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CHARACTER CORRESPONDENCES AND #-SPECIAL
CHARACTERS IN 7-SEPARABLE GROUPS

THOMAS R. WOLF

0. Introduction. Let 7 be a set of primes and let G be a w-separable
group (all groups considered are finite). Two subsets X, (G) and B,(G) of
the set Irr(G) of irreducible characters of G play an important role in the
character theory of 7-separable groups and particularly solvable groups. If
p is prime and = is the set of all other primes, then the B, characters of G
give a natural one-to-one lift of the Brauer characters of G into Irr(G).
More generally, they have been used to define Brauer characters for sets of
primes.

The w-special characters of G (i.e., X, (G)) restrict irreducibly and in a
one-to-one fashion to a Hall-7-subgroup of G. If an irreducible character x
is quasi-primitive, it factors uniquely as a product of a 7-special character
an a 7'-special character. This is a particularly useful tool in solvable
groups.

Assume that 4 acts on G via automorphisms, and ( |4], |G] ) = 1. The
Glauberman-Isaacs correspondence p defines a “natural” bijection
between '

Irr,(G) = {a € Irr(G) |a is A-invariant}

and Irr(C), where C = C;(A4). In this paper we investigate the images of
w-special and B, characters under p. This seems a natural question to ask
since quasi-primitive characters factor into special characters and since p
respects Clifford correspondence (see Lemma 2.4 below). If |G| is odd or
2 € a, the image of 7-special or B,-characters are again w-special or B,
generalizing a result of Uno for B, characters and 7/ = {p}. In the
general case, if we assume that x € X _(G) is quasi-primitive, then there
exists A € Irr(C) such that A2 = 1~ and A(xp) is m-special. The images of
a-special characters behave much like 7-special characters. They restrict
irreducibly to Hall-7-subgroups. Also for A-invariant x € X_(G) and
X € X_,(G), we have
xx)p = (xp)(x'p) € Irr(C).

For a p-solvable group G admitting a coprime operator group 4, Uno

[10] has proved that there is a bijection between the A-invariant Brauer

characters of G and the Brauer characters of C (for the prime p). In the
last section, we give a similar, yet shorter, proof which also generalizes to
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sets of primes. We conclude the last section by investigating the
interaction between p and a-blocks. While there is not a one-to-one
correspondence between the 4-invariant -blocks of G and the 7-blocks of
C, we do show that if 8, 8, € Irr(C) lie in the same 7-block, then B]pfl
and sz—l belong to the same 7-block of G.

1. Special characters. In this section, we give the essential facts about
a-special and B_-characters.

1.1 LEMMA. Let G be m-separable. Then
XAG) = {x € B,(G) |x(1) is a w-number}.
Proof. See Lemma 5.4 of [6].

1.2 THEOREM. Let N <1 G with G/N a m-group. Let x € Irr(G) and let 8
be an irreducible constituent of x. Suppose G is m-separable.

(i) x € X(G) if and only if § € X (N), and

(i) x € B,(G) if and only if 8 € B_(N).

Proof. Since x(1) is a m-number if and only if 6(1) is, part (i) follows
from part (i1), which is Theorem 7.1 of [6].

Theorem 1.2 above and Theorem 1.3 below completely determine
X.(G). Note that O(x) is the order of the linear character det(x).

1.3 THEOREM. Let G be m-separable, let N <1 G with G/N a 7’'-group. Let
0 € B(N). Then )
(i) There is a unique irreducible constituent x of 6 satisfying x €
B(G);
(ii) If 1;,(0) = G, then x extends 0,
(iit) x is w-special if and only if 1;(0) = G and 8 is w-special. In this case,
X is the unique extension of 8 with O(x) a m-number.

We will conclude this section by mentioning some interesting and useful
facts regarding m-special characters.

1.4 THEOREM. If P is a Hall-m-subgroup of a m-separable group and
P = H = G, then x — xy; is a bijection from X (G) into X, (H). In
particular, x — xp is a bijection from X (G) into Irr(P).

Proof. This is [1, Proposition 1.6].

1.5 THEOREM. If G is w-separable, if a and B are w-special and 7' -special
respectively, then a3 € Irr(G). Furthermore, the factorization of af as a
product of a m-special character and «’'-special character is unique.

Proof. This is [1, Proposition 7.1].

It is well known that if x € Irr(G) is quasi-primitive and G is
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a-separable, then x may be factored as above. We let O, denote the field
extension of Q obtained by adjoining to Q all complex n-th roots of unity
for all #-numbers n. The following is Corollary 12.1 of [6].

1.6 THEOREM. Let x € B (G) for a m-separable group G. Then
o) < O,

2. Character correspondence. We next look at the character correspon-
dence p. For convenience, we make the following hypothesis.

