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Abstract In this paper, we prove the following result advocating the importance of monomial quadratic
relations between holomorphic CM periods. For any simple CM abelian variety A, we can construct a
CM abelian variety B such that all non-trivial Hodge relations between the holomorphic periods of the
product A x B are generated by monomial quadratic ones which are also explicit. Moreover, B splits over
the Galois closure of the CM field associated with A.
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1. Introduction

Let Q be the algebraic closure of Q in C. All varieties in this paper are supposed to be
defined over Q unless otherwise stated.

1.1. Background

Let A be a square free abelian variety of dimension g with complex multiplication by a
CM algebra F =End(A) ® Q. Then [E: Q] =2g. Let Op be the ring of integers of E. Let
® = {¢1,....,04} be the associated CM-type. Then Hom(E,C) = ®U®P and A is isogeneous
to C9/T with T'=®(Opg).

Let {w1,...,wq} be an E-eigenbasis of the space 4 of holomorphic one forms on A4,
i.e. e-w; = ¢;(e)w; for all e € E and j € {1,...,¢}. Shimura [Shi77, Rmk. 3.4] proved
that 0; := fv w; is independent of the choice of v € Hi(A,Z) up to multiplication by an
element in Q and is non-zero for some 7. Thus we obtain ¢ non-zero complex numbers
0(A,¢1) == 04,...,0(A,¢4) := 0, well-defined up to @X. These numbers are called the
holomorphic periods of A.

We also have the antiholomorphic periods Q(A@j) = f%_ n; for n; being the complex
conjugation of w;. To simplify notation, for two complex numbers z; and z2, we write
21~ 29 if 25 = az; for some a € Q. Then 9(A,¢j)9(A,$j) ~2ri for each j € {1,...,9}, by
the reciprocity law for the differential forms of the 1st and the 2nd kinds (see for example
[Ber83, pp.36, equation (3)]).

It is a fundamental question to study the transcendental properties of the periods, and
we can often reduce to study the holomorphic periods 6; = 6(A,¢;) since §(A, ¢j)9(A,$j) ~
2mi. The expectation is given by Grothendieck’s Period Conjecture, which in our case
predicts that trdeg@(Qm,Hl,...,Gg) = dimMT(A) and that all the algebraic relations
between these periods are Q-linear combinations of the elementary relations. Here MT(A)
is the Mumford-Tate group of A. We refer to [And04, 7.5] for a detailed discussion on
the Grothendieck period conjecture.

An algebraic relation between the 6;’s is called elementary if it is of the form

m1(917...,99) >~ m2(91,...,99)

for two monomials m; and mo in the §;’s.
Grothendieck’s Period Conjecture for CM abelian varieties is still widely open. The
known results are:
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Hodge cycles and quadratic relations of CM periods 3

(1) (Wiistholz [Wiis89]) There are no Q-linear relations between the holomorphic
periods, i.e.

g
dimg» " Qb; =g.
j=1

In particular the 6;’s are transcendental numbers.
(2) (Deligne [Del80]) The transcendence degree

trdeg@(Qm',@l, NN ,99) < dlmMT(A)

In [GUY24], we proposed a framework to study the quadratic relations between the
holomorphic periods. In particular, we proposed a hyperbolic analytic subspace conjecture
[GUY24, Conj. 1.8] — the analogue of Wiistholz’s analytic subgroup theorem in the context
of Shimura varieties, and explained [GUY 24, Prop. 1.9] how this conjecture implies that all
quadratic relations between the holomorphic periods are Q-linear relations of elementary
quadratic relations, i.e. those of the form 606, ~ 0,0, with {j,5'} # {k,k"}.

1.2. Main result and digest

The purpose of this text is to advocate for the importance of the quadratic relations
between the holomorphic periods. Our main result is the following theorem. It indicates
that all non-trivial algebraic relations between holomorphic periods are generated by
elementary quadratic relations, i.e. are Q-linear combinations of products of elementary
quadratic relations; see §1.2.2 for a precise meaning of this digest.

Theorem 1.1. Let A be a simple CM abelian variety associated with the CM field
E:=End(A)®Q. Then there exists a CM abelian variety B, split over E°, such that
all non-trivial Hodge relations between the holomorphic periods of A x B are generated by
the elementary quadratic ones induced by (2,2)-Hodge cycles on A x B.

Moreover, given an A, the abelian variety B and all the Hodge relations can be explicitly
computed. They are constructed using CM abelian varieties of generalized anti-Weyl type,
with the quadratic elementary relations explicitly expressed in combinatoric terms. See
§7.1, Theorem 7.1 and (7.2) for more details.

We need to explain many terminologies in Theorem 1.1.

(i) The field E¢ is the Galois closure of the CM field E in Q;

(if) Meaning of B is split over E°: Each CM subfield of the CM algebraic End(B)® Q
is isomorphic to a subfield of E¢;

(iii) The definition of Hodge relations will be given in Definition 1.3. Roughly speaking,
it means all the algebraic relations induced by Hodge cycles on any power of A x B.

To make our discussion more precise, let us introduce the ring homomorphism
ev:@[Xl,...,Xg]—MC, Xjr—>9j. (11)

Its kernel is the ideal of all the algebraic relations between holomorphic periods, which
we denote by Rag.
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1.2.1. DeRham—Betti classes and elementary algebraic relations. FEach CM
abelian variety A is defined over Q. The Betti cohomology V := H'(A,Q) is a Q-vector
space and the de Rham cohomology W := HéR(A) is a Q-vector space. We have a
comparison isomorphism

B: Hig(A)®gC=We — H'(A,Q)®qC = Ve. (1.2)

Definition 1.2. A de Rham-Betti class of A is a pair (e, f) with e € W®n, f € Vg" for
some even integer n such that

BE™(e) = (2mi)? f.

We claim that each de Rham-Betti class produces some elementary algebraic relation
between the holomorphic periods of A, i.e. a relation of the form

m1(91,...,99):/\m2(91,...95) (13)

with A € Q, and m4,m2 monomials in the 0;’s. Indeed, this follows immediately from the
fact that S is diagonalized to be (91,...,99,%,...,%) under suitable E-eigenbases of
Hjn(A) and of H'(A,Q). We refer to §2.5 for more details.

1.2.2. Hodge cycles, Hodge relations and various algebraic relations. Deligne
[Del80] proved that every Hodge cycle on an abelian variety is absolute Hodge. So for
any pair of non-negative integers (k,r), any Hodge cycle in H2¥(A" Q)N Har(A",C)*:F
produces a de Rham-Betti class, and thus induces an elementary algebraic relation
between the holomorphic periods of A. Notice that some of the relations are trivial, for
example, any (1,1)-Hodge cycle on A gives relations of the form 6(A,¢;)0(A,¢;) ~ 2mi.
When passing to holomorphic periods we only get the trivial equality 6; = 0;.

Denote by Rpodge the ideal generated by all such algebraic relations between the
holomorphic periods of A.

Definition 1.3. Each algebraic relation between the 6;’s induced by a Hodge cycle on
A", for some r > 1, is called a Hodge relation between the 6;’s.

While Hodge relations may arise from any power of A, in our terminology the quadratic
ones arise from Hodge cycles on A. We also remark that different Hodge cycles on A may
give the same Hodge relation, for example, two Hodge cycles a and a Ao’ with o a
(1,1)-Hodge cycle.

For each r > 1, any algebraic cycle on A” gives a Hodge cycle on A” and therefore a de
Rham-Betti class of A. Denote by Raig—cycle (resp. Rar—g) the ideal of algebraic relations
between holomorphic periods of A given by all the algebraic cycles on powers of A (resp.
by all de Rham—Betti cycles on A). Denote also by Reem the ideal of all elementary
algebraic relations between holomorphic periods of A. Then we have

Ralgfcycle - RHodge - RdeB - Relem c Ralg~ (14)

The first inclusion is expected to be an equality as a consequence of the Hodge conjecture.
All the other inclusions are expected to be equalities by Grothendieck’s Period Conjecture.
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Recall that a simple CM abelian variety A of dimension g is said to be non-degenerate
if dimMT(A) =g-+1 and to be degenerate otherwise. If A is non-degenerate, then Hodge
conjecture holds for A and the Hodge ring is generated in degree 1, i.e. by classes of
Cartier divisors. The relations given by Hodge cycles in H?(A,Q) N HY(A,C) are the
relations between holomorphic and anti-holomorphic periods of the form

0(A,0)0(A,¢) ~ 2mi.

No Hodge relations between holomorphic periods exist, or equivalently Rpodqge = 0 in this
case.

If A is degenerate, then g+ 1 > dimMT(A) > log, g+ 2 [Rib80, 3.5], so there exist
Hodge relations between holomorphic periods of degree > 2 which are not obtained by
cup product of classes of divisors.

1.3. Relation with the bi-Q-structure on Shimura varieties developed in
[GUY24]

For a CM abelian variety A of dimension g > 1, let [0] € A4(Q) be a point parametrizing A.

In [GUY24, Cor. 7.5], we proved that the existence of non-trivial elementary quadratic
relations between holomorphic periods of A is equivalent to the existence of bi-Q-
subspaces of Tj,)A, which are not direct sum of root spaces. We go further and propose
the following conjecture.

Conjecture 1.4. The following are equivalent:

(i) There exist non-trivial elementary quadratic relations between the holomorphic
periods of A;
(ii) There exist r > 1 and a Shimura subvariety S of Ay, with the following property: S

contains the point [o] := ([o],...,[0]), and Tjo)S is not the direct sum of root spaces
Of T[O] Ag .

We refer to the comment above [GUY24, Cor. 7.5] for the definition of root spaces.

We will prove this conjecture when A is of generalized anti-Weyl type in §9, where an
explicit construction of a Shimura subvariety S will be given based on some non-trivial
quadratic Hodge relations between the holomorphic periods.

1.4. Organization of the paper

In §2, we recall some basic facts about CM pairs, CM abelian varieties, their reflex pairs
and their periods. In particular, we will explain how to read off algebraic relations between
their periods from the kernel of the reciprocity map. In §3 we will recall the definition
of Hodge rings of CM abelian varieties and explain how to relate it to the kernel of the
reciprocity map. We also introduce one of the main tools used in our paper, a theorem
of Pohlmann [Poh68, Thm. 1], to compute Hodge rings of CM abelian varieties.

The core of our paper is §4-7.

In §4, we start by reviewing the theory of CM abelian varieties of Weyl type [CO12],
sometimes called Galois generic [CU06]. They are simple CM abelian varieties with
maximal Galois group and their Mumford—-Tate groups are maximal tori. Then we will
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study their reflexes, called of anti- Weyl type, and compute the reflex CM types. An anti-
Weyl CM abelian variety A has dimension 297! and its Mumford-Tate group MT(A)
has dimension g+ 1, and thus the lower bound dimMT(A) > log,dim A+ 2 [Rib80, 3.5]
is attained. From the Hodge theoretic point of view, CM abelian varieties of anti-Weyl
type are thus very interesting. We will compute the kernel of the reciprocity map of
CM abelian varieties of anti-Weyl type in §5. This kernel gives explicit algebraic relations
between the holomorphic periods of A. We find as a consequence, an explicit set (6, ...,0)
of g4+ 1=dimMT(A) periods of A such that any other period of A is algebraic over
Q(bo,...,0).

