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TREES AS COMMUTATIVE BCK-ALGEBRAS

WILLIAM H. CORNISH

A new method of constructing commutative BCK-algebras is given.

It depends upon the notion of a valuation of a lower semilattice

in a given commutative BCK-algebra. Any tree with the descending

chain condition has a valuation in the natural numbers,

considered as a commutative BCK-algebra; the valuation is the

height-function. Thus, any tree of finite height possesses a

uniquely determined commutative BCK-structure. The finite trees

with at most one atom and height at most n are precisely the

finitely generated subdirectly irreducible (simple) algebras in

the subvariety of commutative BCK-algebras which satisfy the

identity (E ) : xy = xy . Due to congruence-distributivity,

it is then possible to describe the associated lattice of

subvarieties.

Introduction

The concept of a lower semilattice with a valuation in a commutative

BCK-algebra is introduced, and it is shown that such a semilattice can be

converted into a commutative BCK-algebra. Any tree, which satisfies the

descending chain condition, provides an example; the valuation is the

height-function. Thus, any tree of finite height possesses a uniquely

determined. commutative-BCK-algebra-structure. It is then possible to
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completely describe the lattice of subvarieties of the variety of

commutative BCK-algebras satisfying the identity xy = xy

1. Valuations

Because of Yutani [75], a commutative BCK-algebra can be considered as

a groupoid with a nullary operation 0 , which satisfies the identities:

xx = 0 , xO = x , x(xy) = y(yx) , (xy)z = {xz)y . We will presume a

familiarity with BCK-algebras and especially commutative BCK-algebras;

good references are supplied by Iseki and Tanaka [9] and Traczyk [74], but

see also [72], [3], [4] and [5].

Let (A; A, o) be a lower semilattice with smallest element 0 , and

(C; 0) be a commutative BCK-algebra. Then, the semilattice A is said to

have a valuation, v , in the commutative BCK-algebra C if v is a

function mapping A into C such that

(Vl) v(a A b) = v(a) A v{b) for any a, b € A , which possess a

common upper bound;

(V2) for any a € A , the restriction v of v to the

interval [0, a] possesses an inverse

U"1 : [0, v(a)} •* [0, a] ;

(V3) for any a, b € A , with a - b a and x € [0, v{a)]

Any commutative BCK-algebra is a lower semilattice, wherein the

infimum is given as the derived operation x A y = x(xy) = y(yx) . Thus,

(Vl)-(V3) make sense. Also, each interval [0, x] in a commutative BCK-

algebra is a distributive lattice; cf. [3, Section 3], C'4]. Due to (Vl)

and (V2), V and v are then mutually inverse lattice-isomorphisms.

Also V is isotone and u(0) = 0 .

THEOREM 1.1. Let (A; A, 0) be a lower semilattice which possesses

a valuation v in a commutative BCK-algebra (C; 0) . Define a binary

operation on A by
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ab = v~^[v(a)v{a A b)} .

With respect to this operation, A is a commutative BCK-algebra and the

original semilattiae infimum is given by a A b = a(ab) = b(ba) .

Moreover, for each, a € A , v and v~ are mutually inverse BCK-

isomorphisms between the BCK-subalgebras ([0, a]; 0) and

([0, via)]; 0) .

Proof. We must show that Yutani's identities hold. However, before

doing this, we should note that (Vl) and (V2) imply that

v(ab) = v(a)v(a A b) and ab £ a for any a, b € A .

As v^-(O) = 0 ,

aa = v~1[v(a)v(a A a)) = v'1 (v{a)v(a)) = u"1(0) = 0 .

As y(0) = 0 ,

aO = v~^[v{a)v(a A 0)) = u^1(u(a)o) = u"1(u(a)) = a .

Due to (V3), v~ (v(a A b)) = v~ -,[v(a A b)) = a hb . Hence,

a(ab) = v-^[v(a)v{a A (ab))) = v^{v(aMab)) = v^[v{a) [v(a)v(a A b)))

= v^[v(a) A via A b)) = u"1(u(a A b)) = ̂ "^(^(a A i)) = a A 6 .