2.1 Hypothesis. Let A act on G with (|4], |G]) = 1 and let C =
Ci(A).

The map p in Theorem 2.2 gives a “natural” correspondence between
Irr ,(G) and Irr(C), 1.e., it is completely determined by the action of 4 on
G and is choice-free. Theorem 2.2, which gives an algorithm for computing
p, is Corollary 5.2 of [11]. Of course, p = p(G, A) depends on the action of
A on G. Also p(H, B) exists whenever B = 4 and H = G is A-invariant.
We will drop the indexing and will write p or p, when it is obvious what is
meant.

2.2 THEOREM. Assume Hypothesis 2.1. Let x € Irr (G). Then
() If T<2A4 and D = C,(T), then

p(G. A) = p(G., T)p(D, A/T);

(ii) If A is a q-group, then xp, is the unique B € Irr(C) satisfying
q1[xc Bl and

(iii) If |G| is odd and H is an A-invariant subgroup of G with [G, ATC =
H, then there is a unique y € Irr(H) such that [x;;, ] is odd. Furthermore,
xXp = yp.

The following proposition is an easy consequence of the above
theorem.

2.3 COROLLARY. Assume the hypotheses of Theorem 2.2. Then the fields
O(x) and Q(xp) are equal. If G has odd order and ¢ is as in part (iii) of
Theorem 2.2, then Q(x) = O®W).

2.4 LEMMA. Assume Hypothesis 2.1 and that N <Q G is A-invariant. Let
0 € Irr ((N), let I = 1,(0), and let ¢ = bp. Then
1N C=1(¢) ‘ )
(ii) If ¢ € Irr (116). then W%)p = (Yp)": and
(iii) ¢¢ — (p)" is a bijection from Irr ((Gl) onto Trr(Cle).
Proof. See Lemma 2.5 of [12].
The following theorem is a key tool developed in [12, Theorem 2.12].

2.5 THEOREM. Assume Hypothesis 2.1, that M <1 G is A-invariant and
MC = G Let M = H = G and x € Irr(G). Then every irreducible
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constituent of x,; is A-invariant and

XPnc = Xups
extending the map p(H, A) linearly.

The following will often allow us to reduce to the case where MC = G
so that we can employ the above theorem.

2.6 LEMMA. Assume Hypothesis 2.1 and that G is w-separable. Let M <9 G
be A-invariant and assume that G/M is a m-group or w'-group. Let

py = p(G, A)p(MC, 4))~"
and let x € Irr(G). Then

(1) po:Irr4(G) — Irr,(MC) is a bijection;

(ii) xpy is an irreducible constituent of Xy ¢
(iii) x € B,(G) if and only if xp, € B,(MC); and
(iv) If x € X (G), then xp, € X, (MC).

Proof. Part (i) is immediate from Theorem 2.2. If 4 is solvable, then Part
(i) follows from [12, Lemma 3.1]. To prove (ii), we may assume that |G| is
odd and MC < G. Then

H/M = [G/M, AY(MC/M)

is a proper A-invariant subgroup of G/M and [G, AYC = H. When |G| is
odd, part (ii) follows from Theorem 2.2 via an easy inductive argument.

When G/M is a w-group, part (iii) follows from part (ii) and two
applications of Theorem 1.2. Part (iv) is then proved analogously. We thus
assume that G/ M is a 7’-group. If x € B_(G), it follows from [S, Corollary
6.6] that every irreducible constituent of x,,~ is a B,-character, whence
part (ii) implies xp, € B, (MC). On the other hand, if xp, € B, (MC), it
follows from [5, Corollary 6.4] and Theorem 1.3 that exactly one
irreducible constituent n of (xpo)G i1s a B, -character. Then € Irr,(G)
and we have just seen that np, € B_(MC). It follows from Theorem 1.3,
part (ii) and part (i) that np; = xp, and thus n = x. This completes part
(iii). If x € X (G), then x,, € X (MC) by Theorem 1.4 and part (iv) now
follows from part (ii).

2.7 LEMMA. Assume Hypothesis 2.1 and x € Irr (G). Let M <2 G be
A-invariant and suppose x,, € Irr(M). Then xp extends (X,,)p-

Proof. Since x,; € Irr(MC), it is a routine argument using Theorem 2.2
to prove that xp = (xu;)p- Thus we may assume MC = G. The lemma
now follows from Theorem 2.5.

2.8 PROPOSITION. Assume Hypothesis 2.1 and that N <q G is A-invariant.
Let x € Irr(G) and 8 € Irr(N). Then
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(1) xn has an A-invariant irreducible constituent;
(ii) 89 has an A-invariant irreducible constituent; and
(iii) If G is m-separable and § € B_(N), there exists an A-invariant
Y € B_(Gl0).

Proof. Parts (i) and (ii) follow from [4, Theorems 13.27 and 13.28]. To
prove (iii), we may assume that G/N is a 7-group or #’-group. If G/N is
a w-group, part (iii) follows from part (i1)) and Theorem 1.2. If G/N
is a 7’-group, the unique ¢ € B_(G|6) is necessarily A-invariant.

