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THE METHOD OF UPPER AND LOWER SOLUTIONS 
FOR SOME NONLINEAR BOUNDARY VALUE 

PROBLEMS IN UNBOUNDED DOMAINS 

NGUYEN PHUONG CAC 

1. Introduction. Let D be a bounded domain in the Euclidean space 
RN(N ^ 2) and let G = R^ - D where D is the closure of D. We assume 
that the boundary 3 G of G is smooth. Consider the boundary value 
problem (abbreviated to BVP in the sequel). 

(1) Au = p(x, u, Vw) + fin G 

(2) u = 0 on 3G 

where A is a nonlinear elliptic differential operator in divergence form of 
Leray-Lions type, Vu = grad u,fis a distribution on G and/?(x, /, TJ) is a 
function defined on G X R X R^. Among other hypotheses we shall, 
roughly speaking, assume that p has completely unrelated growth rates in 
the first and the third variables. In this paper we prove the solvability of 
the BVP (1), (2) under the assumption that it has both an upper solution \p 
and a lower solution <p with <p ta xp. 

Similar problems are considered, among others, by P. Hess in [3], [4] 
and the author in [1], [2]. In [3] the growth of the function p is more 
restricted than allowed here and in [4] the domain is bounded. Our result 
seems to provide answer to a question raised in a remark at the end of [4] 
as to whether its result for bounded domains could be extended to 
unbounded ones. In [1] the conditions imposed on the upper and lower 
solutions <p and \p are weaker than those assumed in this paper: namely, it 
is assumed in [1] that <p and \p are local in character, i.e., they belong to 
some space of functions with some local properties. Then beside the fact 
that the solution obtained is also local in nature we had to essentially 
restrict ourselves to linear operators A and it seems to us that the method 
of [1] cannot be adapted to nonlinear operators. While the main concern 
of [2] is solvability in weighted Sobolev's spaces using the result of [1] 
(thus the elliptic operators considered in [2] are linear), by specialization, 
i.e., by taking the weights equal to 1, we have already obtained in [2] (cf. 
its Theorem 2) a weak version of Theorem 3 below for linear operators. 
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The method of upper and lower solutions is conceptually simple and 
particularly useful in proving solvability of noncoercive BVPs. However, 
in practice it is severely limited by the difficulty encountered in 
constructing an upper solution $ and a lower solution <p with <p = ^. This 
difficulty is genuinely nontrivial if the domain is unbounded and we want, 
as in some of our theorems further down, the upper and lower solutions to 
be simultaneously bounded and to belong to some space 

W\&G) H Lr(G), 1 < q, r < oo, 

and the operator is nonlinear. Thus for illustrative purposes we shall give 
an example for which one of our theorems is applicable. We shall 
explicitly construct upper (and lower) solutions by "gluing" together 
upper (and lower) solutions on subsets of G. 

Finally we note that in order not to complicate the presentation we have 
not stated our results with their optimal hypotheses: for example, the 
theorems remain valid for more general unbounded domains than the 
exterior of a bounded one and the growth of p(x, t, 77) can be liberalized 
somewhat as in [4]. 

2. Notations, definitions and basic assumptions. Let 

Au = —DjlAfa, w, Vw) ], Dt = — . 
dxt 

Here and in the sequel we use the convention that if the index / is repeated 
then summation over that index from 1 to N is implied. We make 
throughout the paper the following assumptions of Leray-Lions type 
concerning the functions A(, i = 1, . . . , N: 

(HI) Each Ai:GXRXRN-^R is of Caratheodory's type, i.e., for each 
(/, 7]) G R X R^ the function 

X —> A((X, t, 7]) 

is measurable and for almost all (a.a.) x e G, the function 

(t, 7]) - > A;(X, t, 7]) 

is continuous. Furthermore there exist constants q, 1 < q < 00, c0 è 0 
and a function 

*0( ' ) e LC(G) (q* = - 4 y ) , k0(x) ^ 0 a.a. x e G 

such that 

14.0c, t,ri)\^ k0(x) + c0( k r * + Nr 1 ) , / = 1 , . . . , N 
for a.a. x G G, V (t, î)) G R X R^. Here and in the sequel, a function 
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belongs to L^0C(G) if its restriction to any bounded subset E of G belongs 
to Lq\E). 

