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up in finite time. Using a first-order differential inequality technique, lower bounds for
blow-up time are determined.

2010 Mathematics Subject Classification. 35K20, 35B45, 35B30.

1. Introduction. The study of the blow-up phenomena in parabolic problems has
received a great deal of attention in the last decades (we refer the reader especially to the
books of Straughan [12] and Quittner–Souplet [11], the survey papers of Levine [4] and
Galaktionov [2] and the references therein). Therefore, nowadays a variety of methods
are known and used in the study of various questions regarding the blow-up phenomena
in parabolic problems. But, most of the methods used to show that solutions blow-up
provide only an upper bound for the blow-up time, while in applications, due to the
explosive nature of the solutions, it is more important to determine the lower bounds
on the blow-up time. We note, however, that during the last four years, beginning with
the paper of Payne and Schaefer [6], such lower bounds on blow-up time have been
obtained in various parabolic problems, by mean of a first-order differential inequality
technique (see, for instance, [5]–[9] and some references therein).

In this paper, we will consider the following type of non-linear parabolic problems
in divergence form:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(
ρ(x, u, |∇u|2)u,i

)
,i − u,t = −f (u) in � × (0, t∗) ,

∂u
∂n

= 0 on ∂� × (0, t∗) ,

u(x, 0) = g(x) ≥ 0 in �,

(1.1)

where u,t denotes the partial derivative of u(x, t) with respect to t, the symbol ,i denotes
the partial differentiation with respect to xi, i = 1, 2, 3, ∂u/∂n is the outward normal
derivative of u(x, t) on the boundary ∂� and the summation is understood on repeated
indices. Moreover, the domain � ⊂ �3 is assumed to be bounded, starshaped, convex
in two orthogonal directions and with smooth boundary ∂�, while ρ is a positive C1

function that satisfies the ellipticity condition throughout �, i.e.

ρ(x, u, s) + 2s
∂

∂s
ρ(x, u, s) > 0, s > 0, x ∈ �. (1.2)
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We also ask that ρ and f satisfy the conditions

0 < f (s) ≤ a1 + a2sp, ρ(x, u, s) ≥ b1, s > 0, x ∈ �, (1.3)

where p > 1 and a1 ∈ �+, a2, b1 ∈ �∗
+. In addition, g is assumed to satisfy the

compatibility condition ∂g/∂n = 0 on ∂�. Under these assumptions on the data,
it follows from the parabolic maximum principles (see Protter–Weinberger [10]) that
the solution of the problem (1.1) is non-negative. Moreover, it is well-known that the
solution may not exist for all time, and the only way that it can fail to exist is by
becoming unbounded at some finite time t∗ (see, for instance, the works of Ball [1] and
Kielhöfer [3] in the case ρ ≡ 1). This phenomena depends on the form of f (u) and
ρ(x, u, |∇u|2), the initial data g (x) or the geometry of the given domain �.

In what follows, we shall assume that a non-negative classical solution of the
problem (1.1)–(1.3) exists and become unbounded at time t = t∗. Our aim is to
determine an explicit lower bound for the the blow-up time t∗ in some appropriate
measure. We notice that lower bounds for blow-up time in non-linear parabolic
problems with particular divergence form, but under Dirichlet boundary conditions
and different assumptions on the data, have been recently obtained by Payne–
Philippin–Schaefer in [5]. A key ingredient in their proof was the Sobolev inequality,
which is no longer applicable in our case, since we deal with homogeneous Neumann
boundary conditions. However, for a class of semi-linear heat equations under
homogeneous Neumann boundary conditions, Payne and Schaefer succeeded [6] to
overpass this difficulty by the determination of an appropriate Sobolev-type inequality
for C1-functions. In order to handle the more general problem (1.1)–(1.3), our approach
is inspired by their technique, the main ingredient of our argument being again the
determination of an appropriate Sobolev-type inequality for C1-functions on �.

