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A 1-ALG SIMPLE CLOSED CURVE IN E* IS TAME 

W. S. BOYD AND A. H. W R I G H T 

0. I n t r o d u c t i o n . Let J be a simple closed curve in a 3-manifold M's. 
We say M — J is 1-ALG at p £ J (or has locally abelian fundamental group 
a t p) if and only if for each sufficiently small open set U containing p, there 
is an open set V such tha t p £ V (Z U and each loop in V — J which bounds 
in U — J is contractible to a point in U — J. Our main result is 

M A I N T H E O R E M . / / / is a simple closed curve embedded in a 3-manifold Mz 

so that Mz — J is 1-ALG at each point of J , then J is tame. 

T h e case where Mz is non-orientable can be reduced to the orientable case 
by looking a t the orientable double covering space of ikP. Because any simple 
closed curve in an orientable 3-manifold Mz lies in a cube-with-handles in Mz 

(see, for example, [1, Theorem 1]), some neighbourhood of such a curve can 
be embedded in E 3 . Thus , it suffices to prove the theorem in the case t h a t M's 

is E 3 . Throughou t the remainder of this paper, we will assume t h a t J is a simple 
closed curve in E 3 and t ha t E 3 — J is 1-ALG a t each point of J. 

T H E O R E M 1. Ez — J is 1-ALG at each point of J if and only if E 3 — / is 
1-ULC/or homologically trivial loops (i.e., for each e > 0, there is a 5 > 0 such 
that any b-loop in Ez — J which bounds in Ez — J is contractible to a point in 
an e-subset of E 3 — J). 

Proof. Suppose t h a t E 3 — J is 1-ALG a t each point p ^ J. By [6, Corollary 
X.4.8] , for any simple closed curve / in E 3 , Es — J is 1-ulc for homologically 
trivial cycles. Thus , for each sufficiently small open set U containing p £ J, 
there is an open set V with p Ç V C U such t ha t each loop in V — J which 
bounds in Ez — J also bounds in U — J. As E's — J is 1-ALG at p G / , there 
is an open set V C V with p £ V C U such t h a t any loop in V — J which 
bounds in U — J is contractible to a point in U — J. Therefore, if / is a loop 
in V — J which bounds in E 3 — J , then / bounds in U — J and hence is 
contractible to a point in U — J. 

T h e converse is obvious. 

As a consequence of Theorem 1, we need only check to see whether a small 
loop links J in order to know if it can be shrunk to a point missing J - we do 
not have to show t h a t it bounds in some preassigned open subset of E 3 — J. 

Note t h a t for every e > 0, there is a b > 0 such t h a t if Ji and J2 are two 
simple closed curves in E 3 — / , each with unsigned linking number 1 with / , 
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1-ALG SIMPLE CLOSED CURVE 647 

and diameter (Ji KJ J2) < <5, then Jx KJ J2 bounds a singular annulus in 
E2 — J of diameter less than e. 

1. C a n o n i c a l n e i g h b o u r h o o d s . The results of this section hold for any 
simple closed curve J in an orientable 3-manifold. 

Let TV be a cube-with-handles which contains n disjoint polyhedral properly 
embedded disks Di, D2, . . . , Dn whose union separates N into n cubes-with-
handles Nly N2, . . . , Nn such t ha t Nt C\ Ni+1 = Du and Nt C\ N, = 0 if 
i 9^ j — l,j,j + 1 (where the subscripts are taken mod n). The disks 
Di, . . . , Dn are called sectioning disks of N, and Ni, . . . , Nn are called 
sections. Then N is said to be a canonical neighbourhood of J if 

(1) J C I n t iV ; 
(2) for each sectioning disk Dx of N, Dt C\ J is contained in a subarc of J 

which intersects no other sectioning disk of N; 
(3) / is homotopic in In t N to a polyhedral simple closed curve which 

pierces each sectioning disk Dt exactly once. 
We say tha t N is a canonical ^-neighbourhood of / if for each i, diam Nt < e, 

and is a solid torus canonical neighbourhood of / if each section is a 3-cell. 
A chain of sections of a canonical neighbourhood N is a collection 

Nu Ni+i, . . . , Ni+k of sections (where the subscripts are mod n, the total 
number of sections of N) of N. 

