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A GENERALIZATION OF DEGREE TWO SIMPLE
FINITE-DIMENSIONAL NONCOMMUTATIVE
JORDAN ALGEBRAS

MARY ELLEN CONLON

1. Introduction. Let.%/ be an algebra over a field.% . For x, v, 2 in.%/,
write (x, v, 3) = (xy)z — x(y2) and x-y = xy + yx. The attached
algebra.@/* is the same vector space as./, but the product of x and y is
x-y. We aim to prove the following result.

TuroREM 1. Let 7 be a finite-dimensional, power-ussociative, simple
algebra of degree two over « field of prime characteristic greater than five. For
all x, v, z in.oZ, suppose

(1) (xﬁy ¥, Z) = ,V'(X, yy:)-
Then .7 1s noncommautative Jordan.

The proof of Theorem 1 falls into three main sections. In § 3 we estab-
lish some multiplication properties for elements of the subspace.oZ;,» in
the Peirce decomposition &7 = .97 + .97, +.97,. In §4 we construct
an ideal of ./, which we then use to show that the nilpotent elements of
o/, form a subalgebra of .o for 7 = 0, 1. Finally, in § 5 we define a trace
functional on .27 and-use it to prove our main result.

Kosier [5, p. 39, Theorem 8] has proved that if .o is of degree greater
than one, then (1) and the identity (v, z, x?) = x-(y, 2, x) imply .o/ is
cither associative or a Cayley algebra. Morgan [6, p. 963, Theorem 9]
has proved the same result using (1) and (y, x?, 3) = x-(y, x, ). The
proofs involve a refinement of the Peirce decomposition of .¢7. GGoldman
and Kokoris [4, p. 481] have shown that the single identity (y, x*, z) =
x- (v, x, 2) yields a noncommutative Jordan algebra in the degree two
case. Their proof depends on the symmetry of the preceding identity with
respect to the second component of the associator. Neither of these
approaches is applicable to a degree two algebra satisfying only (1). At
present, the cases of degree greater than two and of degree one remain
open. The author is investigating the latter.

2. Preliminary results. Let x, v, 3, w € .. Since char.% # 2, the
linearized identity

(2) (X'wvyyz) :x<wvyvz)+w(xvy!:)
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is equivalent to (1). We shall have occasion to use the Teichmuller
identity,

0= (xwv 2 Z) - (xv wy, Z) + (x) w, yZ)_x(wi YV, Z) - (x! w, y)zr

which holds in any algebra, and the linearized version of third power
associativity,

0= (x,y,2) + (x,2,v) + (v,x,32)

+ O z,%) + (5,%,9) + (3,9,%).
Now, since.% has degree 2, there exist orthogonal idempotents « and v
in.o/ such that « + v = 1. If 97, is defined to be {a € .27 |u-a = 2ia} for
i=0,1/2, 1, then by [2, p. 12, Lemmas 3 and 4], %7, and .7, are sub-
algebras of .&7. Moreover, %/ has Peirce decomposition &7 = .97, +
A 1+ . Next, Florey (3, p. 505, Lemma 2] has proved that . is
stable, i.e., .o 1) C.Z 12 and 10 ; Sy, for @ = 0, 1. Thus, if
A+ is the radical of &+, then &/, = Fu + N1 and &y = Fv + N,
Also, we have the following two results, due to [1, p. 517, Lemma 10]

and [4, p. 473], respectively. First, for x, y € %/;,» we have

3) x-y=au+ av+ n + ny,
for some @ € Z and n,; € A .. Second, if n is in A1 or A, then
4)  (xn)yedi+H

Furthermore, let # = x in (1) to get (u,.o7,.%7) C.%7,,. Also, argue as
in (4, p. 474] to show that (u,.27, u) = 0.

Finally, most of the results in this paper are stated in terms of u, 4,
and 7. Similar results can be proved for v, 4, and ./, by using the
following relationship between « and v. Let x € .97,,,. Use the definition
of &7, and multiply the equality 1 = u + v on the left by x to get
xv = wux. Similarly, vx = xu.

3. Multiplication properties of .27, .. Before we can determine the
structure of %7, we need a series of results regarding multiplication by
elements in.o7 .