In §6, we define CM abelian varieties of generalized anti- Weyl type, using combinatoric
data, and show that every simple CM abelian variety can be realized as a factor (up
to isogeny) of a generalized anti-Weyl CM abelian variety. Then we compute Hodge
ring and Hodge relations of generalized anti-Weyl type CM abelian varieties in §7.
The computation is inspired by those in §5, and this ultimately proves our main result
Theorem 1.1.

In §8, we will present an explicit computation for Theorem 1.1. More precisely we will
present an example to show how to find the auxiliary abelian variety B and to compute the
Hodge relations in degree 2 which generate all the Hodge relations between holomorphic
periods of A x B.

In the end in §9, we relate the elementary quadratic relations between holomorphic CM
periods to the theory of bi-Q decomposition of Shimura varieties which we developed in
[GUY24].

2. General discussion on CM abelian varieties and their periods

In this section, we recall some standard facts and results on CM pairs and CM abelian
varieties.

Let A be a CM abelian variety of dimension g, i.e. an abelian variety A such that
End(A) ® Q has a commutative Q-subalgebra of dimension 2g.

2.1. CM pairs

A number field F is called a CM field if it is an imaginary quadratic extension of a totally
real number field. A CM algebra is a finite product of CM fields. A CM type on a CM
algebra E is a subset ® = {¢1,...,¢,} C Hom(F,C) such that Hom(E,C) = ®U P (where
® = {1,...,04} is the complex conjugate of ®).

A CM pair is a pair (E,®) consisting of a CM algebra F and a CM type ®. Two
CM pairs (E,®) and (E’,®’) are said to be isomorphic if there exists an isomorphism
a: E— E' of Q-algebras such that ¢o« € & whenever ¢ € ®’. To each CM pair (E, D),
we can associate a CM abelian variety A(g, ¢) := ClEQ/2/®(Og) with O the ring of
integers of E. It is known that A (g ¢) is defined over Q.

A CM pair (E,®) is said to be primitive if there does not exist a proper sub-CM algebra
Ey of E such that ®|g, :={¢|g, : ¢ € P} is a CM type on Ey. A CM pair (E,®) is primitive
if and only if A (g, ¢) is simple.
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Finally, the Galois closure E¢ of a CM algebra E is defined as follows: E = EJ"" X -+ x
E}m with each E; a CM field, and E* is defined to be the composite of the Galois closures
of Ei,...,Ep, in Q. Then the Galois group G := Gal(E¢/Q) acts on Hom(E,C) = ® L.

2.2. CM pair associated with A
We say that A is associated with a CM pair (E,®), if A is isogeneous to Ap ) =
Cl®l/®(0F) with O the ring of integers of E.

Assume A is simple, then E:=End(A)®Q is a CM field of degree 2g. It is well-known
that there exists a CM type ® on F such that A is associated with the CM pair (E,®),
this CM pair (E,®) is primitive, and each primitive CM pair is obtained in this way.

In general, A is isogenous to AY* x ---x A" for some pairwise non-isogenous simple
abelian varieties A1,...,A,,. Each A; is associated with some CM pair (E;,®;) with E;
a CM field. Set E := E7* x -+ x El'™  with EJ(-k) the k-th component of E;Lj and p;-k) the

natural projection F — E;k), and
Lin; Un k
o:=| |9, where )" := {®;0p" ke {1,...,n;}}. (2.1)
j=1

Then (E,®) is a CM pair and 4 is isogeneous to A(g,¢) = C9/®(Of) with O = OF} x
- x O, So A is associated with (E,®).

2.3. Algebraic tori associated with A
Use the notation from last subsection. In this subsection, we associate with A three
algebraic tori MT(A) CT C E* defined over Q.

Let V = HY(A,Q). It is a Q-vector space of dimension 2g with a polarization 1 which
is a non-degenerate anti-symmetric pairing V xV — Q.

The first algebraic torus is E* := (Ey*)™ x--- x (E))", where E;* := Resg, /G, ;-
Assume m =1 and n; =1, i.e. A is simple. Then the action of £ = E; on V makes
V into a one-dimensional E-vector space. Therefore E* acts on V and every character

of E* occurs with multiplicity 1 in V. In this case, the group of characters of E is
X*(E*)=Z[Hom(E,C)| = ®ypcaZd P DycaZe. For arbitrary A, we still have

X*(E*) = @peale@P DocaZo.
Thus E* can be identified with the diagonal torus of GL(V¢), under
Ve = @¢€¢VC’¢®®¢Q¢V©$. (2.2)

The second algebraic torus T is defined as E* (\GSp(V,%), and is a maximal torus of
GSp(V,%) and hence has dimension g+ 1. The restriction of the morphism A: GSp,, —
Gu, h—det(h)'/9, to T is a character ¢y € X*(T) = Hom(T,Gy,). By abuse of notation
we write ¢ for ¢|r for each ¢ € . The character group of T is

X*(T) = Zeo P @pcaZs. (2.3)
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Note that T splits over the Galois closure E€ of E, i.e. Tge =~ anféc. Hence the Galois
group Gal(E°/Q) acts on X*(T).

Before moving on, let us point out that the cocharacter group of (E;)™ x --- x (EX)"™
resp. of T, can be written in the same way as the character group, and hence contains
the element €.

Finally, let us turn to the Mumford—Tate group of A denoted by MT(A), i.e. the smallest
Q-subgroup of GL(V') such that the map a: S — GL(V)g defining the Hodge structure
on V factors through MT(A)g. It is known that «(S) C ((E;)™ x --- x (E)X)")r and
a(S) C GSp(V,y)r. Hence MT(A) C T

Lemma 2.1. The cocharacter group X.(MT(A)) is the saturation in X.(T) of the
Z|Gal(E*/Q)]-submodule generated by _ ,cq ¢-

Proof. Let p: Gy,c — GL(V)c be z— ac(1,%), where ag is the base change of the map «
to C. By general knowledge of Hodge theory, MT(A) is the smallest Q-subgroup of GL(V')
such that y factors through MT(A)c. A classical computation shows that =3, 4 ¢ is
a cocharacter of T. Hence the result follows because T is split over E°. O

2.4. Reflex

Let (E,®) be a CM pair, and let E¢ be the Galois closure of E (see the end of §2.1 for
definition). Then for each o € G := Gal(E°/Q), the set 0@ :={co¢: ¢ € D} is still a CM
type on E. Thus we can define the stabilizer Stabg(®) of @

The reflex field E* of (E,®) is defined to be (E°¢)St#Pc(®) One can also characterize
E* as the subfield of £ generated by the elements 4 ¢(a) with all a € E. Note that
Gal(E°/E*) = Stabg ().

The reflex CM type on E* is defined as follows. We have Hom(E*¢,C) = Hom(E*, E*)
G. Thus @gc :={oc € G:0|g € P} C G is a CM type on E°. Hence under Hom(E*,C) ~
G/Stabg(®), the set ®* := {0~ Stabg(®) : 0 € G with o|g € ®} is the reflex CM type
on E*.

We call (E*,®*) the reflex CM pair of (E,®). Note that E* is a CM field, in contrast
to E. Better, (E*,®*) is a primitive CM pair.

The reflex norm is the morphism

rec: (E*)* = E*, aw Hweqw ¥(a). (2.4)

Notice that this morphism can be viewed either as a homomorphism of groups or a
morphism of algebraic tori defined over Q.

Now assume (E,®) is a primitive CM pair. Then (E**,&**) = (E,®). Moreover,
MT(Ag,¢)) =~ MT(A (g~ ¢-)), and the image of rec is MT(A (g, 4)).

2.5. Periods of CM abelian varieties

Let A be a CM abelian variety of dimension g, associated with the CM pair (E,®) as
constructed in §2.2. The de Rham cohomology Hlg(A) is a Q-vector space since 4 is
defined over Q, and it has an E-eigenbasis {w1,...,wq,M1,...,0g}- As in (2.2), the Betti
cohomology H'(A,Q) = H'(A,Q) ® Q has an E-eigenbasis {¢1,...,dq,01,- .. ,ag}.
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The period torsor B4 is an MT(A)-torsor representing Iso® (Hig (A), H'(A,Q)). The de
Rham—Betti comparison isomorphism

B: Hig(Ac) — H'(A,C)

is a complex point of B4. We computed in [GUY24, Rmk. 6.5] that, up to scalars in

@X, B is diagonalized under the basis {wi,...,wg,n1,...,ng} of Hiz(A) and the basis
{61,....0g:01,...,0,} of H'(A,Q) with coordinates

2mi 2me
(917...’997017...7%>. (25)

The map (3_;ajw;+3 b — > a0+ bip,) is a Q-point of B4. Using this as a
base point, we get an isomorphism B4 — MT(A)@ which sends 3 to the diagonal matrix
(2.5). By abuse of notation, denote this diagonal matrix still by 3. Then 8 € MT(A)(C),
and we have

¢;(B)=0; (Yj), &;(8)=2mi/0; (j), eo(B)=2mi (2.6)
with all ¢;, ¢; viewed as characters of E* (or of T) and ¢ € X*(T).
The following lemma is an immediate consequence of the discussion above. Consider
the exact sequences obtained from MT(A) < T and MT(A) < E* respectively
0—N—X"(T)— X*(MT(A)) —0 (2.7)
0— N — X*(EX) — X*(MT(A)) — 0.
Any non-zero vector in N (resp. in N') produces a non-trivial monomial relation

between the holomorphic periods of A and 7 (resp. between the holomorphic and the
anti-holomorphic periods of A and w). More precisely, let My, be the multiplicative

group of monomials in the ideal of algebraic relations between 61,...,0,,7, and let Mg
be the multiplicative group of monomials in the ideal of algebraic relations between
/] g  2mi 2mi o

1,---5Yg 0y 07" 00"

Lemma 2.2. There are (natural) injective group homomorphisms N — My, and
N’—)Mfun.

In particular, if T = MT(A) no relations among the holomorphic periods are obtained
from N, and the set of relations among the holomorphic and anti-holomorphic periods
are generated by 9]-% ~2mi for j € {1,...,g9}.

In the case where A is simple, we can do better.

Lemma 2.3. Assume that A is a simple CM abelian variety. Then the map X*(E*) —
X*(MT(A)) factors through rec* obtained from the reflex norm (2.4), and N' =ker(rec*).
In other words, we have the short exact sequence

0— N — X*(EX) 25 X*((E*)9).

