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1. Introduction

We consider the Dirichlet problem

u" + u+g(u) = h(x) xe(0,7i), M(0) = «(7t) = 0 (1)

where g is continuous and h e L2(0, n).
By integrating (1) we see that a necessary condition for (1) to have a solution is that

(o = co(h) = Jh(x)sinxdx jsinxdxeRangeg. (2)

If g is such that

)^g(u)^g( — oo) for every ueU (3)

then it is well known [10,11] that a sufficient condition for the existence of solutions to
(1) is that

a) elnt (Range g). (4)

On the other hand, if g satisfies

for every ueU, (5)

then a restriction on g is needed. Indeed, for g(u) = 3u and /i(x)=sin2x, problem (1) has
no solution. Thus, we shall consider the following hypotheses

there exist constants y,C such that C>0, ye[0,3),and \g(u)\ g y\u\ + C
for every u e U, (6)

g is a nondecreasing function. (7)
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Ahmad proved in [1] that (1) has at least one solution provided that (6) holds and

g{ — oo)f sinx<Jx<J/t(x)sinxrfx<g(oo) f sinxdx (8)
o o . o

where

g{ — oo) = limsupg(u) and g(oo)=liminfg(w).
U-* — oo u-*ao

In section 2, we study the case when equality does occur in (8) (Theorem l(c)). Then,
we show that uniqueness does not occur in general even if (4) and (7) are satisfied.
However, if g is Lipschitz continuous and the Lipschitz constant "stays away" from the
nearest eigenvalue uniqueness occurs (Theorem 2). Thus, we have that if there exists a
non-negative constant k with k < 3 and

\g[u)—g(t>)| ^ k\u — v\, for every u, v, e U (9)

and g is strictly increasing, then any solution of (1) is unique. The proof of this result is
standard, but we give it for the sake of completeness.

In Section 3 we prove our main result (Theorem 4): If (4), (7) and (9) hold, then the
set of solutions of (1) in L2(0, n) is homeomorphic to the intersection of a decreasing
sequence of compact absolute retracts. Following Aronszajn [2] we will call such a set
an Rg. It is known that an Rs is acyclic and, in particular, it is nonempty, compact and
connected. Note that there are compact and connected sets which cannot be continuous
images of Rs's [12,13]. We shall denote the solution set of (1) by S(h).

Recently, Ballotti proved in [3] that the solution set for a parabolic partial differential
equation is an Rs. Similarly, Gorniewicz and Pruszko [6] and De Blasi and Myjak [5]
showed that the set of all solutions of a Darboux problem for a partial differential
equation of hyperbolic type is an Rt.

In our last section we present some examples in order to bring out the fact that the
set of solutions is not an R6 in general in the following two cases:

(i) g satisfies (5) instead of (7)
(ii) cueBdry(Range g).

In the sequel and for pe[ l , oo] we denote by | |p the usual norm in LF(0,n). For R>0,
Bp(0,R) = {ueLp(0,it):\u\p^R}. If p = 2, u,veL2(0,n) we write ||u|| = |u|2, (u,v) =
J5 u(x)v(x) dx, and for R > 0, 5(0, R) = B2(0, R).

1. Existence of solutions

We have the following existence result.

Theorem 1. Under assumptions (6) and (7), we have:

(a) co elnt (Range g) is a sufficient condition for (1) to have a solution.
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(b) a> e Range g is a necessary condition for (1) to have a solution.

(c) / / coeBdry (Range g), then (1) has a solution if and only ifg(0)=0.

Proof. Part (a) is an immediate consequence of [1]. Part (b) follows by integrating
(1), and (c) can be proved as in [9, Th. 2] (see also [10]).

We remark that in the case where g is strictly decreasing, uniqueness is trivial since

(M" + u +g(u) - v" - v -g(v), u-v)<0

for every u,veE with u^v. However, this is not true for g non-decreasing. Indeed, for
h=0 and g strictly increasing with g{u) = 3u in a neighbourhood of u=0, we have that
asinx, with a sufficiently small, are solutions of (1). We note that the non-uniqueness is
due to the presence of an eigenvalue (A = 3) of the problem

u" + u + ku = 0, u(0) = u(jr)=0. (10)

Note that the eigenvalues of (10) are A, = i2 —1, i=l ,2 , . . . . Nevertheless, we have the
following uniqueness result.

Theorem 2. If g is strictly increasing and (4) and (9) hold with fe<3, then any solution
of(l) is unique.

