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Abstract

We give a formula for the character of the representation of the symmetric group Sn on each isotypic
component of the cohomology of the set of regular elements of a maximal torus of SLn , with respect to
the action of the centre.
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1. Introduction

Let n be a positive integer. Define the hyperplane complement

T (1, n) := {(z1, z2, . . . , zn) ∈ Cn
| zi 6= 0, ∀ i, zi 6= z j , ∀ i 6= j}.

The symmetric group Sn acts on T (1, n) by permuting coordinates; we can identify
T (1, n) with the set of regular elements of a maximal torus of GLn(C), and Sn with
the Weyl group of the maximal torus. This action induces representations of Sn on the
cohomology groups H i (T (1, n)) (taken with complex coefficients). The characters of
these representations are well known (they will be encapsulated in a single ‘equivariant
generating function’ in Theorem 3.1 below). For the purposes of this introduction, we
recall only the ‘nonequivariant’ information, that is, the Betti numbers of T (1, n):∑

i

(−1)i dim H i (T (1, n)) qn−i
= (q − 1) (q − 2) · · · (q − n). (1.1)

These Betti numbers are particularly familiar, since T (1, n) is homotopy equivalent to
the configuration space Cn+1 of (n + 1)-tuples of distinct complex numbers.
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Now consider the toral complement

ST (1, n) := {(z1, z2, . . . , zn) ∈ T (1, n) | z1z2 · · · zn = 1}.

This can be identified with the set of regular elements of a maximal torus of SLn(C).
Of course Sn still acts, and there is a commuting action of µn (the centre of SLn(C))
by scaling. Thus we have a direct sum decomposition of Sn-representations:

H i (ST (1, n))∼=

⊕
χ∈µ̂n

H i (ST (1, n))χ , (1.2)

where H i (ST (1, n))χ is the χ -isotypic component of H i (ST (1, n)). In this paper we
address the following problem, suggested by Lehrer.

PROBLEM 1.1. Give a formula for the character of the representation of Sn on each
H i (ST (1, n))χ .

Our solution is given in Section 3 (see especially (3.6)). For now, we state merely
the nonequivariant version:∑

i

(−1)i dim H i (ST (1, n))χ qn−1−i

=
(−1)n−n/r n!

rn/r (n/r)!
(q − r − 1) (q − 2r − 1) · · ·

(
q −

(
n

r
− 1

)
r − 1

)
, (1.3)

where r is the order of χ in the character group µ̂n .
Summing over χ , we deduce a formula (3.7) for the character of the total

representation on H i (ST (1, n)), of which the nonequivariant specialization is∑
i

(−1)i dim H i (ST (1, n)) qn−1−i

=

∑
r |n

(−1)n−n/rφ(r)n!

rn/r (n/r)!
(q − r − 1) (q − 2r − 1) · · ·

(
q −

(
n

r
− 1

)
r − 1

)
. (1.4)

This total formula was essentially already known. Since ST (1, n) is ‘minimally
pure’ in the sense of [2], (1.4) follows from the fact that the right-hand side counts
the number of Fq -points of the variety ST (1, n) for all prime powers q which are
congruent to 1 mod n. More generally, (3.7) follows from a count of fixed points of
twisted Frobenius maps, which was the result [3, Theorem 5.8] of Fleischmann and
Janiszczak. See Remark 3.4 below.

Clearly the quotient of ST (1, n) by µn can be identified with PT (1, n), the image
of T (1, n) in Pn−1(C). So, in the case where χ is the trivial character, we are dealing
with

H i (ST (1, n))µn ∼= H i (PT (1, n)). (1.5)

In general, as (1.3) suggests, the representation H i (ST (1, n))χ is induced from the
wreath product subgroup W (r, n/r) := µr o Sn/r of Sn . To be precise, define the
hyperplane complement
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T (r, m) := {(z1, z2, . . . , zm) ∈ Cm
| zi 6= 0, ∀ i, zr

i 6= zr
j , ∀ i 6= j},

and its image PT (r, m) in Pm−1(C). For r ≥ 2, we identify the corresponding
reflection group G(r, 1, m) with the wreath product W (r, m) (if r = 1, W (1, m)= Sm
acts on T (1, m) as seen above). In the following theorem, εn denotes the sign character
of Sn , and detn/r the determinant character of GLn/r (C), restricted to W (r, n/r).

