−→
ρ

Y ′.
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Furthermore, we can assume that Y ′ and Y are smooth projective varieties.
We also assume that there are simple normal crossing divisors Σ on Y and
Σ′ on Y ′ as in 3.6 such that both π−1(Σ) and ρ−1(Σ′) are simple normal
crossing divisors on Y . Then by [F1, Proposition 4.2], we obtain that

π∗Lss
X/Y = Lss

X/Y
= ρ∗Lss

X′/Y ′ .

Therefore, we have:

Theorem 3.8. Let f : X → Y be an algebraic fiber space as in 3.6.
Then

κ(Y,Lss
X/Y ) = κ(Y ′, Lss

X′/Y ′) ≤ dimY ′ = Var(f).

Remark 3.9. By [Ka3, Theorem 1.1], κ(Y,Lss
X/Y ) = Var(f) if there

exists a good minimal algebraic variety Xη,min defined over C(Y ) that is

birationally equivalent to the geometric generic fiber Xη over C(Y ). For
the details, see [Ka3].

3.10. In the same situation as in 3.6, we further assume that Var(f) =
0. In this case, Y ′ is a point and X is birationally equivalent to Y × F for
a non-singular projective variety F . Let F̃ be a canonical cover of F (see
Definition 3.5). We note that we applied Definition 3.5 for F → Spec C.
Then

bLss
Y × eF/Y

= Lss
Y ×F/Y

by [Mo, (5.15.8)] or [F1, Lemma 4.1], where b is the smallest positive integer
such that the b-th plurigenus Pb(F ) 6= 0. On the other hand, we can check
easily that

Lss
Y × eF/Y

∼ 0.

Thus, mLss
X/Y ∼ 0 for some positive integer m. Therefore, we summarize;

Theorem 3.11. Let f : X → Y be an algebraic fiber space as in 3.6.
Assume that Var(f) = 0. Then we obtain;

mLss
X/Y ∼ 0

for some positive integer m.
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§4. Main theorem

The following is the main theorem of this paper. This says that the

Iitaka conjecture Cn,m is true on the assumption that the sufficiently general

fibers have maximal Albanese dimension.

Theorem 4.1. Let f : X → Y be an algebraic fiber space. Assume

that sufficiently general fibers are of maximal Albanese dimension. Then

κ(X) ≥ κ(Y ) + κ(Xη), where Xη is the generic fiber of f .

Proof of the theorem. If κ(Y ) = −∞, then the inequality is obviously
true. So, we can assume that κ(Y ) ≥ 0. We note that κ(Xη) ≥ 0 by
Proposition 2.3 (5).

If κ(Xη) = 0, then the geometric generic fiber is birationally equivalent
to an Abelian variety by Proposition 2.3 (5). Thus κ(X) ≥ κ(Y ) = κ(Y ) +
κ(Xη) by Theorem 1.4. Therefore, we can assume that κ(Xη) > 0 from
now on.

The following lemmas [I2, Lecture 4] are useful. We write them for the
reader’s convenience (see also [Ka2, Proposition 6]).

Lemma 4.2. (Induction Lemma) Under the same notation as in The-

orem 4.1, it is sufficient to prove that κ(X) > 0 on the assumption that

κ(Y ) ≥ 0 and κ(Xη) > 0.

Proof of the lemma. We use the induction on the dimension of X. If
dimX = 1, then there is nothing to prove.

Let ϕ : X → Z be the Iitaka fibration associated to X. Since κ(X) > 0,
we have dimZ = κ(X) > 0. For a sufficiently general point z ∈ Z, the fiber
Xz = ϕ−1(z) has Kodaira dimension zero. We define f ′ := f |Xz : Xz →
B = f(Xz). We note that the sufficiently general fiber of f ′ is of maximal
Albanese dimension. By induction hypothesis,

0 = κ(Xz) ≥ κ(Xz,y) + κ(B),

where y is a sufficiently general point of B. By Lemma 4.3 below, we have
Γ, W̃ , F and G. Since Γ is sufficiently general, we can assume that z ∈ Γ.
Furthermore, since dim W̃ = dimY , κ(Y ) ≤ κ(W̃ ) follows. And by the
easy addition, we get

κ(W̃ ) ≤ κ(F−1(z)) + dimΓ

= κ(B) + dimY − dimB.
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By hypothesis, κ(Y ) ≥ 0 and hence

0 ≤ κ(Y ) ≤ κ(W̃ ) ≤ κ(B) + dimY − dimB.

This implies κ(B) ≥ 0.
On the other hand, Xz,y = f−1(y) ∩ ϕ−1(z) can be considered as a

sufficiently general fiber of ϕ|Xy : Xy → ϕ(Xy), where y is also a sufficiently
general point of Y . Thus, κ(Xz,y) ≥ 0. More precisely, Xz,y is of maximal
Albanese dimension. Therefore, we get κ(Xz,y) = κ(B) = 0. By the easy
addition,

κ(Xy) ≤ κ(Xz,y) + dim(ϕ(Xy)).