2. Lower bound on blow-up time. Let us introduce the auxiliary function

� (t) :=
∫

�

u2n dx, (2.1)

for some constant n > 1 to be chosen. We compute

�′ (t) = 2n
∫

�

u2n−1[
(
ρ(x, u, |∇u|2)u,i

)
,i + f (u)] dx

= −2n (2n − 1)
∫

�

u2n−2ρ(x, u, |∇u|2) |∇u|2 dx + 2n
∫

�

u2n−1f (u) dx

≤ −2n (2n − 1) b1

∫
�

u2n−2 |∇u|2 dx + 2n
∫

�

u2n−1 (a1 + a2up) dx,

(2.2)

where we have used successively the differential equation (1.1), the divergence theorem,
the boundary condition (1.1) and the assumption (1.3). Next, we notice that

|∇un|2 = n2u2(n−1) |∇u|2 , (2.3)

and we use Holder’s inequality to obtain

�′ (t) ≤ −2n (2n − 1)
n2

b1

∫
�

∣∣∇un
∣∣2 dx + 2na1 |�| 1

2n � (t)
2n−1

2n + 2na2

∫
�

u2n+p−1 dx.

(2.4)

https://doi.org/10.1017/S0017089511000139 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089511000139


LOWER BOUNDS FOR BLOW-UP TIME 571

Now, our aim is to transform the right side of (2.4) in terms of � (t) and obtain a
first-order differential inequality for �. To accomplish this, we begin by using Holder’s
inequality to write:

∫
�

u2n+p−1 dx ≤
(∫

�

u4n dx
) 1

3
(∫

�

u
2n+3p−3

2 dx
) 2

3

. (2.5)

To bound the integral of u(2n+3p−3)/2, we use again Holder’s inequality and obtain∫
�

u
2n+3p−3

2 dx ≤ |�|1−μ |� (t)|μ , with μ := 2n + 3p − 3
4n

, (2.6)

where |�| denotes the volume of � and, in order to ensure that μ < 1 in (2.6), the
constant n must be chosen to satisfy n > 3(p − 1)/2.

Next, to bound the integral of u4n in (2.5), we seek to determine an appropriate
Sobolev-type inequality. For this aim, we denote by xim and xiM the minimum and the
maximum values, respectively, of the coordinates xi, i = 1, 2, 3, relative to � and by
νi, i = 1, 2, 3, the components of the unit outer normal to ∂�. We also denote by Dz

the intersection of � with the plane x3 = z and, for clarity, we let w := un. Then, using
Schwarz’s inequality, we can write

∫
�

w4 dx =
∫ x3M

x3m

(∫
Dz

w4dA
)

dξ ≤
∫ x3M

x3m

[∫
Dz

w2dA
∫

Dz

w6dA
] 1

2

dξ. (2.7)

Now, let P = (x1, x2, z) be an arbitrary point in Dz and P1 := (ξ1, x2, z) and P2 :=
(ξ2, x2, z) denotes the points on the boundary ∂Dz where the line x2 = x2 in Dz intersects
the boundary ∂Dz. Similarly, let Q1 := (x1, η1, z) and Q2 := (x1, η2, z) be the points on
the boundary ∂Dz, where the line x2 = x2 in Dz intersects ∂Dz. We then have

w3 (P) = w3 (P1) + 3
∫ P

P1

w2w,1 dx1,

(2.8)

w3 (P) = w3 (P2) − 3
∫ P

P2

w2w,1 dx1,

from which we obtain

w3 (P) ≤ 1
2

[
w3 (P1) + w3 (P2)

] + 3
2

∫ P2

P1

w2
∣∣w,1

∣∣ dx1. (2.9)

In a similar way, one may show that

w3 (P) ≤ 1
2

[
w3 (Q1) + w3 (Q2)

] + 3
2

∫ Q2

Q1

w2
∣∣w,2

∣∣ dx2. (2.10)

Therefore, multiplying (2.9) and (2.10) and integrating over Dz, we get∫
Dz

w6dA ≤ 1
4

{∫ x2M

x2m

[
w3 (P1) + w3 (P2)

]
dx2 + 3

∫
Dz

w2
∣∣w,1

∣∣ dA
}

·

·
{∫ x1M

x1m

[
w3 (Q1) + w3 (Q2)

]
dx1 + 3

∫
Dz

w2
∣∣w,2

∣∣ dA
}

.

