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BOUNDING THE VALENCY OF POLYGONAL GRAPHS 
WITH ODD GIRTH 

MANLEY PERKEL 

1. Introduction. In this paper we investigate the action of finite groups G 
on finite polygonal graphs. The notion of a polygonal graph was introduced in 
[17]: A polygonal graph is a pair ( J^ , $) consisting of a graph ffl which is 
regular, connected and has girth m for some m ^ 3, and a set <$ of m-gons of 
ffl such that every 2-claw of J f is contained in an unique element of S\ (See 
Section 2 for the définitions of the terms used here.) If <§ is the set of all m-gons 
of ffl, so that there is in J ^ an unique m-gon on every one of its 2-claws, then 
we write ffl for (Jf , <o) and call ffl a strict polygonal graph. If we wish to 
emphasize the integer m, then we call ( Jti?, <f) an m-gon-graph (respectively, 
a strict m-gon-graph). 

Examples of polygonal graphs not arising from regular solids are known 
mainly with girth m S 6 and with valency k S 5. Fewer examples with m > 6 
or k > 5 are known, the most notable arising from Ju Janko's first simple 
group (m = 5 and k = 11), which in fact can be characterized by this action 
on a polygonal graph [15]. These examples will be discussed in Section 3. In 
Section 2 we define the terms used in this paper and prove some basic lemmas 
about strict polygonal graphs and their automorphism groups. 

In Sections 4 and 5 we shall assume that (J^, # ) is a polygonal graph of 
valency k ^ 3 on a set 12, with girth m, m odd, m ^ 5, and that G S Aut (J^f) 
is a group of automorphisms of ffl transitive on 12. We also suppose that for 
any 2-claw (x:y, z), x, y, z £ 12, every involution in Gxyz fixes (pointwise) the 
m-gon in S on (x'.y, z), but no other m-gon on (x'.y, z). This latter hypothesis 
is automatically satisfied if ffl is a strict m-gon-graph, and in the case that 
Gxyz has no involutions wre interpret this hypothesis to mean that Gxyz fixes 
the m-gon in S on (x'.y, z), and no other m-gon on (x'.y, z). 

We shall then prove the following two theorems. 

THEOREM 1. Let x £ 12. Suppose that for some prime p and integer n > 0, 
PSL(2,pn) g GX

A(X) S PTL(2,pn) on pn + 1 points. Then either k = 3 and 
Gx ~ 23, & = 4 and Ĝ  c^ ^44 or 24, k = 5 and Gx c^ A$ or 25, & = 6 awrf 
G* ~ PSL(2, 5), or £ = 10 and Gx ~ PSL(2, 9) or PSL(2, 9)(a), wAere a is 
/fee non-trivial automorphism of the field of 9 elements. 
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THEOREM 2. If k is odd, Gx is ^-transitive on A(x) for x £ 12, and J*if contains 
no strict m-gon-graph of valency 3 as a subgraph, then k = 5 and Gx ~ A$. 

All the examples of polygonal graphs with m odd from Section 3 (except 
the Petersen graph) satisfy the hypotheses of Theorem 1. As for Theorem 2, 
the only example arising from Section 3 Avhich satisfies its hypotheses is the 
pentagraph Jf31 with Aut (Jf?n) ^ PSL(2, 31). 

Remark. If we remove the restriction that m be odd, then there are further 
examples of polygonal graphs satisfying the remaining hypotheses of Theorems 
1 and 2. However, I know of no example of a polygonal graph with k and m 
odd (k > 3) which does contain a strict m-gon-graph of valency 3 as a sub­
graph (whether or not GX

A{X) is 3-transitive), whereas there are such examples 
if we allow either k or m (or both) to be even. 

Finally it should -be remarked that with m = 5, Theorem 2 provides a 
characterization of PSL(2, 31) in its action on a 5-gon-graph. This is done 
in [16]. 

2. Notation and preliminary results. All groups and graphs to be con­
sidered will be finite, and the graphs will be undirected with no loops or mul­
tiple edges. 

If Jlf is a graph on a set 12 and if x, y Ç 12, we write x ^ y to mean x is 
adjacent to y} i.e. (x, y) is an edge of Jrif. A path of length n > 0 in Jtf is a 
sequence (x0, xly . . . , xn) of n + 1 vertices xt Ç 12 such that x* ^ x*+i for all 
i = 0, . . . , n — 1, and xt ^ xi+2 for i = 0, . . . , n — 2. The above path is a 
circuit of length n if x0 = xn and xra_i ^ Xi, in which case we write (xi, . . . , xn). 
It is called a simple path (respectively, a simple circuit) \i xt 9^ Xj for any 
i j* j , 0 ^ i, j ^ n (except of course x0 = xn in the case of a circuit). 

Remark. We shall not distinguish the circuit (xi, . . . , xn) from the circuits 
(xiy . . . , xn, Xi, . . . , Xi_i) and (xz-, . . . , Xi, xn, . . . , xi+i), for 1 ^ i ^ n; for 
our purposes these circuits are considered to be the same. 

The definitions of connected graphs, distance from x to y, x, y £ 12, diameter 
of a graph J^, subgraph of J^ , induced subgraph of J^ , and connected com­
ponent of J ^ are as in [11]. The gir//^ of ffl is the minimum of the lengths of all 
circuits of ffl. 

For all i ^ 0 and x G 12, define Af(x) to be the set of all y £ 12 at distance i 
from x (where A0(x) = fxj). Of course, if the diameter of ffl is n, then 
Aj(x) = 0 for i > n. Often we will just write A(x) for Ai(x), the points ad­
jacent to x. 