LEMMA 2. For any e > 0, J has a canonical ^-neighbourhood. 

Proof. T h e neighbourhood constructed in Theorem 1 of [1] has all the 
required properties except for (2). However, if we take a neighbourhood of [1] 
whose sections have diameter less than e/3, and delete a t least every other 
sectioning disk, then the resulting neighbourhood will have property (2). 

LEMMA 3. Let N be a canonical neighbourhood of a simple closed curve J. For 
any e > 0, there is a canonical e-neighbourhood N' of J in In t N and an e-homeo-
morphism h of N onto itself such that 

(1) for any sectioning disk Dtof N, each component ofh(Dt) Pi N' is contained 
in one section of N'; 

(2) h is the identity on dN and outside of an e-neighbourhood of J C\ ( U Di); 
(3) for each sectioning disk Dt of N, there is a chain rji of sections of N' so 

that h(Dt) r\ N' is contained in rjiy and rji intersects the image under h of no 
other sectioning disk of N. Furthermore, r}t C\ rjj = 0 if i ^ j . 

2. Sol id torus n e i g h b o u r h o o d s . Fix a canonical neighbourhood N° of 7, 
and on this neighbourhood fix a meridian m0 which is the boundary of a 
sectioning disk of N°. If / is an oriented simple closed curve in Int(iV°) — J , 
we will speak of lk(/, m0) and lk(/, J ) , the linking numbers of / with respect 
to m0 and J respectively. Note t ha t if TV is a second canonical neighbourhood 
of J in N° with / C In t N, and m is the boundary of a sectioning disk of N, 
then lk(/, m) = d= lk(Z, m 0 ) . 
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LEMMA 4. For every open set U with J C U C A™, there is an open set V 
with J C V C U such that if I is a simple closed curve in V — J with Ik (/, / ) = 0 
and lk(/, mo) = 0, then I is homotopic to zero in U — J. 

Proof. Choose an e > 0 and a canonical e-neighbourhood V such that any 
nonlinking e simple closed curve in V — J can be shrunk to a point in U — J. 
It is sufficient to consider polygonal simple closed curves / in 

(Int V) - J with lk(/, m0) = lk(/, J) = 0, 

and with / in general position with respect to the sectioning disks of V. If 
p, a are points of I at which / pierces some sectioning disk D of F in opposite 
directions, then p, a can be joined by an arc a in D — J. If «i, a2 are the 
two arcs of / — {p, g} then / is homotopic to the sum of the two simple closed 
curves a\^J a and «2 U a, where lk(«i U a, m0) = lk(a2 W a, m0) = 0. By 
proper choice of a, we will have, in addition, that l k ( a 2 ^ « , / ) = 
lk(ai\J a, J) = 0. Pushing ct\ U a and a2 U a off D, I is replaced by a 
collection of simple closed curves having the additional property of inter­
secting the union of the sectioning disks of V two fewer times. After a finite 
number of steps this procedure yields a collection of simple closed curves 
each of which lies in a section of V and whose sum is homotopic to / in V — J. 
As each of these bounds a singular disk in U — J, I ~ 0 in U — J. 

LEMMA 5. Let U be an open subset of S3 with J C U and U O m0 = 0. Then 
the inclusion induces an epimorphism of Hi(U — J) onto 

J f i ( 5 8 - J - m 0 ) = Z 0 Z . 

Proof. The inclusion of the excisive couple (U, S* — J) of subsets of S* 
into the excisive couple (53 — m0, 5

3 — J) of subsets of S3 induces a map 
from the Mayer-Vietoris sequence of (U, Ss — J) to the Mayer-Vietoris 
sequence of (53 — m0, S

3 — J) yielding the following commutative diagram: 

0 >H!(U-J) - ^ H1(U) © i 7 i ( 5 3 - J ) >0 

0 > ffi(S8 - / - m0) - ^ #i(S3 - wo) 0 #i(S 3 - / ) > 0. 