Proof. If A is simple, then (F,®) is primitive. So the conclusion follows from the last
paragraph of §2.4. O
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3. Hodge ring

Let A be a CM abelian variety, associated with the CM pair (E,®). Let E€ be the Galois
closure of F as defined at the end of §2.1, and let G = Gal(E°/Q) be the Galois group.

3.1. Hodge rings of CM abelian varieties

Let BP(A) := HPP(A,C)N H*(A,Q) be the Q-vector space of Q-Hodge cycles of type
(p,p) on A. The Hodge ring of A is defined to be

9
B(A) =D Br(A). (3.1)
p=0
Let us recall the following description of B(A) by Pohlmann’s Theorem [Poh68]. Let
S = ®L®. We have an isomorphism H"(A4,C) = A"C® and

H"Y(A,C)=) C¢and H*'(AC)= > C4.

pcd ¢'ed

Fix an ordering on S such that ¢ < ¢’ for each ¢ € ® and ¢’ € ®. Let P(S) be the set
of subsets of . For each subset P € P(5), let [P]:= A cp¢. Then the component

P

HP9(AC) = /\HLO(A,C) ®/q\HO’1(A,(C)

of the Hodge decomposition has a basis consisting of the [P] such that [PN®|=p and
|PN®|=q for P an ordered subset of S. Finally, the Galois group G = Gal(E¢/Q) operates
on P(S).

Theorem 3.1 (Pohlmann). For each p > 0, the vector space BP(A) @ C has a basis
consisting of [P] for those ordered sets P € P(S) with |P| =2p such that

loPN®|=|oPN®| foralloeq. (3.2)

In particular dimg BP(A) is the number of ordered P € P(S) with |P| = 2p satisfying

Proof. Pohlmann [Poh68, Thm. 1] states this result when A is simple. The proof remains
valid for an arbitrary CM abelian variety A. To make the paper more self-contained, we
include the proof here.

Each element of BP(A) C BP(A) ® C can be written as a linear combination
f=32;¢;[P;] € BP(A) with ¢; € C and P; € P(S) with |P;| = 2p. For each 7 € Aut(C/Q),
we then have . 7(c;)[rP;] = 7(f) = f € H"P(A,C). So each P; satisfies (3.2). Hence
every element of BP(A) is a C-linear combination of [P] with P € P(.S) satisfying (3.2),
and so the same holds true for every element of B?(A)®C.

It remains to prove that [P] € BP(A)®C for each P € P(S) with |P| = 2p satisfying
(3.2). Let {uy,...,u,} be a basis of £ over Q, with 7 =[E°: Q]. Set f;:=>_ .50(u;)[oP]
for each j € {1,...,r}. Then o(f;) = f; for each o € Gal(E°/Q), and f; € H?P(A,C)
by (3.2). So f; € BP(A). But det(o(u;)), ; # 0, we can solve the linear system

https://doi.org/10.1017/51474748025101291 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748025101291

Hodge cycles and quadratic relations of CM periods 11

fi =2 weqo(uj)oP], and find that [¢cP] € BP(A) ® C for each o € G. In particular,
[P] € BP(A)®C. We are done. O

3.2. Kernel of the restriction of character groups

Consider the short exact sequence
0= N—-X"(T)— X"(MT(A4)) — 0. (3.3)
Each element ov € X*(T') can be written in a unique way as Z¢e<1> ag®+aeg with ag € Z,
and we denote by n(a) := max{|ae|}.

Lemma 3.2. Any element in N can be written in the form 3, g apd with 3 cq a5 =0.

Proof. Define an inner product (-,-) on ®¢eq>u$Z¢ by setting (¢,¢') to be 1 if ¢ = ¢’
and to be 0 otherwise. Recall that X,(MT(A)) is generated by Gal(E°/Q)>_ cq ¢ by

Lemma 2.1. Then N is orthogonal to both 3, 4 ¢ and to E¢e¢$ =P sca® for the
complex conjugation p. The second orthogonality condition implies that the coefficient of
€0 is 0, then the first implies Y aqy = 0. O

For each n > 1, define
X*(T)p i ={ae X*(T):n(a) <n}.

Using the notation from §2.2, the CM abelian variety A™ has CM type ®“". For each
¢€{1,...,n}, denote by &) the (-th component ® in ®-", and for each ¢ € & denote by
#© the element ¢ in &), Fix an orderin% on ®U® such that ¢ < ¢’ for each ¢ € ® and
¢’ € ®. It induces an ordering on ®-" U ® " as follows:

On each & ~ & (resp. 3 ~ ®) it is the one on @ (resp. on ®);
For ¢ < ', we have ¢ < ¢’ for all ¢ € ®®) and ¢ € d);
e For ¢/ </, we have ¢ < ¢' for all ¢€5(€) and ¢ 65“ );
e We have ¢ < ¢ for all ¢ € ®“" and ¢’ € "
To each a =3}, 4 app € X*(T),, we can assign several subsets P, of ®-" ue "
j- U {64} U {o()} (3.4)
ay>0, j=1,...,a4 ay<0, j=1,...,|ay|

with all the ¢;’s taking values in {1,...,n}. If n =1, then there is a unique way to assign
a subset of ® U®. When n > 2, the assignment is not unique, and one possible choice is
P, =P uPP U UPM with, for each £ € {1,...,n},

PO ={pcd®:as>00{pcd@: ay< 1} cP@DUdD).

Proposition 3.3. Let « € NN X*(T),,, and define P, C d"UD ™" as above. Then the
element

[Poz] = /\¢€Pa¢
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is in B(A™)®C. Moreover, B(A")®C (viewed as a C-vector space) has a basis consisting
of [P.] for all o € NN X*(T),, and of ¢ ApW) for all p € ® and £,0 € {1,...,n}.

Proof. For each o =73 g ayp € X*(T), and each P, of the form (3.4), we start by
proving that

Un| _ —LIn _
aeN < |oP,N®""| = |oP,N® | for all ¢ € G and Z¢@% =0. (3.5)

Consider the inner product (-,-) on scoud L9 defined at the beginning of the proof of
Lemma 3.2. Then for any o € G, we have

" aph0 Y (06— ) = |Pano®"| — |PaN0d .

ped ped

Recall that X, (MT(A)) is generated by Gal(E°/Q) >  ,cq ¢ by Lemma 2.1. Hence

Y agpeN = (D) ayp0Y ¢)=0forallceG

ped 9D pED
= (> asp0> (p—9¢)=0and (> asp.c» (¢+¢)=0forallceG
IS oed oed Ped
= <Z CL¢¢,O’Z(¢—$)> =0 for all 0 € G and (Z as9, Z $)=0
PP PP pED PpedLID
= <Za¢¢a02(¢_$)> =0 for all 0 € G and Za¢ =0
$ecd pee ped

<:>|Paﬁa<1>u"|—\Paﬂa$un|:0 for all o € G and Z ag =0.
Pped

Thus we have established (3.5). Now the last condition implies [P,] € B(A")® C by
Pohlmann Theorem 3.1. So we have established the first assertion of the proposition.

Next by Theorem 3.1, the C-vector space B(A™) ® C has a basis consisting of those [P],
with P C §97 = d“n Ud™", such that loPN®-"| = \UPDEWW for all o € G. For each
such P, define

a(P):=> #{t:6c Pnd}s—> #{l:¢pc PNOO}p e X*(T),
PP ped
Then by construction, there exists a subset P, (py of the form (3.4), assigned to a(P),

such that P\ Py(p) = {qbgfl), Efll), .. ,¢Z(-f’"),¢l(-f;)} for some ¢;,,...,¢; € ®. Thus

|0 Po(py N O " = [oPNOY" | — 1 = oPN® " | -1 = |aPa(P)m6u"\
for all ¢ € G. On the other hand,

S #{t:oePne®y=Pne | =(Pnd " =3 #{t: 6 PNeD}.
ped PED

So a(P) € N by (3.5). Now we can conclude. O
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4. Weyl and anti-Weyl type CM abelian varieties

4.1. CM Abelian Varieties of Weyl types

Let E be a CM field of degree 2g, and let E° be the Galois closure of £ and G be
the Galois group G = Gal(E°/Q). Let ® be a CM type on E. Then G can be seen as a
subgroup of (Z/2Z)9 x Sy by [Dod84, Imprimitivity Theorem].

Definition 4.1. We say that E is of Weyl type if Gal(E°/Q) = (Z/2Z)9 x S,. We also
say that a CM abelian variety A is of Weyl type if End(A)®Q is a CM field of Weyl type.

Assume F is of Weyl type. Then any CM type @’ of E is conjugate of ® by an element
of G. Thus G acts transitively on the set of all CM types on E. This justifies that a CM
field E being of Weyl type is independent of the choice of ®. Moreover, a CM abelian
variety of Weyl type is by definition simple, and thus the associated CM pair (F,®) is a
primitive CM pair.

In the rest of this subsection, we will identify S, with {0} x.S; < G to ease notation.

Let F' be the totally real field of degree g contained in E and let F° be the Galois
closure of F. Then

Gal(F°/Q) = S, and Gal(E¢/E) = {0} x (Z/2Z)*~ x S,_1. (4.1)

The Galois group G acts transitively on Hom(F,C) = ® U® where & = {¢1,...,¢,} and
= {¢y,... @g}. By convention ¢, is the identity map giving the inclusion £ C E° C C.

The action of S, preserves ® and ®, and S, acts by permutation of the indexes of
elements of ® and of ®. Let {e1,...,e,} be the canonical basis of (Z/2Z)9. Then the
action of (Z/2Z)9 on @ is determined by

¢, ifk=j
ejr = & . ' (4.2)
o ifk#7.
In particular p:=ey . 4y acts as the complex conjugation.
Let
H :=TFix(¢1) = Gal(E°/E) = {0} x (Z/2Z)7* x S, _;. (4.3)

Let 0 =(1,2,3,...,9) be the standard g-cycle in S;. Then
G/H ={H,0H,0*H,...,09 *H,pH,0pH,..., 09 'pH}
and G acts on G/H by multiplication on the left. We have a natural bijection
n: Hom(E,C) = G/H (4.4)
which sends ¢; — o/ "' H and ¢; — o/~ pH (for all j € {1,...,g}).
Lemma 4.2. The bijective map n is G-equivariant.

Proof. It suffices to check that 7 is equivariant for all )}, _;ex with I C {1,...,g} and for
all a € 5.
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We start with ), _; ex. We have seen that (3, ., ex)-¢; equals ¢; if j € I and equals
¢; otherwise. On the other hand

O e T H=0""1( Y ek)H{cﬂlH if 1¢ ol +9-3(I)

i1 . It
kel keolta—i(I) o)~ pH if1eolty J([)

The condition 1 ¢ o'T97J(I) is equivalent to 0/~!(1) = j ¢ I. Hence we are done for
elements in (Z/2Z)9.