(2.11)
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Next, making use of the fact that

∫ x2M

x2m

[
w3 (P1) + w3 (P2)

]
dx2 ≤

∫
∂Dz

w3 |ν1| ds,

(2.12)∫ x1M

x1m

[
w3 (Q1) + w3 (Q2)

]
dx1 ≤

∫
∂Dz

w3 |ν2| ds,

together with the facts that |νk| < 1,
∣∣w,k

∣∣ < |∇w| , k = 1, 2, and Schwarz’s inequality,
it follows from (2.11) that

∫
Dz

w6dA ≤ 1
4

{∫
∂Dz

w3ds + 3
[∫

Dz

w4dA
∫

Dz

|∇w|2 dA
] 1

2

}2

. (2.13)

Therefore, making use of Schwarz’s inequality and (2.13), we deduce that

∫
Dz

w4dA ≤ 1
2

[
max

z

∫
Dz

w2dA
] 1

2

{∫
∂Dz

w3ds + 3
[∫

Dz

w4dA
∫

Dz

|∇w|2 dA
] 1

2

}
.

(2.14)

Integrating now (2.14) over z we get

∫
�

w4 dx ≤ 1
2

[
max

z

∫
Dz

w2dA
] 1

2

{∫
∂�

w3ds + 3
[∫

�

w4 dx
∫

�

|∇w|2 dx
] 1

2

}
, (2.15)

where we have used Schwarz’s inequality to obtain the last term.
We now seek to bound

∫
∂�

w3ds and max
z

∫
Dz

w2dA. For this aim, we denote by

p0 := min
∂�

(x · n) , d2 := max
�

|x| , (2.16)

and make use of the divergence theorem to write

p0

∫
∂�

w3ds ≤
∫

∂�

xiniw
3ds = 3

∫
�

w3 dx + 3
∫

�

xiw
2w,i dx. (2.17)

It then follows that

∫
∂�

w3ds ≤ 3
p0

∫
�

w3 dx + 3d
p0

[∫
�

w4 dx
∫

�

|∇w|2 dx
] 1

2

, (2.18)

where we have used Schwarz’s inequality to get the last term. Replacing (2.18) in (2.15),
we obtain
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∫
�

w4 dx ≤ 3
2

[
max

z

∫
Dz

w2dA
] 1

2

{
1
p0

∫
�

w3 dx +
(

1 + d
p0

)[∫
�

w4 dx
∫

�

|∇w|2 dx
] 1

2

}

≤ 3
2

[
max

z

∫
Dz

w2dA
] 1

2
(∫

�

w4 dx
) 1

2

×
{

1
p0

(∫
�

w2 dx
) 1

2

+
(

1 + d
p0

) (∫
�

|∇w|2 dx
) 1

2

}
, (2.19)

where we have used again Schwarz’s inequality to get the last expression.
Next, in order to bound max

z

∫
Dz

w2dA in (2.19), we let �+ be the portion of �

above Dz, with ∂�+ the portion of ∂� above Dz, and �− the portion of � below Dz,

with ∂�− the portion of ∂� below Dz. Then, the divergence theorem gives∫
Dz

w2dA −
∫

∂�+
w2ν3ds = −2

∫
�+

ww,3 dx, (2.20)

∫
Dz

w2dA +
∫

∂�−
w2ν3ds = 2

∫
�−

ww,3 dx. (2.21)

Combining (2.20) and (2.21) and making use of Schwarz’s inequality, we obtain

∫
Dz

w2dA ≤ 1
2

∫
∂�

w2ds +
[∫

�

w2 dx
∫

�

|∇w|2 dx
] 1

2

. (2.22)

On the other hand, from the definition of p0 (see (2.16)) and the divergence theorem,
we have

p0

∫
∂�

w2ds ≤
∫

∂�

xiniw
2ds = 3

∫
�

w2 dx + 2
∫

�

xiww,i dx, (2.23)

so that we obtain

∫
∂�

w2ds ≤ 3
p0

∫
�

w2 dx + 2d
p0

[∫
�

w2 dx
∫

�

|∇w|2 dx
] 1

2

. (2.24)