So, κ(Xy) ≤ dim(ϕ(Xy)). Clearly, we have

dim(ϕ(Xy)) = dimXy − dimXz,y

= dimX − dimY − (dimXz − dimB)

= dimZ + dimB − dimY

= κ(X) + dimB − dimY.

Hence,

κ(X) ≥ κ(Xy) + dimY − dimB

≥ κ(Y ) + κ(Xy).

We note that κ(Xη) = κ(Xy). We finish the proof of the lemma.

The next lemma was already used in the proof of Lemma 4.2. See [I2,

p. 46].

Lemma 4.3. (Kawamata) Let f : X → Y and ϕ : X → Z be proper

surjective morphisms with connected fibers, where X, Y , and Z are normal

projective varieties. Then there exists a sufficiently general subvariety Γ
of Z, a variety W̃ and morphisms F : W̃ → Γ, G : W̃ → Y such that

F : W̃ → Γ is a proper surjective morphisms with F−1(z) = f(ϕ−1(z)),

and G : W̃ → Y is generically finite.

Proof. Let Φ := (f, ϕ) : X → Y × Z and V be the closure of ImΦ.
Restricting the projection morphisms, we have p : V → Y and q : V →
Z. For z ∈ Z, q−1(z) = (f(ϕ−1(z)), z) ' f(ϕ−1(z)), and for y ∈ Y ,
p−1(y) = (y, ϕ(f−1(y))) ' ϕ(f−1(y)). Hence p is surjective and let r =
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dimV − dimY . If r = 0, then W̃ := V has the required property. If r > 0,
take a sufficiently general hyperplane section Z1 of Z. V1 = q−1(Z1) is
isomorphic to V ×Z Z1 and also V1 = V ∩ (Y × Z1). Then p1 := p|V1

:
V1 → Y satisfies that V1 is a variety and p−1

1 (y) = (y, ϕ(f−1(y)) ∩ Z1).
Since Z1 is sufficiently general, for a general point y ∈ Y , it follows that
dim(ϕ(f−1(y)) ∩Z1) = r− 1. Repeating this r times, we have Γ := Zr and

W̃ = Vr have the required property.

Proof of the theorem continued. We use the induction with respect to
dimX to prove the main theorem. If the generic fiber Xη is of general
type, then κ(X) ≥ κ(Y ) + dimXη > 0 by Theorem 1.2. So we can assume
that κ(Xη) < dimXη. Let X → Z → Y be the relative Iitaka fibration.
Then the geometric generic fiber of g : X → Z is birationally equivalent to
an Abelian variety. So, κ(X) ≥ max{κ(Z),Var(g)} by Theorem 1.4. We
note that the sufficiently general fiber of h : Z → Y has maximal Albanese
dimension by Proposition 2.4 (a). Therefore, κ(Z) ≥ 0 by the induction and
we can apply Theorem 1.4 to g : X → Z. If the Kodaira dimension of the
sufficiently general fiber of h is positive, then κ(Z) > 0 by the induction.
Thus we have κ(X) ≥ κ(Z) > 0. So, we can assume that the geometric
generic fiber of h is of Kodaira dimension zero. Therefore, κ(Z) ≥ Var(h)
since the geometric generic fiber is birationally equivalent to an Abelian
variety (see Theorem 1.4).

Thus, we can assume that Var(h) = Var(g) = 0 and the geometric
generic fiber of h is birationally equivalent to an Abelian variety.

We shall prove that κ(X,KX/Y ) > 0 for a suitable birational model of
f : X → Y . Using [F1, Lemma 7.8] and [Ka2, Theorems 8, 9], we reduce
it to the case where Z is birationally equivalent to a product Y ×A for an
Abelian variety A. Thus we come to the following situation:

f : X
g

−−−→ Z
ν

−−−→ Y ×A
h1

−−−→ Y,

where

(a) A is an Abelian variety,

(b) f is the given fiber space, h1 is the projection, and ν is a proper
birational morphism,

(c) there is a simple normal crossing divisor D on Z such that g is smooth
over Z \D, and f factors as

X
µ

−−−→ X̃ −−−→ Y,
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where µ is birational and X̃ is a non-singular projective variety such
that B− is an effective µ-exceptional divisor by [F1, Lemma 3.8]. We
note that we can apply [F1, Lemma 3.8] by the flattening theorem.
We note that

KX = g∗(KZ + Lss
X/Z) +

∑

Di

sDi
g∗Di +B,

where Di is an irreducible component of D for every i (see Section 3).