An m-claw, denoted by (x0*.Xi, . . . , xm), is a subgraph ^f of ffl on the 
m + 1 distinct points {xo, . . . , xm\ CI 12, where {xi, . . . , xm\ CI A (x0) and there 
are no further adjacencies between the x / s in J^7. 

The valency of a vertex x of J^7 is | A(x)|. J^7 is said to be regular (of valency 
k) if |A(x)| = k for all x £ 12. If k = 3, Jti? is called a cwèic graph, while if 
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k = 2, «# is connected and |12| = m ^ 3, ffl is called an w-gon. An w-gon, 
with m = 3, 4, 5, . . . will be called, respectively, a triangle, rectangle, penta­
gon, . . . . The automorphism group of ^f will be denoted by Aut ( J f ). 

A polygonal graph is a pair ($} S) consisting of a graph J f which is regular, 
connected and has girth m for some m ^ 3, and a set ê of m-gons of J f such 
t ha t every 2-claw of ffl is contained in an unique element of $. If S is the set 
of all ra-gons of Jf7, so tha t there is in ffl an unique w-gon on every one of its 
2-claws, then we write Jf7 for (Jf7, S>) and call ffl a strict polygonal graph. If 
we wish to emphasize the integer m, then we call (Jtif, <S) an m-gon-graph 
(respectively a strict m-gon-graph). For example, if the valency is k, then with 
k = 2, an m-gon-graph is jus t an ra-gon, while if k is arbi t rary and m = 3 then 
J ^ is jus t the complete graph on k + 1 vertices (or the 1-skeleton of the 
^-dimensional te t rahedron) . For this reason we shall assume tha t k > 2 and 
m > 3. Str ict m-gon-graphs with m = 4, 5, 6, . . . will also be called, respec­
tively, rectagraphs, pentagraphs, hexagraphs, . . . . 

If G is a group acting on a set 12, then we shall denote by x° the image of 
x G 12 by an element g G G. 12(g) = {x G Î2:*' = x} and for H Ç G, 12(#) = 
n*€tfû(g). If A Ç 12, GA = {g G G: x*7 G A for ail x G A} is the setwise 

stabilizer of A, and G[A] = jg G G: x° = x for all x G A} is the pointwise 
stabilizer of A. If A = {x, y, z, . . .} we also write Gxyz... for G[A]. GA A denotes 
the group of permutat ions induced by GA on A, so tha t GA A — G A / G [ A ] . 

If G is transit ive on 12, the rank of G on 12 is the number of orbits of Gx on 12; 
these orbits are called the suborbits. Clearly {x} is a suborbit for GXJ called a 
trivial suborbit . If A Ç 12 — {xj is a non-trivial suborbit for GX} then we can 
construct a graph ffl = J^f(A) as follows. The vertices of Jtf are the elements 
of 12, and y ^ z if and only if there is a g G G with y9 = x and z9 G A. Jti?(A) is 
undirected if and only if there is a g G G with x9 G A and g2 G Gx. Clearly since 
A is a suborbit , A = Ai(x). Also G" S Aut (^f) and Gx is transit ive on A(x). 
We call ffî = Jtf(A) the graph constructed with respect to the suborbit A. 

If G ^ Aut (Jtf?) is a group of automorphisms of a graph Jif with vertex 
set 12, if x G 12 and H ^ Gx, then we denote by QX(H) the set 12 (H) Pi A(x), 
i.e. tlx(H) is the set of vertices fixed by g a t distance i from x. 

In this paper 2TO, y4w, D n and Zn will denote respectively, the symmetr ic 
group of degree n, the al ternat ing group of degree n, and the dihedral and 
cyclic groups of order n. Q% is the quaternion group of order 8. By a (finite) 
regular nearfield we shall mean a nearfield constructed from a (finite) field as 
in Theorem 20.7.2 of M. Hall, Jr . [10]. 

LEMMA 2.1. Let ffl be a connected, undirected graph (no loops or multiple 
edges) and suppose that every 2-claw of ffl is contained in a unique m-gon of Jlf. 
If the girth of ffl is m then ffl is a strict m-gon-graph. 

Proof. All we need to show is tha t ffl is regular. So let x be a vertex of ffl 
of valency k, where k is the maximal valency of all vertices of J^f. Let 
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A(x) = {yu . . . , yk\. Suppose that the valency of ji is / < k and let A(yi) = 
\X = X\, X2, . . . , X1]. 

On each of the 2-claws (x\yu ji), 2 ^ i ^ k, there is in J f a unique 
m-gon EL, say. Since there are / < k vertices of ffl adjacent to yu some vertex 
Xj, 2 S j ^ /, must occur in at least two of the m-gons II im But then there are 
two m-gons in ^f on the 2-claw (yi'.x, Xj), a contradiction. 

Thus y 1 has valency k, and since Ji? is connected, so does every vertex of J^f. 
Thus Ji^ is regular. 

LEMMA 2.2. Suppose that J^ is a strict m-gon-graph on 12 and that Ji?i and 
Jifi are two induced subgraphs of Jt? which are also strict m-gon-graphs, on 12i 
and 122 respectively, where 12i, & are subsets of 12 with 12i P\ 122 ^ 0. 77^w aw-
nected components of the subgraph of jtff induced by fii Pi 122 are points, edges, or 
strict m-gon-graphs. 

Proof. Let C be a connected component of 12i H 122. If C is not a point or an 

edge, then C contains 2-claws. On each 2-claw of C there is an unique m-gon II 

in Jf7. However the 2-claw is in both Jf 1 and <#2 by definition of C, so that II 

is in Jffi and in ^f2, whence II is in C. Thus each 2-claw of C is on a (neces­

sarily unique) m-gon of C. 