A s at^b = bf\a, a(ab) = b(ba) .

Because ab £ a , (Vl) implies that

y((a2>) A c) = u((afc) A (a A e)) = v(ab) A u(a A a) .

Hence,

(ab)c = vAv(ab)v[{ab) A C)) = y ,[v{ab)[v(ab) A y(a A a)))

= u , (v(ab)v(a A C)) = y , ([v(a)v(a A i>))y(a A C))

= v [[v(a)v(a A b))y(a A C)) = y ((y(a)u(a A c))v(a A

Because of the symmetric roles of b and c , we conclude that
(ab)c = (ac)£> •. Thus A is a commutative BCK-algebra.
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Finally suppose b, c € [0, a] . Due to (Vl) and (V3),

be = v^-{v(b)v(b A a)) = v^[v(b)[v(b) A v{a)))

That is, va(ba) = ua(b)ua(c) , and so VQ : [0, a] •* [0, v(a)] is a BCK-

isomorphism.

When (A; 0) is a commutative BCK-algebra and (-4; A, o) is its

lower semilattice reduct, the identity function on A provides a valuation

of (A; A, o) in the BCK-algebra (A; o) . We now give less trivial

examples.

EXAMPLE 1.2. Consider the unit interval [0, l] of the real numbers

as a commutative BCK-algebra, wherein xy = max.{x-y, 0) = x - min(x, y) .

Let (A; A, o) be the tree with two distinct maximal chains

ia(x) : x t [0, l]} , ib(x) : x i [0, l]> , each of which is order-

isomorphic to [0, 1] , and such that a(y) = b(y) , when y € [o, %] ,

while a{z) A b{w) = a(%) = 2>(%) for all s, w e (%•, l] . Then

v : A •* [0, 1] , defined by v[a(x)) = v{b(x)) = a; for all x € [0, l] ,

is a valuation.

EXAMPLE 1.3. Let C be a commutative BCK-algebra and for each i

in an index set I with at least two elements, let C. be a copy of the

underlying semilattice of C . Form the semilattice {A; A, o) where

A = U{C. : i € j} and C. n C. = (o) if i * j . Each C. is order-

isomorphic to C under v. , say, and a and b are incomparable when
tr

a € C. , b € C. a n d i * j . T h e n v : A •* C , g i v e n b y v(a) = v.(a)

i f a € C. , i s a valuation. When C is taken as the 2-element BCK-

chain, the resul t ing BCK-algebra is the one given in Example 3 of Iseki and

Tanaka [S] . When C i s the BCK-algebra which is the set of natural

numbers N = {o, 1, 2 , . . . } with BCK-product ab= max(a-b, 0) , the

resu l t ing BCK-algebra i s the one constructed in Example k of Iseki and

Tanaka [S] .

By a tree, we mean a lower semilattice (-4; A, o) with a smallest

element 0 , in which any two elements have a common upper bound only if
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they are comparable or equivalently, each initial interval [0, a] is a

chain. When a tree (A; A, o) satisfies the descending chain condition,

each element a t. A has finite height h(a) ; h{a) is the length of the

chain [0, a] . A tree has finite height equal to n , if n is the

maximum of the lengths of its subchains.

Let (N; 0) be the commutative BCK-algebra, wherein

N = {O, 1, 2, ...} is the set of natural numbers and the BCK-product on N

is given by xy = max(x-y, 0) = x - min(x, y) , for each x, y € N . We

are now ready to give the most important instance of Theorem 1.1; we

formulate it as a theorem.

THEOREM 1.4. Let (A; A, 0) be a tree with the descending chain

condition and let v : A •* N be given by v(a) = h{a) for each a € A .

Then v is a valuation of the tree U ; A, O ) in the commutative BCK-

algebra (N; 0) . Thus the tree A becomes a commutative BCK-algebra,

wherein the BCK-product ab of a, b € A is the unique element of height

h(a) - h(a A b) in the interval [0, a] . What is more, this is the only

product which is definable on A so that the resulting structure is a

commutative BCK-algebra, whose lower semilattice reduct coincides with the

original semilattice {A; A, 0) .