Proof. Let £ = L2(0,7r) and define the operator L:D(L) <=£-•£ by Lu = u" + u" where
D(L) = {ueH2(0,n):u(0) = u(n) = 0}. Let N:E-*E be the Nemytskii map associated with
the nonlinear part of (1), that is, Nu = h—g(u). Thus, (1) is equivalent to the operator
equation Lu = Nu. Now, we take c=(A1 + A2)/2 = 3/2 (see [4, p. 116]). Thus, the operator
L+cI is invertible and ||(L + c/)"1| |gc"1. On the other hand, for every x,yeU we have
that |g(y)— g(x) + c(x—y)\^c\x—y\, with strict inequality when x^y since g is strictly
decreasing and (9) holds with fc<3. Therefore, ||Nu — NV+C(U — D)||^C||M — t;|| for every
u,veE. Moreover, if u#u in a set of positive measure, then ||Nu — NV + C(U — t>)||<c||u—v||.
Now, if u, v e E are two solutions then

cI)~l[Nu-Nv+c(u-v)] = u-v and

which implies that u = v. This completes the proof of the theorem.

3. Aronszajn's theorem

We shall use the following result due to Aronszajn [2].

Theorem 3. Let K be a closed, convex and bounded set is a Banach space E. Let
T:E-*E be compact such that

(a)
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(b) For every e>0, there exists Te:E-*E compact with \\Te(u) — T(u)\\<efor every ueK

(c) There exists p>0 such that for every e>0, I — Te maps K bijectively onto a set
containing 5(0, p) = {u e E: \\u\\ ^ p}.

Then the set of fixed points ofT,F(T) = {ueE: T(u) = u} is an Ra.

Now we are in a position to prove our main result.

Theorem 4. Suppose that (4), (7) and (9) hold with k < 3. Then the set of solutions of( 1) is an Rt.

Proof. Let £(x)=(n/2)sinx, xe[0,7r] and define the projection P:E-*E by Pu =
(u,QZ. Thus, P£ = £0 = KerL and E = EO®EU £ 1 = ( / - P ) £ . The partial inverse of
L is H.Ei-tE! where Hv = u iff Lu = v,ueE1. It is well known [4] that solutions of
Lu=Nu are precisely the fixed points of the operator R:E-*E,Ru = Pu + H(I — P)Nu +
PNu.

On the other hand, we know [1] that there exists R>0 such that lul^^l? for any
ueS(h). Choose A<-R, B>R such that g{A)<co(h)<g(B).

Consider the following modified problem

) = h(x), xe(Q,n), u(O) = u(n) = O (11)

where

' g(A), u<A

G(u)=-l g(u), A^u^B

g{B), u>B.

Now, let M:E^>E,Mu = h — G{u) so that (11) is equivalent to Lu = Mu. Any solution of
(1) is also a solution of (11) and taking into account Theorem l(a) we have that (1) is
solvable. Hence, if we show that the set of solutions of (11), denoted by S(h), is an Rd,
we can conclude that

is an Rg.
We note that §(h) is bounded since G is bounded and g(A)<co(h)<g(B). Let 5 be suchg()()g()

^ s for every ueS(h). Define the retraction r:£-»B(0,s) by ru = u for ||M||^that
ru = (s/\

We shall show that F(T) is an Rd by using Aronszajn's theorem. Let J be such that
u | | ^J for ueE and set c = |

u\\)u for ||"||>s. In order to show that S~(h) is an Rf we consider the operator
: defined by Tu = Pru + H(I - P)Mu + PMu. Note that

) = F(T)nB(0,R). (13)
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Let K = B(0,t) where t = s+c+J+p, p>0. For ueK, | |Tu||gs+c + J < t which shows
that T(K)cK.

Now, let $:(R+-»R+ be a continuous and strictly increasing function such that
4>(e)>0 for £>0 and ^(e)<min{7t/(7iv/27r(||/f(/-P)|| + l)),3-*:}. Define M,:£->£ by
Mt(u) = M u - # : ) Arctan u, and TlJ(u) = Pru + H(I-P)Me(u) + PMe{u). Thus, for ueK we
get ||rf(«)-r(u)||g||H(/-P)||-^(e)-||Arctanu|| + ^(£)-||Arctanu||<6. Hence, (b) of
Theorem 3 is satisfied.