The map j is the sum of the maps 

HiiU)->H^S* - nio) and #i(S 3 - J) ->i!i(S3 - / ) , 

both induced by inclusion. Clearly the second of these maps is onto. The first 
of these is also onto, because / , having linking number of 1 with respect to m0, 
is a generator of Hi(S3 — m0) and lies in U. Thus j is an epimorphism, and it 
follows from the diagram that i is an epimorphism of H\{U — J) onto 
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# i ( S 3 - J - m0). Moreover, H^S3 - J - m0) = Z ®Z because it is 
isomorphic to H^S3 - m0) ® H^S3 - / ) . 

LEMMA 6. 5 3 — J has stable end e with in(e) = Z@Z (for definitions, see [3]). 

Proof. Choose a sequence Z7i, Z72, . . . of connected neighbourhoods of J 
lying in S3 — m0 with f/z+i lying in the open set V given by Lemma 4 for 
U = Ut and with J = C\ UL. Choose a point xt Ç Ut — J and a path af in 
Ui — J from a;* to x î + i . Define /* : 7ri(Z7*+i — J, x*+i) —> 7ri(Z7Z- — J, xt) to 
be the inclusion followed by the homomorphism induced by at. Consider the 
following commutative diagram 

f • f • 

*i(Ut - J, Xi) D Im/{ 44^- m(Uî+i - 7, x\+i) D Im/<+i -«-^—iri(C/<+2 - 7, xi+2) D • • • 

\ \ I / \ 
Hi(Ut-J) g \ HtlUt+i-J) ,'gi+i ^Hi(U,+2-J) 

^ \ I / ^ 

where each of the (inclusion) maps to i^i(53 — J — m0) is onto by Lemma 5, 
each of the maps TTI(UJ — / , #,) —>Hi(Uj — J) is onto and each 

Ti(Uj+1 - J, x ;) -> Imfj = Image/;• 

is onto. Thus each of the maps gt (dotted arrows) which is the composition of 
the maps 

Imfj C *i(JJ, - J,xj) -tHtiU, - J) - > # i ( S 3 -J -m0) 

is onto. To show each gt is an isomorphism choose x G Im/Z in the kernel of gt. 
There is a loop I in iri(Ui+i — J, xi+i) such that/*(Z) = x. As gift (I) = 0, I is 
homologous to zero in S3 — J — m0 so that lk ( / , / ) = lk(Z, ra0) = 0. By 
Lemma 4, Zc^O in ?n(Z7< — J,xt). It follows that x = ft(l) ^ 0 in Im/Z-. 
Thus each g{ is an isomorphism of Im/* onto Z © Z, whence 

/ , : I m / H i - > I m / i 

is also an isomorphism. 
We have shown that the sequence 

7Tl(£/l - / , Xl) £- Tl(t/2 - J,X2)£--.. 

induces isomorphisms on the sequence 

Im/i£-Im/2£-.. . 
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so t h a t e, the end of S3 — J is stable and 

7ri(e) = lim{7Ti(E/* - J,Xi),ft} = KmJIm/ , , /*} 

= i 7 i ( 5 3 - J - wo) = Z 0 2 . 

We s ta te the following easy to prove lemma without proof. 

L E M M A 7. Let 0 and 0' be the complementary domains of a polyhedral torus 
in Sz and suppose that 0' contains an unknotted simple closed curve which is not 
homologous to zero in 0''. Then Cl(O) is a solid torus. 

T H E O R E M 8. J is definable by solid tori. 

Proof. I t is clear from L e m m a 6 t h a t Sz — J satisfies the hypotheses of 
Theorem 1 of [3]. T h u s there is a 2-manifold 5 C <$3 and a neighbourhood 0 
of J such t ha t 0 - J ~ S X [0, oo ). As 7n(e) = Z © Z, where e is the end 
o f 5 3 — J , S mus t be a torus. Define Ot = {5 X [ A 0 0 ) } U / . As we may assume 
t h a t m0 C 5 3 — 0 , the previous lemma tells us t h a t 01 is a solid torus for 
each /. Because J = D {Ot : t = 1, 2, . . . } , / is definable by solid tori. 