Next take v € Sg. Then o+ ¢; = ¢qo(;). On the other hand, denote by 3= ac?~!. Then
B € o~ H for some jz. Thus a = 06 "1ho!T97J for some h € H, and hence a(j) =
078~ h(1) = 07571(1) = js. So

ac?*H = fH = o7 (¥ ~1H,
We are done. O

4.2. CM abelian varieties of anti-Weyl type

Definition 4.3. A CM field is said to be of anti- Weyl type if it is the reflex field of a
CM pair (E,®) with E of Weyl type. A CM abelian variety is said to be of anti- Weyl
type if it is associated with the reflex of a CM pair (E,®) with E of Weyl type.

Let (E,®) be a CM pair with E of Weyl type, and let (E*,®*) be its reflex CM pair. The
stabilizer of ® is the subgroup H' = {0} x S, of G = Gal(E/Q), therefore E* = (E°)H".
Now we compute the reflex CM type ®* on E*.

For each I C {1,...,g}, denote by ey := .. e;. Then the action of G on Hom(E™,C)
gives a G-equivariant bijection

n*: Hom(E*,C) = G/H' ={fH'} te(z/22)0 = {e1H'}1cqa,....q}- (4.5)

By abuse of notation, let us identify Hom(E*,C) with G/H' = {fH'}sez/22)9 =
{erH'}icqu,... gy Vvia the bijection n*. As X*((E*)*) = Z[Hom(E*,C)], we denote by 1
the basis of X*((E*)*) corresponding to the coset e;H'.

Lemma 4.4. The reflex CM type ®* on E* is the subset of Hom(E*,C) consisting of the
cosets {eyH'} with I C{1,...,g9} such that 1 ¢ 1 .

Proof. By definition ®* is the set {y"1H’: v € G with yH € ®} with H from (4.3). By
Lemma 4.2, the condition vH € ® is equivalent to YH = ¢/~'H for some j, and hence
equivalent to v = (0,077 1)(er,h’) for some I not containing 1, some k' € S,_; and some
j€{l,...,9}. In particular, He; € @ if 1 & 1.

On the other hand for each such v, we have y~1 = (e7,h’~1)(0,0'77) and hence y "' H' =
erH' with 1 &€ I. Hence we are done. O

Let A (resp. A*) be a CM abelian variety associated with the CM pair (E,®) (resp. with
(E*,®@*)). Then A is of Weyl type and A* is of anti-Weyl type. Let T be the maximal
torus of GSp(H'(A,Q)) described in §2.3. Then it is easy to check that MT(A) is T.
Recall that (E,®) is primitive, so by the last paragraph of §2.4, the reflex of (E*,®*) is
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(E,®) and MT(A*) ~ MT(A). So dimMT(A*) attains its lower bound log, dim A* + 2.
This makes A* interesting from the point of view of Hodge theory.

We end this section with the following proposition on the reflex norm. Recall that we
have identified Hom(E*,C) with G/H' via n* above. So X*((E*)*) = Z[Hom(E*,C)] is
identified with Z[G/H'].

Proposition 4.5. The group homomorphism induced by the reflex norm (2.4) (but with
E and E* switched)

rec’: X*((E*)*) =Z|G/H'] — X*(E*) = Z|Hom(E,C)]
is given by: for all I C{1,...,9},
etH' =) 6;+) 6
J¢l JeI
Proof. The reflex norm (2.4) applied to our situation is

rec: B — (E")*, av Hgb(a).
Since ® = {¢1,...,¢4}, we have
g—1
rec*(e;H') = Zglqu.
§=0
Hence the result follows from (4.2). O

5. Algebraic relations from the kernel for anti-Weyl CM abelian varieties

We continue to use the notation from §4.2. Let A* be a CM abelian variety of anti-Weyl
type, associated with (E*,®*). Let T, be its Mumford-Tate group.

Recall the short exact sequence in Lemma 2.3 (applied to A*), obtained from T, < (E*)*
and the reflex norm

0— N' = X*((B*)*) 25 X*(E).

Non-zero elements of N’ give monomial relations between the holomorphic periods ©;
(with I C{1,...,9} not containing 1) and the anti-holomorphic periods ©; (with 1 € I)
and 7.

The main result of this section is the following proposition.

Proposition 5.1. The kernel N’ is generated by all the ey +e5—ex —ep with INJ =
KNL and IUJ=KUL.

It has the following corollary.
Corollary 5.2. For I ={iy,...,i,}, we have
O = (6{2'1}"'@{1',«})/@671-

As a consequence, @(@I)Ig{l,...,g} :@(@@,@{1},...,9{9}).
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Proof. We prove this corollary by induction on . When r =1 the result trivially holds
true.

Assume the result for r —1. Then by Proposition 5.1, €7 +¢ep —epn (i} —€¢i,} € N’
Hence ©;0g = O\y;,10¢;,}- Applying the induction hypothesis on O\ ; y yields the
desired result. O

The rest of this section is devoted to proving Proposition 5.1. We start with several
lemmas.

Lemma 5.3. Let M be the g+ 1-dimensional submodule of X*((E*)*) defined by
M =Zey®Zep1y @ DZLeygy-

Then X*((E*)*) =M@ N'.

Proof. Since dim7, = g+1, it suffices to prove M NN’ = {0}.

By Proposition 4.5, we have

g
rec”(kogp +kieqiy +- - +kgeggy) = Z(k —kj)d;

j=1
where k = ko +ky +---+ky. Therefore
rec*(koe{@} + klé‘{l} +- 1+ kig€{g}) =0= ko = kl =...= kjg =0.
Hence M NN’ = {0} and we are done. O

From now we will denote by 3, = P({1,...,9}) the set of subsets of {1,...,9}. For
I €3y, we write I° € ¥, for the complement of I, i.e.

INI*=0and TUI°={1,...,9}.
The following lemma is an immediate corollary of Proposition 4.5.

Lemma 5.4. For all I € X, the image of €1 + 1 under the reciprocity map rec* is
Z¢eHom(E 0 ¢ and therefore is independent of I.

Let N; be the submodule of N’ generated by all the e; +c;—ex —er, with INJ=KNL
and JUJ=KUL.

For any e, f € X*((E*)*), we say that e and f are equivalent and we write e = f if
e—f €M@ Ny, where M is from Lemma 5.3. We will need the following lemma.

Lemma 5.5. For all subsets I, I' such that |I| =|I'|, we have ef =¢p .
Proof. Let I € ¥, let j¢ I, kel Let J={j}, K={k}, L=IUJ\K. Then |I|=|L|,
ertej—ecx—cr €Ny and ey —ex € M.

Hence ey =¢p. Soer=ep if [I|=|I'| and [INI'|=|I]-1.

Now take any I3, € ¥4 such that |I1| =|I2|. Let O(I1), resp. O(I2), be the equivalence
class containing I, resp. Iy. Let A be the maximum of the [INJ| for I € O(I1)
and J € O(Iy). We may assume that A = |I; N L|. If O(I1) # O(I2), then A\ < |I1].
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Take i1 € I; \ (Il ﬁ]g) and iy € Iy \ (I1 ﬂfg). Set I{ =L U {Zg} \ {Zl} Then e S O(Il)
by the conclusion of the last paragraph and |I] NIz| > A+1 > A. This contradicts the
maximality of X\. Hence O(I1) = O(I3) and we are done. O

Now we are ready to prove Proposition 5.1.

Proof of Proposition 5.1. By Proposition 4.5, each such e; +e;—¢ex —ey, is in N'.
Let (, ) be the scalar product on X*((E*)*) with orthonormal basis e7 for I € 3,. Let
w be a vector in (M @ N;)*. By Lemma 5.5 and the definition of M, we can write

g
wzg ch €.

=2 |I|=j

Now 0 = <w,€{172} +ep—€{1} —6{2}> =cy. Next 0= <’LU,€{1)2)3} +ep—€{1,2} —6{3}> = C3.
Continuing this process we get ¢; =0 for all j € {2,...,¢}. Hence we are done. O

6. Generalized anti-Weyl CM abelian varieties

The goal of this section is to introduce the notion of generalized anti-Weyl CM abelian
varieties. In contrast to anti-Weyl CM abelian varieties, the generalized ones are not
necessarily simple. Rather, we will show that each simple CM abelian variety is isogenous
to an abelian subvariety of a generalized anti-Weyl CM abelian variety. Hence many
problems about CM abelian varieties can be reduced to studying the generalized anti-
Weyl ones, for example, to study the Hodge relations between holomorphic periods. On
the other hand, many computations for anti-Weyl CM abelian varieties are still valid in
this more general setting, for example, the computation of the Hodge rings in the next
section.

Let E be a CM field of degree 2g, and let E° be its Galois closure. Let G = Gal(E¢/Q),
and let p € G be the complex conjugation. Fix a CM type ®g := {¢1,...,¢4} on E, with
¢1 the inclusion E C E¢ C C. Then Hom(E,C) = {¢1,...,0g, 01, ... ,aq}

By Dodson [Dod84, Imprimitivity Theorem)], there is a natural inclusion

G < (Z/)2Z) x S,
such that the image of G — S, acts transitively on {1,...,g}. Under this inclusion

p=(1,...,1) € (Z/22)9.

6.1. Basic definitions

Let {e1,...,e4} be the canonical basis of (Z/27Z)9. We have bijections

PH{L....q}) =~ (Z.)27.)% o~ {CM types of E'}
I = eri=2 e = {01 U{g; i€}

The first bijection is natural and canonical, and the second depends on the choice of the
CM type ®g. The group G acts on each of the three sets via its natural action on (Z/2Z)9.

(6.1)
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Here is the formula for the induced action on P({1,...,g}): For each I C {1,...,¢9} and
each 0 € G, we have

0-1=p3,"(I\/Ip)  forany 0= (cy1,,5) € G < (Z/2Z)7 x S, (6.2)

where I'\/ Iy = (IUIp)\ (INIy) C{l,...,g} and the right hand side is the usual action of
Sg on {1,...,9}. The induced action of G on {CM types of E} is the one from [Dod84,
§1.2, Proposition].

Let Oy,...,0,, be the G-orbits, and up to renumbering assume O, is the orbit of }) (the
orbit of (0,...,0), or the orbit of ®g).

We construct a CM abelian variety from the sets in (6.1) as follows. Let

e S:=P({l,...,9}) with the action of G as above;
®:={IC{l,....g}:1¢I}and ®:={I C{l,...,g}:1 €T}

Then Homg (S, E°) is a CM algebra split by E€, i.e. it is isomorphic to the product of
some CM fields in E€. Indeed, we have an isomorphism

HOmG(S,EC) ~ (EC)Stabg(qi‘l) X oo X (EC)Stabg(q?'m)’

with some ®; € Oy,...,®,, € O,,, and each (E°)5%Pc(®r) ig the reflex field of (E,®,.) and
hence is CM.