Proof. We only have to establish the uniqueness of the BCK-structure.

Suppose (A; *, 0) is a commutative BCK-algebra such that the original

infimum is given by a A b = a*(a*b) = b*{b*a) , for any a, b € A . Then

the finite chain [0, a] is a subalgebra of (A; *, 0) and

a, a A b € [0, a] . But Traczyk 114, Theorem 3.5] has shown that there is

a unique way to turn a finite chain into a commutative BCK-algebra so that

the original order and the induced BCK-order coincide. Hence

a*(a A b) = a(a A b) . But in (A; *, 0) , a*{a A b) = a*b and, in

{A; 0) , a(a A b) = ab . Hence a*b is the unique element of height

h(a) - h(a A b) in [0, a] , as asserted.

Some examples of trees of finite height supporting a commutative BCK-

structure have already been studied; see, for example, Ise'ki and Tanaka

[«, Example 5] and Setd [J3].

We now exploit Theorem l.U to study the lattice of subvarieties of a

certain variety of commutative BCK-algebras.
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2. Lattice of subvarieties

For n 2 0 , the polynomials xy are defined inductively by

0 fe+1 r k\
xy = x , xy = [xy }y .

LEMMA 2.1. Let {A; 0) be a commutative BCK-algebra whose under-

lying semilattice is a tree with the descending chain condition. Let

a, b € A and n be a natural number. Then

h{abn) = max.[h(a)-nh(a A b), o) .

Moreover, if a A b > 0 then db = 0 and h{a) > 1 .

Proof. The second assertion is an immediate consequence of the first

assertion. We use induction to establish the first one.

It is evidently true for n = 0 . Suppose m 2 0 and

h{abm) = w>x[Ha)-mh(a A b), o) .

Then

h{abm+1) = h{{abm)b) = h{abm) - h{{abm) A b) = h{abm) - h{{abm) A (a A b))

= 7z(a2>m) - m i n ( ^ ( a b m ) , Ha A fe)) = max{h[abm)-h(a A 2>), o)

= max(max(? t (<z) -mMa A £>), o) -7z(a A b ) , o)

= m a x ( m a x ( 7 i ( a ) - ( m + l ) f t ( a A b), -h(a A 2>) ) , o ) = max(7z (a ) - (m+l )7z (a A fc), o) .
\

The proof is now complete.

We now come to the important role played by trees.

THEOREM 2.2. Let {A; A, 0) be a lower semilattice with smallest

element 0 , which satisfies the descending chain condition. Then the

following conditions are equivalent:

(i) A is a redact of a subdirectly irreducible commutative

BCK-algebra;

(ii) A is a reduat of a simple corrmutative BCK-algebra;

(Hi) A is a tree in which 0 is meet-irreducible.

Proof. Because of Theorem l.U and Lemma 2.1, (Hi) implies (i), in

view of the correspondence between ideals and congruences in any variety of

BCK-algebras. For this correspondence, see the remarks of [4] which
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immediately precede Theorem 2.U, therein; the observation on simplicity is

an immediate consequence, cf. the proof of [4, Corollary 3.2] and also

Iseki [7, Proposition U].

Of course, (ii) follows from (i). The implication (i) °* (Hi) is the

content of Lemmas 5.1 and 5.2 of Romanowska and Traczyk [72]. The fact

that (i) implies that 0 is meet-irreducible is their Lemma 5.1; for a

different explanation involving the notion of prime ideal, see [5, Theorem

*t.3]. Why does (i) then imply that J is a tree? Well, for each a £ A ,

[0, a] is a lattice with the map b •*• ab (£> € [0, a]) as an involution,

due to the commutativity of A , and so a is then join-irreducible in

[0, a] . Thus [0, a] is a chain, and the underlying semilattice is a

tree. This argument is due to Romanowska and Traczyk [J2, Lemma 5.2].

COROLLARY 2.3. A commutative BCK-algebra of finite height is
subdireetly irreducible (simple) if and only if it is a tree with a unique
atom, endowed with the BCK-struoture of Theorem l.U.