LEMmMA 1. (Ja/l,u‘%l/z, Zt) = 0.

Proof. Let a € .27, and let x € 97,5 Since &/, is orthogonal to .%7,
we have

0= (¢ v,x,u) =a- (@,x,u)+v-(a,x,u),
from (2). But by stability, («, x, u) € .97, so that
O=a- (1 —u,x,u)~+ (¢, x,u) = (a,x,u),

because (u, .7, 1) = 0. Hence, (&1, 1,2, u) = 0.
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LEMMA 2. If a € .97 and x € 1y, then (ax)u = u(xa).
Proof. Third power associativity and Lemma 1 yield
0= (a,u,x) + (x,a,u) + (x,u,a) + (u,x,a) + («,a, x).
Recall the definitions of .2/} and .7, and combine like terms so that
B) 0= 2ax — ulxa)—xa — a(ux) + (xa)u — u(ax).
Since ax € .97, by stability, use Lemma 1 to conclude
ulax) = ax— (ax)u = ax — a(xu) = a(ux).
Hence, by substitution in (5) and because xa € .97, by stability,
= 2lax — u(ax)—u(xa)].

Since char# # 2 and ax € .%71,5, we have shown that 0 = (ax)u —
u(xa).

LEMMA 3. Let i = 0, 1. For all x, y € 1,9, there exist 8,8 € F , w10 €
A1 p9, and ay, by € Ny such that

xy = (Bu + a1) + aipp + (8 + ao),
yx = (0u + by) — a1e + (Bv + by),
(eu) -y = (yx)1 + (%),
(ux) -y = ()1 + (¥x)o.
Proof. Write
6)  xy = (Bu + ar) + ayp + (60 + ao),
yr = (yu + b1) + b + (ev + bo)

for 8, v, 8, € € F, a2, 12 € A 1)9, and ay, b; € A ;. Then, (3) and (6)
yield 8+ v = 8 4+ € and ay,, = —by0. Furthermore, (u, x, y) € .94,
and, since y € &4, and (u,.%7, ) = 0,

(y,xyu):(lt'yixylt)—:z,t.(ylx’z't)Y

by (2). Therefore, (v, x, u) € .97 1,,. Write (y, x, u) = ripand (u, x,y) =
s12. Then, use the first of (6) to compute

(7 (ux)y = s12 + w(xy) = (Bu + 1) + (uai + sij2)

and, since x € &7,

yux) = yx + (y,x, 1) — (yx)u
= (b2 — Dbyjat + r152) + (v + by).

But then, the definition of .97, and ay), = —by,» imply
(8) y(ux) = (r1p — uare) + (0 + by).
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Use (3) ony - (ux) and apply (7) and (8) toget 8 = eand 71,2 + 1,2 = 0.
Then, since 8 + v = 6 + ¢, we have vy = §, so the first two equalities
of the lemma are proved.

Next, since s1;2 + 712 = 0 and 8 = ¢,

(ux) -y = (Bu 4+ @1) + (Bv + bo)

by (7) and (8). But then, by the equalities just proved, (ux) -y =
(xy)1 + (yx)o. Finally, substitute for (ux) - y and use (3) to conclude
u) -y =wx-y— (ux) -y = (-3 + (x-3)
— (@)1 — (9x)o = (yx)1 + (x¥)o.
Lemuva 4. If x, y € 10 and n € Ny, then (x - y)n € N .
Proof. Stability implies that nx € .97, so that Lemma 3 yields
9)  (mx)y = (Bu + a1) + a1z + (6v + ao),
y(nx) = (0u + b1) — a1 + (B + by).

Now, Lemmas 2 and 3 give

ly(nx)]s + [(mx)ylo = [(mx)u] -y = [u(xn)] - ¥
= [(xn)y]i + [y (en)]o.
Therefore,
(10)  [y(mx)]i = [(xn)yls,
[(nx)ylo = [y(xn)]o.
Since xn € .97, by stability, use Lemma 3 again to get

(11)  (xn)y = (vu 4 ¢1) + c12 + (ev + co),
y(xn) = (e + dy) — c12 + (vo + dy).