Note that S = Hom(Homg (S, E€),C). Hence ® defines a CM type on Homg(S,E°). If
we look at S as the set of CM types on E under the identification (6.1), then ® consists
of those CM types which contains ¢;.

Let O be the ring of integers of Homg (S, E°).

Definition 6.1. A CM abelian variety is said to be of generalized anti- Weyl type arising
from (E,®g), if it is isogeneous to

(C'S‘/z/{)(O)
for S, ®, O above.

By definition, up to isogeny there exists a unique CM abelian variety of generalized
anti-Weyl type arising from each CM pair (E,®g), which we denote by A(E,®g). It is
clear that dim A(E,®p) = 2[F:Q/2-1,

For each r € {1,...,m}, set ®, := ®NO,. As discussed above, each Homg(O,,E°) is a
CM field, and we have a natural identification O, = Hom(Homg(O,,E¢),C). Now @, is
a CM type on Homg (O, E°). Let O, be the ring of integers of Homg(O,, E€). Then by
construction A(E,®g) is isogeneous to

ClO/2)®,(0)) x - x ClO1/2/®,.(0,,). (6.3)

Each ClI9"1/2/®,.(0,) is a CM abelian variety associated with the CM pair
(HOH’IG(OT,EC),@T).

As above, up to renumbering we always assume O; to be the orbit of () (the orbit of
(0,...,0) or the orbit of ® under the identification (6.1)).
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Definition 6.2. Let A be a simple CM abelian variety. Let (E,®g) be the reflex CM pair
of the CM pair associated with A and A(FE,®g) be the associated generalized anti-Weyl
abelian variety. We call the abelian varieties CI911/2/®,(0,),...,ClO=1/2/®,.(0,,) from
(6.3) the compagnons of A.

A main result of this section is to prove that the first compagnon is precisely A up
to isogeny (Proposition 6.5). As a consequence, any simple CM abelian variety is, up to
isogeny, an abelian subvariety of a CM abelian variety of generalized anti-Weyl type.

6.2. The Galois action on Hom(E,C)

Use the notation from §6.1. We fix some further notation for the computation. Let
H :=Fix(¢1) = Gal(E°/E) = GN ({0} x (Z/2Z) x Sy_1).

Then |G/H| = [E: Q] = 2g.

For each j € {1,...,g}, there exists a; = (e1,,8;) € G < (Z/2Z)9 % S, such that 3;(1) = j.
This is because the image of G < (Z/2Z)? x Sy — S, acts transitively on {1,...,g}. Up to
replacing «; by poa;, we may and do assume that j & I; for each j € {1,...,9}. Now

G/H ={oH,...,agH,0npH,...,aqpH}
since |G/H| = 2g. We can define a bijection
n: Hom(E,C) = G/H (6.4)
by sending ¢; — «; H and 5]» — a;pH for each j € {1,...,9}.

Remark 6.3. By definition, H fixes ¢; but not necessarily ® for any CM type @, even
for ® = . Nevertheless, each h € H defines an isogeny Er/®(Og) — Er/(h®)(Og).

As for the case of Weyl type CM abelian varieties, we prove the following lemma. Notice
that this gives a new proof of Lemma 4.2.

Lemma 6.4. The bijection n in G-equivariant, for the natural action of G on Hom(E,C)
and the action of G on G/H by multiplication on the left.

Proof. Let 0 = (¢1,,00) € G < (Z/2Z)9 x Sy. For each j € {1,...,g}, set j' := By (j).

On the one hand, fa; = (1, +¢€3,(1,),8085)- Since Bg3;(1) = j', we have that 0o H =
a; H or 0ojH = ajypH. Moreover, 0a; H = aj H if and only if j" € Iy\/ By(I;). Since
J & 1;, we have j' = By(j) & Bo(I;). So 6o; H = oo H if and only if j" & Iy.

On the other hand, 0-¢; = ¢; or 0-¢; :@7-,7 with 0-¢; = ¢, if and only if j' & Iy.

This proves the G-equivariance for the ¢;’s. A similar computation allows us to conclude
also for the G-equivariance for the aj’s. This finishes the proof. O

6.3. The first Galois orbit O,

Recall that O; is the G-orbit of 0 in P({1,...,¢}); under the identifications (6.1) it is the
orbit of (0,...,0) in (Z/2Z)9, or the orbit of ®g in {CM types of E}.
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Proposition 6.5. Cl911/2/&,(0,) is the CM abelian variety associated with the reflex
Of (Ev(I)E)

Proof. Denote for simplicity H' = Stabg(®g). Since @5 corresponds to
0=(0,...,0) € (Z/2Z)?
under (6.1), we have H' = Stabg(0) = GN ({0} x Sy).
We have Homg (01, E€) ~ (E)H" and as
Hom(Homg (04,E°),C) =0, ~G/H',
the reflex CM type ®% equals {#7'H’:0 € G with H € ®5}. We want to prove that
oL =P, CO;.

By Lemma 4.2, the condition 6H € ®g is equivalent to 0H = o; H for some j, and
hence equivalent to ¢ = (e1,,5;)(er,h’) for some I not containing 1, some h' € S,
such that (¢7,h') € G, and some j. Then 0~ = (sh/q(I),h’*l)(sﬁfl(l.j),ﬂjl) = (ep—1(n) +
5h/,lﬁ;1(lj),h"1ﬁj_1). Let Iy-1 C{1,...,9} be such that e, , =ep-1(p +5h,,1ﬂ;1(1j).
Then 1 & Iy-1 because 1 €I, 1 Qﬁj_l(lj) and b/ € Sy_1.

In summary, the reflex norm ®%, is contained in ®; = ®N0; C 01 ~G/H'. But |®%;| =
|®1] =]01]/2. Hence &%, = ®,. We are done. O

Here are two immediate corollaries.
Corollary 6.6. Each simple CM abelian variety is a compagnon of itself.

Corollary 6.7. Fach anti- Weyl type CM abelian variety is of generalized anti- Weyl type.

6.4. Powers of CM abelian varieties of generalized anti-Weyl type

Let A:= A(E,®g) be an abelian variety of generalized anti-Weyl type arising from
(E,®g). Later on we will study an arbitrary power of A(E,®g). In this subsection, we
make a preliminary discussion and we fix some notations.

Recall that A is associated with the CM pair (Homg(S,E€),®), with S =P({1,...,9})
and @ ={I C{1,...,9}: 1 ¢ I}. Using the notation of §2.2, for each n > 1, we can construct
a CM pair as follows. The CM algebra is Homg (S, E¢)™, with Hom(Homg (S, E€)",C) =
S the CM type is @

The CM algebra Homg (S, E°) acts on the space of holomorphic 1-forms (resp. anti-
holomorphic 1-forms) on A via ® (resp. via @), and hence we have an eigenbasis

{EI}IQ{L...,g},lgIa (resp. {El}lg{l,...,g},lel)

for this action, with 7 an eigenvector associated with I € ® (resp. with I € ®).
For each £ € {1,...,n}, let

IO (resp. ey))
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denote the subset I € P({1,...,g}) on the ¢-th copy of P({1,...,g})"" (resp. the 1-form
ey on the ¢-th factor of A™).

We fix a partial order on S =P({1,...,9}) such that I < J if 1¢ ] and 1 € J and
I < J = J¢<I¢ Then it induces a partial order on S"" such that 1 </{; </fy <n =
1) < jle2),

7. Hodge cycles on generalized anti-Weyl CM abelian varieties

Let A be a generalized anti-Weyl CM abelian variety arising from (E,®g), with £ a CM
field of degree 2g. Then dim A =29"1. Let G = Gal(E°/Q). Then

G < (Z/2Z)% xSy, and the image of G — S, acts transitively on {1,...,g}.

The purpose of this section is to characterize the structure of the Hodge ring B(A™)
for all n > 1 and the Hodge relations between the periods of A. Retain the notation in
§6.4. We have the following results.

Theorem 7.1. Let B?(A") := H*2(A",C)N H*(A™,Q). Then B*(A")®C has a basis
consisting of non-zero vectors of the form

5521) Aaffz) /\5%30) /\E(sz)
for any £1,09,05,04 € {1,...,n}, and I,J,K,L subsets of {2,...,g} such that I,J,K° L is
ordered and

IUJ=KUL and INnJ=KNL. (7.1)

In particular, the dimension of B%(A™) as a Q-vector space is the number of quadruples
(I,J,K,L), with I <J and K¢ < L€ satisfying (7.1).

By (7.1), we have two possibilities: (1) I,.J,K, L are two-by-two different; (2) I = L and
J = K. Notice that in the second possibility, it may happen that I = J = K = L and then
fl 75 €2 and £3 75 44.

We shall see that the indices ¢1,0s,03,£4 are irrelevant when discussing Hodge relations.
Indeed, for a fixed I C{1,...,g}, the non-zero integral of 5§€) is independent of the choice of
¢e{l,...,n} and is a period of A, which we denote by ©;. Those with 1 & I (resp. with 1 €
I) are holomorphic (resp. anti-holomorphic). An immediate consequence of Theorem 7.1
is that the Hodge relations of degree 2 between the holomorphic periods of A are

0/0; =006 (7.2)

for all I,J,K,L C {2,...,9} satisfying (7.1). They can be all obtained by (2,2)-Hodge
cycles on A.

Theorem 7.2. The Hodge relations between the periods of A™ are generated by those
induced by (1,1)- and (2,2)-Hodge cycles on A.

Moreover, any Hodge relation in degree 1 is of the form ©;0 . = 2mi by Corollary 7.4.
Our proof of Theorem 7.2 is inspired by the study of the kernel of the reflex norm for
anti-Weyl CM abelian varieties in §5, and in particular Corollary 5.2.
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7.1. Proof of our main theorem
We start by explaining how to deduce Theorem 1.1 from Theorem 7.2. The notations are
different from the rest of this section.

Let A be a simple CM abelian variety, associated with the CM pair (E,®). Its reflex
(E*,®@*) is a CM pair with E* a field. Let A(E*,®*) be the generalized anti-Weyl CM
abelian variety arising from (E*,®*). By Corollary 6.6, up to isogeny A(E*,®*)=Ax B
for some CM abelian variety B. By construction of A(E*,®*), we see that B is split over
E¢. Theorem 1.1 then follows from Theorem 7.2 and the comment below (that Hodge
relations in degree 1 do not give algebraic relations between the holomorphic periods).

