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ABSTRACT 
Basically, the safe dissipation of heat is among others an important protection objective of dual purpose 
casks. Gas-filled gaps within such casks can play a major role for the thermal behavior as they act as 
thermal barriers due to the lower heat conductivity of gaseous fluids in comparison to metallic materials. 
However, additional heat transmission mechanisms, such as natural convection and radiation can also 
occur in a gaseous medium. This leads to both an expanded modelling and a prolonged computing time 
in numerical simulations. Within the scope of a research project in cooperation with Swiss Federal 
Nuclear Safety Inspectorate ENSI a simulation tool for the fast thermal evaluation of dual purpose casks 
is developed which combines analytical methods and FEA. The innovation is that the thermal effects of 
gas-filled gaps are considered by using analytical equations. Main focus lies on the implementation of 
heat radiation as a non-linear transfer mechanism. Therefore, an iterative calculation process is used and 
the effects of the iteration number is investigated. Furthermore, the influence of radiation in comparison 
to pure conduction is examined depending on the gap width. 
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1 INTRODUCTION 

Dual purpose casks (DPC) for nuclear fuel elements have to fulfil several protection objectives, 

according to the guideline TS-R-1 (IAEA, 2005), in order to ensure the safe transport (first purpose) 

and storage (second purpose) of the nuclear material. Basically, these protection objectives can be 

summarized as follows (IAEA, 2005): containment of the radioactive contents, control of external 

radiation levels, prevention of criticality and prevention of damage caused by heat. 

In order to ensure the strict compliance with each objective during an approval procedure, dual 

purpose casks have to proof safety according to special safety cases like drop tests and fire tests. 

Therefore, numerical methods are more and more important in the framework of the cask development 

next to experimental verification processes to meet the high requirements, which are mandatory during 

the approval procedure. 

In case of the protection objective ‘prevention of damage caused by heat’, the cask has to be able to 

safely dissipate the decay heat, which is still generated by the fuel assemblies during transport and 

storage without the use of external cooling systems. In order to ensure the stability and mechanical 

integrity of the cask, the maximum temperature is limited on certain positions and for certain parts, 

due to the fact that the strength of materials decreases as temperature loads increase. At the same time, 

thermal stresses due to different thermal expansion occur. 

Basically, the fuel elements within dual purpose casks are positioned in the basket, which represents 

the inner cask part (Droste et al., 2014). This part is surrounded by a cylindrical shell, which ensures 

subcriticality due to the use of neutron-absorbing materials (e.g. resins) and high mechanical strength. 

At the top, a dual lid system seals the cask, whereas a plate is usually welded to the cask at its bottom 

(Droste et al., 2014), (Ziegler and Allelein, 2013). A loaded cask is about six meters in length, has a 

diameter of about 2.5 to 3 meters and a weight of about 140 tons (Ziegler and Allelein, 2013). An 

exemplary and simplified cask model is shown in Figure 1. In case of the HI-STAR 180 cask designed 

by Holtec International, the temperature is limited for the cladding of the fuel elements (314 °C), for 

the basket (275 °C), for the cask surface (118 °C) and many more positions, such as seals etc. (Holtec 

International, n.d.). 

 

Figure 1. Isometric (left) and cross-sectional (right) view of a simplified cask model including 
lid system, basket, cylindrical shell (outer cask part) and bottom plate 

A particular challenge for efficient numerical analysis regarding the thermal behaviour of DPC poses 

gas-filled gaps. For an inert environment and a high thermal conductivity, DPC are evacuated after 

loading and filled with Helium afterwards. Since not only heat conduction exists as heat transfer 

mechanism in fluids, but convection and heat radiation occur as well, the consideration of gas-filled 

gaps within numerical simulations leads to a higher computational effort as well as to an increased 

modelling expense, which is why such gaps are often neglected or modelled as solid material with 

pure conduction. Additionally, such gaps usually show very small geometrical dimensions in 

comparison to the overall cask dimensions, which makes them even more difficult to consider within 

thermal analyses. One regarded gas-filled gap, which is particularly important for the heat dissipation 

in radial direction, is positioned between basket and cavity wall. Normally, a basic assumption is a 

perfectly centered basket for an upright positioned cask, which leads to an annular gap geometry, as 

Figure 2 shows. For conservative reasons, this is a safe assumption, as maximum temperatures are 

calculated (Koch et al., 2007). 
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Figure 2. Schematic finite-element illustration of the annular gap geometry 

Due to the low thermal conductivity of fluids in comparison to metallic solids and due to the fact that 

convection and radiation exist as further heat transfer mechanisms in fluids next to conduction, such 

gas-filled gaps are more complicated to simulate than pure solid components. 