Now apply Lemma 2.1. 

LEMMA 2.3. Ze/ Ji? be a graph of girth m ^ 3, and G ^ Aut ( ^ ) . Suppose 
that (x: y, z) is a 2-claw in Ji? and g £ Gxyz. If g fixes the vertices of an m-gon of 
ffl on (x: y, z) setwise, then g fixes these vertices pointwise. 

Proof. This is obvious, since the girth of ffl is m. 

LEMMA 2.4. Let Ji? be a strict m-gon-graph and G S Aut {<#?) with U (G) j* 0. 
Then connected components of the subgraph of Ji? induced by 12(G) are points, 
edges, or strict m-gon-graphs. 

Proof. Let C be a connected component of 12(G) which is not a point or an 
edge. Then for g £ G, C is contained in a connected component C(g) of 12(g), 
and clearly C = ngeoC(g). 

Now by Lemma 2.3, the unique m-gon in ^? on any 2-claw of C(g) is in 
C(g). Thus by Lemma 2.1, C(g) is a strict m-gon-graph whence by Lemma 2.2, 
C = Hg^oCig) is also a strict m-gon-graph. 

LEMMA 2.5. Let Ji? be a strict m-gon-graph and G ^ Aut (Jtif). For x a vertex 
of Ji?, Gx is faithful on A(x). 

Proof. Let g £ Gx and suppose g fixes A(x) pointwise. We show by induction 
that g fixes An(x) pointwise for all n ^ 2, and thus, since Ji? is connected, g 
fixes Jif. 

So suppose g fixes At(x) for i < n. Let y £ An(x) and choose u £ An_i(x), 
z/ £ An_2(x) with z; ^ u ^ y. Let II = (y, u, v, w, . . .) be the unique m-gon on 
the 2-claw (u: v, y). Then II is also the unique m-gon on the 2-claw (v: u, w) 
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and since w Ç àt(x) for some i < n} g fixes this latter 2-claw, and hence II, 
pointwise by Lemma 2.3. Thus g fixes y. Since y was arbitrary, g fixes An.(x). 

So g fixes every vertex of $, and thus g = 1. 

Remark. Lemma 2.5 is false for general (non-strict) polygonal graphs: a 
counterexample is given by the Petersen graph and its full automorphism 

group (see Section 3). 

The following ^-transitive version of a theorem of Jordan (see [IS], Theorem 

3.7) is given without proof. 

LEMMA 2.6. Let the group G act t-transitively on the set 12. Let S be a Sylow 

subgroup of the stabilizer of some t points of 12. Then NG(S) i s t-transitive on 

12(5). 

We conclude this section by mentioning t h a t ra-gon-graphs give rise to 

(m) c 
incidence structures belonging to the diagram of F . Buekenhout 

[2]. 

3. E x a m p l e s of po lygona l graphs . In all the following examples, k > 2 
will denote the valency of the polygonal graph ( fflr <$), and m > 3 its gir th. 

The most obvious examples of polygonal graphs are those which arise from 
regular solids. In part icular the points and edges of the regular cube in k-
dimensional real Euclidean space gives rise to a rectagraph J^(k) of valency 
k on 2k vertices, which contains, as subgraphs, the rectagraphs J$?(kf) for any 
2 g kr S k. Aut ( J^(k)) is isomorphic with the wreath product Z 2 1 2fc of order 
2k.k\ afforded by the obvious action of Sfc on Z2

fc. 
Another example of a rectagraph of valency k ^ 5 can be obtained from the 

above rectagraph Jif(k) by identifying antipodal points. The resulting 
quot ient graph on 2k~l vertices is a rectagraph with automorphism group 
isomorphic with Aut (Jt(k))/Z (Aut (3f(k)) of order 2k~\k\ 

There are two pentagraphs arising from regular solids. One of valency 3 on 
20 vertices consists of the points and edges of the dodecahedron. For con­
venience this will be called the dodecahedral graph. I ts automorphism group is 
isomorphic with A$ X Z2 , and has point stabilizers isomorphic with S3 . 

The other pentagraph consists of the points and edges of the 4-dimensional 
polytope known as the 120-cell (see [6] and [14]). This is a regular solid in 
4-dimensional real space which has 120 dodecahedra as its 3-dimensional 
"faces" or "cells". The corresponding pentagraph of valency k = 4 has 600 
vertices, and on each 3-claw contains a (unique) dodecahedral subgraph. I ts 
automorphism group is isomorphic with H/Z(H), where H = SL(2, 5) ^ Z2 , 
and has point stabilizers isomorphic with 2 4 . 

Other examples of w-gon-graphs are known. With k = 3 and m = 5 we 
have the Petersen graph (see for example [11]) which is a (non-strict) 5-gon-
graph on 10 points and has automorphism group isomorphic with S5. For the 
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distinguished set £ of pentagons take any pentagon and its images under the 
subgroup of the automorphism group isomorphic with Ab. Examples with 
k = 3 and m = 6, 7, 8 and 9 exist, most of which come from regular maps (see 
[5], Chapter 8). For a more detailed discussion of these, and their groups, 
see [17]. 

An example of a rectagraph of valency 4 on 14 vertices is given by the 
incidence graph of the unique 2-(7, 4, 2) design (see for example [4], Theorem 
4.5). This graph has automorphism group isomorphic with PGL(2, 7) and the 
stabilizer of a vertex is isomorphic with 24. 

