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If Gu •••,GC are graphs without loops or multiple edges there is a smallest
integer r(G1,---,Gc) such that if the edges of a complete graph Kn, with
n & r(p\> "•> G<;)i a r e painted arbitrarily with c colours the ith coloured sub-
graph contains Gt as a subgraph for at least one i. r(Glt •••, Gc) is called the Ramsey
number of the graphs GU--,GC.

Ramsey graph theory was formulated in Cockayne (1970) and independently
in Harary and Chratal (to appear). There has been considerable interest in the topic
recently. Some properties of the numbers are mentioned in Cockayne (1972)
and an extensive bibliography may be found in Harary (1972).

In this paper we determine r(ntP2, •••, ncP2) where, in the notation of Harary
(1969), nP2 is the graph consisting of In vertices and n independent edges, called
here a stripe.

By a circuit we shall mean a graph consisting of a finite number of vertices
with each vertex joined to the next and with the last vertex joined to the first.
By the complement of a subgraph we mean the vertex complement.

We shall prove

THEOREM. If nt,---,nc are positive integers and nt = max(nl 9 •••,nc) then

rCA.-.nA) = "i + 1 + 2 (n, - 1).
i = l

This theorem has the following consequence.

COROLLARY. If a complete graph on n vertices has its edges coloured by c
colours then it has a monochromatic subgraph isomorphic to wP2 where w is
the largest integer not greater than

n + c - 1
c + 1 '

252

https://doi.org/10.1017/S1446788700029554 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700029554


[2] The Ramsey number for stripes 253

The corollary is proved by noticing that if —-— is substituted for
c + 1

each nf in the expression

nt + l+ S (n, - 1)
( = 1

the number n is obtained.

Now we prove the theorem.

We show first that

Consider a complete graph on

«!+ £(11,-1)
1 = 1

vertices and partition the vertices into sets V1, • • •, Vc where Vt has 2nt — 1 members
and each other Vt has «f — 1. Paint with the first colour all edges which are
incident with two vertices of Vv For each i = 2, •••,c paint with the ith colour
the edges having two vertices in Vt or one vertex in Vt and one in Vj where j < i.
For each i — \,—,c the ith coloured subgraph does not contain a subgraph iso-
morphic to ntP2 and so

c

r(niP2,-,ncP2) g; nt + 1+ S (n, - 1).
i = l

The rest of this paper is devoted to proving the opposite inequality, that is,

Suppose that counterexamples exist; that is, there are positive integers c,
nu—,ne with nt = max(M1,-",nc) and a complete graph on at least

nt + l+ £ (B, - 1)
i = l

vertices which does not have a subgraph isomorphic to ntP2 and coloured by the
ith colour for any i = 1,•••,c. Among the counterexamples let G be a minimal
one in the following sense:

(1) G is coloured with c colours and no counterexample is coloured with
less than c colours.

(2) Among the counterexamples satisfying (1), G is one having a minimal
number of vertices.
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It is easily seen that these conditions imply that G has exactly

C

nt + l+ I (nt - 1)
i = l

vertices, for any subgraph of G having this number of vertices is also a counter-
example and so, because of the minimal properties of G, it coincides with G.

The analysis now depends on the study of certain circuits and trees in G.
These are the ones having no two adjacent edges of the same colour. If C is one
of these subgraphs which has oc; edges coloured by the ith colour for each i = 1, --^c
then it has

c

i = l

vertices where £ = 0 if C is a circuit and e = 1 if C is a tree. For each i the a,
edges coloured by the ith colour form a subgraph of C isomorphic to a,P2 • If
C is the complementary graph to C in G the number of vertices in C is

c \ c

I a, =(n1-e) + l+ S (n,-a,-l).
i = l / i = l

S u p p o s e t h a t t h e n u m b e r s n ; — <xt, i = l,---,c a r e mu ••,mc in decreas ing o r d e r .
I f C is a c i rcu i t , s = 0 a n d

Mj — e = n1

^ Pi — iXj f o r e a c h i = l , - - - , c .

If C is a tree having the additional property that it has at least one edge coloured
by each colour then a,- > 0 and

n1 — E = nx — 1

^ rii — iXi f o r e a c h i = l , - - - , c .