Assume Hypothesis 2.1. If x € Irr (G) and xp = B, then
x(1) | 1G:CIB(1).

It has been conjectured that B(1) |x(1), and the conjecture is valid for
solvable G. We need the following lemma.

2.9 LeEMMA. Assume Hypothesis 2.1 and that G is w-separable. Let
x € Irr (G). If x(1) is a w-number, then so is (xp)(1).

Proof. We argue by induction on |G|. Choose M <1 G such that M is
A-invariant and G/M is a w-group or 7'-group. Let § € Irr (M) be a
constituent of x,, and let ¢ = fp. By induction, ¢(1) is a #-number. By
Lemma 2.3, xp € Irr(Cl¢) and so we may assume G/ M is a #’-group. Then
x extends 8 and by Lemma 2.7, (xp)(1) = ¢(1).

2.10 LEMMA. Assume Hypothesis 2.1 and that G is w-separable. Let
Q = G be an A-invariant w-subgroup of G. Then

(i) Q is contained in an A-invariant Hall-w-subgroup P of G,

(ii) If C = H = G and H is A-invariant, then P N H is a Hall-m-subgroup
of H.

Proof. Part (i) can be proved via a standard induction argument using
the Schur-Zassenhaus Theorem. By [4, Theorem 13.8], the A-invariant
Hall-7r-subgroups of G are C-conjugate. Consequently part (ii) follows
from part (1).

3. Images of special characters. We investigate here xp when x is
w-special or x € B_(G).

3.1 LEMMA. Assume that G is w-separable, L <1 G, x € Irr(G), and
X; € B (L). Then
(a) There is a unique linear A € Irr(G) satisfying

LO™(G) = ker(\) and \x € B(G); and
) If Q(x) € Q,. then X = 1,

Proof. First, for uniqueness, assume that A, also satisfies the conclusion
of part (a) and set N = LO"(G). Then
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xy € Irr(N) and Ax, A\\x € B (Glxn)-

Theorem 1.3 implies that Ax = A;x and consequently A = A,. Hence
existence implies uniqueness.

Let M be a maximal normal subgroup of G containing L. Arguing by
induction on |G/ L|, we may assume there is a unique linear y € Irr(M)
satisfying

Yxy € BAM) and LO™(M) = ker(y).
Since G = I(xp), SO 18

G = IG(Y) = 1(;(YXM)-

If G/M is a «'-group, Theorem 1.3 implies there exists ¢ € B (G)
extending yx,, and x,. It necessarily follows that ¢ = x for an extension
7 of y. Since O"(G) = O"(M), we finish this case by setting A = 7. We
thus assume G/M is a w-group. Since I;(y) = G and (|G/M|, O(y) ) = 1,
there is an extension A € Irr(Gly) with O(A) = O(y) (see Corollary 6.27 of
[4]). Since O(M) is a #/-number and A is linear,

LO™(G) = ker()).

By Theorem 1.2, Ax € B_(G), proving part (a).

By Lemma 1.6, Q(Ax) € Q,. If also Q(x) € Q,. it follows from the
uniqueness of A that Q(A) & Q,. Since A is linear and O(}) is a #’-number,
O\ = Q. Thus \* = 1,

3.2 THEOREM. Assume Hypothesis 2.1 and that G is w-separable. Suppose
that 2 € 7 or |Cl is odd. Let x € lrr,(G). Then

(@) If x € B,(G), then xp € B,(C);

(b) If x € X,(C), then xp € X,(C).

Proof. Part (b) follows from Lemma 1.1, Lemma 2.9, and part (a). To
prove (a), we argue by induction on |G|. Choose an A-invariant M <3 G
such that G/M is a @-group or #’'-group. Let 8 be an A-invariant
irreducible constituent of x,, (see Proposition 2.8) and let ¢ = 6p. By
Theorem 1.2 or 1.3 and induction, ¢ € B_(M N C). Since xp € Irr(Cle)
by Lemma 2.4, we may assume that G/M and C/M N C are #’-groups.
Let I = [;(0) so that I N C = I-(¢). By Theorem 1.3, there is a unique
a € B_(I1§) and furthermore a extends 6. By [6, Corollary 6.3],
a” = x. Similarly there is a unique 8 € B_(I N Cl$), 8 extends ¢, and
8¢ e B (C). If I < G, we apply the induction hypothesis and Lemma 2.4
to conclude ap = & and to show

xp = 8¢ € B_(Q).

We thus assume I = G, x,, = 6, and 8¢ = & extends ¢. By Lemma 2.7, xp
extends ¢. By Corollary 2.3 and Lemma 1.6,
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Q(xd) = 0(x) < Q..
A7pplying Lemma 3.1, there is a linear A € Irr(C/C N M) such that
A° = 1,and

Axp) € B,(G).
Since C/M N C is a #’-group, the hypotheses imply that A = 1.

3.3 CorROLLARY. Assume Hypothesis 2.1 and that G is w-separable.
Assume 2 € @ or |C| is odd. Then x — xp is a bijection from B (G) N
Irr ,(G) onto B (C).