The action of PGL(2, 11) on the right cosets of a subgroup isomorphic with 
A 5 and defining a graph with respect to the suborbit of length 5 gives an 
example of a rectagraph j f V of valency 5. Similar constructions with the 
actions of PSL(2, 31) and PSL(2, 41) on right cosets of subgroups isomorphic 
with A 5 yield examples of a pentagraph Jf^i and heptagraph Jf^i, respectively, 
of valency 5. It can be shown that J f V does not contain a subgraph isomor­
phic with the rectagraph «^(3), and Jf^i does not contain a subgraph iso­
morphic with the dodecahedral graph mentioned before; however it is not 
known whether or not ^f4i contains a heptagraph of valency 3 as a subgraph. 
The significance of this can be seen from Theorem 2. Also, Aut (Jfu) ~ 
PGL(2, 11), Aut ( ^ 3 i ) ^ P 5 L ( 2 f 3 1 ) and |Aut ( ^ 4 i ) : PSL(2, 41)| ^ 2. In 
these three examples the sets S of simple circuits of minimal length are the 
fixed points of elements of order three in the actions of the respective groups on 
the respective cosets. 

Remark. Let q = pn be a prime power, 3 \ q and q2 = 1 (mod 80). Let 
Gq — PSL(2, q) and consider Gq acting on the set 12 of right cosets of a sub­
group isomorphic with A5 (such exists since q = ± 1 (mod 5)). Let Ji?Q be 
the graph defined with respect to the suborbit of length 5 (which exists since 
q = ± 1 (mod 8)). Let / be the length of a (simple) circuit of fixed points in 12 
of an element of order three in Gq. Then the following can be shown (see [17]): 

(a) If q = ( - 1 ) * (mod 3), then l\ (q - ( - 1 ) 0 / 6 , e = 0 or 1. 

(b) Define sequences {am} and {bm} (m ^ 1) by am+2 = am+1 — ^am, 
a\ = 1, a2 = 3, and bm+2 = bm+i — 4&m, bi = 1, b2 = 1. Then if / is odd, 
p\a^i+i) or£|ai(3z+i), while if / is even, p\bl/2 or p\bU/2-

Then if it can be shown that the girth of J^Q is /, connected components of 
J4fq will be /-gon-graphs of valency 5. This has not as yet been done except for 
p = 11, 31 and 41 (/ = 4, 5 and 7, respectively). 

A 5-gon-graph, which is not a pentagraph, of valency 6 can be obtained from 
the action of the group G = PSL (2, 19) on the right cosets of an Ab subgroup, 
and defining Jtif with respect to a suborbit of length 6. Here the set S is the 
set of pentagons fixed pointwise by involutions of G. Another 5-gon-graph 
(of valency 11) can be obtained from the action of the group J\, Janko's first 
simple group, on the cosets of a subgroup isomorphic with PSL (2, 11), and 
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defining the graph ffl with respect to the suborbit of length 11. The set $ is 
the set of pentagons fixed pointwise by subgroups isomorphic with S3. This 
example is discussed in more detail in [15] where J\ is characterized in terms 
of this action. 

4. Proof of theorem 1. For the remainder of this paper, we shall be assum­
ing that {ffl, <o) is an w-gon-graph of valency k ^ 3 on a set 12, with w odd, 
w ^ 5, and that G S Aut (Jtif) is a group of automorphisms of ffl transitive 
on 12. We also suppose that for any 2-claw (x:y, z),x, y, z G 12, every involution 
in Gxyz fixes (pointwise) the w-gon in <S on (x:y, z), but no other w-gon on 
(xly, z). Note that this latter hypothesis is automatically satisfied if ^f is a 
strict w-gon-graph (even if w is even), and in the case that Gxyz has no involu­
tions we interpret this hypothesis to mean that Gxyz fixes the w-gon in $ on 
(x: y, z), and no other w-gon on (x\y, z). 

LEMMA 4.1. If n G $ is the m-gon containing (x\y, z) then Gxyz fixes II point-
wise {and no other m-gon on (x:y, z)). 

Proof. Let H = (t: t an involution in Gxyz). H char Gxyz, so Gxyz acts on the 
fixed points of H. But H fixes II and no other w-gon on (x:y, z), so Gxyz also 
fixes II. 

LEMMA 4.2. Gx is faithful on A(x). 

Proof. Suppose g G Gx fixes A(x) pointwise. Assume g fixes At(x) for all 
i < n. We show g fixes An(x), whence by induction g fixes Jti? (since Jti? is 
connected), which implies that g = 1. 

Take y £ An(x), u G An_i(x), z; € Aw_2(x) with v ̂  w ̂  y. Let II = 
(y, u, v, w, . . .) be the element of S on (w:u, y). Then II is also the w-gon 
in <f containing (vlu, w), so by Lemma 4.1, II is fixed by Guvw. But by the 
inductive hypothesis g G Guvw because w G A,(x) for some i ^ n — 1. So g 
fixes II, whence g fixes 3>. Since 3; was arbitrary in An{x), this completes the 
proof. 

LEMMA 4.3. Let X be a 2-transitive Frobenius group, V the Frobenius kernel, 
a an involutory automorphism of X such that Ma = M for some complement 
M ^ X. 

(i) If a is inner, then a centralizes M. 
(ii) If a is outer, then there is a nearfield (N, + , o) with F ~ (N, + ) , 

M ~ (N - {0}, o) and a G Aut (TV). 

Proof. (For properties of Frobenius groups used here see [8], Theorems 
2.7.6 and 10.3.1). 