THEOREM 1.2. Let r be the order of χ ∈ µ̂n . For every i , we have an isomorphism of
representations of Sn:

H i (ST (1, n))χ ∼= εn ⊗ IndSn
W (r,n/r)(detn/r ⊗ H i−n+n/r (PT (r, n/r))).

The proof of this theorem given in Section 4 merely equates the characters of
both sides; a more conceptual understanding of the isomorphism (or rather the related
isomorphism (4.2)), involving Orlik–Solomon-style bases for the cohomology groups,
is given in [6].

When χ is faithful (that is, r = n), Theorem 1.2 says that

H i (ST (1, n))χ ∼=

{
εn ⊗ IndSn

µn
(ψ) if i = n − 1,

0 otherwise,
(1.6)

where µn is embedded in Sn as the subgroup generated by an n-cycle, and ψ ∈ µ̂n
is any faithful character (it does not matter which—note also that tensoring with εn
makes no difference unless n ≡ 2 (mod 4)). This result for prime n was proved in
[2, Section 4.4].

2. Equivariant weight polynomials

Suppose that X is an irreducible complex variety which is minimally pure in the
sense that H i

c (X) is a pure Hodge structure of weight 2i − 2 dim X for all i (see [2]).
Let 0 be a finite group acting on X . We define the equivariant weight polynomials of
this action by

P(γ, X, q) :=

∑
i

(−1)i tr(γ, H i
c (X)) q i−dim X ,

for all γ ∈ 0, where q is an indeterminate (= t2 in the notation of [2]). We also define

P0(X, q) :=

∑
i

(−1)i [H i
c (X)]q

i−dim X
∈ R(0) [q],

where R(0) is the complexified representation ring of 0. If 1 is an abelian finite
group acting on X whose action commutes with that of 0, and χ is a character of 1,
we define
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P(γ, χ, X, q) :=

∑
i

(−1)i tr(γ, H i
c (X)χ ) q i−dim X

=

∑
i

(−1)i
1

|1|

∑
δ∈1

χ(δ)−1 tr((γ, δ), H i
c (X))q

i−dim X

=
1

|1|

∑
δ∈1

χ(δ)−1 P((γ, δ), X, q),

and similarly

P0(χ, X, q) :=

∑
i

(−1)i [H i
c (X)χ ]q i−dim X

∈ R(0) [q].

If X is nonsingular, we can translate knowledge of H i
c (X) and H i

c (X)χ into knowledge
of H i (X) and H i (X)χ by Poincaré duality.

Now for any positive integers r and n, T (r, n) (respectively, PT (r, n)) is a
nonsingular irreducible minimally pure variety of dimension n (respectively, n − 1);
minimal purity is a standard property of hyperplane complements [2, Example 3.3].
Also, ST (1, n) is clearly a nonsingular irreducible variety of dimension n − 1. To
show that it is minimally pure, one can use [2, Corollary 4.2], or else observe that it is
the quotient of PT (n, n) by the free action of a finite group, as follows.

Recall that W (r, m)= Sm n µm
r acts on T (r, m) and PT (r, m); the Sm factor acts

by permuting the coordinates, and µm
r acts by scaling them. Define a surjective map

ϕ : PT (n, n)→ ST (1, n) by

ϕ([x1 : x2 : · · · : xn])=
1

x1x2 · · · xn
(xn

1 , xn
2 , . . . , xn

n ).

The fibres of ϕ are clearly the orbits of the normal subgroup Sµn
n ⊂ W (n, n), where

Sµm
n := {(ζ1, . . . , ζm) ∈ µm

n | ζ1ζ2 · · · ζm = 1}.

The action of Sµn
n on PT (n, n) becomes free once one factors out the subgroup

{(ζ, ζ, . . . , ζ )}, which acts trivially. Thus ST (1, n) is minimally pure, and solving
Problem 1.1 amounts to computing the polynomials P(w, χ, ST (1, n), q), for all
w ∈ Sn and χ ∈ µ̂n .