Proof. Let B € B_(C). We need just show that
Bo ' € BLG).

Let M <19 G be A-invariant with G/M a w-group or «’-group. Let
0 € Irr,(M) be a constituent of (,BpAl)M. By Lemma 2.4 and an
induction argument, we may assume that § € B_ (M) and hence
that G/M is a #'-group. Then 6¢ has a unique irreducible constituent
X € B,(G). Since x € Irr (G), Theorem 3.2 and Lemma 2.4 imply that

xp € B,(Clfp).
Then xp = B by Theorem 1.3.

For #’ = {p} and |G| odd, the above corollary was proven by Uno [10].
The converse of part (b) of Theorem 3.2 is not true. To demonstrate this,
one can construct an example where G has a normal Hall-7-subgroup M
containing C and there exists § € Irr (M) not invariant in G. We next
look at the even case.

3.4 THEOREM. Assume Hypothesis 2.1 and that G is w-separable. Let
x € lrr (G) be w-special and B = xp. In addition, assume there exists a
GA-invariant series

such that each factor group is a m-group or w-group and such that the
restriction of x to G; is homogeneous for all i. Then there exists X\ € Irr(C)
with \*> = 1 such that \B € X, (C). Furthermore, if B & X (C).then2 & «
and X is unique.

Proof. By Lemma 1.6 and Corollary 2.3, Q(8) S Q,. First assume the
existence of A and set N = ker(A). Then |C:N| = 2 and By € X, (N). If
B & X,(C), then |C:N| = 2 & a. The uniqueness of A follows from
Lemma 3.1 with L = 07'/(C). Hence the second conclusion follows
from the first.

We proceed by induction on |G|. Choose M <1 G such that M = G, for
some r and such that G/M is a w-group or #’-group. Let 6 be the unique
irreducible constituent of x,,, so that § € X_(M) is GA-invariant. Let
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¢ =0p € Irr(M N C).

By Lemma 2.4, I-(¢) = C and B € Irr(Clo).
By the induction hypothesis, there exists D <1 M N C such that

¢p € X (D) and M N C/D| = 2.

If ¢ € X (M), we assume that D = M. The uniqueness part of the
induction hypothesis and the fact that /-(¢) = C permit us to assume
D <a C. We claim that C/D has a normal Hall-#-subgroup L/D. This is
trivial if M N C = D. For the claim, we may assume that

IM N C/D =2 &7
and C/M N C is a 7-group. Since
M N C/D = Z(C/D),

C/D has a normal Hall-7-subgroup L/D.
By Lemma 2.7, 8, € Irr(L|$,) and thus B, € X, (L) by Theorem 1.2.
The existence of A follows from Lemma 3.1.

3.5 CoroLLARY. Assume Hypothesis 2.1, that G is w-separable and
X € X(G). Then there exist J = C, a € X (J) and A € Irr(J) such that
= 1, and M)t = xp.

Proof. By Theorem 3.4 and Proposition 2.8, we may choose an
A-invariant M <01 G and 6 € Irr (M) such that I = I;(6) < G. Let
Y € Irr(1|6) with z[/(' = x. Since G and I are A-invariant, it follows from
[1, Theorem 5.10] that there exists 6 € Irr (/) such that & € X (/) and
8 = 1,. By induction, we may argue the existence of J = I N C,
a € Irr(J), and vy € Irr(J) such that

Y =1, and (yo)'"C = (8o = 8 (o).
Since (Yp)¢ = x by Lemma 2.4, we finish by setting A — Sy

Let G be w-separable, let x € Irr(G), and suppose there is a normal
series G = Gy, = G; Z... = G, = 1 such that each factor group is a
a-group or 7’-group and such that x restricted to G; is homogeneous for
each i. Then x can be factored uniquely as a product of a #-special
character and #’-special character. Thus the hypotheses of the above
theorem are not unreasonable, particularly in light of Lemma 2.4.
Furthermore, Lemma 2.4, the above theorem, and Theorem 3.10 imply
that p is locally determined for odd G and possibly solvable groups of even
order.

It is not hard to construct examples where, in Theorem 3.4, A # 1. In
fact many examples exist where G has an extra-special subgroup E of
index 2 and C (4) = Z(E). Using such an example, one can construct
further examples showing the necessity of the primitivity condition in
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Theorem 3.4. On the other hand, the next two theorems (as well
as Theorem 4.4 below) show that images (under p) of 7-special characters
behave somewhat like m-special characters. This next proposition is
known.

3.6 PROPOSITION. Assume that G = KH, K<aG,and K " H = M. Let
0 € Irre(K) and 6,, € TIrt(M). If

1:(0) N H = 1,00y,
then x — x,, defines a bijection from Irr(Gl6) onto Irr(H|6,,).
Proof. Let I = 1.(8), so that
10 H=1,0,).