Within the scope of two research projects a newly simulation tool for the fast thermal evaluation of 

dual purpose casks was developed in cooperation with the Swiss Federal Nuclear Safety Inspectorate 

ENSI, which combines analytical methods and Finite-Element-Analysis (FEA). The innovation 

thereby is that gas-filled gaps are not meshed. Their influence on thermal processes is rather 

considered by using analytical equations. By means of special mathematical algorithms, additional 

functions between nodes can be applied, even though these nodes are not connected by a finite 

element. These functions act similar to constraints and are referred to as thermal gap conditions 

(TGC). By the use of TGC, significant advantages like a decreased modelling effort and reduced 

computing time can be achieved. 

Here, the method of implementing thermal gap conditions is developed for but not limited to DPC. 

The better understanding of the thermal behaviour and the effects of thermal expansion can be crucial 

for many products as thermal stresses can occur and place additional burdens on the strength of 

materials. Therefore, gap conditions can be used to simulate the temperature distribution more 

accurate, whenever the basic geometry of the considered gap is simple enough to calculate it by 

analytical equations, for example in the case of double glazed windows or heat pipe isolations. So, a 

more accurate knowledge of the temperature field can be provided. 

2 DEVELOPMENT OF A SIMULATION TOOL FOR THE THERMAL 

ASSESSMENT OF DUAL PURPOSE CASKS 

2.1 Initial situation and objectives 

Numerical simulations are a crucial part for the development of DPC. At the same time, extensive 

simulations with a high modelling depth are very time consuming both during product development in 

case of product designers and during approval in case of the approval authority. For the latter, a 

simulation tool (ST) was developed and is subject to continuous further development, which allows 

the fast thermal evaluation of DPC for arbitrary boundary conditions and gap sizes, whereas the tool is 

highly automated to ensure an easy and fast use. At the same time, the ST enables the user to consider 

all kinds of heat transfer mechanisms, which would usually require Computational Fluid Dynamics- 

simulations (CFD). Due to the fact, that CFD-simulations solve not only the temperature field, which 

is required to know for the mentioned protection objective, but also the flow field (in case of free 

convection), the computational effort is much higher. 

Furthermore, the ST considers the thermal behaviour of gas-filled gaps automatically. The increase in 

calculation speed is achieved by an analytical consideration of fluid regions, whereas solid cask 

regions are solved using conventional thermal FEA. Both analytical and numerical methods are 

combined for a fast simulation. A first version of this ST was introduced at the International 

Symposium on the Packaging and Transportation of Radioactive Materials (Dinkel et al., 2016) in 

2016. For this, radiation as a non-linear heat transfer mechanism (see Equation 1) was neglected and 

solely conduction and convection was implemented. For verification purposes a test bench was build 

and the functioning of the simulation tool could be verified successfully, see Chapter 2.4. 

The basic physical correlation of radiation is given in Equation 1. For a heat transfer Q caused by 

radiation, C12 symbolizes the radiation exchange number, which is defined by the emissivity 
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coefficients of the participating surfaces and the Boltzmann constant, A represents the surface and T1 

and T2 the temperature values (Incropera et al., 2007). 

4 4

12 1 2( )Q C A T T  (1) 

As Equation 1 shows, heat transfer by radiation is non-linear, which makes it more complicated to 

consider within simulations. Furthermore, Equation 1 indicates that the influence of radiation gets 

bigger with an increasing gap width, as in this case the temperature difference at the gap rises and a 

greater amount of heat can be transported by radiation. 

Despite the non-linearity, a new version of the ST is presented here, which includes radiation as a 

further heat transfer mechanisms within fluids analytically. At first, the functioning of the simulation 

tool in combination with the thermal gap condition is discussed in Chapter 2.2 to show the 

implementation of radiation together with conduction and convection on an analytical basis. After that, 

the influence of radiation on the thermal behaviour of dual purpose casks is analysed in Chapter 2.3. 

2.2 Thermal gap condition 

In order to bridge unmeshed areas within Finite-Element-Analysis, a special mathematical function 

needs to connect the divided parts in the absence of finite elements in this area. The basic principle is 

illustrated in Figure 3. It can be seen, that both basket (inner cask part) and cylindrical shell (outer 

cask part) are meshed using Finite-Element principles. Both parts are divided by an annular gap in 

case of upright positioned casks (see also Figure 2). The gap is equipped with a gap condition, which 

connects inner and outer parts (see dashed lines in Figure 3). 