Then, (9), (10), and (11) yield v =8, by = ¢;, and ¢y = dy. So (11)
becomes

(12)  (xm)y = (6u + b1) + c1p2 + (ev 4 ¢o),
y(xn) = (eu + di) — cip2 + (6v + o).

But then, (x-#n) -y €A1 +A4, by (4), so that (9) and (12) imply
B + 26 + ¢ = 0. A similar argument yields

(13)  (m)x = (pu + r1) + r1i2 + (00 + 70),
x(yn) = (ou + s1) — r12 + (pv + s0),
x(ny) = (ou + r1) + tip + (10 + to),
(my)x = (ru 4+ wi) — tiyp + (v + s0),

204+ 0+ 7=0.
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Now, third power associativity applied to %, x, and y can be written as
(14) 0=@-nm)x+ @ -yn+ @ n)y—y& -n) —nl-y) —x@-n).

Also, by (4), (y-#) - x and (x - n) - y are both in. A", +.4. Moreover,
(x-y)-nC (& +,) N, C Ay by (3), orthogonality of .27, and

o/, and because 1" is an ideal of &7 1*. Thus,
(15) (-m)y+y@-n) + (- -n)x+x-n)
+nlx-y) + (x-y)n AN+ N,
so that adding (14) and (15), we have
(c-y)n+ (v-m)x + (x-n)y e N+ AN,
since char# # 2. Substituting from (9), (12), and (13), we get
(x-y)n—+ B+6+p+r)u+ (ar+ by +ri+ w)

+ (e +cyp+rip = hp) + 6+ e+ p+ o)v
+ (ao 4+ co + 7o + s50) EN L+ N .

Now, (x -y)n £ (&1 +Z )N S by (3), and since %/, and &7 are

orthogonal subalgebras. Hence,

x-y)n+ B+o+p+nu+ G+et+p+ o)A+ 4,

so that
(16) 64+e+p+o=0
and

-+ B+o+p+ruc A
But we showed earlier that
(17) B+20+ ¢+ 2 +0o+7) =0
Subtraction of (16) from (17) leaves
(18) B+é+p+7=0,
so that (x - y)n € AN

We conclude this section with the following theorem, whose proof
utilizes the two preceding lemmas.

THEOREM 2. If x, v € Ay and n € N4, then (xu)(yn), (yn)(xu),
(xu) (ny), (ny) (xu) cNy +&1~/1/2 + N

Proof. Use (2) and the definition of .97 to get

2m,x,y) = m-u,x,y) =n- (u,x,9) +u- (nx7y),
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so that
(n, X, y) E*MI' (&/1 +-«Q/1/2 +M0) g-«Q/jl +=Q/1/2,

because char # # 2,.97 is stable, and .2/, is a subalgebra orthogonal to
%0. AISO,

n(xy) € (A1 + A 1o+ ) SA L+ ).
Hence,

(nx)y = (n,x,y) + n(xy) € 1 +.L1p,
so that, by (9), 8 = 0 and ¢, = 0. But since we have already shown that
26 + B8 + € = 0, we now have 8§ = —e. A similar argument yields p = 0,
so =0, and —¢ = 7 in (13). Moreover, compare (16) and (18) to get
c+e=B8+7,0rc+e= —(c+4 ¢€), because 3 = —e and 7 = —o.
Hence, since char# # 2,7 = —¢ = .

Next, for p, ¢ €./, we define p = ¢ if and only if p — g ¢ N +

/1)y + N It is easy to prove that = is an equivalence relation on.o/.
Now, stability and Lemma 3 imply that

(ux) - (yn) = [x(yn)]i + [(yn)x]o = —eu — e,

by (13) and ¢ = —e. Hence, by comparison with (13), there exists some
o in.% such that

(19) (yn)(ux) = (—e — a)u + av,
(ux)(yn) = au + (—e — a)v,
(ux)(ny) = (—e — a)u — av,
(ny) (ux) = —au + (—e — a)v,

—2e — 2a = 0.
Since char # # 2, the last of these equations yields ¢ = —a. Therefore,
(13) and (19), with p = 0and —a = ¢ = 7 = —o, allow us to conclude

(yn) (xu) = (yn)(x — ux) = (e — ¢Jv = 0,

(xu) (yn) = (x — ux)(yn) = (e — Ju = 0,

(en) (ny) = (x — ux) () = (e — ) = 0,

(ny) (xun) = (ny)(x — ux) = (e — e)u = 0,
because x € . 4s.