Because we have not used the full s t rength of the 1-ALG condition, we have 
proved the following theorem: 

T H E O R E M 9. Let J be a simple closed curve in an orientable 3-manifold and let 
J satisfy the following condition: For every sufficiently small open set U with 
J C U, there is an open set V with J C V C U such that any loop in V — J 
which is homologous to zero in U — J is also homotopic to zero in U — J. Then J 
has arbitrarily close neighbourhoods whose closures are solid tori. 

Remark. If a simple closed curve on the boundary of one of the solid tori 
of Theorem 8 is homologous to zero in 5 3 — w 0 — J , then it bounds a disk 
on the boundary of the solid torus. 

3. C u t t i n g off fee lers a n d fo ldbacks . 

L E M M A 10. Let e > 0. Then there is a canonical ^-neighbourhood N of J, and 
a solid torus neighbourhood T of J, with T C In t Ny so that, if D is a sectioning 
disk of N, dT H D is a finite collection of simple closed curves each of which link 
J {and hence are meridional on T). 

Remark. This lemma says t h a t we can " c u t the feelers" off T. 

Proof. Let N be a canonical (e/8)-neighbourhood of / . W e can suppose 
t h a t the number of sections of N is divisible by 4 and t h a t the sectioning disks 
of TV intersect / in a 0-dimensional set. Using Theorems 1 and 8, wre find a 
solid torus neighbourhood T oi J with dT in general position with respect to 
the sectioning disks of N and with T so close to J t ha t , for any sectioning 
disk D of TV, and for any simple closed curve / of dT Pi D which bounds a 
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disk on dl\ I bounds a singular disk in (Int N) — J which intersects no other 
sectioning disk of N. 

W e now fix a sectioning disk Dt. From this point on, we consider our sub­
scripts on sectioning disks to be mod n, where n is the number of sections 
of N. There are pairwise disjoint disks Ely E2, . . . , Em in dT with dEj C Dt 

so any simple closed curve of dT H\ Dt which does not link J lies in some Ejm 

Let E/ be the closure of the component of Ej — Z>f_i — Di+1 which contains 
dEj. Then E/ is a punctured disk, and we can fill in the holes of E/ with 
singular disks which do not hit D L, J, and the remaining Dk's. Thus we obtain 
a singular Dehn disk with the same boundary as Ej and which lies in four 
sections of N. We apply Dehn 's lemma to obtain nonsingular disks 
Ei", . . . , Em" with the same properties. Using a disk trading argument , we 
can assume tha t these disks are pairwise disjoint. 

By a general position argument , we can assume tha t dE" C dT while 
In t E" C\ dT is a finite collection of simple closed curves. Each of these 
simple closed curves bounds a disk on ST. Then, using a disk-trading argu­
ment , we can cut dT off U IntE". Then, if dEj" still lies on dT, we 
replace the disk it bounds on dT with E". We now have tha t each simple 
closed curve of dT C\ Dt which bounds a disk on dT, bounds a disk on dT 
which lies in four sections of N. Now, we use another disk-trading argument 
to cut Dt off dT to obtain a new sectioning disk D/ which intersects dT only 
in curves t ha t link / . Then D/ lies in four sections of N. 

Let Dj be any sectioning disk of N except Z>*_i, Dx, or Di+1. In our modi­
fications of T, we may have changed dT r\ Dj. However, with the new T, 
dT Pi Dj will be a subset of what it was with the old T. Thus , we still have 
t h a t for any simple closed curve / of dT C\ Dj which bounds a disk on dT, 
I bounds a singular disk in (Int N) — J which intersects no other sectioning 
disk of N. 

We now go to the sectioning disk Di+A and repeat the above process to 
get a disk Di+i' and a new solid torus, still called T. In this way we can find 
a new^ sequence of sectioning disks D/, Di+A', Di+s, . . . , D^/ of N, so t ha t 
N, with the new sectioning disks and sections, has the required properties. 

LEMMA 11. Let e > 0. Then there is a canonical ^-neighbourhood N of J, and 
a solid torus neighbourhood T of J, with T C In t N, so that, for any sectioning 
disk D of N, any two simple closed curves of dT C\ D bound an annulus on dT 
which links J and which intersects no other sectioning disk of N. 

Remark. This theorem cuts the long foldbacks off dT. 