Consider the quotient of T (n, m) by Sµm
n for arbitrary m ≥ 1. This can be identified

with

T (n)(1, m) := {((zi ), z) ∈ T (1, m)× C×
| zn

= z1 · · · zm}.

The quotient map ψ : T (n, m)→ T (n)(1, m) is given by

ψ(x1, x2, . . . , xm)= ((xn
1 , xn

2 , . . . , xn
m), x1x2 · · · xm).

The group Sm × µn ∼= W (n, m)/Sµm
n acts on the quotient T (n)(1, m) in the obvious

way: Sm acts on the T (1, m) component, and µn acts by scaling z.
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When m = n, we have an isomorphism

T (n)(1, n)
∼
→ ST (1, n)× C×,

((z1, . . . , zn), z) 7→ ((z1z−1, . . . , znz−1), z),

which respects the Sn-action, and transforms the µn-action on T (n)(1, n) into the
inverse of the µn-action on ST (1, n), and a scaling action on C×. Since the latter
has no effect on cohomology,

P(w, χ, ST (1, n), q)=
1

q − 1
P(w, χ−1, T (n)(1, n), q). (2.1)

So we aim to compute P(w, χ−1, T (n)(1, n), q); it turns out to be convenient
to compute the polynomials P(w, χ−1, T (n)(1, m), q) for all m ≥ 1 and w ∈ Sm
together.

REMARK 2.1. One can see a priori that allowing m 6= n incurs no extra work, thanks
to the following neat argument, pointed out by Lehrer. If d = gcd(m, n), the action of
µn/d ⊂ µn on T (n)(1, m) is part of the action of the connected group C× defined by

t · ((zi ), z)= ((tn/d zi ), tm/d z).

Hence µn/d acts trivially on cohomology, so P(w, χ−1, T (n)(1, m), q)= 0 unless
χ |µn/d = 1, that is, χd

= 1, or r |m, where r is the order of χ . Moreover, if r |m, then
writing χ◦ for the character of µr such that χ(ζ )= χ◦(ζ n/r ) for all ζ ∈ µn , and χ ′ for
the character of µm defined by χ ′(ζ )= χ◦(ζm/r ) for all ζ ∈ µm ,

P(w, χ−1, T (n)(1, m), q) = P(w, (χ◦)−1, T (r)(1, m), q)

= P(w, (χ ′)−1, T (m)(1, m), q).

We will not actually use this observation.

The identification of T (n)(1, m) with the quotient of T (n, m) by Sµm
n has the

following consequence for equivariant weight polynomials.

PROPOSITION 2.2. For any w ∈ Sm and χ ∈ µ̂n ,

P(w, χ−1, T (n)(1, m), q)

=
1

nm

∑
(ζi )∈µ

m
n

χ(ζ1 · · · ζm)P(w(ζ1, . . . , ζm), T (n, m), q).

PROOF. It is well known that if V is a representation of the finite group G and V H is
the subspace invariant under the normal subgroup H , the character of G/H on V H is
given by

tr(gH, V H )=
1

|H |

∑
h∈H

tr(gh, V ).
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Now apply this with V = H i
c (T (n, m)), G = W (n, m), and H = Sµm

n , so that V H ∼=

H i
c (T

(n)(1, m)) and G/H ∼= Sm × µn . We find that, for all ζ ∈ µn ,

P((w, ζ ), T (n)(1, m), q)=
1

nm−1

∑
(ζi )∈µ

m
n

ζ1···ζm=ζ

P(w(ζ1, . . . , ζm), T (n, m), q).

Combining this with the fact that

P(w, χ−1, T (n)(1, m), q)=
1
n

∑
ζ∈µn

χ(ζ )P((w, ζ ), T (n)(1, m), q)

gives the desired result. 2

3. Generating functions

In this section we will compute the sum in Proposition 2.2 using the known formula
for the equivariant weight polynomials of T (r, m). As is usual in dealing with
characters of symmetric groups and wreath products, the computations become easier
if one uses suitable ‘equivariant generating functions’.