 

Figure 3. Illustration of the thermal gap condition for bridging the unmeshed area of an 
annular gas-filled gap 

Therefore, a modified form of the perturbed Lagrange method is used (Cook et al., 2002). Frequently, 

the perturbed Lagrange or perturbed Lagrange multiplier method is applied for solving contact 

simulations, which means, that this method is able to connect divided parts by inserting additional 

equations in the mathematical equation system of FEA (Rust, 2011). Basically, the ST performs a 

conventional thermal FE-simulation. Therefore, the conductivity matrices of inner and outer cask part 

are compiled and the boundary conditions are inserted in the numerical system of equations. After this 

is done, the gap conditions are implemented by adding additional rows and columns to the equational 

system. This can be shown by using an easy example of two thermal truss elements divided by a gap, 

see Figure 4, wherein the nodes number 2 and number 3 have to be connected. As gap condition, it is 

defined that the temperature values at node number 2 and 3 are equal. 

 

Figure 4. Minimal example of two trusses divided by a gap for the fundamental functioning 
of the perturbed Lagrange method 
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By considering the exemplary boundary conditions in Figure 4 (temperature value of 30 for node number 1 

and temperature value of 10 for node number 4), the temperature solution for node 2 and 3, on condition that 

the same element geometry and material properties are used for both truss elements, has to be of the value 20, 

as far as the gap condition is satisfied. This solution is also successfully calculated by the simulation tool. 

As stated before, bridging the gap can be reached by inserting additional equations to the equation system. 

This is done by adding one additional column and row for each node pair which should be connected, as 

Equation 2 states for instance. 

In Equation 2, the basic equation system for thermal FEA is shown, which solves the unknown 

temperature vector T with the help of the conductivity matrix K and the heat flow vector Q. Within 

matrix K, 
e

IK  and 
e

IIK  represent the element conductivity values for element I and II. In case of 

truss elements, which are not connected, the first four rows and columns of matrix K would describe 

the unconnected system. 

1 1

2 2

3 3

4 4

0 0 0

0 0 1

0 0 1

0 0 0

1
00 1 1 0

e e

I I

e e

I I

e II

II e

e e

II II

pL

K K
T Q

K K
T Q

K K
T Q

K K
T Q

KT Q (2) 

The fifth row and column shows the functioning of the perturbed Lagrange method and introduces an 

additional equation in order to connect the gap nodes of the minimal example. By the use of the factors 1 

and -1, the demanded gap condition is fulfilled, as the same temperature value is required for the nodes 2 

and 3. In case of the perturbed Lagrange method, the penalty factor  on the fifth diagonal element in 

matrix K is used to improve the numerical solvability of the system. For deeper information, see (Cook et 

al., 2002) and (Zienkiewicz et al., 2013). Summarized, it can be said, that by this method linear, analytical 

equations can be inserted in FEA. 

2.2.1 Conduction and convection 

As stated before, a first version of the simulation tool considered only conduction and convection as heat 

transfer mechanisms in fluids, whereby radiation was neglected. Therefore, the basic gap condition 

equations are given in this chapter, whereas the extension of the TGC involving radiation is described in 

Chapter 2.2.2. 

In case of conduction and an annular gap geometry, an analytical equation describes the influence of the gas-

filled gap depending on the temperature values at the gap, see Equation 3, generally named 
OPT  (index OP: 

outer part) and 
IPT  (index IP: inner part) (Dinkel et al., 2016), (VDI, 2013): 

ln
2

OP
OP IP

Fl IP

rQ
T T

l r
 (3) 

Here, λFl marks the thermal conductivity of the fluid in the gap, which usually is Helium for dual 

purpose casks. Additionally, l  stands for the gap width, Q  for the heat flow from inner to outer part 

and 
OPr  and 

IPr  for the radius of inner and outer part. 

