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CONSTRUCTIONS AND APPLICATIONS 
OF RIGID SPACES III 

V. KANNAN AND M. RAJAGOPALAN 

I n t r o d u c t i o n . One often encounters problems t ha t are difficult as they are, 
bu t become manageable when translated to a different category. T h u s very 
often, problems on Boolean algebras are answered by first transferring them 
to problems on Boolean spaces. (See, for example, [7]). I t is with this spirit 
tha t we approach in this paper two problems on Boolean algebras. These 
problems are two decades old, and are considered to be outs tanding problems 
in the field. We solve them completely by making use of the results of [4] 
and [5]. 

T h e numbering system in this paper is a cont inuat ion of t ha t in our two 
papers [4] and [5]. The results in these two papers will be frequently quoted 
here, with due reference to the sections in which they occur. Both the major 
results of this paper have been announced by us in [6] in the year 1971. 

4 .1 . Card ina l i ty of rigid B o o l e a n a lgebras . A Boolean algebra is said 
to be rigid if it admits no automorphism different from the ident i ty map . 
G. Birklioff [5, Problem 74] asks: Does there exist a Boolean algebra wi thout 
any proper automorphism? This question has been answered in the affirmative 
by M. Ka te tov [7] and later by several others. In this connection, J. DeGroot 
and R. H. McDowell [3] ask the following: Do there exist rigid Boolean 
algebras of arbitrari ly large cardinali ty? This again has been answered in the 
affirmative, by F. W. Lozier [8] and later we have proved a stronger theorem 
(see §3.4.) . Going still further, J. DeGroot asks in [2] the following quest ion: 
W h a t can we say about the cardinalities of rigid Boolean algebras? We answer 
this question in this section. 

Here we consider the following set-theoretic axiom GCH : For each infinine 
cardinal m, it is t rue t ha t m+ = 2m. 

T H E O R E M 4.1.1. Assume G C H . Let m be any uncountable cardinal number. 
Then there exists a rigid Boolean algebra with cardinality m. 

Proof. Case 1: Let there exist a cardinal number n such tha t m = 2n. 
Let X be the space constructed by c-process (see chapter 1 of [4] for the defini­

tion of this and related terms) from a c-system satisfying the following con­
ditions: 

(i) Each base is got from the sum of two copies of a maximal non-discrete 
space of cardinali ty n, by identifying the two limit points ; and 
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(ii) no two distinct base spaces are homeomorphic. 
(See § 3.4 in [5] for the existence of such a system). 

Let j3X be the Stone-Cech compactification of X. Then &X is a rigid space. 
(See § 3.4 in [5] for a proof of this assertion.) 

Let B (X) be the Boolean algebra of all clopen ( that is, both open and closed) 
subsets of fiX. Then it is well-known tha t the automorphism group of B{X) is 
isomorphic to the homeomorphism group of j$X. Hence B(X) is a rigid Boo­
lean algebra. 

We now compute the cardinality of B(X). This is easily done by succes­
sively showing tha t the following spaces have at least 2n clopen subsets: 

(i) any maximal non-discrete space F of cardinality n\ 
(ii) any base space of X; 

(iii) the space X; 
(iv) the space f$X. 
If F is a maximal non-discrete space of cardinality n, it has a unique accumu­

lation point y0. If A is any subset of F / f^oj , then one and only one of the two 
sets A and Y/{y0}/A is clopen in Y. If follows tha t among subsets of F/j^oJ, 
there are as many sets clopen in F, as there are sets non-clopen in F. Noting 
tha t n is infinité (since m is infinite) and tha t F/j^o} has exactly 2n subsets, 
we get tha t F has at least 2n clopen subsets. 

Let Z be the space obtained from the sum of two copies of F by identifying 
the two limit points. If we take a clopen subset A of one of the copies of F 
such tha t A does not contain the unique accumulation point, then clearly A 
is clopen in Z also. T h u s Z has a t least 2n clopen subsets. 

Thus each base-space of X has a t least 2n clopen subsets. Take a clopen 
subset A of the first base-space and look a t A*. (This A* is the set of all points 
of X lying above some point of A. See § 1.1 in [4].) Then A* is a clopen subset 
of X. (See § 1.4. in [4].) Also, if A and B are distinct subsets of the first base 
space, then A* and B* are distinct. I t follows tha t X has a t least 2n clopen 
subsets. 