For any r ≥ 1, let 3(r) denote the polynomial ring C[pi (ζ )] in countably many
independent variables pi (ζ ) where i is a positive integer and ζ ∈ µr . Define an N-
grading on 3(r) by deg(pi (ζ ))= i . Also let 3(r) [q] :=3(r)⊗C C[q], with the
N-grading given by the first factor (so deg(q)= 0). Let A(r)= C[[pi (ζ )]] be the
completion of 3(r), and set A(r) [q] = A(r)⊗ C[q].

As in [10, Ch. I, Appendix B], we define an isomorphism chW (r,m) : R(W (r, m))
∼
→

3(r)m by

chW (r,m)([M])=
1

rmm!

∑
y∈W (r,m)

tr(y, M)py,

where py =
∏

i,ζ pi (ζ )
ai (ζ ) if y has ai (ζ ) cycles of length i and type ζ . Note

that to recover tr(y, M) from chW (r,m)([M]) one must multiply the coefficient of∏
i,ζ pi (ζ )

ai (ζ ) by the order of the centralizer of y, which is
∏

i,ζ ai (ζ )!(ri)ai (ζ ). Write

chW (r,m) also for the induced isomorphism R(W (r, m)) [q]
∼
→3(r) [q]m .

The result we need on the equivariant weight polynomials for T (r, m) can be
conveniently stated in terms of the equivariant generating function P(r, q) ∈ A(r) [q]

defined by

P(r, q) := 1 +

∑
m≥1

chW (r,m)(P
W (r,m)(T (r, m), q))

= 1 +

∑
m≥1

1
rmm!

∑
y∈W (r,m)

P(y, T (r, m), q)py .

In the following result µ(d) denotes the Möbius function.
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THEOREM 3.1. If Rr,i,θ :=
∑

d|i |{ζ ∈ µr : ζ d
= θ}|µ(d) (q i/d

− 1) ∈ C[q],

P(r, q)=

∏
i≥1
θ∈µr

(1 + pi (θ))
Rr,i,θ /ri .

PROOF. This follows from Hanlon’s result [4, Corollary 2.3] on the Möbius functions
of Dowling lattices. Within the reflection group context, it follows from results of
Lehrer in [8] (r = 1), [7] (r = 2) and [1, 9] (general r ). A short proof for all r ≥ 2,
based on an ‘equivariant inclusion–exclusion’ argument of Getzler, is given in [5,
Theorem 8.4] (T (r, m) is the same as what is there called M(r, m)). The r = 1 case
can be proved by the same method (note that T (1, m) is different from the variety
M(1, m) considered in [5, Theorem 8.2], since it has the extra condition of nonzero
coordinates). 2

Recovering the traces of individual elements by the above rule, we get an equivalent
statement, closer to Hanlon’s and Lehrer’s: if y in W (r, m) has ai (ζ ) cycles of length
i and type ζ ,

P(y, T (r, m), q)=

∏
i≥1
ζ∈µr

Rr,i,ζ (Rr,i,ζ − ri) · · · (Rr,i,ζ − (ai (ζ )− 1)ri). (3.1)

There is an alternative description of the polynomials Rr,i,θ . Define

R(r)i :=

∑
d|i

gcd(d,r)=1

µ(d) (q i/d
− 1) ∈ C[q].

LEMMA 3.2. If t (θ) denotes the order of θ ,

Rr,i,θ =

∑
s|gcd(r/t (θ),i)

sµ(s)R(r)i/s .

PROOF. Since µr is cyclic of order r ,

|{ζ ∈ µr : ζ d
= θ}| =

{
gcd(d, r) if gcd(d, r) | (r/t (θ)),

0 otherwise.

Hence

Rr,i,θ =

∑
s|(r/t (θ))

s
∑
d|i

gcd(d,r)=s

µ(d) (q i/d
− 1).

The sum over d has no terms unless s|i , in which case it equals∑
d|(i/s)

gcd(d,r)=1

µ(ds) (q i/ds
− 1).

Since gcd(d, r)= 1 implies µ(ds)= µ(d)µ(s), this is µ(s)R(r)i/s . 2

https://doi.org/10.1017/S1446788708000074 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788708000074


92 A. Henderson [8]

This lemma makes it clear that the r = 2 case of (3.1) is indeed equivalent to
[7, Theorem 5.6].