4. An ideal and subalgebras of .&/. We aim to show that A4/; and
Ny are subalgebras of .27. For the moment, suppose this is not true.

LEMMA 5. If x € .y, and Ny is not a subalgebra of <7, then
ux E ;9/1/2/1/1 +~./V1M1/2.
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Proof. Although. 4/, is not a subalgebra of o7, 4/, is a subspace of .27 .
Thus, we can find a, b € .4, such that ab = au + n for some n €.,
and some nonzero a € % . Then, stability implies that (a, b, x) € 271,
so that properties of the Peirce decomposition and (2) yield

2(a,b,x) = (a-u,b,x) =a- (u,b,x) + (a,b, x).
Therefore, subtracting («, b, x) from both sides, we get
(ab)x — a(bx) = a - [bx — u(bx)] = a - [(bx)u],

since bx € .%7,,, by stability. Substitute ax + n for ab and solve the
resulting equation for ux to get

ux = a4 — nx + a(bx) + a[(bx)u] + [(bx)ula},

since a is a nonzero element of #. By stability, we conclude that

ux € MI/Z'/VI "I"’/Vlb(%l/Z-

Next, we begin to construct an ideal of .. For i = 0, 1, define %, as
the subspace generated by { (xy).|x, v € . 1,2}.

LEMMA 6. Gy +.A 1,0 + €4 is a right ideal of 7.

Proof. Denote €1 +.971,2 + % by % . We only need show 6.7/ C % .
By stability,

Cgv‘%l/z E‘MU? +M1/2=9{1/2 c (gl +M1/2 + (570 = (g

Next, consider 4.7y = € (¥ u +.A4,). Since € is a subspace, .« is
stable, and .o/, is orthogonal to .o/, it suffices to consider % ,.4;. Now,
letx, v €.97,,5and n € 4. Equation (2) and the definition of %7, yield

(-’nyy”) = (x'uvyvn) =X- (ltvyvn) "I—’lt' (xvyyn>'

Substitute f; + ti12 + to = (x, ¥, n) and use properties of the Peirce
decomposition to get

ty+ tip F Lo = x - (w,y,n) + 2ty + ti.

Solving for #) — t; and using stability, we have t, — t; € 71,0 - 1o
But the latter is contained in the subspace generated by %/ ;,2.97 1. Since
this subspace is itself contained in %, we conclude that ¢, € %; and
to € %o. Thus,

(xy)n — x(yn) = (x,y,n) € €.

By stability, x(yn) € 971,09 ,, C %, so that (xy)n ¢ €, and thus
(xy)1n € %, for all x, y in.274, and all # in.A}. Thus, €41 C E, so
that ¥/, € %. In a similar manner, ¥/, C %, and the lemma is
proved.
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We want to show that € is a (left) ideal of &7. But first, we need a few
more lemmas.

LEMMA 7. Ifn € N fori = 0,1, and if x,y € 15, then n(x - y) € €.

Proof. We prove the result for ¢ = 1. The linearized form of third power
associativity can be written as

n(x-y) = (nx)y + (my)x + (xn)y — x(ny) + (xy)n — x(yn)
+ (yn)x — y(nx) + (yx)n — y(xn).
By stability and Lemma 6 the terms of the right hand side are elements of
1o 1+ (A1)l )N CC + CAA CF
so that n(x - y) € €.

Next, consider the set.# defined as
o/ 1,5 + subspace generated by {x - y|x, v € 71,2}
+ subspace generated by {u - (z - w)|z, w € . 1)}.

We shall use # to show that % is a left ideal of .%&Z. However, we need
some preliminary results concerning ¢ .

LEMMA 8. (1, A, ) CH .

Proof. Let x, 2 € &7 and let y € .%7,,5. Then (2) and the definition of
MI/Z yield
(20) (y,%,2) = (y-u,x,2) =y (u,%,2) +u- (yx,z2).