Since X satisfies some special conditions (see § 2.4. in [4]), 13X is zero-
dimensional. I t is well-known tha t the map W —» W Pi X is a bijection between 
the family of all clopen subsets of @X and the family of all clopen subsets of X. 
Hence X and /3X have the same number of clopen subsets. 

T h u s the cardinality of B(X) is a t least 2n. On the other hand, since X has 
cardinali ty n, it has a t most 2n (clopen) subsets; therefore so does (3X. I t fol­
lows tha t the cardinality of B(X) is exactly 2n, which is the same as m. 

Case 2: Let Case 1 not hold. Then G C H implies tha t m is a limit cardinal, 
t ha t is, one without a predecessor. 

Now we proceed to construct a topological space. Let n be an infinite isolated 
cardinal number ( that is the one having a predecessor, and hence by G C H , of 
the form 2V for some cardinal p) less than m. Let D be a discrete space of 
cardinali ty n and let (3D be its Stone-Cech compactification. Observe t ha t in 
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/3D/D, the set F of limit points of subsets of smaller ( than n) cardinali ty, has 

a smaller ( than \@D/D\ cardinal i ty) . If we choose points p in (3D/D t ha t are not 

in F then the space D \J [p] with the relative topology (from (3D), is a maxi­

mal non-discrete topological space, with density character n. Wi th this 

special choice of maximal non-discrete spaces, we can employ the method 

described earlier (in the proof of case 1) to construct a zero dimensional 

Hausdorff rigid space Xn of cardinali ty n. Then every point of Xn will have t ight­

ness n. (The tightness a t a point of a topological space X is by definition the 

smallest cardinali ty n0 such tha t whenever A C X and X £ Â there is B C A 

such t ha t x Ç B and | 5 | ^ n0 .) 

T h u s for each isolated n<m, choose a space Xn having the following properties : 

(i) Xn is a zero dimensional Hausdorff rigid space. 

(ii) Xn has cardinali ty n, t ightness n, and has 2n clopen subsets. 

Let X be the one-point compactification of the disjoint sum of the Stone-

Cech compactification fiXn of these space Xn. Then 

X = [®{t3Xn \n < m;n isolated}] U {co } 

where oo is the extra point in the one point compactification. when X is 
clearly a zero-dimensional compact Hausdorff space. T h e following facts are 
needed for the later claims: 

(1) T h e density character of fiXn, is n. 
(2) If W is any clopen subset of &Xn, then the densi ty character of W is n. 
Since (2) can be proved exactly as (1), we sketch a proof of (1) alone. Let C 

be the set of clopen subsets of /3Xn. Let D b e a dense subset of Xn. Let & (D) 
be the power set of D. Then W = W C\ D for all W £ C. Consequent ly the 
map W —> W r\ D from C into & (D) is one-to-one. Therefore D has a t least 
2n subsets (since f3Xn has a t least 2n clopen subsets) . I t follows tha t the car­
dinali ty of D is a t least n. 

Now we claim tha t X is rigid. Let h: X —• X be a homeomorphism. Let there 
exist two points x, y in X such t ha t x G &XnlJ y 6 fiXn2, n\ 9^ n2 and h(x) = y. 
Then there are clopen neighbourhoods W\ of x and W2 of y such tha t 
Wi C &Xnl1 W2 C $Xn2 and A(W^i) = PF2. Now the density character of ^ is wi, 
whereas t ha t of W2 is n2. (By fact (2) noted above.) This contradicts the fact 
t ha t h is a homeomorphism. T h u s we have proved t ha t h cannot take a point 
of &Xni to a point of @Xn2 unless n\ = n2. Next , we claim tha t no point of 
X/{co } can be mapped to oo by h. If possible let x G X/{co } be such tha t 
h(x) = oo. There is a unique n\ such t h a t x Ç |5Xnl. Since X//3Xm is a neigh­
bourhood of oo , one can find clopen neighbourhoods W\ of x and PF2 of GO such 
t ha t Wi C pXm, W2 C X//3XW1 and h^Wi) = W2. This implies tha t h takes 
some points of f$Xnl to points of fiXn2 with wx ^ w2. This has already been 
proved to be impossible. Hence our claim is proved. Combining all these, we 
conclude tha t h(/3Xn) C &Xn for every n. Since h is onto, it then follows t ha t 
h ((3Xn) = /3Xn for each n. Since (3Xn is rigid for each n, we have tha t h is ident i ty 
on each /3Xn and hence on the whole of X. T h u s X is rigid. 
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Now we introduce the following notations to compute the number of clopen 
subsets of X. Let w b e a fixed isolated infinite cardinal < m. Then 

An = the set of all isolated cardinals < n. 
Fn — the family of all clopen subsets of Xn. 
Yn = the disjoint union of all Xps with p in An. 