By [6, Corollary 4.2], £ — &4, is a bijection from Irr(Z|f) onto
Irr(I N H|#,,). Since IH = G, we have that

¢y = & nly € Iri(HIB,,)  for & € Tre(1]6).
The proposition follows from Clifford’s Theorem [6.11 of 4].

3.7 LEMMA. Assume Hypotheses 2.1 and that G is w-separable. Let
X € X,(G) be A-invariant and let B = xp. If Q is a Hall-w-subgroup of C,
then BQ is irreducible. In fact the map x — (xp)p is a one-to-one map from
the set of A-invariant m-special characters of G into Irr(Q).

Proof. We argue by induction on |G|. Let M <1 G be A-invariant with
G/M a m-group or 7’-group. In light of Lemma 2.6, we may assume that
G = MC. By induction, § — (Hp)QmM is a one-to-one map from the set of
A-invariant 7-special characters of M into Irr(Q N M). For 8 € Irr(G),
the A-invariant G-conjugates of 8 are precisely the C-conjugates of § (see
[4, Corollary 13.9] ), and it is routine to see that

#)p = (Bp) forc € C.
Thus it suffices to fix
0 X (M) and ¢ = 6p € Irrt(M N C)

and to show that x — (xp), is a one-to-one map from X,(Gl6) into
Irr(Qldys ). If G/M is a 7'-group, then

X (GlO) = {x}.

Also x extends 6 by Theorem 1.3. By Lemma 2.7, (xp)p extends ¢y .
whence (xp) is irreducible. We thus assume that G/M is a m-group. By
Lemma 2.4, p induces a bijection between Irr(G|€) and Irr(Cl¢). Since
(M N C)Q = C, the proof may be completed by applying Proposition 3.6,
once we establish that

Ic(¢) N Q = 1Q(¢'MmQ)~
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By the uniqueness part of the induction argument,
IQ(¢M0Q) = I(;(a) no

and by Lemma 2.4,
I(p) N Q=10 N CnNQ=1,0 nO.

We can actually strengthen Lemma 3.7 by showing that p and
restriction commute. We do this in Theorem 3.9. First we need a
proposition to be used in Theorem 3.9 and Theorem 3.10.

3.8 PrROPOSITION. Assume Hypothesis 2.1 and that |G| is odd. Let
x € Irr (G) be w-special. Let H = G be A-invariant with [G, A]C = H.
Let y € Irr (M) with [x;;, ¥] odd. Then { is w-special.

Proof. By Theorem 2.2, ¢ exists and is unique. Let K = [G, 4] and
L = H N K. Then HK = G, K/L is abelian and L <9 G. If K = G, then
H <a G and the result is immediate. Without loss of generality, choose
K = M <9 G with M maximal. Since 4 centralizes G/K ~ H/L, M
is A-invariant. Let § € Irr(M) be such that [x,, 6] # 0. Then 6 is
A-invariant and § € X_(M). Since

[M,A](C N M)=H N M,
there exists a unique ¢ € Irr (H N M) such that

[0/~ r @] = 0 (mod 2).

By the induction hypothesis, ¢ € X (H N M). We may assume that
G/M ~ H/H N M is a «’-group. Then x,;, = 6 and I;,(¢) = H. Hence
there is a unique p € X_(H|¢). Since p extends ¢ and H/H N M is abelian,
¢y = Au for a unique linear A € Irr(H/H N M). Since Q(x) = Q(¢¥) and x
is «r-special, it follows that A = 1;; by Proposition 3.1.

3.9 THEOREM. Assume Hypothesis 2.1 and that G is w-separable. Let P be
an A-invariant Hall-m-subgroup and let x € X_(G) be A-invariant. Then
xPpac = (xple-

Proof. We argue by induction |G| |[4]. We may assume that C < G. We
first assume that A4 is solvable. Choose T'<1 A such that 4/7 is a g-group
for a prime g and let D = C(T). Let

n = xpr € Irry (D) and B = xpy.

By Theorem 2.2, 8 = np,,rand 9 = aB + gA for an integer a = 0 (mod
q) and (possibly zero) character A of C. By Lemma 3.7, np,p and
Bpnc are irreducible. Since

[(pap)pacs Bracl # 0 (mod g),

it follows from Theorem 2.2 that
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Mpap)Pasr = Bpac

Employing the induction hypothesis and Theorem 1.2,

(xXp)e = (Xp)P1P4,7 = MprpPasr = Bpac-

We are done in the case where 4 is solvable. By the Odd-Order Theorem,
we may assume that G is solvable of odd order.