To show (c) we shall prove that I-Te is one-to-one in K and B^pja^-T^K.
Indeed, let u,veK such that (I-TJu=(I-TJv. Thus, u-v = Ttu-Ttv. Therefore,
u—ue D(L) and L(u — v) = Mtu — Mtv = Mu — Mv—4>(e) [Arctan u—Arctan »]. The function
u-*G(u) + 0(a) Arctan u is strictly increasing and Lipschitz continuous with Lipschitz
constant k + <f>(e) < 3. By Theorem 2 we can conclude that u = v.

Now, for weB(0,p), define the operator At:E->E,At(u)=Te(u) + w. For ueK,
||i4,(M)||g||7i(u)|| + p<t. In consequence, Ac(K)<zK and by Schauder fixed point theorem
Ae has a fixed point ueK which is precisely the solution of (/ — Te)u = w. This shows (c)
of Aronszajn's theorem and that the set of fixed points of T is an Rs.

From (12) and (13) we can conclude that S(h) is an Rt since, as is well known, any
convex subset of a Banach space is an absolute retract.

4. Counterexamples

In this section we show with some examples that Theorem 4 is as sharp as possible in
the sense that the solution set is not an Rt if we have either

(i) (5) instead of (7), or
(ii) cueBdry (Range g) instead of (4)

even if (9) holds with k < 3.

Example 1. Let h = 0 and

-1, u<-\

u, - l < u < 0

. 0, u>0.

Clearly g is non-decreasing, g{ — oo)= — 1, and g(oo) = 0. On the other hand, co(h)=0
and if u is a solution of (1), then

Jf(u(x)) sin xdx=0.

This implies that «(x)^0 for every xe[0,7t] since g£0. Therefore, the set of solutions is
given by {a sin x: a ̂  0} which is not bounded. Hence, the solution set is not an R,. Note
that the solution set is connected in this case.
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Remark. If coeBdry(Range g) and g is strictly increasing, then (1) has no solution by
Theorem l(c). Hence, the solution set would be empty and it cannot be an Rt.

Example 2. Consider the problem

u" + u+g(u)=-i u(0) = u(7t)=0 (14)

where

' u, u<0

g(u)=< -u, O g u ^ l

. w-2, u> l .

Thus, G>= —\ and (4) holds. It is easy to see that g satisfies (5) and (9) with k<3. In
fact, k = l.

We shall show that S(h) is not connected and consequently it is not an Rf.
If u is a solution of (14) such that O^u^ 1 in [0,7t], then u is a solution of the linear

problem «"= —%,u(Q) = u(n)=Q. Thus, <x(t)= -%t{t—n) is a solution of (14) since O ^ a ^ l
in [0,7t]. On the other hand, if u is a solution with u^O, then u satisfies the linear
problem u" + 2u= — +, w(0) = U(TT) = 0, which has a unique solution given by f}(t)=— \
+ Xsiny/2t + (icos*Jlt where A=(l—cosx/2it)/4sinN/2rt,/x=^. Note that A<0 and set

Now, for m e U, consider the initial value problem

u" + 2u=-i u(0) = 0, u'(0) = m

which has a unique solution um(t)= —^ + kmsin^/2t+fimcoSy/2t with Am = 2~1 / 2m and

We prove below that

um{t)^0 for every me[mo,0], te[O,7t]. (15)

Note that P = umo- Thus, f$ is a solution to (14). If me(mo,O], then Mm(7t)g—^+
AmsinN/2~7t+/imcosv/27i<0. Hence, um is not a solution of (14) for me(mo,O].

On the other hand, the initial value problem u" + u+g(u)= -^,u(0) = 0,w'(0) = m, has a
unique solution for any meU. For me[mo,0] such a unique solution is precisely um.
Therefore, (14) has no solution u with u'(O)e(mo,O).

Let c = mo/2 and consider the open sets in X = C1[0, ii\.

A = {u e X: u'(0) >c}, B = {ueX: u'(0) < c}.

Thus, txeAnS(h), fieBnS(h), AvB=>S(h), and y 4 n B = 0 which means that S(h) is
not connected in X. Moreover, S(h) is not connected in E. Indeed, the operator R can
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be considered as a continuous map form E to X, and R{S(h)) = S(h). This implies that
S(h) is not connected in E.

Proof of (15). For t e [0,2 "1/2 • n\ we have that sin Jit ^ 0. Thus, Xm sin . / I t ^ 0 and
um(r)g0. If fe[2~1/2-7t,7t], then cos Jin ^ cos /̂5it and sin yirc g sin Jit ^ 0. This
implies that ujt) g - £+2 ~ */2 • m sin ,/27r+£ cos ^
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