(i) Suppose a is inner. Then there is x G X so that conjugation by x induces 
0- on X. Since X = MV, x = mv, say, with m £ M and v G V. Since Ma = M, 
we have for all n £ M,nx £ M, so nx = nmv = nm(vnm)-lv G M. Thus ywm = v 
for all w G M. Thus wm G CM (v) for some n 9^ 1 and so y = 1. 
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Now a2 = l , sox 2 G Z(X) = l a n d thus m2 = 1. Hence x = m is the unique 
involution in M, so x G Z(M) and a centralizes M. 

(ii) Suppose a is outer. We claim that a fixes an element u ^ 1 of F. If 
| F| is even, since Va = V and <r fixes 1 £ V, a must fix some u ^ I'm V. 

So suppose | F| is odd and a fixes no u ^ 1 in F. F is abelian (see, for 
example, [10], Section 20.7). Then a fixes vva for all ^ V, so ^ = 1, and 
hence va = tr-1, for all v G F. Thus for any m £ M, vam = (yw)_1. Also 
vm G F, so 0m)* = (^J-1. 

Thus (^m)<r = ^mff = Vxm. Hence mam~l G CM(^), since m* G AT, so that 
for v 9e 1, CM(V) = 1 gives w" = m. This is true for all m G M, so o- fixes AT 
elementwise. Now clearly if t is the unique involution in M (which exists since 
1^1 = I ^ 1 — 1 is even) then mx = m for all m G M and z;* = y - 1 for all 
v G F, so that conjugation by / induces o- on X. This contradicts cr being outer. 

So there is a u G F with w* = w ^ 1. 
Now define multiplication o on F as follows: 1 o v = v o 1 = 1 for all 

v G F. If Pi, u2 G F — {1}, then there are unique elements mx, m2 G M with 
fli = w™1 and v2 = ww*. Define z/i o y2 = w™1™2. Clearly this makes V into a 
nearfield N with operations + and o, where + is the multiplication of V in X, 
1 is the + identity (so denote it by 0N), and u is the o identity (so denote it by 
1^). Since (um)a = uam<T — um<T, it is now an easy matter to show that a is an 
automorphism of N. 

LEMMA 4.4. Let Y be a rank 3 Frobenius group contained in a 2-transitive 
Frobenius group X with kernel V. Let a be an involutory automorphism of Y such 
that Ma = M for some complement M ^ Y. Let M be a complement in X with 
M < M. 

(i) If G is induced by an inner automorphism of X, then a centralizes M. 
(ii) If a is not induced by an inner automorphism of X, then we again get the 

conclusion of Lemma 4.3(ii). 

Proof, (i) The proof of Lemma 4.3 (i) goes through with minor changes. 
(ii) Necessarily, \V\ is odd. The proof of Lemma 4.3(ii) again goes through 

with some minor changes to show that there is an element u G V with 
ua = u 9^ 1, so we get the nearfield N as before. It remains to show that 
a G Aut (N). 

Let S = {um: m G M], so that \S\ = | ( | F | - 1). Suppose 1 ^ v G F - S. 
Now 1 G S U S - 1 * ; and also v G S U S-'v, where S~l = {s~l: s G S}. Thus 
\S U S-^l ^ I V\ - 2 and hence S H S^v ^ 0. Thus there are s, t G S such 
that t = s^v, i.e., v = st. 

Hence for all v G F, either v = 1, v G S, or v = st for s,t G S. Now since 
Mff = M, (um)a = um<T implies that S is fixed by a, i.e. S" = S. Further, 
for mi, ra2 G iÊT, 

(umioum*y = (umim*y = u™**™2* = um^ oum*a = (umiy o (um*y 
implies that (s o t)a = s17 o ta for all s, t G S. 
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It is now an easy calculation to see that (v o w)a — v° o vf for all v, w £ V 
and thus a Ç Aut (N). 

LEMMA 4.5. Let H be the multiplicative group of the field N = GF{pn) of 
order pn, p a prime and n ^ 1, and let A ^ Aut (TV) be a subgroup of the auto­
morphism group of N. Then H is characteristic in G = AH. 

Proof. We show that H is the unique cyclic subgroup of G of order pn—\. 
So suppose K 9^ H is cyclic of order pn — 1, and let K = (k), with k = ah 
for some a £ A, h £ H. Suppose \a\ = a, with 1 < a\n. (The result is clear 
for n = 1.) k2 = ahah = a2hah. Similarly, 

ka = aah<ra-lhaa-2 _ ^ h = ^ . . . fcrfc £ R. 

Thus (kaY = ka since H is abelian, so &a £ C^O). But |CH(a)| = pn/a - 1, 
so ka^n'a~l) = 1, and so a (pn'a - 1) = 0(£w - 1). Now 

pn - i = (^/« _ l ) [ (^ /«) a - i + (^/«)«-2 + . . . + ^»/fl + 1] 

> a(pn/a - 1). 
This contradiction proves the lemma. 

LEMMA 4.6. Let n be an even integer and p an odd prime. Let N be the regular 
nearfield of order pn with center isomorphic to the field of pn/2 elements. Let H be 
the multiplicative group of N and A ^ Aut (TV) with \A\ odd. Then H is charac­
teristic in G = AH. 

Proof. First suppose pn 9e 9. Suppose that TV is constructed from the field 
GF(pn) of order pn. Then it can be deduced from [13] that Aut (N) ~ 
Aut (GF(pn)). Let U be the set of squares in GF(pn) - {0}, so that U S H 
and \H: U\ = 2. We claim that it suffices to prove that Ua ^ H for any 
a e Aut (G), for if a € Aut (G) and Ua ^ H, suppose Ha ^ H. Then 
H,Ha<G and U* = H H H". Further 

\H«H:H\ = \H«\HC\H«\ = 2, 

which contradicts the fact that \G:H\ = \A\ is odd. 
Now U is a cyclic subgroup of order (pn — l ) /2 , so that we will be done if 

we show that every cyclic subgroup of G of order | U\ lies in H. So suppose V is 
a cyclic subgroup of G of order (pn — l ) / 2 and F ^ if. Then F = (k), say, 
where k = ah, a £ A and h £ H. Suppose |cr| = a, odd with a ^ 3. fca = 
haa~1h°a~i . . . hah. Now h £ U it and only if &*• G C/ for any i. Thus 

A ^ ' " 1 G U for all i. 