Let K =[G, A, L = K',and H = LC. Then KH = Gand K N Il =
L <9 G. Since C < G, also H < G. Lemma 2.10 implies that P N H is a
Hall-7-subgroup of /. By Theorem 2.2,

Xy =v +2A+ X

—

where A, = € Char(H{), y € Irr (H), yp = xp, and no irreducible
constituent of = is A-invariant. If H/L is a #-group, then two applications
of Theorem 1.2 yield that every irreducible constituent of x,, is 7-special.
Hence, by Theorem 1.4, @« — a;;~p is a bijection from the irreducible
constituents of x,; into Irr(P N H). Hence

LXp)pan ¥paul = Xpam Yraul
is odd. Since [P, A](P N C) =P N H,

(Xp)o = Ypnpp-
Since H << G, we use induction to conclude
(Xp)o = Yprpe = WP)pnc = (XP)pc-

Hence we may assume that H/L ~ G/K is not a 7-group.

Now KP/K and (KP N H)/L = L(P N H)/L are Hall-m-subgroups of
G/K and H/L. Also KP < Gand L(P N H) < H. Let Q = L(P N ).
By Proposition 3.8 and Theorem 1.4,

\PQ € X(Q) and xxp € X (KP).
It suffices by the induction hypothesis, to show xxpp = ¢p. Since
[KP, A)(C N P) = Q,

we need just show that [X0- Yol is odd (see Theorem 2.2). Since LC
two applications of [4, Exercise 13.13], no irreducible constituent of
A-invariant. Since

I |l

Xy =v +2A + &,
we have that

[xp» Yol = 1 (mod 2).

3.10 THEOREM. Let m, and m, be disjoint sets of primes. Assume
Hypothesis 2.1 and that G is m-separable for each i. Let x; € Irr, (G) be
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m;-special and B; = x;p (for i = 1, 2). Then
xaixe = BBy

Proof. We argue by induction on |Gl |4]. Choose M <1 G maximal such
that M is A-invariant. Without loss of generality, G/M is a 75-group. Let
Y, € Irr(MC) such that y,p = B;. By Lemma 2.6, v, is 7-special for each i.
By the induction hypothesis, we may assume that 8,8, € Irr(C) or that
MC = G.

First assume |G| is odd. Let L = [G, A] and H = LC. We may assume
C < G and hence that H < G (using the solvability of G'). Write

Xy =¥ + 20, +
with
A, = € Char(G), 4, € Irr (G),

and no irreducible constituent of Z; is A-invariant. By [4, Exercise

13.13] and the fact that LC = H, every irreducible constituent of ({;); is
A-invariant and no irreducible constituent of (Z;); is A-invariant. Since
L <9 G and y;, is m-special, all irreducible constituents of (y,); and (Z;),
are 7;-special. By the uniqueness part of Theorem 1.5, it follows that

[ W), (25,1 = 0.

By Proposition 3.8 and Theorem 1.5, each v, is 7-special and ¢y, €
Irr(H). It now follows that

[ ax2)s ¥l

is odd. Applying the inductive hypothesis and Theorem 2.2, we conclude
that

xx2)e = W) = (1p)rp) = .Blﬁz-

We are done if |G| is odd. By the Odd-Order Theorem, we can assume that
A # 1 is solvable.

Choose T'<1 A4 so that A/ T is a g-group for a prime g. Let D = C(T)
and §, = x,py. By induction

f]gz € Irr(D) and  (x;x2)04 = (£,6)04,7-

By Theorem 1.3, we may write
E)e = aB; + gh;
for integers a; = 0 (mod ¢) and characters A, of C. Then

¢1&)c = aaB\By + g

for a character I' of C. If B,8, is irreducible, then

xix2)es = (604, = BiBs
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We may thus assume 8,8, reduces.

By the first paragraph, MC = G. For M = H = G, Theorems 1.2 and
1.3 imply that every constituent of (x;); is m,-special (i = 1, 2), and
Theorem 2.5 implies that every constituent of (x;),; is A-invariant. Also for
n € Irr (G),

(TIP)//mC = MNyP-

Applying the inductive hypothesis, we conclude that

(Xix2)Ppne = (aix)dwe = BiBIunc
whenever M = H < G. We may thus assume that G/M ~ C/C N M is
cyclic.
Let 8, € Irr(M) be an irreducible constituent of (x;),, and let
¢, = O,p(i = 1, 2). Since G/M is a my-group, we have

Xy =0, and (Blync = o

by Lemma 2.7. Let I = I;(,) and choose « € Irr(/]6,) with ol = X)-
Then « is 7y-special. If I << G then induction yields that

(a(x2)p)p = (@p)B);n ¢
and, since I = [;(¢,$,), we apply Lemma 2.4 to yield

X1x2)P = (@p(Br);n ) = (@) By = BB

We may assume that I = G. Since G/M is cyclic, we have that f; extends
¢,. Since B8, reduces, we have ¢,¢, reduces, contradicting the induction
hypothesis. :

4. Brauer characters and blocks. Let G be w-separable. For a class
function p of G, let u* be the restriction of p to the w-elements of G. If
1 € Char(G) and p* cannot be written as

p*f=af +...+ af

for some n = 2 and «; € Char(G), then p* is called an irreducible
a’-Brauer character (u* € IBr.(G)). This coincides with the usual
definition of p-Brauer characters. This definition, due to Isaacs [S], has
been used by Slattery [8 or 9] to define #’-blocks for a #-separable G. This
is consistent with the usual theory of p-blocks as well as the notions of
7’-blocks put forward by lizuki [2] and Robinson [7].

