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Roots of sparse polynomials over a finite field

Zander Kelley

Abstract

For a t-nomial f(x) =
∑t

i=1 cix
ai ∈ Fq[x], we show that the number of distinct, nonzero roots of

f is bounded above by 2(q− 1)1−εCε, where ε = 1/(t− 1) and C is the size of the largest coset
in F∗

q on which f vanishes completely. Additionally, we describe a number-theoretic parameter
depending only on q and the exponents ai which provides a general and easily computable upper
bound for C. We thus obtain a strict improvement over an earlier bound of Canetti et al. which is
related to the uniformity of the Diffie–Hellman distribution. Finally, we conjecture that t-nomials
over prime fields have only O(t log p) roots in F∗

p when C = 1.

1. Introduction

Over the real numbers, the classical Descartes rule implies that the number of distinct, real
roots of a t-nomial f(x) = c1x

a1 + . . .+ctx
at ∈ R[x] is less than 2t, regardless of its degree. It is

a natural algebraic problem to look for analogous sparsity-dependent bounds over other fields
that are not algebraically closed. In [3], Canetti et al. derive the following analog of Descartes’
rule for polynomials in Fq[x].

Theorem 1.1 [3, Lemma 7]. For f(x) = c1x
a1 +c2x

a2 +. . .+ctx
at ∈ Fq[x] (with ci nonzero),

if R(f) denotes the number of distinct, nonzero roots of f in Fq, then

R(f) 6 2(q − 1)1−1/(t−1)D1/(t−1) +O((q − 1)1−2/(t−1)D2/(t−1)),

where
D(f) = min

i
max
j 6=i

(gcd(ai − aj , q − 1)).

For ϑ ∈ F∗p, the associated Diffie–Hellman distribution is defined by the random variable
(ϑx, ϑy, ϑxy) where x and y are uniformly random over {1, . . . , p − 1}. The Diffie–Hellman
cryptosystem relies on the assumption that an attacker cannot easily determine ϑxy given the
values of ϑ, ϑx, and ϑy. In [3], Canetti et al. showed that Diffie–Hellman distributions are very
nearly uniform (which is an important property for the security of the cryptosystem), and the
bound in Theorem 1.1 was the central tool which powered their arguments.

Since then, the bound has been a useful tool for studying various algorithmic and number-
theoretic problems: in [7] it was used to study the complexity of recovering a sparse polynomial
from a small number of approximate values (which is relevant to the security of polynomial
pseudorandom number generators); in [8] it was used to study the singularity of generalized
Vandermonde matrices over Fq; in [1] it was used to study the solutions of exponential
congruences xx = a mod p; and in [5] it was used to study the correlation of linear recurring
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sequences over F2. The main result of this paper is a new bound (Theorem 2.3) improving
Theorem 1.1 by removing the asymptotic term and replacing D by a smaller, intrinsic
parameter.

2. Statement of results

More recently in [2], Bi, Cheng, and Rojas studied the computational complexity of deciding
whether a t-nomial f has a root in F∗q . They gave a sub-linear algorithm for this problem; we
give a rough sketch here. First, they efficiently replace any instance with a t-nomial of degree
bounded by 2(q− 1)1−1/(t−1) (while preserving the answer to the decision problem), and then
they compute the greatest common divisor of this instance and xq−1−1, which can be done in
time proportional to the degree of the instance. As a result of their investigation, they derive
the following characterization of the roots of a sparse polynomial in Fq[x].

Theorem 2.1 [2, Theorem 1.1]. For f(x) = c1x
a1 + c2x

a2 + . . . + ctx
at ∈ Fq[x], define

δ(f) = gcd(a1, a2, . . . , at, q − 1). The set of nonzero roots of f in Fq is the union of no more
than

2

(
q − 1

δ

)1−1/(t−1)

cosets of two subgroups H1 ⊆ H2 of F∗q , where

|H1| = δ and |H2| > δ1−1/(t−1)(q − 1)1/(t−1).