(H2) [At(x, /, il') - A((x9 t, v) ](i?; - ifc) > 0 

for a.a. x G G, V / G R if 77' ^ T? in R*. 

(H3) ^ ( x , f, r/H- ^ „M' 

for a.a. x G G, V (f,rj) G R X R^ with some constant v > 0. 
Concerning the function/?(x, /, rç) we assume throughout the paper: 

(H4) The function p(x, t, rj) is of Caratheodory's type and there exists a 
constant cl = 0, a constant €, 0 < € ^ #, a function kx{ • ) G L[ O C (G) for 
some r = 1, /^(x) = 0 a.a. x G G such that 

(3) | /K*, f , i , ) | ^ * i ( * ) + c i W ' " € 

r a.a 
Let 

for a.a. X E 6 , V ( ? , Î ) ) E R X R^. 

= minlr , I, 
V a — (J 

if s > 1 and 
s - 1 

s* = oo if s = 1. 

Definition 1. Suppose t h a t / G H ^ U * ( G W ) . A function <p G H ^ G ) 
is called a lower solution in the local sense of the BVP (1), (2) if 

<P ^ 0 on 3G, 

/>(*, <p, Vcp) G Ls
loc(G) and 

JG y4y(x, <p, V<p)Dtvdx ^ JGP(X> v, V<p)v̂ x + (/ , v) 

for all v G W Q ' ^ G ) PI Z/*(G) of compact support and v ^ 0 a.e. 
( = almost everywhere) in G where (• , •> denotes the pairing between 
WXQ\G) and its dual W~Xq\G). 

An upper solution in the local sense is defined by reversing the inequality 
sign in the above definition. 

Definition 2. Suppose t h a t / G W^q*(G). A function u G w\&(G) is 
called a solution in the local sense of the BVP (1), (2) if u = 0 on 3G, 
/>(*, w, Vw) G Ljoc(G) and 

(Au, v) = J At(x, uy Vu)Dtvdx = ]rp(x, u, Vu)vdx + ( / v) 

for all v G W Q ' ^ G ) n LS*(G) of compact support. If the subscripts "loc" 
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are dropped and the equation is satisfied for all 

v G wl\G) n U\G) n Lq/\G) 

then u is called a solution. 

3. The results. To prove our results we shall need the following 

THEOREM 0. Let Qtbe a bounded subdomain of G with smooth boundary 9fi 
and letf G W~hq\Q). Suppose that the BVP 

Au = p(x, u, Vw) + / in fi, u = 0 on 3fi, 

has an upper solution \p and a lower solution <p both belonging to W ,q(Q) n 
Ls (fi) with <p(x) ^ \p(x) for a.a. x G fi. 7%e« f/ze BVP tes a solution 
u G tf^(Q) wi/A 

<p(x) =̂  w(x) =̂  *//(x) /or a.a. x G fi. 

Proof This theorem has been proved in [4] when in condition (H4) 
r = 1 (thus , s = l , I s ' * = oo). With obvious modifications the proof of [4] 
still works for other values of s = 1. 

THEOREM 1. Let f G W~l,q*(G). Suppose that in (HI) the function 
k0( - ) G Lq (G) and in (H4) the function kx{ • ) G Lr (G). Suppose also 
that the BVP (1), (2) has an upper solution \p and a lower solution <p both 
in the local sense and both belonging to Lq(G) n Lr*(G) n Lq/\G) with 
<p(x) ^ 0 ^ *P(x)for a.a. x G G. Then that BVP has a solution u G Wl

0'
q(G) 

with 

<p(x) = u(x) ^ \p(x) for a.a. x G G. 