4.1 THEOREM. If G is w-separable then x — x* is a bijection then B (G)
onto IBr_(G).

Proof. This is Theorem A of [6] and note there I"(G) = IBr(G).
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4.2 ProprosITION. Let G be m-separable and let M <1 G with G/M a
7-group. Let © and o be irreducible Brauer-n'-characters of G and M
respectively. The multiplicity of o in T,, equals the multiplicity of  in o".

Proof. This follows from Theorems 4.1 and 1.2 and Frobenius
reciprocity for ordinary characters.

When 7" = {p}, the above is Theorem 2.2 of [3] and the following is
Theorem 3.1 of [3].

4.3 LEMMA. Let M <Q G where G/M is a w-group and G is w-separable.
Assume that ¢ € Irr(M) and ¢* is an irreducible Brauer-w’-character of G.
If 1,(dp) = I.(o*%), then x — Xx* defines a bijection from 1rr(Glp) onto
IBr(Glo*).

Proof. Mimic the proof of [3, Theorem 3.1], using the above proposition
in place of [3, Theorem 2.2].

The next theorem was proven by Uno [10] when 7/ = {p}. Our proof,
while similar, is a little shorter and removes the need for what he calls “the
projective lifting property”.

4.4 THEOREM. Assume Hypothesis 2.1 and that G is w-separable. Then
X — (xp)* is a bijection from B (G) N Irr,(G) onto 1Br(C).

Proof. We argue by induction on |G|. Let M <1 G with G/ M a 7-group or
a’-group. By Lemma 2.6, we may assume that MC = G. By the induction
hypothesis, 8 — (fp)* is a bijection from B (M) N Irr (M) onto
IBr(M N C). Since the map is one-to-one, it follows that

1(;(0) N C =1 (6p)*)

for all § € B (M) N Irr (M).

Fix § € Irry(M) and let ¢ = Gp € Irrf(M N C). We claim that
& — (ép)* is a bijection from Irr(G|6) onto IBr(Cl$*). By Lemma 2.4, p
is a bijection from Irr(G|#) onto Irr(Cle). By the last paragraph
I.(¢) = I-(¢*). Hence, by Lemma 4.3, we may assume that G/M is a
a’-group. In this case, B_(G|6) and IBr(C|¢*) are singletons, say

B.(Gl0) = {£}.
Since ( (4p)*);n ¢ has ¢* as a constituent, it suffices for the claim to show
that (£o)* is irreducible. Let @ = 6|, 8, . . ., 8, be the distinct G-conjugates
of 8. Since MC = G, it follows that each 6, is A-invariant. For y € C, note
that

(@) = (Bp)".
Hence it follows that if ¢, denotes 6,0, then ¢f...., ¢} are distinct

C-conjugates of ¢*. Since £ € B, (G) and G/M is a 7’-group,
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Ey =20, +...+9,
by [6, Corollary 6.5]. By Theorem 2.5,

EP)iinc = Eup)* = of + ...+ ¢

Since the ¢, are C-conjugates, (§p)* is irreducible. This establishes the
claim.

By the last paragraph and Theorems 1.2 and 1.3, x — (xp)* defines a
map from B_(G) N Irr(G) into IBr(C). By the induction hypothesis and
the last paragraph, this map is onto. If

X1» X2 € B(G) N Irr(G)
and if
(le)* = (sz)*,

then the induction argument yields that (x,),, and {(x,),; have a common
(A-invariant) irreducible constituent, whence the last paragraph yields
that X1 = Xo-

The above theorem, along with Theorem 4.1, of course yields a bijection
between /Br,(G) and IBr(C). We will also use p to denote this map. Then
for a € IBry(G), ap = (xp)* where x € B_(G) and x* = «. In essence, the
same algorithm works for computing p on IBr,(G) as on Irr4(G).

4.5 THEOREM. Assume Hypothesis 2.1 and that G is w-separable. Let
w € IBr(G). Then
() If T2 A, then

pp(G, A) = pp(G, T)p(C(T), A/T);

(i) If A is a g-group, pp is the unique irreducible constituent of p with
multiplicity prime to q;

(iii) If |G| is odd and [G, AYC = H = G with H A-invariant, then there
is a unique o € IBr,(H) with odd multiplicity in p; and furthermore
pp = ap.

Proof. This easily follows from Proposition 3.7, Theorems 2.2 and 4.4.

One question that arises is whether there exists a one-to-one correspon-
dence between the set of A-invariant #’-blocks of G and the set of
a’-blocks of C. The answer is no, since one can easily find an example with
G solvable, O,(G) = 1 and O,(C) # 1. Here G has a unique 7’-block, but
C does not. But we do get one “direction”, Theorem 4.8. The next
theorem, due to Slattery, completely characterizes the #’-blocks of G.