As for PT (r, m), we have that, for all y ∈ W (r, m),

P(y, PT (r, m), q)=
1

q − 1
P(y, T (r, m), q). (3.2)

For this, one need only show that the isomorphism

ϕ : T (r, m)→ PT (r, m)× C×
: (z1, . . . , zm) 7→ ([z1 : · · · : zm], z1)

induces a W (r, m)-equivariant map on cohomology. It is enough to check that w ◦ ϕ

and ϕ ◦ w are homotopic for all w in a set of generators for W (r, m), which is
straightforward.

Now, for any χ ∈ µ̂n , define the generating function

P(χ, q) := 1 +

∑
m≥1

chSm (P
Sm (χ−1, T (n)(1, m), q))

= 1 +

∑
m≥1

1
m!

∑
w∈Sm

P(w, χ−1, T (n)(1, m), q)pw ∈ A(1) [q].

We want a formula for this similar to Theorem 3.1. Define

P(r)i :=

∏
s|gcd(r,i)

(1 − (−pi )
r/s)

sµ(s)R(r)i/s/ri
∈ A(1) [q].

THEOREM 3.3. If χ ∈ µ̂n has order r , P(χ, q)=
∏

i≥1 P(r)i .

PROOF. Using Proposition 2.2, we see that P(χ, q) equals

1 +

∑
m≥1

1
nmm!

∑
w∈Sm
(ζi )∈µ

m
n

χ(ζ1 · · · ζm)P(w(ζ1, . . . , ζm), T (n, m), q)pw,

which is precisely the result of applying to P(n, q) the specialization pi (θ)→ χ(θ)pi .
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So, by Theorem 3.1,

P(χ, q) = exp
∑
i≥1
θ∈µn

Rn,i,θ

ni
log(1 + χ(θ)pi )

= exp
∑
i≥1
θ∈µn
m≥1

−Rn,i,θ

nmi
χ(θ)m(−pi )

m

= exp
∑
i≥1
d|i
ζ∈µn
m≥1

−µ(d)

nmi
χ(ζ )dm(q i/d

− 1) (−pi )
m

= exp
∑
i≥1
d|i

m≥1, r |dm

−µ(d)

mi
(q i/d

− 1) (−pi )
m,

since
∑
ζ∈µn

χ(ζ )dm
= n if χdm is trivial, and vanishes otherwise. Thus we need only

show that

P(r)i = exp
∑
d|i

m≥1, r |dm

−µ(d)

mi
(q i/d

− 1) (−pi )
m . (3.3)

The condition r |dm is equivalent to (r/ gcd(d, r))|m. Writing s for gcd(d, r), the
right-hand side becomes

exp
∑
s|r

d|i,gcd(d,r)=s
m≥1, (r/s)|m

−µ(d)

mi
(q i/d

− 1) (−pi )
m

= exp
∑

s|gcd(r,i)

s

ri
log(1 − (−pi )

r/s)
∑
d|i

gcd(d,r)=s

µ(d) (q i/d
− 1).

By the same argument as in the proof of Lemma 3.2, the sum over d equals µ(s)R(r)i/s
as required. 2

Note that P(χ, q) depends only on r , not on n or χ , and that, as predicted in
Remark 2.1, its nonzero homogeneous components all have degree divisible by r .

There is no formula as neat as (3.1) for the individual polynomials
P(w, χ−1, T (n)(1, m), q). However, if w ∈ Sm has ai cycles of length i , we know
that

P(w, χ−1, T (n)(1, m), q)=

∏
i≥1

ai ! iai (coefficient of pai
i in P(r)i ). (3.4)
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Note that, for the right-hand side to be nonzero, ai must be divisible by (r/ gcd(r, i))
for all i . In the special case that gcd(r, i)= 1,

P(r)i = (1 − (−pi )
r )R(r)i /ri ,

and the coefficient of pai
i , where ai is divisible by r , is

(−1)ai −ai/r R(r)i (R(r)i − ri) (R(r)i − 2ri) · · · (R(r)i − (ai − r)i)

(ri)ai/r (ai/r)!
. (3.5)

Now consider some further special cases. The r = 1 case of Theorem 3.3 says that

P(triv, q)=

∏
i≥1

(1 + pi )
R(1)i / i

= P(1, q),

reflecting the fact that the quotient of T (n)(1, m) by µn is T (1, m). Slightly more
interesting is the r = 2 case. We have

P(2)i =

(1 − p2
i )

R(2)i /2i if i is odd,

(1 − p2
i )

R(2)i /2i (1 + pi )
−R(2)i/2/ i if i is even.