Since (u, x, z) € (4, o, ) S, (3) implies that y - (u, x, 2) is in
L + .. Denote y - (u, x, z) by a1 + ao. Then, use char # # 2 and
properties of the Peirce decomposition to conclude

ar=%u-(a+ a) = 3u-ly- (u,x2)].

The latter is in the subspace generated by u - (%74, -%1,,). Hence, by
definition of #, we have shown that a; € 2. Also,

Qo = Y- (u,x,z) — E*MI/Z'MI/Q +9{§%-
Finally, if we let (y, x,2) = 71 + 712 4+ 7o, (20) becomes
ri + Y172 + 7y = ((11 - 27’1) + Y12 + ay,

so that, equating components in .%7;, we get r; = —a; € 4 and 7, =
ay € . Therefore, (y, x, 2) =r1 + 110+ 10 €A +1,0 CH, and

the lemma is proved.

LEMMA 9..97 587 1,0 T
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Proof. We begin by showing that u -#" C ¢, Now,
(21) u-H C u-o,, + subspace generated by u - (1,2 - 1,2)
+ subspace generated by u - [u - (& 1,0 - 1,2)].

By 3), u- (1 1p) Cu- () +.97,) C.o7,. Thus, since u is the
unity of .9/, we have u - [u - (12 12)] S 1+ (1) 1,2). There-
fore, from (21), u -4 C A .

Next, let x, v € 71,2 Use (3), properties of the Peirce decomposition,
and char. % # 2 to get

v-x)u = (y-x)w+ - = (y-x) = 3u- (y-x) €4,

by definition of J#. The same definition shows that (xu) -y € .94, -
/12 CH . These results, together with Lemma 8, show that

(yr X, lt) - (xv Y, lt) - (L‘C, ”,y) + (y'x)“ + (xu) cy E‘){

After simplification, we have —2(xy)u + xy € 2¢. Substituting xy =
s1 4 S12 + so, we have

—s1 — 285101 + S10 + 5o €4

Since .o/, ¢, we conclude that sy — s, € #.
Finally, using the preceding paragraphs and char# # 2, we get

s1= —Yu-(so—51) Cu-H CH.

But then, so= (s¢ — s1) + 51 €4, so that xy = s, + 5120 + 50 €
A + .y A

Lemma 10.9724 C 7.
Proof. First, by stability,
AA \jp C Ay + A 1)l 10 S F
Next, consider .o7 (71,5 -7 1,2). By (3) and stability, we know that
(22) A1) (A 1) A 1) ST S F
Furthermore, using # + v = 1 and Lemma 7, we have

(23) (Ml +</Q/0)(c9/1/2 '«53/1/2) = (JJZu + N+ Fu +JV0)
X (&{1/2 ‘%1/2) g&/l/z “52/1/2
+ (/Vl +</V0)(~53/1/2 'Ja/l/z) c%.
Hence, (22) and (23) show that &/ (&7, - 1,0) € ¥

Finally, consider .71 - (/1,5 -9/ 1,2)]. Let @ € &7 and let x, y € A 45.
Then,

(24) alu- (x-)] = alue- )] + allx-y)u] = (au)(x - y)
+ la(x-y)Ju — (¢, u,x-y) — (a,x -y, u).
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Using the preceding paragraph, we get

(25) (au)(x-y) +lalx-]u € € + Cu ¥,

since % is a right ideal. Moreover, third power associativity leads to
26) (w-y,u,a)+ (x-y,a,u) + (w,a,x-y) + (u,x -y, a)

= — ((l, U, x - y) — ((l, X -y, ’Lt).
Now, from (2) and stability,

(x-vyu,a) =x- (u,a) +v-(x,ua) €A -7 CA
+ A 1 ©F.

Similarly, (x -y, «, u) € €. Then, since («, &, &) C.Z 1, C €, (24),
(25), and (26) yield a[u - (x-y)] € € foralla € o7 and all x, y € .4,
and the lemma is proved.

We now have the ideal of %/ mentioned previously.
THEOREM 3. € 1s an ideal of <7 .