7.2. A first discussion on Hodge cycles on generalized anti-Weyl CM abelian
varieties

Proposition 7.3. Let BP(A") := HPP(A"C)N H?P(A™,Q) be the Q-vector space of Q-

Hodge cycles of type (p,p) on A™. Then BP(A"™)® C has a basis consisting of ordered

Il(gl) <...< Iéff”) such that each j € {1,...g} appears exactly p times in Ile),...7I§?”),

Proof. Recall S =P({1,...,g9}). We wish to apply Theorem 3.1 (with S being our S
and ® being our ®""). Thus the set P from Theorem 3.1 is in our case of the form

(1™, 152} with 1L € P({1,....g}).
Recall that ® = {I € P({1,...,9}): 1€ I} and ® = {I € P({1,...,9}) : 1 € I}. Hence

|PN®"| = |Pﬂ$un| is equivalent to 1 being contained in exactly half of the sets
Il(fl) (€2p)

PN P

The condition given by the equation (3.2) is in our situation [P No®""| = |Pﬂa$un|
for all 0 € G < (Z/2Z)* x S,. For the canonical basis {e1,...,e,} of (Z/2Z)9, we have
e - @ = 3" and el B = ®"" and €; .U = " and e; B =3 for all j>2.
Hence (3.2) is further equivalent to |[PNo®"™"| = |Pﬁa$un\ for all o € im(G — S). To
ease notation, for each j € {1,...,g}, set ®; :={I C{1,...,g} :j ¢ I} and &, :={I C
{1,...,9}:j € I't. We have

{o@"" oG~ {®":j=1,....,g} and {agun:aeG}z{@un:jzl,...,g}

as im(G — S,) acts transitively on {1,...,g}. Therefore the condition (3.2) is equivalent
to: |Pﬂ<§';’”\ = |Pﬁ$jun\ for all j € {1,...,9}. As for the case j =1 discussed above, this

is equivalent to: each j € {1,...,9} is contained in exactly half of the sets Ifm, e ,Iéff”).

Hence we are done. O
Proposition 7.3 yields immediately the following corollary.

Corollary 7.4. For eachn>1, BY(A")®C has a basis consisting of vectors of the form

N for TC{2,... g}, with 64,6, € {1,... .n}.

7.3. (2,2)-Hodge cycles on generalized anti-Weyl CM abelian varieties

As indicated by Theorem 7.2, (2,2)-Hodge cycles play a particularly important role in the
Hodge rings of generalized anti-Weyl CM abelian varieties. It is therefore important to
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understand the Galois action on these (2,2)-Hodge cycles. We will do this in the current
subsection. We will then prove Theorem 7.1 from the description of this Galois action.
Notice that one can also prove Theorem 7.1 directly via Proposition 7.3 without analysing
the Galois action on the (2,2)-cycles.

Recall the formula for the action of G on P({1,...,g}) from (6.2):

Q-Mzﬁgl(M\/Ig) for any M C{1,...,g} and any 6 = (¢1,,00) € G < (Z/27)9 x S,

with M\/ Iy = (M UIp)\ (M NIy) C{1,...,9} and the right-hand side is the usual action
of Sgon {1,...,g}. Notice that this action extends to an action of the whole (Z/27Z)9 x S,
on P({1,...,9}) by the same formula.
Here is the Galois action on the (2,2)-forms. For each § € G and any I,J, K, L C{2,...,g},
we have
0(5%) A sffz) A E%i) A 6(52‘)) = sg}) A 6%3) A sé@c A sgi)c . (7.3)
We start with the following lemma. The computation involved in its proof is useful.

Lemma 7.5. Let I,J,K,L be subsets of {1,...,9} such that
IuJ=KUL and INJ=KNL.
Then
0-1)U(8-J)=(0-K)U(8-Lyand (0-1)N(0-J) = (8-K)N(0-L)
for all 0 € (Z/272)9 x Sy (and in particular for all 0 € G).

Proof. As § = (Hjelg (a{j},l)) (0,89), it suffices to prove the result for (0,5y) and for
ej = ey for each j € {1,...,g}.

The expected conclusion easily holds true for (0,8p), which gives a bijection on {1,...,g}.
Hence it remains to check for e; = ey;y for each j € {1,...,g}. There are 3 cases up to the
symmetries.

e (a)jel, j¢J, jeK,j¢L.
e (b)jelnJ=KnL.
o (c)je(UJ)=(KUL):".

In case (a), we have
ej- I=1I\{j}, ¢j-J=JU{j}, ¢j- K=K\ {j}, ¢;-L=LU{j}. (7.4)
Hence (e;-I)U(ej-J)=1UJ=KUL=(e;-K)U(e;-L) and (e;-I)N(e;-J)=INJ =
In case (b), we have
(ej-1)=1I\{j}, ¢j-J =J\{j}, ¢;- K= K\{j}, ;- L =L\ {j}- (7.5)
Therefore (e;-I)U(e;-J) = (TUI)\{j} = (KUL)\{j} =(e; - K)U(e;-L) and (e;-I)N
(ej-J) = (INI)\{j} = (KNL)\{j} = (e;- K)N(e;-L).
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In case (c), we have
ej- I =10{j}, ej-J=JU{j}, ej- K=KU{j}, ¢;- L =LU{j}. (7.6)

Therefore (e;-I)U(e;-J)=(ITUJ)U{j} = (KUL)U{j} =(e;-K)U(e;-L) and (e;-I)N
(e-7) = (IN) UL} = (KAL) U} = (e )N (e L), .

The key point to prove Theorem 7.1 is the following lemma.

Lemma 7.6. Let I,J,K,L be subsets of {2,...,g}.

(i) f IUJ=KUL and INJ = KNL, then 1 is contained in exactly 2 of the sets
(0-1),(0-7),(0-K°),(0-L°) for all@ € (Z/2Z)9 x Sy (and in particular for all 0 € G).

(i) If IVUJ# KUL or INJ # KNL, then there exists € G such that 1 is contained
in >3 of the sets (0-1),(0-J),(0-K°),(0-L°).

Proof. We start with the proof of (i). Since 6 = (Hjele (e{j},l)) (0,5p), it suffices to prove
the result for (0,8y) and for e; for each j € {1,...,g}.

Start with the case 6 = (0,89). Set j = Bo(1) € {1,...,9}. Then by definition 8- {j} =
B, ({5}) = {1}. We may suppose that we are in one of the 3 cases described in the proof
of Lemma 7.5.

In case (a), jelI, j¢J, j¢ K° je€ L° Applying 0, we get 1 € (0-1), 1 ¢ (0-J),
1¢(8-K°) and 1€ (8- L°).

In case (b), je€lI,jeJ, j¢ K j &L Applying 0, we get 1 € (6-1), 1 € (6-J),
1¢(0-K°) and 1€ (6-L°).

In case (¢), j €1, j¢&J, j€ K je L° Applying 6, we get 1 ¢ (0-1), 1 ¢ (0-J),
1e(@-K)and 1€ (6-L)°.

So we just need to check (i) with # =e; for all j € {1,...,g}.

Ifj#1,then 0-T=TU{j} or -1 =1I\{j}, and hence 1 ¢ 6-I.In the same way 1 ¢ 6-J,
1€ -K°and 1€6-L°.

Ifj=1then - I=ITU{1}sol€f-I.Inthesameway 1€0-J,1¢0-K°and 1¢0-L°.

This finishes the proof of (i).

Now let us prove (ii). Assume IUJ # KUL. Let j € TUJ such that j ¢ KUL. We
may assume that j € I. Let 0 = (e1,,89) € G be such that £p(1) = j; such a 6 exists
since the image of G — S, acts transitively on {1,...,g}. Moreover up to replacing 6 by
fp, we may and so assume that j & Iy. Hence j € Iy\/{j} and therefore 1 € 6-{j} =
By (Ig\/{j}). Therefore 1 €0-T and 1€ 6-K® and 1€6-L°. So 1 is in at least 3 of the
sets (0-1),(6-J),(0-K),(6-L). So we are done for this case.

Assume TUJ = KUL but INJ # KN L. Then there exists j € INJ such that j ¢ KN L.
We may assume j ¢ K. Similarly to the previous case, there exists 6 = (eg,,89) € G such
that Bg(1) = and j & Ip. Then 1 € 0-{j} = B, ' (Ip\/{j}) as before. So 1 €60-1,1€6-J
and 1 € - K° So 1 is at least in 3 of the sets (0-1),(0-.J),(0-K),(0-L). Now we are
done. O

Now we are ready to finish the proof of Theorem 7.1.
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Proof of Theorem 7.1. By Pohlmann’s Theorem 3.1, B?(A™)®C has a basis consisting
of elements of the form E(Izl) /\55,22) /\5%2) /\E(Lef) with I,J,K,L C {2,...,g} such that for
all 8 € G, we have the following property: the form

o9 0l el el

is in B2(A")®C, i.e. 1 appears in exactly 2 of the sets (6-1),(6-J),(0-K€),(6-L¢). By
Lemma 7.6, this occurs if and only if TUJ = KUL and INJ = KNL. Hence we are
done. O

7.4. Hodge relations between periods of generalized anti-Weyl CM abelian
varieties

We start with the following lemma.

Lemma 7.7. The Hodge relations generated by (2,2)-Hodge cycles on A contain the
relation

0165 = O} Oys,
for each I ={iy,...,ir} C{1,...,9} with r>2.
Proof. The proof is inspired by the proof of Corollary 5.2.

Let us do induction on 7. When r = 2, by Theorem 7.1 we have that ey Aeg Ae gy, ye Aeqs,)e
is a (2,2)-Hodge cycle (base changed to C) on A. Hence we obtain the desired Hodge
relation ©;0y = e{il}@{iz}'

Assume the result is proved for r—1 > 2. Take I with |I| = > 3. Then by applying

Theorem 7.1 to A and the quadruple I,0,{i1},I\ {i1}, we obtain a Hodge relation in
degree 2

0109 = 04,3 O {ir}-

By induction hypothesis applied to I'\ {i;}, whose cardinality is r — 1 > 2, we get a Hodge
relation generated by those given by (2,2)-Hodge cycles on A

@1\{1'1}@6_2 =0O(iy) O,

Thus we can conclude by multiplying both Hodge relations above. O
Now we are ready to finish the proof of Theorem 7.2.

Proof of Theorem 7.2. The conclusion trivially holds true if ¢ =1, so we assume g > 2.
Consider a Hodge relation given by a (p,p)-Hodge cycle on A™ with p >3 and n > 1.
By Proposition 7.3, this (p,p)-Hodge cycle is a linear combination of cycles of the form

a= E(Ilil) /\~--/\5§ii”)

for subsets Il(el),..., 2(;2)2?) C{1,...,g} with each j € {1,...,g} appearing exactly p times
in Ile),...7féffp). In particular, S22 |11 | = pg.
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Without loss of generality, we assume that 1 ¢ Ile), e ,II(,Z”) and 1€ I]gﬁf’f 1) Iz(ffp)
Thus the Hodge relation given by « is

Or,-01, =6, Oy

5 (7.7)
with all periods being holomorphic.

We may assume that Il(m # (Il(,e“))C for any 1,1’ € {1,...,2p}. This is equivalent to saying
that « is not the wedge product of a (1,1)-cycle with a (p —1,p—1)-cycle o.