By the canonical bundle formula, we have

g∗K
⊗m
X/Z(mB−) ' OZ(

∑

i

msDi
Di),

where m is a positive integer such that msDi
are integers for every i. We

note that we can assume that mLss
X/Z is trivial by Theorem 3.11 since

Var(g) = 0. By restricting the canonical bundle formula to Xy → Zy, where
y is a sufficiently general point of Y , we obtain an irreducible component
D0 of D such that h1ν(D0) = Y and sD0

6= 0 since κ(Xy) = dimZy ≥ 1.
Let D0 be the image of D0 on Y × A. Then κ(Y × A,D0) > 0 by

Corollary 5.4 below. On the other hand, every irreducible component of
ν∗D0 −D0 is ν-exceptional and

H0(Z,OZ (msD0
(D0 − ν

∗D0))⊗K
⊗mk
Z/Y ) 6= 0

for a sufficiently large integer k. We note that KY ×A = h∗1KY since A is an
Abelian variety. Combining the above, we obtain

H0(Z, g∗K
⊗mk
X/Y (kmB−)⊗OZ(−msD0

ν∗D0)) 6= 0.

Therefore,

κ(X,KX/Y ) ≥ κ(Z, ν∗D0) = κ(Y ×A,D0) > 0.

We note that B− is effective and exceptional over X̃ . Thus, we finish the
proof.

§5. Some remarks on Abelian varieties

The main purpose of this section is to prove Corollary 5.4, which was

already used in the proof of the main theorem. The results below are

variants of the theorem of cube.
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5.1. Let Y be a variety (Y is not necessarily complete) and A an
Abelian variety. We define Z := Y × A. Let µ : A × A → A be the
multiplication. Then A acts on A naturally by the group law of A. This
action induces a natural action on Z. We write it by m : Z ×A→ Z, that
is,

m : ((y, a), b) −→ (y, a+ b),

where (y, a) ∈ Y ×A = Z and b ∈ A. Let p1i : Z ×A×A→ Z ×A be the
projection onto the (1, i)-th factor for i = 2, 3 and p23 : Z×A×A→ A×A
the projection onto the (2, 3)-factor. Let p : Z × A × A → Z be the first
projection and pi : Z × A × A → A the projection onto the i-th factor for
i = 2, 3. We define the projection ρ : Z = Y × A → A. We fix a section
s : A → Z such that s(A) = {y0} × A for a point y0 ∈ Y . We define the
morphisms as follows;

πi := pi ◦ (s× idA × idA) for i = 2, 3,

π23 := p23 ◦ (s× idA × idA),

π := ρ× idA × idA.

Let L be a line bundle on Z. We define a line bundle L on Z × A × A as
follows;

L = p∗L⊗ (idZ × µ)∗m∗L⊗ (p∗12m
∗L)−1 ⊗ (p∗13m

∗L)−1

⊗ π∗((π∗23µ
∗s∗L)−1 ⊗ π∗2s

∗L⊗ π∗3s
∗L).

Theorem 5.2. Under the above notation, we have that

L ' OZ×A×A.

Proof. It is not difficult to check that the restrictions L to each of
Z × {0} ×A and Z ×A× {0} are trivial by the definition of L, where 0 is
the origin of A. We can also check that the restriction onto s(A)×A×A is
trivial (cf. [Mu, p. 58, Corollary 2]). In particular, L|{z0}×A×A is trivial for
any point z0 ∈ s(A) ⊂ Z. Therefore, by the theorem of cube [Mu, p. 55,
Theorem], we obtain that L is trivial.

We write Ta := m|Z×{a} : Z ' Z × {a} → Z, that is,

Ta : (y, b) −→ (y, b+ a),

for (y, b) ∈ Y ×A = Z.
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Corollary 5.3. By restricting L to Z × {a} × {b}, we obtain;

L⊗ T ∗
a+bL ' T

∗
aL⊗ T

∗
b L,

where a, b ∈ A.

The following is a supplement and a generalization of [F1, Lemma 7.11].

Corollary 5.4. Let D be a Cartier divisor on Z. Then 2D ∼ T ∗
aD+

T ∗
−aD for a ∈ A. In particular, if Y is complete and D is effective and not

vertical with respect to Y ×A→ Y , then κ(Z,D) > 0.

Proof. We put L = OZ(D) and y = −a. Apply Corollary 5.3. We
note that SuppD 6= SuppT ∗

aD if we choose a ∈ A suitably.

References

[CH] J. A. Chen and C. D. Hacon, On algebraic fiber spaces over varieties of maximal

Albanese dimension, Duke Math. J., 111 (2002), no. 1, 159–175.

[F1] O. Fujino, A canonical bundle formula for certain algebraic fiber spaces and its

applications, Nagoya Math. J., 172 (2003), 129–171.

[F2] O. Fujino, Remarks on algebraic fiber spaces, preprint (2002).

[FM] O. Fujino and S. Mori, A canonical bundle formula, J. Differential Geom., 56

(2000), no. 1, 167–188.

[HP] C. D. Hacon and R. Pardini, On the birational geometry of varieties of maximal

Albanese dimension, J. Reine Angew. Math., 546 (2002), 177–199.

[I1] S. Iitaka, Genera and classification of algebraic varieties. 1, Sûgaku, 24 (1972),
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