Proof. By Lemma 6, we only need show that &/% C %. But, by
stability and the definition of %,

Ja/(%l/‘z _QMI/‘Z +<9/1/2t9/1/2 g %/

Let x, v, 2, w € 4,5, and let ¢« € /. Then, by Lemmas 9 and 10, we
find that

a(xy) + a(zw)y € &/(&/1/2@/1/2)1 +M<<52/1/2&/1/2)0
CAH + AN S AKX S F.

Hence, &/ (%1 + %) C %, and the proof is complete.

The main result of this section is that4; and_#/, are subalgebras of .7
Before we can prove this, we need two more preliminary results. The
following lemma has been proved by NMorgan [6, p. 957, Lemma 2].

LeMMA 11. If x, v € o710, then (ux) (uy), (xu)(yu) € 1.

LEmMa 12, If A is not a subalgebra of S, then . 11090 1,0 SNy +
AL vy + N

Proof. Let x, y € .97,,. Lemma 5 allows us to write
ux = ayony + mibip and  wy = cipqi + kidige
for some k, my, n1, g1 € A1. The definition of .&7,, yields
xy = (xu + ux) (yu + uy) = (xu) (yu) + (ux) (wy)
+ (xu) (c1poq1 + kaday2) + (arem + mibyy) (yu),

after substitution for uy and ux. Now, Lemma 11 and Theorem 2 show
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that the right hand side is in Ay +.97,,, +. A4, so that the lemma is
proved.

We now have the subalgebras of .9/ mentioned previously.
THEOREM 4. Ay and Ny are subalgebras of 7.

Proof. We prove the theorem for 4/, only. Suppose the result is false.
By definition of %,
% C subspace generated by (27197 1,2)1 + A 12
+ subspace generated by (7,297 1,2)0.

By Lemma 12, the latter is a subset of N +&/1,g + Ny #.97. There-
fore, simplicity of .27 implies that the ideal % = (0). But then
1 = (0), so that &/ = .o/, +.97,. Thus, %/, and &7 are ideals of .27,
so that simplicity implies that either.o/; or.%7, is (0), a contradiction of
deg .o/ = 2. So. /41 must be a subalgebra of .o

5. A trace functional. Let « € .97. Then ¢ may be uniquely rep-
resented as (au + n1) + ai2 + (Bv + ny) for some «, 8 in %, ay,, in
/15, and n; in A, with @ = 0, 1. Define the function ¢ :.% —.% by
t(a) = a + B. It is easy to show that ¢ is a well-defined linear functional
such that £(/,0) = t(AN1) = t(N) =0 and t(u) = t(») = 1. The
following lemma was established by Goldman and Kokoris (4, p. 480,
Lemma 5].

LEMMA 13. If x and y are in o/, then t(xy — yx) = 0.

We need one final lemma regarding the trace of associators before we
can prove our main result.
LemmA 14, If a, b, ¢ € 7, then t[(a, b, ¢)] = 0.

Proof. There are five types of associators to consider. (The rest are
trivially shown to have trace zero.) Let a;, = au + ki, b, = Bu + m,,
c1 = yu + ny for some o, B8, v € F and ky, my, n, € AN1. Then, since N
is a subalgebra of &7, (ky, my, n;) € 44, and so

t]_((ll, 1)1, 61)] = f[(k], mi, ’I’Ll)] = 0

Similarly, [ (a0, by, ¢v)] = 0.
Next, the definition of &7, and (2) yield

(@12, b,¢) = (u - aye, by¢) = u- (a2, b,¢) + arpn- (u,b,c).

Let (a2, b, ¢) = s1 + s1;2 + so, substitute into the preceding equation,
and solve for ay/s - (u, b, ¢) to get

So — §1 = ayye (%, b, C) E Mllg 'Jafl/z.
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Then (3) yields sy — s, = ru + 70 + p1 + po for some r € F# and some
pi €N iwithi =0, 1. Thus, s; = —7u — py and sy = 70 + py, so that
(a2, b, ¢)] = 0.