Hence if i is even, the coefficient of pai
i is

bai/2c∑
j=0

(−1) j
(

R(2)i /2i

j

)(
−R(2)i/2/ i

ai − 2 j

)
.

Returning to Problem 1.1, (2.1) and (3.4) tell us that, if w ∈ Sn has ai cycles of
length i ,

P(w, χ, ST (1, n), q)=
1

q − 1

∏
i≥1

ai ! iai (coefficient of pai
i in P(r)i ). (3.6)

Since there are φ(r) characters χ ∈ µ̂n of order r , we deduce that

P(w, ST (1, n), q)=
1

q − 1

∑
r |n

φ(r)
∏
i≥1

ai ! iai (coefficient of pai
i in P(r)i ). (3.7)

REMARK 3.4. As mentioned in the introduction, if q is specialized to a prime power
congruent to 1 mod n, the right-hand side of (3.7) equals the formula given in [3,
Theorem 5.8] for the number of Fq -points of the regular set of a maximal torus of
SLn(Fq) obtained from a maximally split one by twisting with w. (To see this, use the

expression (3.3) for P(r)i ; the coefficient of pai
i is called Ri

ai ,n(q) in [3].) This is no
surprise: general principles imply that for all but finitely many primes,

P(w, ST (1, n), q)= |ST (1, n) (Fq)
wF

|.

See [2, Section 5.3, Example 5.6] for the details.
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4. Induction

We now aim to prove Theorem 1.2 by interpreting the generating function P(χ, q)
in terms of induced characters. Recall that W (r, m) can be embedded in Srm as the
centralizer of the product of m disjoint r -cycles. For any θ ∈ µr , let t (θ) denote the
order of θ .

LEMMA 4.1. For any W (r, m)-module M,

chSrm ([IndSrm
W (r,m)(M)])= chW (r,m)([M])|

pi (θ)→pr/t (θ)
i t (θ)

.

PROOF. This is a direct consequence of Frobenius’ formula for induced characters,
once one observes that a cycle of length i and type θ in W (r, m) becomes the product
of r/t (θ) disjoint i t (θ)-cycles when regarded as an element of Srm . 2

LEMMA 4.2. For any W (r, m)-module M,

chSrm ([εrm ⊗ IndSrm
W (r,m)(det−1

m ⊗ M)])

= (−1)rm−mchW (r,m)([M])|pi (θ)→−θ−1(−pi t (θ))
r/t (θ) .

PROOF. If y ∈ W (r, i) is a cycle of length i and type θ ,

εri (y) deti (y)−1
= (−1)i−1+(i t (θ)−1)r/t (θ)θ−1

= (−1)i−1+ri−r/t (θ)θ−1.

Also, if y ∈ W (r, m),

py |pi (θ)→(−1)ri+i pi (θ)
= (−1)rm−m py .

Hence

chW (r,m)([εrm ⊗ det−1
m ⊗M])

= (−1)rm−mchW (r,m)([M])|pi (θ)→−θ−1(−1)r/t (θ) pi (θ)
,

and the result follows by applying the previous lemma. 2

Now define an element P ′(r, q) ∈ A(1) [q] by

P ′(r, q) := P(r, q)|pi (θ)→−θ−1(−pi t (θ))
r/t (θ)

= 1 +

∑
m≥1

chW (r,m)(P
W (r,m)(T (r, m), q))|pi (θ)→−θ−1(−pi t (θ))

r/t (θ)

= 1 +

∑
m≥1

(−1)rm−mchSrm (εrm ⊗ IndSrm
W (r,m)(det−1

m ⊗ PW (r,m)(T (r, m), q))).