Thus 

k^ = h^h**-1 . . . h°Wa~x ...h°h€ U. 

Further, 

(k2ay2 = h°h. . . h°*h°2h'. . . h°zh°2 = fc2a 
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since U is abelian, so k2a £ CV{(T2). Thus k2a '£ Cv(a), since (a) = (a2) as 
a is odd. But 

|C*(<r)| = pn/a - 1 and \Cv(a)\ = HPw/a " D, 

since 

(£n ~ l ) / (^ w / a - 1) = [{pnla)a-1 + . . . + £n /a + 1] = l(mod 2), 

so that C# 0 ) ^ £/. 
Hence ka(pn/a-» = 1 and so o(p"/fl - 1) ^ 0 ( è ( ^ - 1)). But 

£» - 1 = (pn/a _ l)[(^/«)«-l + . . . + pn'a + 1], 

so that since p ^ 3 and w/a ^ 2 we have 

p» - 1 ^ (£w/a - l)[9(a - 1) + 1] = (pn/a - l)(9a - 8) 
> 2a(pn/a - 1), 

since a > 2, a contradiction. Thus a = 1 and c = 1. But then V ^ H and we 
are done in this case. 

Now suppose pn = 9. Then the regular nearfield of order 9 has an auto­
morphism of order 3 ([7], 5.2.2), but in this case \H\ = 8 and so H is the 
characteristic Sylow 2-subgroup of G = AH. 

Hence the lemma is proved. 

Remark. It can be shown that if N is the regular nearfield of order q2, q a 
prime power, with center the field of q elements, then except for the case q = 3, 
the cyclic subgroup U of order (q2 — l ) / 2 of the multiplicative group TV* of N 
is in fact the unique cyclic subgroup of N* of order (q2 — l ) / 2 . This is not 
true for g = 3. 

COROLLARY 4.1. With the hypotheses of Lemma 4.5, H is the unique subgroup 
of G isomorphic with H. 

Proof. This is what was proven in the proof of Lemma 4.5. 

COROLLARY 4.2. With the hypotheses of Lemma 4.6, H is the unique subgroup 
of G isomorphic with H. 

Proof. This is clear, since if H\ ^ H, then either Hi = H or from what was 
proven in Lemma 4.6, \HH\\H\ = 2, a contradiction. 

COROLLARY 4.3. Let N, H and A be as in the hypotheses of Lemma 4.5 or 
Lemma 4.6. Let V be the additive group of N. Suppose A'H' is a subgroup of 
AHV such that A' c^ A, H' c^ H and A'H' ^ AH. Then H' is conjugate in 
AHV to H. 

Proof. Write A = B X C where ir(\B\) = Trfe.c.d. (\A\, \H\)), and A' = 
B' X C where \B'\ = \B\. Now AHV is solvable and both BH and B'H' are 
Hall ir(\BH\) subgroups of AHV. All such are conjugate ([8], Theorem 6.4.1), 
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and so {B'H')° = BH, for some g £ AHV. But then {H')d ^ BH, so tha t by 
Corollaries 4.1 and 4.2, applied with B in place of A, {H')g = H. 

Remark. We mention without proof t ha t the direct analogues of Lemma 4.5 
and Corollaries 4.1 and 4.3, with H the squares of the multiplicative group of 
a field with pn elements, hold true. 

Let x 6 Œ and u,v G A{x). Let II £ S be the unique ra-gon in S on 
{x\u, v). Let u', v! be the two points in II a t a distance (m — l ) / 2 from x. 
We now have three cases to consider. 

Case 1. PGL{2, pn) ^ Gx^
x) = G*f by Lemma 4.2, and Gx is 3-transitive on 

A(x). GXM!, fixes II and hence u' and z/, so Gxuv ^ GM'„'. Now Gu>v> has a charac­
teristic subgroup V of order >̂w, and since no non-identi ty element of V fixes 
more than the one point v' of A{uf), Gxuv C\ V = {1} and Gxuv is a complement 
to V in Gvt/. Also Gxuv = AH where A ~ Gxuvw for some w G A{x), and by 
Corollary 4.3, HV is a Frobenius group of order pn(pn — 1) with H isomorphic 
to the multiplicative group of a field of order pn, and A is isomorphic to a sub­
group of the automorphism group of this field. Hence by Lemma 4.5, H is 
characteristic in Gxuv. There is an involution a G Gx which interchanges u and 
v, hence normalizes Gxuv, and since II is the unique w-gon on {x'.u, v) fixed by 
Gxuv, a acts on II and hence also interchanges u' and v'. 

So a normalizes H and V, and thus HV. Fur thermore, unless pn — 2 or 3, we 
can choose a so tha t it inverts (but does not centralize) H (for example, we 
can choose a G PSL{2, pn)). So if pn 9* 2 or 3, then by Lemma 4.3(i) a is not 
an inner automorphism of HV, whence by Lemma 4.3(h) a is an involutory 
field automorphism on a field N of pn elements. T h u s pn = r2 and therefore 
T° = rr = r - 1 for all r € N - {0}. Therefore r r + 1 = 1 for all r € iV - {0}, 
so (r2 — 1)|r + 1, from which we get r = 2. Thus £w = 4. Hence in this case 
we get either p = 2, n = 1, or £ = 3, w = 1, or £ = 2, w = 2. 