Finally,

27)  t(ar, bije, 1)) = tl(aae + Fy, bagsy €12)] =t (kadyo)a]
— t[kl(bl/zCl/‘z)]y

since (u, %, /) C.%7,,5. Now, by stability and the orthogonality of the
subalgebras .27 and 7, ky(b1jsc12) € 1 + . 1. Write (Dy)2¢1,2)1 =
6u + g1 for some 6 € % and some ¢, € .4;. Thus, since 4/, is a sub-
algebra, we have

(28)  tlk1(b1jac1y2)] = tlk1(du + g1)] = 0.

Next, recalling that u is the unity of .%/; and using the Teichmuller
identity, we get

(]?31Y [)1/2, 61/2) = (llk1, bl/2y 61/2) = (lt, 1311)1/2Y 61/2)
- (u, k1, b1/261/2) + (lt, k1, b1/2)61/z + ”(kly bl/?y 61/2)‘

Subtract u(ky, b1js, ¢12) from both sides of the preceding equation and
use (u,.o/,./) C .o/, to conclude

(29)  tlv(ky, buje, c1p2)] = (1, k1, byj2)cryel.
But (2) and char. % # 2 imply that
(k1, b1y, c1p2) = 5 kv (, byjo, €172)
+ Ju - (Ry, b, €1p2) €1+ A 1,
so that stability and orthogonality of .27, and %7, cause (29) to become
0 = t{(kibip)cre — [ukidipe)]ere) = t{[(Ribrjp)uler o}
But then,
0 = f{(kibry2, 1, crp2) ] + th(Rib1p2) (uerp2)] = U (Riby2) (ucrp)]
by an earlier part of this proof. Hence,
(30)  t[(kidrj2)crje] = t[(kab1y2) (crpo - 1t)] = 0,

by the last equation and Theorem 2. Therefore, (27), (28), and (30)
yield [ (a1, b1j2, €172)] = 0. Similarly, ¢ («o, b12, ¢1,2)] = 0, and the proof
is complete.

Now we are ready to prove our main result.

Proof of Theorem 1. Let ¥ = {a € o/|t(%/a) = 0}. Since ¢ is a linear
functional, it is easy to show that.# is a subspace of .27. We wish to prove
that.% is an ideal of &7. Let b € % and let ¢, d € /. Lemmas 13 and 14
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and the definition of .% yield

Hc(db)] = t[(cd)b] =0
and
e (bd)] = t[(ch)d] = t[d(cb)] = t[(dc)b] = O,

so that db and bd are in . Therefore, % is an ideal of the simple algebra
o, so that ¥ =7 or.¥ = (0). Then, since t(u?) = t(u) = 1, we have
u ¢ .%. Thus, ¥ = (0).
Next, let w, x, v, z € .27. Equation (2), together with Lemmas 13 and
14, yields
0=tx-(wyz) +w: (x,yz)]=2xwyz) +wlk,y 2]
Because char # 3 2 and ¢ is a linear functional, we get
(31) z‘[x(w, Y, Z)] = —t[w(x, Yy Z)]
Also, use the Teichmuller identity and Lemma 14 to conclude
0 =t—w,y2) — (wx,v)z],
so that
(32) fw(x, y,2)] = —tl(w, x, y)z].
We now use (31) and (32) to show that.®7 is flexible. From third power
associativity, char % 3 2, and (31) and (32) we conclude
t[w(x7 2 x)] = ~t[w(x, X, y) + w(yv X, X)]
= tlx(w, x,y) + (w,y, x)x].
Then, by Lemmas 13 and (31) and (32), we have

Hw(x, y, %)) = f{(w, %, y)x + x(w, y, )] = —2[w(x, y,x)].

Since char # # 3, tlw(x, v, x)] = 0, and so (x, v, x) € .¥. Hence,
(x, v, x) = 0;i.e., .o is flexible.

Finally, by (1) and flexibility, (x?, y, x) = x - (x, v, x) = 0. There-
fore, &/ is a noncommutative Jordan algebra, and the proof is finished.

Remark. If we replace (1) by (x, v, 2%) = z- (x, v, 2) in the statement
of Theorem 1, the results of this paper can be adapted to show that.&/ is
again a noncommutative Jordan algebra.
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