Remark 1. For r = q* and e = 1, Theorem 1 has been proved in [3] 
using a different method. 

Remark 2. It is not difficult to see that for 0 < € ^ 1, if <p, i// e L^(G) n 
L°°(G) then <p, ̂  G L*/€(G) as well. 

Remark 3. By performing a change of the unknown function as in [4], it 
can be seen that the theorem remains valid if we only have <p(x) = \p(x) for 
a.a. x G G. 

Proof of Theorem 1. We suppose that 1 ^ r < oo and 0 < e < q. For 
other cases the proofs are similar. For each number p > 0 let Bp be the 
open ball in R^ with the center at the origin and with radius p and let 

Gp = G n Bp. 

We fix a number n0 such that D G Bn . For each integer n > n0 consider 
the BVP 

Au = p(x, u, Vu) + fin Gn, u = 0 on dGn. 
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By Theorem 0 it has a solution un G w\jq(Gn) with <p ^ un ^ ^ a.e. on G„: 
Thus for each v G ^ ( G J n L**(GJ w e h a v e 

(4) J^ At(x9 un, Vun)DjVdx = JG p(x9 un, Vun)vdx + </, v>. 

Taking v = un we deduce from (H3) and (H4) that 

(5) v fGn \Vutfdx g tf, ^ {*,(*) |«„| + |V«„|«-'|«J }Jx + (/ , un) 

here and in the sequel K (j = 1, 2 , . . . ) denotes a constant > 0, 
independent of n, not necessarily always the same. Writing 

f = h - Dfr with h, ht G / / ( G ) , i = 1, . . . , N 

and taking into account the fact that <p ê un = \p a.e. on Gn with <p, 
^ G L^(G) we obtain 

(6) (f9un)^K2 + K3[fGJVu^dxY\ 
By Holder's inequality: 

(7) x„ w x ^ * = (X„ ivw«i^)'dq (X„ w^*)'" 
= ^ (XJ V "» I^ ) 

. 1 - c / g 

f7 

because <p ^ « ^ i(/ on G„ and <p, \p G L€(G). Furthermore, because 
&!(•)€= Z/(G) and v , i// G Z/*(G), we deduce from (5), (6) and (7) that 

(8) IWI^ (c j ^ *5-
We extend un to the whole domain G by defining w„(x) = 0 when x G 
G — Gn and for convenience, we still denote by un the function so 
obtained. By the Sobolev imbedding theorem, and by using a diagonal 
process we deduce from (8) that we can extract from {un} a subsequence 
which we still denote by {un} such that 

{un} converges weakly in w]jq(G) to w, 

{un} converges almost everywhere on G to u. 

Let m be an arbitrary integer > n0 and let fm( • ) be a function in Cl(G) 
with the following properties: 

U * ) e [0, 1] V x G G, £„(*) = 1 for x G Gm, fm(x) = 0 

for x £ Gm + 1 and | Vfw( • ) | is bounded on G by a constant independent 
of m. 
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In (4) with n ^ m + 1 we replace v by Çm(un — u). We have 

I f I 
^ I JGn

P(X> ""' Vu^m(Un ~ U)dx\ 

~ K\ JG k\^m\Un ~ U\dx + K\ JG\ Vun\q~'L\Un ~ U\dx-

Since kx(x) \un — u\ —> 0 a.e. on G as n —> oo and 

kx(x)\un- u\ ^ 2[W + I *!]*,(*), 

by the Lebesgue dominated convergence theorem, the first integral on the 
right hand side of (9) tends to 0 as n —» oo. Moreover {un} converges 
strongly in Lq/\G) to u because <p ̂  un, u ̂  ;//; <p, ^ e Lq/e(G) and {*/„} 
converges a.e. on G to w; therefore the second integral on the right hand 
side of (9) also tends to 0 as n —> oo. Thus 

lim J p(x, un9 Vun)Çm(un - u)dx = 0. 