Therefore, replacing (2.24) in (2.22), we get

∫
Dz

w2dA ≤ 3
2p0

∫
�

w2 dx +
(

1 + d
p0

) [∫
�

w2 dx
∫

�

|∇w|2 dx
] 1

2

. (2.25)

Going back to (2.19) we find, after some manipulations, that

(∫
�

w4 dx
) 1

2

≤ 3
2

(∫
�

w2 dx
) 1

4

{
3

2p0

(∫
�

w2 dx
) 1

2

+
(

1 + d
p0

)(∫
�

|∇w|2 dx
) 1

2

} 3
2

= 3
2

{
3

2p0

(∫
�

w2 dx
) 2

3

+
(

1 + d
p0

) (∫
�

w2 dx
) 1

6
(∫

�

|∇w|2 dx
) 1

2

} 3
2

.

(2.26)
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Next, with w := un, we replace (2.26) in (2.5) to obtain

∫
�

u2n+p−1 dx ≤
(

3
2

) 2
3

|�| 2
3 (1−μ) � (t)

2
3 μ

×
{

3
2p0

� (t)
2
3 +

(
1 + d

p0

)
� (t)

1
6

(∫
�

∣∣∇un
∣∣2 dx

) 1
2

}
. (2.27)

Moreover, making use of the inequality ab ≤ a2

2α
+ b2α

2 , where α is an, as yet, unspecified
positive weight to be chosen, we have

� (t)
4μ+1

6

(∫
�

∣∣∇un
∣∣2 dx

) 1
2

≤ 1
2α

� (t)
4μ+1

3 + α

2

∫
�

∣∣∇un
∣∣2 dx. (2.28)

Therefore, replacing (2.28) in (2.27) and, thereafter, (2.27) in (2.4), we get

�′ (t) ≤ −2n (2n − 1)
n2

b1

∫
�

∣∣∇un
∣∣2 dx + 2na1 |�| 1

2n � (t)
2n−1

2n + na2

×
(

35

22

) 1
3 1

p0
|�| 2

3 (1−μ) � (t)
2
3 (1+μ) + na2

(
3
2

) 2
3 1

α

(
1 + d

p0

)
|�| 2

3 (1−μ) � (t)
4μ+1

3

+ na2α

(
3
2

) 2
3
(

1 + d
p0

)
|�| 2

3 (1−μ)
∫

�

∣∣∇un
∣∣2 dx. (2.29)

Choosing now the parameter α in (2.29) such that

−2n (2n − 1)
n2

b1 + na2α

(
3
2

) 2
3
(

1 + d
p0

)
|�| 2

3 (1−μ) = 0, (2.30)

we obtain the following differential inequality for � (t) :

�′ (t) ≤ K1� (t)
2n−1

2n + K2� (t)
2
3 (1+μ) + K3� (t)

4μ+1
3 , (2.31)

where

K1 := 2na1 |�| 1
2n , K2 := na2

(
35

22

) 1
3 1

p0
|�| 2

3 (1−μ) ,

K3 := na2

(
3
2

) 2
3 1

α

(
1 + d

p0

)
|�| 2

3 (1−μ) .

(2.32)

Next, an integration of the differential equation (2.31) from 0 to t gives∫ �(t)

�(0)

dη

K1η
2n−1

2n + K2η
2
3 (1+μ) + K3η

4μ+1
3

≤ t. (2.33)

Therefore, if u (x, t) blows up in the measure � as t −→ t∗, we obtain the lower bound

t∗ ≥
∫ ∞

�(0)

dη

K1η
2n−1

2n + K2η
2
3 (1+μ) + K3η

4μ+1
3

, (2.34)
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where μ was given in (2.6). Clearly, since 2 (μ + 1) /3 > 1 and (4μ + 1)/3 > 1, the
integral in (2.34) is bounded.

We summarise this result in the following theorem:

THEOREM. If n > 3 (p − 1) /2 and u(x, t) is a non-negative classical solution of
the problem (1.1)–(1.3), which becomes unbounded at time t = t∗ in the measure � (t)
given by (2.1), then t∗ is bounded below by (2.34), where K1, K2 and K3 are given
in (2.32).
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