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Let Hn denote the set of complex n-square positive semidefinite hermitian
matrices. We partially order Hn: If A, B,A-BeHn, write A> B. For AeHn,
write P{A) for the permanental adjoint of A, i.e., P(A) is the n-square matrix
whose i, j entry is per^(j | i), where A(j | i) is the submatrix of A obtained by
deleting row j and column i. Now, P(A) is a principal submatrix of the (n —l)st
induced power matrix of^4T. Hence, P(A)e Hn. Also D(A), the classical adjoint,
is in HB.

THEOREM. If AeHn is positive definite then

(1) (per^)-1PU)<n(det/l)-1Z)(^[).

PROOF. Rewrite (1) as follows:

(2) P(A)<n(pevA)A-1.

Pre- and post-multiply both sides of (2) by A* > 0 to obtain the equivalent
statement

(3) AiP(A)A i < n(per A) In.

Statement (3) is equivalent to the statement that the maximum eigenvalue of
AiP(A)Ai satisfies

X1(A
iP(A)Ai) ^

Now, the eigenvalues of AiP(A)Ai are all nonnegative. Hence, it suffices to prove
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that tr(AiP(A)Ai) ^ nperA. But, tr(AiP(A)Ai) = tr(AP(A)). The main diag-

onal elements of AP(A) are

n

X aik per A(i \ k) = per A.

Hence, tT(AP(A)) = npetA, and the proof is complete.

Indeed, the proof shows that (3) holds for all A e Hn, not just for A positive

definite.

COROLLARY. Suppose AeHn. Let ct be the ith row sum of A. Let a{A) be

the sum of the elements of A. Then

n

0 S 2 o-jffjper A(i\ j) ^ no(A)perA.

PROOF. Display (3) is congruent to AP(A)A < n(per A)A. Now, if A e Hn

then o(A) ^ 0. It follows that

0 ^ cr(AP(A)A) ^ n(per A)a(A).

But
n

G(AP(A)A) = Z ffjffy per A(i \ j).
i,j = l

We point out that if A e Hn is doubly stochastic then the corollary becomes

n

(4) 1/n2 X per^(j | j) ^ per A.
u = i

Display (4) is the first of a class of inequalities conjectured by Djokovic [1] to

hold for all doubly stochastic A. It was proved in [2] using other methods.
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