Applying Lemma, 7.7 to each I(é1 Iéff”) (if |Il(m| =1 then we do nothing), we obtain
2p equalities up to Q which are elther trivial equalities or Hodge relations generated by

those in degree 2. Multiplying these 2p equalities, we then have by Proposition 7.3
-2
911“'91217'@]5(9 ):(@{1}...@@})?’

which is by construction a Hodge relation generated by those in degree 2. Multiplying
@IZ+1 ~~@1cp or o} and dividing (27¢)P on both sides, we get

1,01, (0] 7O, )" =01, O, (O Oy, (7.8)

Here we use the Hodge relation in degree 1: ©;0 . = 2mi for all I C {1,...,g}.
Comparing (7.7) and (7.8), we are done if g =2, and if g > 3 it suffices to prove that

2
O) 02,09y =012} Oy

is a Hodge relation generated by those in degree 2. But this follows again from Lemma
7.7 applied to I ={2,...,9}. Hence we are done. O

7.5. Rational (2,2)-Hodge cycles
We remark that for any A € E° and any I,J,K,L C {2,...,g} satisfying (7.1), the vector

SO0 AT Al Al (7.9)
0eG

is a Hodge cycle in B2(A™). Moreover this Hodge cycle is not in the space generated by
the algebraic cycles of codimension 1 if {I,J} # {K,L}. It is also not known & priori that
this Hodge cycle comes from an algebralc cycle. To clarify the situation let us describe
the Galois orbit of a vector of the form e( 1) /\5“2) /\e%‘i) /\6( 4

Definition 7.8. Let D, 0(\)0(e; el /\8(62) /\E(Z") A5(£4)) be a Hodge cycle as in (7.9),
with A € E¢ and I,J,K,L C{2,.. ,g} We deﬁne the support of such a Hodge cycle to
be the set of quadruples (6-1,0-J,0-K€,0- L) when 6 varies in G.

We say that two such Hodge cycles are equivalent if they have the same support.
For I,J,K,L C {1,...,9}, we denote by HC(I,J,K,L) the Q-vector subspace of B?(A™)
of Hodge cycles equivalent to » ;.- 0(e; (f1) /\5(62) Ne (23) Ne (é“)).

Remark 7.9. Notice that the group E* acts naturally on HC(Z,J,K,L) as the action
of the endomorphisms E on H*(A",C) is diagonalized in the base

B:.= { (£1) /\5(22) /\sgg) /\Egi), with By, B, B3, By subsets of {1,...,9}}
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Each a € E* acts on 553@11) /\egj) /\6(;2) /\egj) by multiplication by e, (a)ep,()ep, ()
ep,(a). The remark is a consequence of the fact that for any o € G, any subset B of

ge()B) for any £ € {1,...,n}.

{1,...,9} and any a € E*, we have U(afg)) =o(a)e
Here is a result on the (2,2)-Hodge cycle (defined over Q) on anti-Weyl CM abelian
varieties.

Proposition 7.10. Assume A is anti-Weyl, i.e. G = (Z/27)9 x Sy. For any I,J,K,L C
{2,...,9} satisfying (7.1), the vector erjxr ;=1 NejANege Nepe is in the Galois orbit of
a unique vector of the form

EgNEL2, . ,r} NEf2,... s}e NELst1,.. r}e

for an integer v such that 2 <r < g and an integer s such that 2 < s < %

Proof. Applying some element of (Z/27)9 < G, we see that ek, is Galois conjugate
to a vector of the form ey Aej, Aege Aepe for some Ji,Ky,Ly C {2,...,9} such that
Ji=KiULy and K1NLy =0. If |J1] =r—1, we can apply a 0 € {0} xS, to see that
ersk L is Galois conjugate to a vector of the form ey Aega .y Aekg AeLg for some subsets
K5,Ly such that {2,...,r} = Ko ULy and KoM Ly = (). We can still use an element of Sy
with support in {2,...,7} to conclude that ek, is Galois conjugate to a vector of the
required form.

Let eg Aega,. . ry NE(a,.. sye NE{sy1,....rye and g AE(a 1y NE(a. srye NE(sr41,... r1}e DE
two vectors with 7,5 and 7/, s’ satisfying the inequalities of the proposition. Assume that
they are Galois conjugate by an element 6 € G. Then 6 has to be in {0} xS, to preserve
the first component . Next 6 € {0} x S, has to change {2,...,r} into {2,...,7'}. This
implies that » =’ and that we may assume the support of 6 to be {2,...,r}. We then
remark that, as 6 in S, preserves the size of the sets in P({l,...,g}), we must have
{s,r — s} ={s',r — s’'}. This finishes the proof of the proposition. O

8. Example of a cyclotomic extension

Let E = Q(p19). Then E/Q is Galois with Galois group G is (Z/19Z)* ~ 7Z/18Z, and
Hom(E,C) =Hom(E,E) ~G.

The inclusion G < (Z/27)° x Sy from [Dod84, Imprimitivity Theorem] is given by G =
Z/2Z x Z/9Z. Thus the complex conjugation on Hom(E,C) ~Z/18Z is [9)].

Now

@ := {[0],[2], 3], [6],[10],[13], [14], [16], [17]}.
is a CM type on E. Let A:= A (g o) be the abelian variety associated with (£, ®), and for

each [a] € Z/18Z ~Hom(E,C) denote by ©[, the period of A corresponding to [a]. Then
the holomorphic periods of A are the ©,’s with [a] € ®.
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8.1. (Cubic) relations from the kernel

We show that there are two non-trivial cubic relations between the holomorphic periods
of A which cannot be generated by algebraic relations of smaller degrees if we work only
with powers of A.

Define the pairing (-,-) on the Z-module ®[a]eZ/18ZZ[a] by

1 if [a] = [b]
(lal,p]) =4 =1 if [a] = [9+D]
0 otherwise.

Consider the first short exact sequence in (2.7) for our situation. For the Z-module
Z[0) & Z[2] © Z[3] © Z[6] © Z[10] © Z[13] & Z[14] © Z[16] © Z[17], an element v := ajy)[0] +
apg [2] +as) [3] +afg) [6] +aqo] [10} +apns [13] +afq [14] +apne) [16] +an7 [17]18 in the kernel N
if and only if (v,[a]- >_ ) [b]) = 0 for all [a] € Z/18Z, i.e. if and only if (v, 3 cp[a+b]) =0
for all [a] € Z/18Z, hence if and only if

ajo] + a2 + az) +ag) +ao] + ap3) +apa) +ape +apr = 0
ajo) = af2] +ajz) — ae] — afr0] ~ A[13] +af14) — ape) +ap7 =0
ajo) +af2) — ajz) — A — af10] ~ A[13] — A[14] T af16] — af17) =0
—afo) taf2) +a) +ag) — apo] +aps) — apa) +ape) +apyn =0
ajo) +agz) +agz) +age) +apo) — aps) + apg —ape) +ap7 =0
ajo) — af2] +a[3) — ae] — Af10] ~ A[13] ~ A[14] ~ @f16] ~ Af17] = 0
—ajfo) +ajg — a3 +age] — aio) — a13) — Afua] +ape) — a7 =0
—afo) tag) +ag) +age) +apo) +aps) —apa) — ape) +apn =0

afo) — afz) +ajg) +age] +apo) — aps) +apg) — ape) —apg =0

if and only if

o] = —ag3] = A[e]

G2 = A4 = —a7)

ari0] = —A[13) = A[1e]
[

apo) +apz + ajo = 0.

Thus the kernel N is generated by [0] —[2] — [3] 4+ [6] —[14] +[17] and [0] — [3] +[6] — [10] +
[13] — [16]. Hence we find cubic relations of holomorphic periods of A:

OO161On7 = O OpOny  and OO Ons = OEOnOpe- (8.1)
8.2. Finding compagnons of A to get quadratic relations

Now we show that the cubic relations in (8.1) are generated by quadratic relations between
holomorphic periods of A and its compagnons.
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Set @ to be the reflex CM type of @, i.e.

Qg :=0" = {[0]7[_2]’[_3]5[_6}7[_10]7[_13]7[_14]7[_16]7[_17}}
= {[0],1],[2],[4],[5], [8],[12], [15],[16]}.

Call ¢1 = [0], g2 = [1], ¢3 = [2], ¢4 = [4], &5 = [5], ¢6 = [8], ¢7 = [12], ¢s = [15],
¢9 = [16]. In the terminology of generalized anti-Weyl CM abelian varieties (more precisely
the identification (6.1)), ®g corresponds to ) € P({1,...,9}) and @ corresponds to
{2,4,5,6,7,8} € P({1,...,9}).

Introduce the following notation. For each [a] € G = Z/18Z, let I([a]) be the subset of
{1,...,9} corresponding to the CM type [a] - ®r on E under the identification (6.1).

Let us compute the G-orbit of § € P({1,...,9}). To do this, we compute the G-orbit of
O € {CM types on E} as follows:

[0] (I)E = {[O]a[1]a[2]a[4]5[5]5[8]5[1 ]’[ ]7[ ]} = {¢17¢27¢37¢4;¢5a¢6,¢7a¢87¢9}
[1]- @5 = {[1],(2],13], [5], 6], (9], [13], [16], [17]} = {2, 63, 05,9} | J{ b1, 04,06, 67,5}
[2]- @ = {[2],[3], [4],[6].[7], [10], [14], [17], [0]} = {61, 03,04} {2, 5. 6,67, 5,09}

Thus the G-orbit of () is:

1([0]) =0, I([1]) = {1,4,6,7,8} I1([2]) = {2,5,6,7,8,9},
([3}):{379}7 I([4]) = {1,8}, I([5]) = {1,2,4,6,7,8,9},
([9})2{1 2. 9} I([10]) ={2,3,5,9}, I([11]) = {1,3,4},
1(12]) = {1,2,4.5,6,8}, I([13]) = {2.3.4.5.6,7,0}, I([14]) = {3.5},
([15]) {1 46} I([16]) {245678} I([17])={3,5,6,7,9}.

Notice that the CM type @, which is the reflex of ®, can be recovered by ® = {[a] €
Z/18Z : 1 ¢ I([a])}. The period O, of A= A ¢) is Op(q) in the terminology of
generalized anti-Weyl CM abelian varieties.

Let us look at the first cubic relation in (8.1). Let L := {5,6}. Then I([0])UI([17]) =
I([3)UL and I([0))NI([17]) =I([3])NL, and I([6])UL = I([2])UI([14]) and I([6])NL =
I([2]) N I([14]). Thus the first cubic relation in (8.1) is generated by

O1)On7 =0O30L  and O304 = OO,

with ©f a holomorphic period of a compagnon Ay, of A.

We can compute Ay as follows. Before the computation, notice that G- L # G - ) because
L& G-0. So Ay, is not isogeneous to A.