Fn] = the family of all clopen subsets of X contained in Yn. 
(p(Yn))

An = the set of all functions from An to the set of all subsets of Yn. 
F\ = the family of all clopen subsets of X not containing CQ . 
F = the family of all clopen subsets of X. 

The following are easily noted for each n in Am: 

(i) \Xn\ = n. 
(ii) \Yn\ = Suppzn\Xp\. 

(iii) \An\ ^ n. 
(iv) \(p(Yn))

An\ ^ &n)n (by the above three facts) = 2n. 

If V is any member of Fn] we define fv £ (p(Yn))
An by the rule fv(p) = 

V C\ Xv for each p in An. Then obviously the map V —>fv is one-to-one. Hence 
we have 

(v) | /?„ | ^ (p(YH)y». 

Now every clopen set not containing co meets only a finite number of X's and 
hence is contained in Yn for some n in Am. In other words: 

(vi) F\ C U Fn] 
n£Am 

Now 

IAI S Z \fni\ by (vi) 
n£Am 

S E ( ^ ( F , ) ) 4 " by (v) 
n£Am 

= Z 2" by (iv) 
ne Am 

= ]C w (since 2n < m for each 7z in AOT) 

^ m. m by (iii) 

= m. 

T h u s we have 

(vii) \Fi\ ^ w. 

Finally, if V is any clopen subset of X, either V £ Fi or its complement £ ^ i . 
In other words 

(viii) FC FiU {VCX\X/V e A } . 
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Therefore 

\F\ ^ \Fi\ + \Fi\ S m + m (by (vii)) = m. 

T h u s 

(ix) \F\ ^ m. 

On the other hand, for each n in Am, Fn C F and therefore 

\F\ è sup |F„| 
n£Am 

= sup 2n (by what we have proved in case 1) 
ne Am 

= m. 

T h u s 

(x) \F\ = m. 

Now the proof of the theorem is complete, by the observation t h a t F is a 

Boolean algebra under usual operations and has the same automorphism group 

a s l . 

COROLLARY 4.1.2. Assume GCH. Let m be a cardinal number. Then there 
exists a rigid Boolean algebra with cardinality m if and only if either m S 2 or 
m is uncountable. 

Proof. H m ^ 2, then any Boolean algebra of cardinal i ty m is easily seen to 
be rigid. If m is uncountable , the above theorem applies. Conversely, let m be 
a cardinaly number such t h a t there is a rigid Boolean algebra of cardinal i ty m. 
If m is finite and > 2, then m = 2n for some positive integer ^ 2 and the 
Boolean algebra corresponding to it (namely, the power set of a set having n 
elements) is easily seen to be nonrigid. If m is countable, and if B is the rigid 
Boolean algebra corresponding to it, then its Stone-space X cannot be finite 
(since then B would be finite), nor can it be uncountable (since then B would 
also be so). X is therefore a countable compact Hausdorff space. I t therefore 
has plenty of isolated points (this is a consequence of Baire category theorem) , 
contradict ing the fact t ha t X is rigid. 

4.2. Rig id cr-complete B o o l e a n a lgebras . While answering Birkhoff's 
problem 74, Ka te tov [7] asks whether there exist c-complete Boolean algebras 
wi thout any nontrivial automorphism. T h e purpose of the present section is 
to show t h a t such Boolean algebras exist in plenty. 

T H E O R E M 4.2.1. Every Boolean algebra can be embedded in a rigid a-complete 
Boolean algebra. 

Proof. Step 1: Let us s ta r t the proof by looking a t a special kind of Stone 
space. Consider the spaces constructed by c-process in § 2.1 of [4]. T o recall, 
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each of the base spaces is of the form Pm for some infinité cardinal number . 