In [4], the author showed that the class of BCK-algebras, satisfying

the identity (E ) : xy = xy , is a congruence-distributive variety.

He denoted this variety by E , and the variety of commutative BCK-

algebras by T_ . The variety T_ is also congruence-distributive, see [3,

Section 3] for a list of proofs; in [4, Theorem 3.3], the author extended

the proof of [4, Theorem 2.1] to show that any quasicommutative variety of

BCK-algebras is, in fact, congruence-3-distributive. In order to conform

with the notation of [4] and [5], the variety of commutative BCK-algebras,

satisfying the identity (E ) is denoted by | n E . The fundamental

result on the subdireetly irreducible algebras in this variety has been

proved by Komori [JO, Theorem 3.13] and is discussed immediately before

Lemma 3.U in [4], Using Theorems l.k, 2.1, and Corollary 2.3, together

with Theorem 2.U, we can state:

THEOREM 2.4. The subdireetly irreducible (simple) algebras in the

variety T. n E are precisely those trees of height less than or equal to

n , which possess a unique atom and whose BCK-structure is determined by

Theorem 1.1*.

Proof. Komori's [JO, Theorem 3.13] says that a commutative BCK-chain,
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which sa t i s f i e s (E ) , must have at most n elements.
*• TV

Because of the isomorphism in Theorem 1.1, it is not hard to see that

the set of maximal elements and the unique atom form a generating set of a

subdirectly irreducible algebra having finite height. Sometimes, the

unique atom can be omitted, but no maximal element can ever be eliminated.

Hence, we obtain:

THEOREM 2.5. Each finitely generated subdirectly irreducible algebra

in the variety T_ n E is both simple and finite. Consequently, the

variety T_ n E is locally finite, that is, each of its finitely generated

subalgebras is "finite.

Proof. There are only finitely many finite trees of height n .

The number of non-isomorphic finite trees having a given number of

elements was determined by Cay ley in 1857, according to Knuth [77, p. U05].

By adding a new smallest element to a finite tree, we produce a finite

subdirectly irreducible algebra. Hence, Cay ley's work applies to the

variety % n E ; details are given by Knuth [77, p. 386, pp. 395-396,

Exercises 1-U].

As we mentioned after Corollary 2.3, the variety T_ n E is

congruence-distributive. This fact and Theorem 2.5 allow us to apply

Theorem 3.3 of Davey [6]: the lattice of subvarieties of a locally finite

congruence-distributive variety is isomorphic to the lattice of all

hereditary subsets of the partially ordered set of isomorphism-classes of

the finite subdirectly irreducible algebras; for two representative such

algebras A and B , A S B if and only if ^ is a homomorphic image of

a subalgebra of B . Combining this with Theorem 2.U, we obtain:

THEOREM 2.6. Let P be the partially ordered set of isomorphism-

classes of finite trees with a unique atom and height at most n ; for two

representative such trees A and B , A S B if and only if A is

isomorphio to a subtree of B under a semilattice-homomorphism which

preserves smallest elements. Then the lattice of subvarieties of the

variety T. n E is isomorphic to the lattice of hereditary subsets of

P .
n
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Moreover, each algebra in T n E is isomorphia to a svbalgebra of a

direct power of the tree of height n having at most one atom and

countable many elements covering each of its elements of height

1, , n-1 , if n > 2 , endowed with the BCK-structure of Theorem l.k.

The variety £ n R is the variety of implicative BCK-algebras.

Theorem 2.6 gives the well known result that this variety is equationally

complete and generated by the 2-element algebra. For a history see [2];

another proof was given recently by Comer [/].

From Theorem 2.6 it also follows that the lattice of subvarieties of

T n|^ is a chain of type (0 + 1 . This was established by the author in

[5, Theorem 5.̂ ]» using a different approach. In [5, Theorem 5-3], an

equational base was given for each subvariety of T_ n |j^ : the variety

generated by the tree of height 2 with one atom and n > 1 maximal

elements has an equaltional base which consists of a base for T_ n j:

together with the identity

It would be interesting to find an equaltional base for the variety

generated by a finite (simple) tree.
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