In either case nt — e ^ mt and the number of vertices in C is at least

c

mt + 1 + X ( m f - 1).
i = l

As mt = max(m!, •••,mc) and C is a proper subgraph of G we deduce from the
minimality of G that C has a subgraph isomorphic to (ni - oe;)P2 coloured by
the ith colour for one of the i = 1, •••,c. Combining this with the subgraph of
C isomorphic to <X;P2 and coloured by the same colour we obtain in G a sub-
graph isomorphic to n,P2

 a n d coloured by this colour. As this is assumed impos-
sible we deduce that any circuit in G, and also any tree in G having at least one
edge of each colour, must have two adjacent edges of the same colour.
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Now consider the set of subgraphs of G which are trees having no two ad-
jacent edges of the same colour. As any edge is such a tree this set is not empty.
In the set choose a tree, say T, having the maximum number of edges possible.
We have shown above that not every colour occurs among the edges of T. Let
pq be an edge having a colour different from that of any edge of T. If both p and
q are vertices of T the edge pq could be adjoined to a chain linking p and q in T
to form a circuit in which no two adjacent edges have the same colour. If exactly
one of p and q is a vertex of Tthen pq can be adjoined to T to form a tree having
the same properties as Tbut with one more vertex. In either case we have a contra-
diction so that neither p nor q are vertices of T.

We now work towards finding a contradiction to our assumption that a
counterexample to the result exists. This is done by proving that the finite tree T
contains an infinite number of vertices. We prove that T has an infinite sequence
ru r2>"" of vertices with the properties:

(1) for each i ^ 1, fy,+ 1 is an edge of T,

(2) for each i ^ 2 the vertices r;-!,/-;, and ri + 1 are all different.

(3) For each i ^ 1 the edges r{ri + 1 and rtp have the same colour.

As T is a tree it has no circuits so condition (2) here is sufficient to prove
that the sequence r1,r2,--- is infinite.

First let rt be any vertex of T having valency one in T. Such vertices exist
because Tis a tree. r2 is defined by the condition that rtr2 is an edge of T. If the
edge r^p is added to Twe get a tree U having one more vertex than T. From the
maximal property of T, U must have two adjacent edges of the same colour.
These can only be rtr2 and r^p.

If the edge r2p is adjoined to T we get a tree having one more vertex than T
and hence having two adjacent edges of the same colour. One of these edges
must be r2p and then r3 is defined by the property that r2r3 is an edge of T having
the same colour as r2p. If r3 = rt we can form a tree from Tby deleting r1r2

and adding the edges r2p and pq. This tree has one more vertex than T but has
no adjacent edges of the same colour, a contradiction. Hence r3 ^ rt.

Finally suppose that i g: 2 , that r1 ,--- ,r i + 1 have been defined and that
rU"-,ri have the required properties. We need to find an edge ri+1ri+2 of T
different from rtri+1 having the same colour as ri+1p.

Form a tree U in G by subtracting from Tanyi edge incident with r,- and by
adding the edges pq, r,-i/?, ri+1p and edges qx whenever rtx is an edge of T dif-
ferent from ?•,?•;_! or rtri+l. As U has one more vertex than Ttwo of its adjacent
edges are of the same colour. As T does not have two adjacent edges with this pro-
perty the only possibilities are:

(a) r^rf and an edge yrt^1 of T with y # rf.

(b) pq and r,-_tp, ri+1p or an edge qx where x is a vertex of T.
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(c) ri+1p with an edge ri+1ri+2 of 17 with ri+2 different from rt.
(d) qx and an edge xy of T where x is different from ri_l, ri+1, and rtx, xy

are edges of T.
We eliminate possibilities (a), (b) and (d).
1fyri-1 is an edge of T withy # /•;_! the edges yri-1 and r^^i being adjacent

have different colours. By assumption the edges ri_1p and T^r,- have the same
colour. Hence (a) cannot occur.

If (b) occurs we can adjoin to T whichever edge r^^p, ri+1p or qx has the
same colour as pq to obtain a tree having no two adjacent edges of the same colour
yet having one more vertex than T. The impossibility of this excludes (b).

Suppose that (d) holds. Because of the properties of T and pq, the edges
r^^i, rtri+1, and pq all have different colours, say red, blue, and green respec-
tively. By the induction assumption r , - ^ is red and rtp is blue. Consider the
circuit rtxqp. It must have two adjacent edges of the same colour. As rtx and
rtri+1 are adjacent edges of T, rtx is not blue. As in the previous paragraph
pq and qx have different colours. Hence rtx and qx have the same colour. The
assumption in (d) then gives two adjacent edges rtx and xy of T having the same
colour. This eliminates (d).

Only the possibility (c) remains and this serves to define ri+2 and establish
the existence of the infinite sequence rltr2,--- in the finite tree T. This contra-
diction finishes the proof of the theorem.
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