For the consideration of convection, the fluid conductivity value is manipulated by the use of the 

Nusselt number Nu , which is a dimensionless number for the existence of natural convection (VDI, 

2013). Therefore, the Nusselt number is multiplied with the former value of the fluid conductivity 

λFl and a new, fictive conductivity λCC is implemented in the gap condition function shown in 

Equation 3 (index CC: conduction and convection): 

CC FlNu  (4) 

To do so, the Nusselt number is calculated automatically by the simulation tool using empirical equations of 

Müller (Müller, 1999). For Nusselt numbers larger than 1, equation 4 will be applicable, if not, the value of 

Nu  is set to 1, which means that no natural convection exists within the gap. No user interaction is needed 

for the correct choose of the thermal gap condition. 
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2.2.2 Radiation 

As for the perturbed Lagrange method only linear equations are possible to consider, radiation cannot be 

implemented in its original form which was shown in Equation 1. Therefore, radiation has to be linearized 

for the use as gap condition. This can be done in a similar way as convection is considered as well. 

According to VDI Wärmeatlas (VDI, 2013), a fictive heat transfer coefficient for radiation can be 

calculated, if the heat transfer mechanisms are considered as being independent from each other, as the 

following equation shows: 
3

124R mlC T  (5) 

Herein, 
mT  represents a mean temperature value for one node pair, where a gap condition has to be 

equipped. The remaining parameters have already been explained. Using this newly calculated heat transfer 

coefficient for radiation, it can be added to the combined conductivity of conduction and convection 
CC

, 

whereby again a new conductivity value for the fluid in the gap is calculated (VDI, 2013): 

RCC CC R
 (6) 

This new value 
RCC

 (Index RCC: radiation, conduction and convection) can be implemented in the 

basic gap function of pure conduction shown in Equation 3. Doing this, the final gap function, 

which is integrated using the perturbed Lagrange method, is still a linear equation.  But as Equation 

5 states, a mean temperature must be known for the calculation of the heat transfer coefficient for 

radiation 
R
, which is not possible as the temperature in the gap is not known unless the system is 

solved. Therefore, an iterative approach has to be chosen. For this reason, the new simulation tool 

uses for a first iteration pure conduction as heat transfer mechanism and solves the temperature 

distribution in the cask. This way, the temperature values for the gap nodes are already known. 

Now, this results can be used to calculate the mean temperature 
mT , based on pure conduction. For a 

second iteration, 
mT  owns an initial value and radiation is considered as well for the TGC. 

Therefore, it has to be investigated, how an appropriate value for the amount of iterations can be 

found. This is done in Chapter 2.3. 

A further challenge is the required calculation of view factors. View factors are defined as the proportion of 

a radiation heat flow emitted from surface 
1A  that hits surface 

2A . For this reason, the view factor 
1 2F  

between two random surfaces 
1A  and 

2A  with the Euclidean distance s  can be calculated by (VDI, 2013): 

2 1

1 2
1 2 1 2

1

cos cos1

²A A
F dA dA

A s
 (7) 

The two angles 
1
 and 

2
 describe the respective angle between the surface normal vectors and the 

connecting line between both surfaces, as given in Figure 5 (VDI, 2013): 

 

Figure 5. General calculation of the view factor between two random surfaces following 
(Incropera et al., 2007) 

View factors have to be included for calculations, if only a part of the heat flow through radiation emitted 

by a surface can hit another surface. For this case, Equation 1 is extended (VDI, 2013): 
4 4

12 12 1 1 2(  )Q F C A T T  (8) 
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For this reason, the calculation effort for FEA simulation considering radiation - even if it is linearized - 

increases due to the fact, that the geometry of the participating parts have to be checked for their view 

factors. In case of the developed simulation tool, this was done both for an annular and a crescent gap 

geometry, whereby only annular gaps are evaluated within the frame of this paper. Because the use of 

radiation means an increase of computational effort, it can be disabled within the simulation tool for a faster 

but more inexact calculation. 

2.3 Exemplary cask simulations 

Using exemplary cask simulations, the influence of radiation on the total heat dissipation can be seen. As 

many design information of DPC are confidential, the cask model derives from public available 

information only. It follows the HI-STAR 180 DPC, which is designed by Holtec International, in a 

simplified way, as only basic geometrical dimensions are publically available (Holtec International, n.d.). 