Since {un} converges weakly in W0
,q(G) to u it is clear that 

iim a u«„ - «» = o. 
n—*oo 

Hence we deduce from (4) that 

lim / At(x, un, Vun)Dt[Çm(un - u) ]dx 

= l i m lrAi(x> Un> ^Un)Di^m(un ~ U)dx 

n->oo JU 

+ lim J AfaUvVu^DiiUn - u)dx 

= 0. 

In the last equation the first limit on its left hand side is 0 because the 
sequences {At(x, un, Vw„) }(/ = 1,. . . , N) are bounded in Lq (G) whereas 
{un} converges strongly in Lq(Gm + l) to u. Thus the second limit on the 
left hand side of the last equation is also 0: 

(10) lim I A;(x9 un9 Vun)ÇmDt(un - u)dx = 0. 

Since {un} converges strongly to u in Lq(Gm + l) we know (cf., e.g., [5], 
Lemma 2.1, page 183) that for each i = 1,...,7V, {At(x, un, Vu)} 
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converges strongly to At(x, u, Vu) in Lq (Gm+]); because {«„} converges 
weakly in w\;\G) to u we therefore deduce that 

(11) lim LAjix, un, Vu)^mDt(un ~ u)dx = 0. 

It follows from (10) and (11) that 

lim / [At(x, un, Vun) - A;(x, un, Vu) ] f m A K - u)dx = 0 

and hence 

lim / [At(x, un, Vun) - A((x, un, Vu) ]Dt{un - u)dx = 0. 
n~>oo v m 

We deduce from this (cf., e.g., [5], Proof of Lemma 2.2, page 184) that we 
can extract from {un} a subsequence, which we still denote by {un}, such 
that {Vun} converges a.e. to Vu on Gm. Since this is true for any integer 
m > w0, using a diagonal process, we see that we can extract from {un} a 
subsequence, which we still denote by {w„}, such that 

{Vun} converges a.e. to Vu on G. 

Then, for each / = 1,. . . , N, {At(x, un, Vun) } converges a.e. to At(x, w, 
Vu) on G\ because those sequences are also bounded in Lq (G), we 
conclude that 

{At(x, un, Vun) } converges weakly to At(x, w, Vu) in Lq (G). 

We now show that for every w e Lq/\G) n Lr*(G) n Wx^q(G) we have 

lim I p(x9 un, Vun)wdx = frp(x, w, Vu)wdx. 

Let €r > 0 be arbitrarily given. We first choose and fix an integer m 
sufficiently large, m > n0, so that we have simultaneously 

(12) [L-Gm [*!(*)]'<**)' < <' and (jG_Gm M< <**)* < c'. 
We next choose S > 0 such that if is c Gm, mes(is) < 5, then we have 
simultaneously 

(13) yjE [kx(x)]rdxy < c' and [j£ |w|7 <&)]* < *'• 

(This can be done by approximating kx{ • ) in L\G) and w( • ) in Lq/€(G) 
by step functions first.) By Egoroff s theorem we can find a subset 2s0 of 
Gm with mes (2s0) < 8 such that on Gm — E0 the sequence {p(x, un, Vun) } 
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converges uniformly top(x, u, Vu) because {p(x, un, Vun) } converges a.e. 
on G top(x, w, Vu). Since w e II (G) and mes(Gw) < oo, an integer L can 
be found such that 

L 
By hypothesis (H4) we have 

I JE [p(x9 un, Vun) - p(x, u, Vu) ]w(x)dx 

< 2 /_ kx(x) \w{x) \dx 

+ C 

< c' iîn > L. 

ci L < W c + ! V w | '" € ) |w^ldx 

< 2€'|M|L,.(C) + Ic^Kl € 

by (13) where K5 is the constant in (8). Similarly, 

I JG-G ^ ^ ' w"' Vw"^ ~~ p(*9 u' Vw^ ] w d x \ 

< 2 C ' ( I M I L ' - ( C ) + ^ r € ) 

by (12). Because e' > 0 is arbitrary, we deduce from the last three 
inequalities that for every w e Lql\G) n !/*(£) n W^\G\ 

lim i p(x, uni Vun)wdx = I p(x, u, Vu)wdx. 
n-^oo JG JG 

Given such a w, taking v = fmw in (4) with n ^ m + 1 we have by letting 
n —» oo, 

(^w, fmw> = J c />(*, u, Vu)Çmwdx + ( / fww>. 