The CM type corresponding to L under the identification (6.1) is

{¢17¢2a¢37¢4;%7%7¢7a¢87¢9} = {[O]v [1]v [2]5 [4]’ [14]7 [17}7 [12]a [15]v [16]}'
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Thus the CM type associated with Ay, is

@y, :={[a] € Z/18Z: [0] & [a] - {[0],[1],[2], 4], [14],[17], [12],[15], [16]} }
= {[51,[7],[8],[9], [10], [11], [12], [13], [15]},

i.e. A is the CM abelian variety associated with the CM pair (Q(u19),Pr).
Similarly, the second cubic relation in (8.1) is generated by

O1Ons = OnoOrr  and OO = OO

with L' = {4,6,7}, and the compagnon Ay, (corresponding to G-L') of A is associated
with the CM pair (Q(/UQQ)’(I)L’) with &7, = {[4]v [G]a [7]a [8]a [9]’ [10]7[11]7[12]? [14]}

9. Shimura subvariety giving quadratic relations

This section aims to explain a link between the quadratic relations between the
holomorphic periods explained in this paper and the theory of bi-Q decomposition of
Shimura varieties which we developed in [GUY24]. We will prove Conjecture 1.4 for
generalized anti-Weyl CM abelian varieties.

Here is our setup. Let (E,®g) be a CM type with E a CM field of degree 2¢g. Let A be
a generalized anti-Weyl CM abelian variety arising from (E,®g). Then dim A = 29~ 1.

Let Ags—1 be the moduli space of principally polarized abelian varieties of dimension
2971 and let [0] € Ays—1(Q) parametrize A.

The goal is to construct a Shimura subvariety of Ays—1, for some r < g!, passing
through [o] := ([0],...,[0]) € Ags—1,(Q), from which we can read off non-trivial elementary
quadratic relations among the holomorphic periods of A,. More precisely, we prove:

Theorem 9.1. Assume g > 3. There exist an integer r € {1,...,9!} and a Shimura

subvariety S of Agg-1,., passing through [o] := ([0],...,[0]) € Age-1,.(Q), with the following
property: Tio)S is not the direct sum of root spaces of TjsAge—1.

This proves Conjecture 1.4 for generalized anti-Weyl CM abelian varieties if g > 3,
together with Theorem 7.1 and (7.1).

9.1. Setup for root spaces

Let 0 € $24-1 be a point whose image is [0] under the uniformizing map $gs-1 — Agg—1.

Let T, = MT(0) and let T be a maximal torus of GSpy, which contains 7.

Fix an order on P({1,...,9}) such that I < J=1I°>J% and I < J for all 1 ¢ I and
1 € J. The roots of (T,GSpy,) are te; ey for all subsets I < J of {2,...,g}.

Since ey +eye is constant for all T C {2,...,g}, we can write the roots of (T,GSps,) as
er+ey for all subsets I < J of {1,...,g}.

For I < J, denote by V; ; the root space for ey +ey; it has dimension 1. By abuse of
notation, if I > J, set Vi, =V 1.

The complex conjugation sends V7, j to Vie je for each pair (I,J). For I,J C {2,...,g},
take Ef y to be a non-zero vector in Vi j; then Ej ; is an eigenvector for ey +e;. For
I,J C{1,...,g} which contain 1, take Ey ; to be the complex conjugation of Eje jc; then
E;, y is an eigenvector for e; +e .
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General theory of reductive groups says that V; ; and Vi jc generate a sly-triple. Hence
we can normalize the choices of E; ; in the previous paragraph such that E; ; and Eye, je

give a sly-triple for all I,J C {2,...,g}, i.e.
[EI’J,[EI’J,EIC’JC]] = 2E[’J and [EIC’JC7[EIC’JC,E[’J]] = 2E1c’Jc.
Finally, for each subset U C {2,...,g}, define

DocrcuVig2..on1 ifU#{2,....9}

Vo= Z Vige, o = @Docrcio...t Viiz,...ona HU={2,....g}"

0CICU I<{2,..,g3\I

9.2. Construction of sl,-triples
For each subset U C {2,...,g}, set

vui=eu Y, B\
0cICuU

where ey =1/2if U={2,...,9} and ey = 1 otherwise. In other words, we have

2ocrcuBriz.gna fU#{2,....9}
YUY Yocicqzg Bz g ifU={2,....9}"
I<{2,, g3\ I
Next, set
. Xroue B pyuane it U#{2,....9}
Uy = €y Z Er qyoanye = o ier Ep yoaye fU={2,...,g}"
r2ue I'>{13u")°

The goal of this subsection is to prove the following proposition.

Proposition 9.2. The following are true:

(i) The complex conjugation of vy is vy.

(ii) The triple (vu,vu,[vu,Bu)) is an sla-triple.

We start with the following preparation.

(9.1)

9.2.1. Pairing of vy and vy. Let I,J,I',J C{l,...,g} such that 1 € TUJ and
1eI'nJ'. Observe that [E; j,Ep, 5] is an eigenvector for e; +ey+ep +eyp. For this
Lie bracket to be non-zero, e; +e; + ey + ey must be a root. Hence J' = J¢ or J' = I°.

Now we apply this discussion to vy and vy. Assume Ej ; is a term in the sum defining
vy and Ep j is a term in the sum defining oy. Then J={2,...,g}\ I ={2,...,g}NI°®

and J = {1}uU(I’)e.
If J = J¢, then

I'={1}uJ={1}Uu({2,...,g}NI°) =1T°,

and hence the corresponding root is 0.
If J' = I°, then similarly I’ = J¢ and the corresponding root is 0.
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Thus we have

~ >ocrculfr . g0 Ere 1041y] if U#1{2,...,9} o
vo.vu] =05 ocicu  |Br o onnEreopy] fU={2,...,g} (9:5)
I<{2,...,g}\I

which is in the Lie algebra of the maximal torus (since the corresponding root is 0).

Lemma 9.3. Let I,K C {2,...,9}. Assume [Ex (2. g0\ [Er1{2,....g0\1>Ere, 1u{13]] #0
Then K =1 or{2,....g}\ K =1, and

[Ex (2,...o0\&:> [ Er g2, g0\ Ere, rugy]] = 2E7 2, g3\ 1- (9.6)

Proof. First, observe that [EK7{27,”79}\K,E17{27.”79}\1] = 0 because both vectors are in m™
and m™T is abelian. Hence by the Jacobi identity, we have

(B (2. o016 BT 2oy Bre rogy]] = [Br e, o0\ (B {2, i1 Bre 1oy -

The left hand side is not 0 by assumption, and hence [Ex (2, o1\ x> 1, ru{1}] # 0. Hence
K =1TIor{2,...,g}\ K =1 by the computation above this lemma.

Now (9.6) holds true because we have chosen Ey ; and Eje je to generate a sly-triple;
see (9.1). O

Corollary 9.4. We have
[UU7[UU36U]] = 2uy.

Proof. Assume U # {2,...,g9}. By (9.5), we have

[vu, [vu,vu]] = Z Ek (2, g)\K> Z (B (2,....gn\1> Ere, 1ug1}]
ICKCU PCICU

By Lemma 9.3 and our assumption U # {2,...,g}, the right hand side equals

> 2B; o gpa = 20U
0CICU

Assume U ={2,...,g9}. By (9.5), we have

[vu, [vu,vu]] = Z Ex (2., g0\ K> Z (B 2.....g0\1- Ere, 1u{1}]
PCKCU pCICU
K<{2,.. g}\K I<{2,....g1\I

By Lemma 9.3, the right hand equals

Y. 2Brp. g =20
pcICcU
I<{2,...,g}\I

Now we are done. O
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9.2.2. Proof of Proposition 9.2. Part (i) follows immediately from the following
observation. The complex conjugation sends Ef j — Epe je for each pair (I,J). In
particular for I C {2,...,g}, the pair (1,{2,...,g}\I) is mapped to

(I, {1}ul).

Notice that this new pair is uniquely determined by the relations I°N({1}UI) = {1} and

Irru({1iul) ={1,...,g9}.
Now let us prove part (ii). We need to check:

(a) [vu,vu] =0 and [vy,vy] = 0;
(b) [vy,Du] is in the Lie algebra of the maximal torus;
(C) [UU,[UU,T}UH = 2uy and [17u,[’UU,1_}UH = 20y.

For (a), we have

vuvol =€ | Y, Erga.onn Y, Eria.gnk
PCICU PCKCU

Now that [Ej (2. gn\1,EKk f2,...g0\k] is an eigenvector for er + ega .. g1 +ex +
efa,...g)\Kk- But er+ega . g1 +ex +eqa. . g3\ Kk cannot be a root since I, K C {2,...,g}.
So each term in the sum is 0. Hence [vy,vy] = 0. Similarly [0y, 0y] = 0.

We proved assertion (b) below (9.5). The first equality in assertion (c¢) holds true by
Corollary 9.4, and a similar computation yields the second equality in assertion (c). We
are done.

9.3. Upshot on existence of subgroups and of Shimura subvarieties

Retain the notation from §9.1. Take U C {2,...,g} such that |U| > 2; such a U exists if
g=3.

Let H be the subgroup of GSp,, 5 generated by T, and exp(vy) and exp(vyu). By
Proposition 9.2, H is a reductive group of semi-simple rank 1 defined over RNQ. In fact,
let F' be the maximal totally real subfield of E and let F° be its Galois closure. Then H
is defined over F*°, and r:= [F°: Q] <gl.

We thus obtain a Q-subgroup Respe,gH of the group Gy, - Respe /gSpas, and hence of
the group GSpyg,..

The point [o] := ([0}, ...,[0]) € Agg—1,, has Mumford-Tate group T,. Thus H defines a
Shimura subvariety S of Agg—1, which passes through [o], and dim S = r.

Proof of Theorem 9.1. The Cartan involution given by o € £)5,-1 induces the Cartan
decomposition Lie GSpy, g = E@m where m is the eigenspace of —1 and ¢ is the eigenspace
of 1. This induces a canonical isomorphism of R-vector spaces T,$)55-1 = m. Furthermore,
the complex structure on $9-1 is given by an endomorphism J of T,5,-1 such that
J? = —Id. Thus J acts on mc and we have a decomposition m¢ = m+t @ m~, where J
acts on m* by multiplication by v/—1 and on m~ by multiplication by —+/—1. The Borel
Embedding Theorem induces a canonical isomorphism 7,§5s-1 = m™ as C-vector spaces.
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Moreover, in our case, we have

mT = @ Vig and m- = @ Vi,

1¢1,J 1€1,J
I<J <J

Now we have T],jAgs-1 = m™, and hence
Tio)Aog—1, = mT@---@m’(r copies).

By definition of vy, we have that vy € m* and that Vi is the smallest direct sum of root
spaces of m* which contains vy. Notice that dim Vg5 > 2 since g > 3. So Cvy is not a root
space of m+.

By construction of S, we have

T[O]Szcvu@~-@(cvu,

compatible with the decomposition of Tjg)Ags-1, above. Therefore Tjo)S is not a direct
sum of roots spaces of m™. We are done. O
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