On this basis, the cask model is reduced to three components: basket (conductivity 200 /B W mK ), 

basket attachment ( 50 /BA W mK ) and cylindrical shell ( 8 /CS W mK ). The lid system as well as 

the bottom plate is neglected within these analyses. In the following, upright positioned casks with an 

annular gap geometry are evaluated in terms of the proportion of radiation on the heat dissipation and in 

terms of the numerical stability of the implemented iterative calculation of radiation. Therefore, Figure 6 

shows the used cask model. It contains heat sources of 31.76 kW in total, which are distributed over the 

several fuel element slots (see arrows in Figure 6) according to a HI-STAR 180 loading plan (Holtec 

International, n.d.). On the outer cask surface a convection boundary condition is applied using a heat 

transfer coefficient 8  / ²  W m K  and an ambient temperature 20 T C (see dashed line around the 

cask in Figure 6). All attached boundary conditions are distributed evenly over the height of the cask. The 

FE-model consists in total of 430,680 degrees of freedom and 334,224 linear hexahedron elements (basket: 

212,652 elements; basket attachment: 98,064; cylindrical shell: 23,508), which are capable of performing 

thermal and thermo-mechanical simulations. As the used model shows a rotational symmetry regarding 

both the boundary conditions and the mesh, the resulting temperature distribution is also expected to be 

rotationally symmetric. 

 

Figure 6. FE-model of the exemplary cask including component names, boundary conditions 
(heat source on each basket wall and convection boundary condition at outer cask surface) and 

the location of an examined gap node pair 

At first, the influence of the iteration amount is evaluated, as the implementation of radiation entails an 

iterative solution process. Therefore, both the maximum cask temperature 
maxT  and the nodal temperature 

of one exemplary node pair ( , node IPT  and , node OPT , see Figure 6 for nodal position) is compared and displayed 

in Table 1. A gap width of 10 mm is used for this evaluation. 
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Table 1. Influence of the iteration number on the maximum cask temperature and on one 
gap node pair in °C 

Iteration 

number 

2 4 6 8 10 

 
maxT  288.9627 289.9825 289.9846 289.9846 289.9846 

 
, node IPT  260.1907 261.2100 261.2120 261.2120 261.2120 

 
, node OPT  217.4769 217.4795 217.4795 217.4795 217.4795 

It can be seen, that there is very little influence of the iteration number for the implementation of radiation 

on the maximum temperature and as well on the nodal temperature of one node pair, which is connected by 

a thermal gap condition. For an iteration number of 4, no more changes exist in comparison to an iteration 

number of 10. The difference between the iteration numbers 2 and 4 is about 1 Kelvin maximum, 

wherefore in the following simulations only two iterations are used as long as radiation is considered in 

order to achieve a low simulation time. This means, that the consideration of radiation does not change the 

temperature of the gap nodes very much, because the conductivity 
CC

 is significantly bigger than 
R
 for 

this example (see Equation 6), which leads to a good convergence. 

The marginal deviations between the different iteration numbers can also be seen in Figure 7. Here, the 

temperature distribution for iteration number 2 (Figure 7, left) and iteration number 10 (Figure 7, right) is 

given. For both temperature distributions, the scale is unified. It therefore appears, that the choice of an 

iteration number of 2 is sufficiently accurate in case of this simulation tool as not only the maximum cask 

temperature diverge only very little, but also the qualitative temperature distribution matches. 

 

Figure 7. Comparison of the temperature distribution in °C for the iteration number 2 (left) 
and 10 (right) 

Subsequently, the next step is the quantification of radiation as a heat transfer mechanism itself in 

comparison to pure conduction. This is done in combination with a variation of the gap width (2, 4, 

6, 8 and 10 mm), because the real gap width during operation is unknown due to thermal expansion 

and production tolerances. As criteria, the maximum cask temperature is compared (Tmax,C: pure 

conduction; Tmax,RC : radiation plus conduction). Therefore, the same Finite-Element model is used, 

except the gap width is adapted each time. Table 2 shows the maximum temperature of each 

simulation together with the deviation between the single heat transfer mechanisms. 

Table 2. Influence of radiation and gap width on the maximum temperature in °C 

Gap width 2 mm 4 mm 6 mm 8 mm 10 mm 

 , max CT  260.41 273.57 286.73 299.89 313.05 

 
, max RCT  259.23 269.09 277.16 286.71 288.96 

Deviation 0.46 % 1.66 % 3.45 % 4.59 % 8.34 % 

These results illustrate that the influence of radiation is higher, the bigger the gap width is. At the same time, 

the deviation between pure conduction and the combined consideration of conduction and radiation is not 

bigger than 8.34 % for this exemplary simulation. For instance, the temperature distribution for two gap 
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widths is given in Figure 8 (left: 10 mm, right: 2 mm) by considering both conduction and radiation as gap 

condition. Here, the temperature distribution is significantly influenced by the assumed gap width. For both 

temperature distributions, the scale is unified. Because of the small geometrical dimension, the gap width of 

2 mm (Figure 8, right) can hardly be detected. 