Letting m —> oo we conclude that w is a solution of the BVP (1), (2). 

We now give a few possible variations of Theorem 1. 
If we relax the requirements of the operator A then we can only prove 

the existence of a solution in the local sense. 
We recall we always assume that conditions (H1)-(H4) of Section 2 are 

satisfied. 

THEOREM 2. Let f e W~l,q*(G). Suppose further that in (H4) the 
function 

kx{ • ) G Lr(G) U Lq\G) U Lq/(q~e)(G). 

Suppose also that the BVP (1), (2) has an upper solution \p and a lower 
solution <p both in the local sense and both belonging to Lr\G) n LqU{G) n 
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Lq(G) with <p(x) ^ 0 ^ $(x)for à.a. x e G. Then that BVP has a solution 
in the local sense u e W0

,q(G) with 

<p(x) ^ u(x) ^ \p(x) for a.a. x e G. 

Proof. The proof is similar to the proof of Theorem 1. The only 
difference is that now we can no longer prove that {At(x, un, Vun) } 
converges to At(x9 u, Vu)(i = 1, . . . , N) in Lq*(G). We can only prove that 
the sequence of restrictions {At(x, un, Vun) \G } converges to the 
restriction At(x, u, Vu) \G for any m > n0 because in condition (HI) it is 
merely assumed that 

*o( • ) e LC(G). 

We also have the following special case of Theorem 2 which generalizes 
Theorem 2 of [2] to nonlinear operators: 

THEOREM 3. Suppose that in (H4) the function 

kx{ • ) e Lr(G) U Lq/{q~\G). 

Suppose also that the BVP 

Au = p(x, w, Vw) — Dtht on G 

u = 0 on dG 

with ht e Lq (G) has an upper solution \p and a lower solution <p both in the 
local sense and both belonging to 

W\£(G) H Lr\G) O Lq/\G) 

with qp(x) ^ 0 ^ \^(x) for a.a. x e G. Then it has a solution in the local 
sense u G W0

,q(G) with 

<p(x) ^ u(x) ^ t//(x) for a.a. x e G. 

Proof The proof is similar to the proof of Theorem 2. In Theorem 2 we 
require in addition that <p, \p e Lq(G) only to insure that with 

f=h - Dfa G W~l>q*(G) 

we have (with un defined by (4) ) 

x ,G hundx < K7 V n > n0. 

But in Theorem 2, h = 0 and that additional requirement is no longer 
necessary. 

For the proof of Theorem 5 we shall need the following generalized 
version of Theorem 2. We consider a function d( • ):R —» R satisfying the 
following hypothesis: 

(H5) d( • ) is continuous on R and J ( O ^ 0 V / G R . 
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THEOREM 4. Suppose thatf e W X'q*(G) and in (H4) the function 

kx{ • ) e L\G) U / / ( G ) U L^" e ) (G) . 

Suppose also that the BVP 

Au 4- d(w) = /?(JC, u, Vu) + /ow G 

u = 0 on dG 

has an upper solution \p and a lower solution <p both in the local sense and both 
belonging to 

W\£(G) n L°°(G) n Lq(G) O Lq/\G) 

with €p(x) = 0 = \p(x) for a.a. x e G. Then it has a solution in the local 
sense u e W0

,q(G) with 

<p(x) ^ u(x) ^ \p(x) for a.a. x e G. 

Proof The proof is similar to the proof of Theorem 1 taking into 
account the difference already noted in the proof of Theorem 2. Now in 
(4) there is an additional term jG d(un)vdx. When we take v = un to arrive 
at (8) this term drops out because 

d(t)t ^ O V / G R . 