T h u s either 

ft = 3 and Gx = PGL{2, 2) ~ S3> or 

k = 4 and Gx = PGL{2, 3) ~ S4, or 

ft = 5 and Gx = PGL(2 , 4) ~ ^ 5 , 

o r G , = PTL{2, 4) ~ S5 . 

Case 2. Gz is 3-transitive on A(x), bu t Gx ^ PGL{2, pn), so t ha t w is even 
and p is odd. First suppose tha t pn 7^ 9. As in Case 1, we have t ha t Gxuv ^ 
GU'V>, and again Gu>v> has a characteristic subgroup F of order pn which is 
complemented by Gxuv. Now Gxuv = AH where A ^^ Gxuvw, and by Corollary 
4.3, HV is a Frobenius group of order pn{pn — 1) with H isomorphic to the 
multiplicative group of a regular nearfield of order pn (whose center is iso­
morphic to the field of pn/2 elements) , and A is isomorphic to a subgroup of the 
automorphism group of this nearfield. (Note t ha t \A\ is odd, or else Gx would 
contain PGL{2, pn).) Hence by Lemma 4.6, H is characteristic in Gxuv. 
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Again, there is an involution a 6 Gx which interchanges u and v, and also 
ur and v'. So a normalizes H and V, and thus HV. Furthermore a does not 
centralize H. Thus by Lemma 4.3 (ii), a is an involutory nearfield automor­
phism on a nearfield TV of pn elements, with center Z(N) isomorphic to the 
field F of pn/2 elements. However we can again choose a so that it inverts the 
center of H, and thus inverts the center of N — {0} which is F — {0}, and also 
a centralizes F (as F is the fixed field of a). Thus rc — r = r~l for all r Ç F — 
{0}, and so r2 = 1 for all r 6 F - {0}. Hence pn/2 = 3, and so pn = 9, a 
contradiction. 

Now suppose pn = 9. Then we may regard Gx as the following subgroup of 
PTL(2, 9) acting on 10 points: 

^x = \ \ rl) ' a\ ' jr):ad — bca. square in GF(9), a'df — b'c' 

) a non-square in GF(Q), and 1 ^ a G Aut (GF(9))/ ^ P r L ( 2 , 9). 

Let GF(9) = {a + ift: a, 6 € GF(3), > = - 1 } . The squares in GF(9) are 
{ ± 1 , ± i} = S, say, and ia = i3 = —i. Define a binary operation on G F (9) 
by 

J WW if w 6 5, 
W OU = S 3 -r w o 

JL^ W II 2/ ? O. 

Then Af = (GF(9), + , o) is the regular nearfield of 9 elements, and Aut (A) 
~ 23 ([7], 5.2.2). 

Without loss of generality, 

Let r be the following map on TV: 

( 0 ^ 0 
± 1 h-» zfcl 
± i >-> =b (i - 1) »-> db (i + 1). 

Then r 6 Aut (iV), |r| = 3, and Aut (N) = (a, r ). For the element a € Gx 

which interchanges u and v, and also u' and z/, choose cr = I I. Then 

'lo * + i/J = a \ o i/ = alo i - J -
So or does not centralize G ^ . 

Further, (i + l)a = is + 1 = -i + 1; (i + l)ar = -i - 1; and 

(i + I)*-2 = -i. 
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T h u s no involution of Aut (N) agrees with a on a I •_ , - , )> contradict ing 

Lemma 4.3. T h u s Case 2 does not occur. 

Case 3. Gx = PSL(2, pn) (a), (a) ^ Aut GF(pn), and p odd. We proceed 
exactly as in Case 1, observing tha t H is isomorphic to the squares in the 
multiplicative group of a field of pn elements and A C^L (a ), using the remark 
after Corollary 4.3, and using Lemma 4.4 in place of Lemma 4.3. 

Then if pn 9e 3 or 5, a inverts bu t does not centralize H and so 

(T*y = (r2)*»/J = r - 2 

for all T G N - {0}, N a field of £n elements. 
This gives (pn - l)\2pn/2 + 2, whence p n = 9. T h u s either 

k = 4 and G* = PSL(2, 3) ~ 4 4 , or 

k = 6 and G.r = P 5 L ( 2 , 5), or 

& = 10 and Gx = P S L ( 2 , 9), 

or Gx = P 5 L ( 2 , 9) <a>, 1 ^ a 6 Aut (GF(9)). 

5. Proof of t h e o r e m 2. Suppose Theorem 2 is false and from the set of 
pairs ( Jtif, G) of polygonal graphs J ^ a n d groups G ^ Aut (3f) satisfying the 
hypotheses, choose a counterexample with |12| a minimum, and \G\ a minimum. 

By Lemma 4.2, k y^ 3 and if k = 5 then G^ ^ 2 5 . But then by Lemma 5.1, 
which follows below, if u, v, w £ A(x), G ^ ^ has order 2 and on 12(Gxuvw) there 
will be a subgraph of valency 3 which is a strict m-gon-graph, contradict ing 
the hypotheses of the theorem. T h u s k > 5. 

So choose x G 12 and u,v,w^ A(x). Let i£ = G^MPW. If i£ = 1, then Gx is 
sharply 3-transitive on A(x), so by [9], Theorem 1 applies and we get a con­
tradiction. So we may assume tha t K ^ 1. 