Summarized it can be said, that for more exact results, radiation should be applied as a gap condition, but may 

be neglected, if a very fast simulation speed is aimed. Furthermore, the non-consideration of radiation always 

produces conservative temperature results, as the maximum temperature is higher for conduction only. 

 

Figure 8. Comparison of the temperature distribution in °C for the gap width of 10 mm (left) 
and 2 mm (right) 

2.4 Test bench comparison 

In order to validate the thermal gap condition for combined heat transfer mechanisms, a test bench was 

designed, which represents a downscaled (scale approximately 1:10) and simplified DPC. The gap 

geometry itself is not downscaled. The test bench owns an annular gap of 10 mm width. Basically, the test 

bench consists of two concentric cylinders, which build the gap geometry. At the top, a lid system closes 

the test bench, whereas a plate is welded to the bottom. In the centre, a heating tape is able to heat up the 

test bench and the fluid in the inside up to 200 °C. For a better accordance with reality, the test bench is 

evacuated and filled with Helium afterwards, which means increased leak tightness requirements. 

Thermocouples are equipped at and in the gap to monitor the temperature distribution at several positions. 

The basic test bench components are modelled for a FE-simulation using the newly developed ST 

including thermal gap conditions for conduction, convection and radiation. Two temperature levels are 

compared between measurement and simulation: 200 °C and 150 °C. These values mean that the 

temperature at the inner gap wall is 200 °C or 150 °C. As boundary conditions, a convective heat transfer is 

defined for the outer test bench wall (heat transfer coefficient 8 / ²W m K , ambient temperature 

23 T C), whereas a heat flow of 280 W (temperature level 200 °C) respectively 195 W (temperature 

level 150 °C) represents the heating tape of the test bench. Each measurement takes place when the heating 

phase is over and a stationary temperature distribution can be seen. Both temperature levels are measured 

four times, whereas the temperature values are averaged. Table 3 shows the results of the comparison of 

test bench (Index TB) and simulation values (Index ST) regarding the temperature difference in the gap for 

the temperature level of 200 °C, measured at three positions (position 0°, 90° and 180°, see Figure 1) along 

the circumference of the gap. 

Table 3: Comparison of measured temperature values at the gap and simulated results for 
the temperature level of 200 °C 

 Position 0° Position 90° Position 180° 

,Gap STT  in K 35.75 35.75 35.75 

,Gap TBT  in K 40.65 40.82 38.40 

Absolute deviation in K -4.90 -5.06 -2.65 

Relative deviation in % -12.05 -12.41 -6.90 

It can be seen, that the biggest absolute deviation is about -5 K, which is equivalent to -12.4 % relative 

deviation. The temperature level of 150 °C, which is not shown in Table 3, provides similar results (biggest 

absolute deviation: -5.01 K). These deviations are considered as acceptable. 
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3 CONCLUSION AND OUTLOOK 

Thermal Finite-Element simulations of dual purpose casks are highly important for the assessment of the safe 

operation. Such simulations which consider gas-filled gaps, would increase the modelling and computational 

efforts significantly. Because of this, a simulation tool is developed which is able to provide an approximated 

thermal evaluation of dual purpose casks based on an analytical approach for the consideration of gas-filled 

gaps, which is implemented in the numerical FEA. Therefore, radiation was neglected in the first place due to 

its non-linear behaviour, but was now included as well as an iterative process for the thermal gap condition. 

As it can be seen in this work, radiation influences the maximum temperature as the value decreases if 

radiation is considered as a further heat transfer mechanisms. The influence of radiation is higher, the bigger 

the gap width is. For the exemplary simulations presented in this paper, the deviation between pure 

conduction and the combined consideration of conduction and radiation is not bigger than 8.34 %. 

Furthermore, the consideration of radiation means in effect an iterative calculation process and thus an 

increase of calculation effort. It could be shown that an amount of two iterations is sufficiently precise in the 

framework of such thermal analyses of casks, as the maximum temperature value fluctuates only slightly 

depending on the iteration amount. 

In general, the consideration of radiation leads to a better knowledge of the temperature distribution and the 

peak temperatures within the cask. This allows an optimized cask loading, which becomes more important in 

the future, as more high active fuel elements have to be stored. 

Currently, further gap geometries are evaluated, which means that further thermal gap conditions have to be 

build. A crescent gap geometry, which can be observed in case of lying casks, is of particular interest for the 

future work. 
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