This result does not immediately yield any bound on the number of roots R(f) since there
is no upper bound given for the size of the H2-cosets. However, if for some reason we were
assured that the set of roots was a union of only H1-cosets, we could conclude that

R(f) 6 δ · 2
(
q − 1

δ

)1−1/(t−1)

= 2(q − 1)1−1/(t−1)δ1/(t−1),

which is an improvement on Theorem 1.1 since it can be easily checked that δ(f) 6 D(f)
always.

Theorem 2.2. For f(x) = c1x
a1 + . . .+ ctx

at ∈ Fq[x] (with ci nonzero), define

S(f) := {k | (q − 1) : for all i, there is a j 6= i with ai ≡ aj mod k}.

If f vanishes completely on a coset of size k, then k ∈ S(f).

Proof. For some generator g of F∗q , let α〈g(q−1)/k〉 denote a coset of the unique subgroup of

order k in F∗q , and let β = αk. The members of this coset are exactly the roots of the binomial

xk − β. So, f vanishes completely on this coset if and only if (xk − β) | f , or equivalently if
f ≡ 0 mod (xk − β).

To see when this happens, we view f in the ring Fq[x]/〈xk − β〉. In this ring, we have the
relation xk ≡ β, so if each ai has remainder ri mod k, then

f ≡ c1βba1/kcxr1 + . . .+ ctβ
bat/kcxrt mod (xk − β).

Now f might be identically zero (in this ring) since the ri are not necessarily distinct. However,
there is one obvious barrier to this: if just one ri is unique, then f in particular contains the
nonzero monomial (ciβ

bai/kc)xri . f ≡ 0 requires that each remainder ri has at least one
‘partner’ rj = ri so that monomials can cancel. Therefore (xk − β) | f implies that, for each
i ∈ {1, 2, . . . , t}, there is some j 6= i with ai ≡ aj mod k.
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Thus S(f) lists the sizes of cosets on which f might possibly vanish completely. For example,
if a1 = 0 and the other exponents ai>1 are all prime to q − 1 then S(f) = {1}, and so it is
structurally impossible for f to vanish completely on any nontrivial coset, regardless of choice
of coefficients ci ∈ F∗q . On the other hand, whenever k ∈ S(f), there is some choice of ci ∈ F∗q
so that f does indeed vanish completely on a given coset of size k.

When max(S) < δ1−1/(t−1)(q − 1)1/(t−1), Theorem 2.2 can be combined with Theorem 2.1
to get a bound on R(f) by ruling out the possibility of H2-cosets. If max(S) is any larger,
Theorem 2.1 is no longer helpful; the most we can conclude is that

R(f) 6 |H2| · 2
(
q − 1

δ

)1−1/(t−1)

6 max(S) · 2
(
q − 1

δ

)1−1/(t−1)

,

which is worse than trivial: R(f) < q − 1. However, S(f) turns out also to be independently
useful for deriving sparsity-dependent bounds.

Theorem 2.3. Let f(x) = c1x
a1 + . . .+ ctx

at ∈ Fq[x] (with ci nonzero), let δ(f) be defined
as above, and let C(f) denote the size of the largest coset in F∗q on which f vanishes completely.
If R(f) denotes the number of distinct, nonzero roots of f in F∗q , then we have

R(f) 6 2(q − 1)1−1/(t−1)C1/(t−1),

and furthermore if C < δ1−1/(t−1)(q − 1)1/(t−1), then

R(f) 6 2(q − 1)1−1/(t−1)δ1/(t−1).

This result is a strict improvement on Theorem 1.1, since, as we will see, D(f) is in particular
an upper bound for S(f) and therefore also for C(f). In fact, we can get another easily
computable upper bound for S(f) that is in general tighter than D(f).