Proof. Let N be a canonical (e/8)-neighbourhood of / . Let rj be less than 
the distance from / to dN and less than the minimum distance between the 
sectioning disks of N. Let 8 be chosen for 77/4 using the 1-ULC condition for 
homologically trivial loops as specified in Theorem 1. Let AJ/ be a canonical 
^-neighbourhood of / and let T be a solid torus neighbourhood of J in In t N' 
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so tha t , for each sectioning disk Dr of TV', each component of dT Pi Df is a 
simple closed curve which links / . Using L e m m a 3, after a 5-adjustment of 
the sectioning disks of TV, we can assume t h a t N' intersects the sectioning 
disks of N as specified in L e m m a 3. By a disk-trading a rgument similar to 
t h a t done in the proof of L e m m a 10, we can also assume t h a t for each section­
ing disk D of TV, D has been adjusted so t h a t dT C\ D consists of simple closed 
curves which link J. T h e sectioning disks of TV now lie homeomorphically 
within 2<5 of where they originally lay. Since 5 < 77/4, the minimum distance 
between the sectioning disks is still greater than 77/2. 

We now have the condition on T which we will use in the remainder of the 
proof; namely, for any sectioning disk D of N, any two simple closed curves of 
dT P D which lie in one section of TV' bound a singular annulus missing J 
which lies in the two adjacent sections of TV. (See the remark a t the end of 
Section 0.) 

Wi thou t loss of generality we can assume t h a t the number of sections of TV 
is divisible by four. We now fix a sectioning disk D t of TV. W e can consider 
dT as the union of two annuli , C and A, so t h a t dA = dC(ZDt and 
Cr^Di = dC. Fur thermore , C and A can be chosen so t h a t any simple 
closed curve consisting of two arcs, one in C spanning between the boundary 
components of C, and one in Dt, mus t link m0. (For the definition of ra0 see 
the beginning of Section 2.) T h e corresponding simple closed curve in A U D 2 

would not link ra0. Le t TV/ be a section of TV' so t h a t Dt-i separates the end 
sectioning disks of TV/, and let Nk' be a section of TV' so t h a t Di+i separates 
the end sectioning disks of TV/. W e wish to replace A by an annulus which 
lies in four sections of TV. If A does not satisfy this condition, then let A±* 
and A 2* be the disjoint minimal subannuli of A with dA C dAx* \J dA2* and 
with 

dA? - dA C (TV/ P £>,_!) U (AV H Di+1), j = 1, 2. 

Then A? U A? mus t be contained in the chain of sections of N' from N/ 
to Nk

f which lies in the chain of four sections of N around Dt. Thus , A? VJ A2* 
also lies in this chain of four sections of N. 

Case 1. A ? and A? both have a boundary component in Di+\ C\ N/: in 
this case, there mus t be a singular annulus missing J joining the two boundary 
components of Ai* \J A2* which lie in Dl+\. This singular annulus can be 
chosen to miss Dt and Di+2. Piecing together this singular annulus with 
A? and A2*, we obtain a singular annulus missing J , Z>*_i, and Di+2, with the 
same boundary as A, and with no singularities in a neighbourhood of the 
boundary . Using Dehn ' s lemma as s ta ted in Theorem 1.1 of [5] we can find 
either: (1) a nonsingular annulus Af lying in four sections of TV, missing / , 
and with dA' = dA; or (2) a nonsingular disk missing J whose boundary is 
contained in dA. However, (2) is impossible since each component of dA 
links J. 
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Case 2. A^* and A2* both have one boundary component lying in D2_i: this 
is similar to Case 1. 

Case 3. ^4i* has a boundary component in Dt^i and A2* has a boundary 
component in Di+i (or vice versa) : in this case we can find a subannulus As* 
in A — Af — A 2* with one boundary component in D^i C\ N/ and one 
boundary component in Di+i P\ Nk', and lying in four sections of N. We can 
then join the boundary components of Ai* and A 3* which lie in Z^_i with a 
singular annulus missing / , Di_2 , and Dt. Similarly, we can join the boundary 
components of A2* and A%* which lie in Dl+i with a singular annulus missing J, 
Df, and Di+2. Piecing together these two singular annuli with Ai*, A%* and 
A2*, we get a singular annulus lying in four sections of N, with the same 
boundary as A, and with no singularities in some neighbourhood of the 
boundary. By applying Dehn 's lemma, we can replace this singular annulus 
with a nonsingular annulus A' missing / , and with à A = dA'. 