Here Pm denotes the set of all ordinal numbers not exceeding the initial ordinal 

of m with the topology tha t is the join of the following two topologies: 

(i) the usual order topology. 
(ii) the smallest topology in which every subset of cardinali ty < m, is 

closed. Fur ther distinct base spaces, by their choice, have distinct cardinalities. 
Let us make an extra requirement t ha t each base space is uncountable. 

We have proved in § 2.1 of [4] tha t such spaces are zero-dimensional Haus-
dorff spaces. Let X be one such space. Look a t (3X, its Stone-Cech compactifi-
cation. We have already shown in § 2.1 of [4] t ha t for every x in X, X/{x\ is 
not c*-embedded in fiX and hence tha t (3X is also rigid. 

Now consider the Boolean algebra B(X) of all clopen subsets of /3X. Clearly 
B (X) is also rigid for automorphisms. We claim tha t B (X) is o--complete. Since 
clopen subsets of X are precisely the intersections of those of fiX with X, we 
may regard B(X) as the Boolean algebra of all clopen subsets of X. T o show 
tha t B(X) is a-complete, we therefore show tha t if Vi, Vi, . . . , Vni . . . is a 
sequence of clopen subsets of X, then there is a largest clopen set contained in 
each of them; in fact, we prove tha t Ç\™=iVn is itself clopen. 

Let us denote by (P) the property tha t the intersection of a countable 
number of clopen sets is clopen. We make the following observations: 

(1) If m is uncountable, Pm has ( P ) . For let Vi, V2, . . . , Vn, . . . be a count­
able sequence of clopen subsets of Pm and let W be their intersection. If the 
unique limit point is not in W, then W is obviously open. If the unique limit 
point is in W, then it is in each Vn\ therefore the cardinality of Pm\Vi is less 
than m\ therefore Pm\W has cardinality < m\ therefore W is open. T h e 
closedness of W follows from the fact tha t it is the intersection of closed sets 

{ v < } . 

(2) T h e property (P) is preserved by sums. T h a t is, if X = ®awJ Xa is a 
disjoint sum of topological spaces and if each Xa has (P ) , then X has (P) 
(where J is any set) . 

(3) T h e proper ty (P) is preserved by quotients. T h a t is, if/: X —* Y is a 
quot ient map and if X has ( P ) , then Y has (P ) . 

I t follows from (2) and (3) and Remark 1.4, t ha t (P) is preserved by c-
process. Therefore it follows from (1) tha t the space X constructed above has 

Thus B(X) is a c-complete rigid Boolean algebra. 

Step 2: Recall t ha t in the choice of cardinal numbers in the construction of 
X discussed above, we have plenty of freedom but for some minor conditions. 
In particular, we can choose then as large as we please. We fix an uncountable 
cardinal number m0. and construct a space Xmo, exactly as above, with the 
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following single extra conditions: the first base space PmQ chosen has car 
dinality m\ > m0. 

Let A be an initial segment of Pmi having cardinality m0. For each subset 
B of A, consider the subset B* of XmQ, namely the set of all points in Xmo that 
lie above some element of B. Since A is discrete, open and closed in Pmi, it 
follows that each such B* is a clopen subset of Xmo. Further, the map B —> B* 
from &(A) (where SP(A) is the power set of A) to B(Xm) can be checked to 
be a Boolean algebra isomorphism (not onto) in the following sense: it pre­
serves unions, intersections and all relative complements. 

Thus it is possible to embed the Boolean algebra 2m° in B(Xmo). 

Step 3: Let B be any Boolean algebra. Then it is well-known (see [1]) that 
B can be embedded in 2m° for some m0. It follows from Step 2 that B can be 
embedded in the rigid cr-complete Boolean algebra B(XmQ). 

Remark 4.2.2: (a) In our notion of embedding of Boolean algebras, the 
bound elements 0 and 1 need not be preserved. 

(b) Our methods in fact prove the following stronger result: Let m be any 
infinite cardinal number. Call a Boolean algebra m-complete if any collection 
of its elements, having cardinali ty < m, has infimum and supremum. (Thus 
^-completeness is the same as No-completeness.) Then there are plenty of m-
complete rigid Boolean algebras, however large this m may be. 

To prove this assertion, we have only to require that each base space has 
cardinality > m; for the rest, we can imitate the proof of the theorem. 

(c) In a private communication in 1976, J. D. Monk has informed us that 
he has shown that given a cardinal m > Ko there are exactly 2m isomorphism 
types of rigid Boolean algebras of power m. 
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