PROPOSITION 4.3. P ′(r, q)=
∏

i≥1 P(r)i .
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PROOF. By Theorem 3.1 and Lemma 3.2,

P ′(r, q) =

∏
i≥1
θ∈µr

(1 − θ−1(−pi t (θ))
r/t (θ))Rr,i,θ /ri

=

∏
i≥1
θ∈µr

s|gcd(r/t (θ),i)

(1 − θ−1(−pi t (θ))
r/t (θ))

sµ(s)R(r)i/s/ri
.

Applying to this the Möbius inversion formula for cyclotomic polynomials, in the form∏
θ∈µr

t (θ)=t

(1 − θ−1 X)=

∏
u|t

(1 − X t/u)µ(u),

we obtain

P ′(r, q)=

∏
i≥1
t |r

s|gcd(r/t,i)
u|t

(1 − (−pi t )
r/u)

sµ(s)µ(u)R(r)i/s/ri
.

Write this as
∏

i≥1 Q(r)
i , where Q(r)

i is the product of all factors involving the variable
pi . Thus

Q(r)
i = exp

∑
t |gcd(r,i)

s|gcd(r/t,i/t)
u|t

stµ(s)µ(u)

ri
R(r)i/st log(1 − (−pi )

r/u)

= exp
∑

v|gcd(r,i)
u|v

s|(v/u)

vµ(s)µ(u)

ri
R(r)i/v log(1 − (−pi )

r/u),

where we have set v = st . Since
∑

s|(v/u) µ(s) is nonzero if and only if u = v, we find

that Q(r)
i = P(r)i as required. 2

COROLLARY 4.4. If χ ∈ µ̂n has order r , P(χ, q)= P ′(r, q).

PROOF. Combine Theorem 3.3 and Proposition 4.3. 2

COROLLARY 4.5. If χ ∈ µ̂n has order r , and r |m, we have the following equality in
R(Sm) [q]:

P Sm (χ−1, T (n)(1, m), q)

= (−1)m−m/rεm ⊗ IndSm
W (r,m/r)(det−1

m/r ⊗PW (r,m/r)(T (r, m/r), q)).
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PROOF. Under the isomorphism chSm , the left-hand side corresponds to the degree-
m term of P(χ, q), and the right-hand side corresponds to the degree-m term
of P ′(r, q). 2

To translate Corollary 4.5 into an isomorphism of Sm-modules, we take coefficients
of q i−m on both sides and multiply by (−1)i to obtain

H i
c (T

(n)(1, m))χ−1 ∼= εm ⊗ IndSm
W (r,m/r)(det−1

m/r ⊗ H i−m+m/r
c (T (r, m/r))). (4.1)

By Poincaré duality, this is equivalent to

H2m−i (T (n)(1, m))χ ∼= εm ⊗ IndSm
W (r,m/r)(detm/r ⊗ Hm/r+m−i (T (r, m/r))),

which after replacing 2m − i by i gives

H i (T (n)(1, m))χ ∼= εm ⊗ IndSm
W (r,m/r)(detm/r ⊗ H i−m+m/r (T (r, m/r))). (4.2)

Finally, we prove Theorem 1.2. Equations (2.1), (3.2), and Corollary 4.5 together
imply

P Sn (χ, ST (1, n), q)

=
(−1)n−n/r

q − 1
εn ⊗ IndSn

W (r,n/r)(det−1
n/r ⊗ PW (r,n/r)(T (r, n/r), q))

= (−1)n−n/rεn ⊗ IndSn
W (r,n/r)(det−1

n/r ⊗ PW (r,n/r)(PT (r, n/r), q)).

Taking coefficients of q i−n+1 on both sides and multiplying by (−1)i , we get an
isomorphism of Sn-modules:

H i
c (ST (1, n))χ ∼= εn ⊗ IndSn

W (r,n/r)(det−1
n/r ⊗ H i−n+n/r

c (PT (r, n/r))). (4.3)

Since the right-hand side depends only on n and the order of χ , this remains true if χ
is replaced by χ−1. Then Theorem 1.2 follows by Poincaré duality.
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