In all three cases we have constructed a nonsingular annulus A' so t h a t 

dA' = dA C Dt and A' C\ (Dt_2 W Di+2) = 0. 

Using general position, we can assume t h a t each component of ( I n t . 4 ' ) O 
( In t C) is a simple closed curve. If one of these simple closed curves bounds 
a disk on A', we can find an innermost such simple closed curve on A'. We 
replace the disk this simple closed curve bounds on C with the disk it bounds 
on A' and then push the disk off A'. In this way, we can assume tha t each 
simple closed curve of A' C\ C links / and is nontrivial on both A' and C. 

Choose an arc a which spans from one boundary component of C to the other 
and intersects each simple closed curve of C C\ A' once. By our choice of C, a 
crosses each sectioning disk of N except Dt algebraically once. We can choose 
a subannulus C of C so t h a t C C\ A' = dC and so t ha t the subarc of a 
which spans C intersects each sectioning disk of N except possibly for Z)*_i, 
D2- and Di+i algebraically once. Then dC bounds a subannulus A" of A'. 
Together , C and A' make up a torus which we claim bounds a solid torus 
which contains / . T o prove this claim, we consider C C\ Di+2. By our con­
struction of C and C , we have t h a t 

c r\ Di+2 ccr\ D1+2 c a m Di+2. 
Hence, each component of C C\ Di+2 is a simple closed curve which links J. 
We choose a component of C C\ Di+2 which is innermost on Di+2; this is a 
simple closed curve on the torus C \J A" which links / and which bounds a 
disk whose interior misses C C\ A". Thus , C VJ A" bounds a solid torus 
which we will now call T. Since dT C\ Dt C A" C A', any two simple closed 
curves of dT C\Dt bound an annulus which links / and which is contained 
in four sections of N. 

We now repeat this process using Di+± in place of Dt. After modifying T 
for every fourth sectioning disk of N, we delete all bu t every fourth sectioning 
disk of N and combine sections. 
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T H E O R E M 12. For any e > 0, J has a solid torus canonical e-neighbourhood. 

Proof. Let TV and T be the neighbourhoods of / as described in L e m m a 11 
for e /3. For each sectioning disk Dt of TV, choose a simple closed curve of 
dT C\Di which is innermost on Dt. Since this simple closed curve links / , 
the disk D{ which it bounds in Int-D* mus t be a meridional disk for T. Then 
we let Di , D2 , . . . , Dn' be sectioning disks for T. These sectioning disks 
divide T into sections, each with diameter less than e. 

4. C o n s t r u c t i n g a p ierc ing disk. 

L E M M A 13. For any e > 0, there is a solid torus canonical e-neighbourhood T 
of J with the following property: 

If Df is a sectioning disk of T and Ji, J2 are two simple closed curves in D{ ~ J, 
each of which has linking number 1 with J, then J\ \J J2 bounds a singular 
annulus in Sz — J which does not intersect any section of T except Tt and 7 \ + i . 

Proof. Let TV be a canonical (e/8)-neighbourhood of / , and suppose t h a t the 
number of sections of TV is divisible by 4. Let 77 be less than the minimum 
distance between any two non-adjacent sections of TV. Using the 1-ULC 
condition for homologically trivial loops as defined in Theorem 1, pick a 
ô > 0 so t h a t any loop of diameter less than ô which does not link / bounds 
a singular disk missing J of diameter less than rj/2. Using L e m m a 3 and 
Theorem 12, we can find a solid torus canonical 5/2-neighbourhood T of / 
and a ô/2-homeomorphism which adjusts the sectioning disks of N so t ha t T 
lies in N as specified in L e m m a 3 with N' replaced by T. Then the minimum 
distance between non-adjacent sections of N is still greater than 77/2 after 
the sectioning disks were adjusted. 