Furthermore, with <p ^ un ^ \p V n = n0, n0 + 1, . . . and un~* u a.e. on 
G as n —> oo as in the proof of Theorem 1, for every integer m > n0 we 
have 

n—>oo 
jc d(u» lim f d(un)Çm(un - u)dx = 0 

because the sequence {d(un)} is bounded in L°°(Gm + 1) and {w„} 
converges strongly to u in Lq(Gm + x). Hence (10) is still valid. 

Remark 4. Suppose that, in Theorem 5, 

f=0 and kx{ • ) e Lq/q~\G). 

(i) Then it is not difficult to see that it suffices to require 

<p,t e ^ ( G ) n L~(G) n L«/e(G) 

for the theorem to hold. 
(ii) Even if the operator A satisfies the stronger assumption of Theorem 

1 that in (HI) k0( • ) e Lq (G) we can still prove only that u is a solution in 
the local sense of the BVP because in general we cannot prove that for 
every v <= W^%G) n Lq/\G) we have 

lim JG d(un)vdx = JG d(u)vdx. 
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For illustrative purposes we now give a specific BVP for which we can 
show the existence of a solution by applying Theorem 4. This BVP is 
adapted from the one in [2]. 

THEOREM 5. Suppose that d:R -* R is differ entiable, d(0) = 0, d\t) è X 
> 0 V / G R ; 

IP(*,M)I ^k(x) + c(P)iî]re v i / i < P 

where 2 ^ q < oo, 0 < t ^ q — 1, k(x) ^ 0 for a.a. x G G arcd 
&( • ) G L°°(G), k(x) \x\a -> 0 as |JC| -> oo uniformly with 

(Ne N(q-€)\ 

\ <7 a ' 
a > max| 

77rc« die BVP 

(14) -/),.[ ID^I^"2/)^] + </(K) - p(x, u, Vu) in G 

(15) u = 0 on dG 

has a solution in the local sense u G W^q(G). 

Proof Since ifc( • ) G Lq,q~\G\ by Theorem 4 and Remark 4 (i) 
following it, it suffices to construct an upper solution \p and a lower 
solution v , with v ^ 0 ^ ^ on G; <p, $ G L°°(G) n L*/€(G), of the BVP 
(14), (15). For that purpose we first fix a number M > 1 such that 

(16) XM > \\k( • ) ||Lco(C). 

For x ¥= 0 let ^ ( x ) = Mpa |x|~a , p > 0 to be determined. Using the fact 
that 0 < e ^ q — 1 and d(t) ^ À/ V t > 0 it can be shown by direct 
computation that we can choose a number p large enough so that for 
\x\ > p we have 

(17) -Z).[ l / ^ r 2 / ) ^ ] + dfch) ^ />(*, ^ , V^) . 

We set 

Kx) = ^ ( x ) if |JC| ^ p, i/<x) = M if |JC| < p. 

We shall show that \p is an upper solution of the BVP in the sense of 
Definition 1. We note that clearly \p > 0 on G and 

K • ) G L°°(G) n L«/€(G) n tf^(G). 

It suffices to show that for any v G C^(G) with v ^ 0 on G we have 

(18) JG {D^-^D^dx + jT J(̂ )vdx ^ ^/>(x, ^ V^vdx. 

In fact, because 

D,*x • ̂  < 0, 
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integration by parts gives 

~ J\X\ 

Therefore, by (17), 

w XI^P i ^ r 2 ^ , ^ + XigP ^ ) v d x 

Furthermore, with Gp = G n Bp, it follows from (16) that 

(20) jf iD^-^DiVdx + jT </(,/,)v<fcc ^ ^ p(x, ^ VxP)vdx. 

(18) then follows from (19) and (20). A negative lower solution 

<P e L°°(G) n / / ^ (G) n W\£(G) 

is constructed similarly. 

The author is indebted to an anonymous referee for constructive 
observations. 
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