LEMMA 5.1. Let L be K or a 2-subgroup of K. Then connected components of 
the induced subgraph of 3f whose points are 12 (L) are regular, and if such a 
connected component has valency ^ 2 it is a strict m-gon-graph. 

Proof. Take a connected component Y of 12 (L). From the points of V pick 
one, y say, whose valency n in T is maximal, and let {yi} . . . , yn] = Q,y{L). We 
claim tha t the valency of each yt is n (in T). 

Suppose on the contrary t ha t yu say, has valency / < n in V, and let 
£Lyi{L) = [y, z2, . . . ,zt}. Since there are no triangles in ffl, (y'.yuyi) is a 
2-claw for 2 ^ i ^ w, so let IIZ be the unique element of S on (y:^i , 3>Ï). Then 
L fixes each II t pointwise, so each II t is in fact in Y. T h u s the points not equal 
to y in YLi (2 ^ i ^ n) which are adjacent to y\ must lie in iïyi(L). Since 
/ < n, some Zj (2 ^ j ^ /) occurs in a t least two of the I I u both of which would 
then contain the 2-claw (yi'-y,Zj)} which contradicts the hypotheses on the 
set <f. This proves the lemma. 
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Let 5 6 Syl2(20 (possibly 5 = 1), and let N = NG(S). Let r be that 
connected component of the induced subgraph on 12(5) containing x, u, v and 
w, so that by Lemma 5.1, T is a strict ra-gon-graph of valency I ^ 4. Since k 
is odd, so is /. 

By Lemma 2.6, Nx = NGx(S) is 3-transitive on 12^(5). 
Now let III, n 2 be the elements of £* on (x: u, v) and (x: u, w) respectively. 

Let v\ and w\ be the points in IIi and II2 other than x which are adjacent to u. 
Since G is transitive on ordered 3-claws, there is a g £ G with (x:u, v, w)° = 
(u: x, Vi, wi) and u° = x, v9 = v\, w° = ^i- Then 

by Lemma 4.1, so g G N(K). Thus by Sylow's theorem, there is h Ç K with 
S'* = 5, and thus gh g iVG(5). Hence 12(5)** = 12(5) and it is clear that 
(x: u, v, w)çh = (u: x, Ui, wx) so we may assume without loss of generality that 
g £ N and hence T = T°. Hence N is transitive on r as m is odd. 

So by minimality of Jtif and G, either (a) / = 5, or (b) 5 = 1 . 

Case (a). / = 5. Note that by the hypotheses of the theorem, \ttx(K)\ ^ 4, 
so that \QX(K)\ = 4 or 5. Let 12 (̂5) = [u,v,w,y,z). If \QX(K)\ = 4, say 
tix(K) = {w, z;, w, y}, then T has a subgraph A which is a strict ra-gon-graph 
of valency 4 on {x, u, v, w, y\ by Lemma 5.1. Now 5 6 SyU (G JM^Z) and 

{w, y, z) C ^ ( G ^ z ) C {u, v, w, y, z). 

So some conjugate Ak 9^ A of A, k £ G ,̂ is a subgraph of T of valency 4, 
which is a strict m-gon-graph of valency 4 on {x, u, w, y, z\ or {x, v, w, y, z). 
Then by Lemma 2.2, A Pi Ak contains a strict m-gon-graph of valency 3, a 
contradiction. 

So \QX(K)\ = 5. Take T < 5 of maximal order with respect to fixing > 5 
points of A(x). By ([12], corollary to, and proof of, Theorem 1), N Gx(T)9i^T) > 
PSL(2, 16), which is 3-transitive. Clearly \ilx(T)\ is odd. So if we show that 
NG(T) is transitive on that connected component V of the induced subgraph 
on 12(T) which contains x, then the minimality of JÏ? and G would imply that 
T = 1. 

Now T < 5 ^ GUXV1WI = KQ is also of maximal order with respect to fixing 
> 5 points of A(u), for if not, there is 7\ < 5 with \T\ < 17\|, and 7\ fixes > 5 
points of A(w); then, however, 5 > 7V"1, and TV -1 fixes > 5 points of A(x), 
contradicting the maximality of T, since |7V_1 | > |7'|. So again, by [12], 
NGu(T) is 3-transitive on 12M(7"). Thus there is an element of NG(T) taking 
x to V\. In a similar way, we see that since m is odd, NG(T) is transitive on the 
ra-gon IIi, so that by connectivity of r", NG(T) is transitive on r". 

Hence T = 1 and thus all involutions of Gx fix 1 or 5 points of A(x). 
By ([3], Theorem 3), either 

(i) |A(x)| = k = 17 and \PTL(2, 16):GX\ = 1 or 2, or 
(ii) k = 9 and Gx c^ A9, or 

(iii) k = 7 and Gx ~ S7. 
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Theorem 1 excludes (i). In (ii) and (iii), the stabilizer of 3 points fixes exactly 
those 3 points, whereas \iïx(K)\ = 5. Thus Case (a) does not occur. 

Case (b). S = 1. Then involutions of Gx fix one point of A(x) and so by 

[1], PTL(2, 2j) Ï Gx > PSL(2, 2j), for some j . But again, by Theorem 1, 
this possibility leads to a contradiction. 

This proves Theorem 2. 

The following result on strict w-gon-graphs now follows immediately from 
Theorem 2. 

COROLLARY 5.1. Let ffl be a strict m-gon-graph, m odd, of valency k, odd, and 
let G ^ Aut (34?) be transitive on vertices of ffl and Gx be ^-transitive on A(x). 
If Jt? contains no m-gon-graph as a subgraph of valency 3, then k = 5 and 
Gxc^A5. 
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