In every fourth section of N, choose one sectioning disk of T, and then 
delete all the remaining sectioning disks of T and combine sections accordingly. 
Then any section of T lies in six sections of N, and T is a solid torus canonical 
e-neighbourhood of J. Let D/ be a sectioning disk of T, and let J\ and J2 be 
simple closed curves in D/ —J each of which has linking number one with J. 
Then J± and J2 bound a singular annulus of diameter less than rj/2 missing 
J. This singular annulus mus t then intersect a t most the section of TV contain­
ing Dt

f plus the two adjacent sections of TV. Thus , the singular annulus can 
only intersect the sections of T adjacent to D/. 

LEMMA 14. Let e > 0. Then there is a solid torus canonical e-neighbourhood T 
of J and a ô > 0 so that if T' is any solid torus canonical h-neighbourhood of J, 
and if Dt is a sectioning disk of T and I is a simple closed curve of Dt C\ dT', 
then dDx and I bound an annulus A in T — In t T' such that 

\xvtA C ( In t T) - V 

and A lies in a chain of four sections of T. 

Proof. Let T be a solid torus canonical e-neighbourhood of / constructed 
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as in Lemma 13. Since T is a canonical neighbourhood of / , for each sectioning 
disk Dj of T, Dj Pi / is contained in a subarc of J which intersects no other 
sectioning disk of T. We choose ô so small t ha t if T' is a solid torus canonical 
^-neighbourhood of J and Dj is a sectioning disk of T, then T' C\ Dj is con­
tained in a chain of sections of T' which intersects no other sectioning disk 
of T. 

We fix a solid torus canonical ^-neighbourhood T', a sectioning disk Dt of T, 
and a simple closed curve / of D{ Pi dT' which links / . Let /* be a simple 
closed curve of Di+\ C\ dT' which links / . Then dDi+\ and /* bound a singular 
annulus which intersects T only in the sections of T adjacent to Di+i. Hence 
this singular annulus misses Dt. We can now piece together an annulus on dT 
from dDi to dDi+u the singular annulus jus t constructed, and an annulus on 
dT' from / to /* to obtain a singular annulus contained in the union of a chain 
of 3-sections of T with no singularities in a neighbourhood of its boundary. 
We apply Dehn 's lemma to this annulus to obtain a nonsingular annulus A0 

with the same properties. We suppose t ha t Int(A0) is in general position with 
respect to dT and dT', and thus t ha t I n t ( ^ 0 ) P (dT KJ dT') is a finite 
collection of simple closed curves. By a disk-trading argument we can suppose 
t ha t none of these simple closed curves bounds a disk on A0, dT or dT'. We can 
then find a subannulus A0' of A0 which spans from dT to dT' with 
I n t ^ o ' C ( In t T) - V. Note t ha t either dD{ C dA0' or dDt P dA0' = 0. 
We then piece together a subannulus of dT from dDi to A0' P dT (if neces­
sary) , Ao'j and a subannulus of dT' from / to A0' P dT' to obtain an annulus 
bounded by dDt and / which lies in T — In t T'. We push the interior of this 
annulus off dT U dT' to form the annulus A. 

T H E O R E M 15. At each point p £ J, there is a disk D so that J pierces D at p. 
Hence, J is tame. 

Proof. Let ei, €2, e3, . . . be a sequence of positive numbers with et < \/i. 
Using Lemma 4, we can construct a sequence of solid torus canonical e -
neighbourhoods T1, T2, Ts, . . . so t ha t Ti+1 lies in Tl as specified by Lemma 14. 
For each i, let Di be a sectioning disk of Tl which lies in a section of Ti which 
contains p. Using Lemma 14, we can construct an 8e r annu lus A i from dDl to 
dDi+1 in r * - In t r < + 1 . Then D = U AtVJ {p} is the required disk. 
Theorem 1 of [4] then shows t ha t / is tame. 

Remark. A t this point it would not be difficult to complete an elementary 
proof t ha t / is tame which would not require reference to McMillan 's paper [4]. 
We have all the necessary elements to construct a 'regular' neighbourhood 
of J . 

Cannon [2] now has a proof of the corresponding theorem for graphs. 
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