Another question that is at present unanswered is the following.
Assuming Hypothesis 2.1, is there a one-to-one correspondence between
IBr(G) and IBr(C) for a fixed prime p. Of course, the answer is yes if G is
p-solvable, but the general case is not known.
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4.6 THEOREM. Let B be a 7'-block of a m-separable group G and let N be a
normal w-subgroup of G. Let x € B N Irr(G), let 8 be an irreducible
constituent of x and I = 1;(6). Then

(a) B C Irr(G|0) U IBr(G|O);

(b) Equality holds in part (a) if N = O_(G) and I = G; and

(¢) There is a unique 7'-block b of I such that

b C Irr(1l6) U IBr(16)

and a — " is a bijection from the ordinary (Brauer, respectively) characters

of b to those of B.
Proof. This follows from [8, Theorems 2.9 and 2.11].

4.7 LEMMA. Assume Hypothesis 2.1 and that G is w-separable. For a
a’-block B of G, the following are equivalent.
(1) B is A-invariant,
(i1) There exists an A-invariant x € B N Irr(G);
(ii1) There exists an A-invariant ¢ € B N IBr(G).

Proof. By Theorem 4.1, (iii) implies (ii) and trivially (ii) implies (i). We
show that (1) implies (iii). Theorem 4.6 yields there is a G-conjugacy class
0 =46,,....80, of irreducible characters of O,(G) such that

B C Irr(Gl8) U IBr(Glf).

Since A permutes the 8, it follows from Glauberman’s Lemma [13.8 of 4]
that we may choose 8 to be A-invariant. By Theorem 4.6 and an inductive
argument, we may assume that I = G. By Proposition 2.9, there exists an
A-invariant x € B_(Gl|¢). Then x is A-invariant and x € B N IBr(G).

For an A-invariant #’-block B, we let
Bp = {xplx € Band x € Ilrr (G) U IBr(G)}.

4.8 THEOREM. Assume Hypothesis 2.1 and that G is w-separable. Let B be
an A-invariant 7' -block of G. Then Bp is a union of w’-blocks of C.

Proof. For ¢ € Irr(G), all the irreducible constituents of £* lie in the
same block as £. Thus, given x,, x; € Irr (G) and B, = x;p. it suffices to
show that x, and x, lie in the same #’-block of G if B8, and B, lie in the
same 7’-block of C. To prove this, we use induction on |G:0_(G)|. Let
N = 0,G). By Theorem 4.6, (B8)ync and (B3)ync have a common
irreducible constituent ¢. Let

6 = ¢p ' € Irr(N)
and let I = I,(6). By Lemma 2.4,
X1- X2 € Irr(Glo).
Let i, € Irr(J|0) with \l/f; = x;. By Lemma 2.4 and Theorem 4.6 (c), {,p
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and y,p lie in the same block of I N C. If I < G, we use induction and
Theorem 4.6 (c) to conclude x,; and x; lie in the same block of G. We can
thus assume / = G and conclude the proof by applying Theorem
4.6 (b).

For each #’-block B of a 7-separable group G, there is a conjugacy class
of #’-groups that are called defect groups. When #" = { p}. these are the
usual defect groups. In the situation of Theorem 4.6 (c¢), the defect groups
for b are also defect groups for B. Under the hypotheses of Theorem
4.6 (b), the defect groups of B are Hall-#'-subgroups of G. These last two
statements follow from [8, Lemma 3.7 and Corollary 3.9].

4.9 THEOREM. Assume Hypothesis 2.1 and that G is w-separable. Let B be
an A-invariant 7' -block of G and write

Bp:b]U...Ub,

Jor @-blocks b, of C. Then

(i) The defect groups of b, are contained in defect groups of B. and

(ii) For some j, P 0\ Cis a defect group for b; whenever P is an A-invariant
defect group for B. ’

Proof. Let N = O(G). As in Lemma 4.7, choose § € Irr (N) such
that

B C Irr(Gl6) U IBr(Gl6).
Let ¢ = 0p € Irr(N N C) and note that
by, U...Ub, C Irr(Clp) S IBr(Cle).

By Lemma 2.4 and Theorem 4.6, and comments preceding this theorem,
we may argue by induction on |G| to assume

1.(8) = G,
B = Irr(G|8) U IBr(G|6),
by U...U b, = 1rr(Clp) U IBr(Clp),

and the defect groups of B are Hall-7-subgroups of G. Part (i) now follows
from Lemma 2.10.

Let M = O,(C) and Q be a Hall-#’-subgroup of C. By Proposition 2.8,
there exists n € Irr(M|¢) that is Q-invariant. This implies that

M = O, (I-(n)).

Then Theorem 4.6 yields that Irr(Cln) U IBr(Cln) is a block »” with Q as a
defect group. Since [ny, ¢] # 0, b" = b, for some j. Since defect groups of B
are Hall-7-subgroups of G, the proof is complete (see Lemma 2.10).
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