Proposition 2.4. For f(x) = c1x
a1 + . . .+ ctx

at ∈ Fq[x] define the parameters

δ(f) = gcd(a1, a2, . . . , at, q − 1),

D(f) = min
i

max
j 6=i

(gcd(ai − aj , q − 1)),

Q(f) = gcd
i

lcm
j 6=i

(gcd(ai − aj , q − 1)),

K(f) = min
i

max
j 6=i

(gcd(ai − aj , Q)).

These parameters relate to S(f) as follows.
• δ(f) ∈ S(f).
• For all k ∈ S(f), k | Q(f).
• D(f), Q(f), and K(f) are all upper bounds for S(f), and K(f) 6 min(D(f), Q(f)).

3. Optimality of the bound

Since the polynomial which defines a given function on F∗q is unique only up to equivalence
mod xq−1 − 1, we restrict our attention to polynomials with degree less than q − 1. Thus we
fix the following notation:
• F(q) = {f ∈ Fq[x] : deg f < q − 1}, F1(q) = {f ∈ F(q) : C(f) 6 1};
• F(q, t) = {f ∈ F(q) : f has t terms}, F1(q, t) = {f ∈ F1(q) : f has t terms};
• F(q, t, r) = {f ∈ F(q, t) : R(f) = r}, F1(q, t, r) = {f ∈ F1(q, t) : R(f) = r}.
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Recall that C(f) 6 1 indicates that f does not vanish on any entire coset of any nontrivial
subgroup of F∗q .

In this section, we consider the possibility that the bound in Theorem 2.3 can be improved.
Consider the binomial f(x) = x(q−1)/2 + 1. When q is odd, this binomial vanishes at every
nonsquare in F∗q , and consequently R(f) = C(f) = (q − 1)/2. More generally, when q − 1

is divisible by t, the t-nomial f(x) = (xq−1 − 1)/(x(q−1)/t − 1) vanishes on t − 1 cosets of
size (q − 1)/t, and so R(f) = (q − 1)(1 − 1/t). These examples show that there is no hope
of improving the bound in Theorem 2.3 by removing the dependence on C(f). However, the
proportion of polynomials with C(f) > 1 is small, so it may be worthwhile to search for
improved bounds for f ∈ F1(q).

Proposition 3.1.
|F(q)\F1(q)|
|F(q)|

= O

(
1

q

)
.

Proof. If f ∈ F(q) vanishes on a nontrivial coset, then it vanishes on a coset of prime order.
Thus we can bound the number of such f ∈ F(q) by counting polynomials of the form

(xp − β)

q−2−p∑
j=0

cjx
j ,

where p divides q − 1 and β lies in the subgroup of F∗q of size (q − 1)/p. Thus the proportion
of f with C(f) > 1 is bounded by

1

|F(q)|
∑
p|q−1

(
q − 1

p

)
qq−1−p 6

∑
p|q−1

q1−p 6 q−1 +
∑
p|q−1
p>2

q1−p =
1

q
+O

(
log q

q2

)
.

Note that we have used the well-known fact that the number of distinct prime factors of an
integer n is bounded by log n.

In [4], the authors investigate the existence of sparse polynomials with many roots. When

q is a tth power, they give the t-nomial f(x) = 1 +
∑t−1
i=1 x

(qi/t−1)/(q1/t−1) ∈ Fq[x], which has
R(f) > q1−2/t. Furthermore, when t is prime they show that D(f) 6 t/2. In the case where q is

an odd square, the authors of [6] give the trinomial f(x) = xq
1/2

+x−2 which has R(f) = q1/2,
and it is shown that C(f) = 1. Thus, both examples are able to attain a large number of roots
in F∗q without vanishing on a large coset, and they show that the O(q1−1/(t−1)) bound from
Theorem 2.3 is nearly optimal in the general setting. However, these examples both share a
special property: they vanish on entire translations of a subspace of Fq. We are unaware of
any example of a sparse polynomial which has a large number of roots in ‘general position’.
Consequently, we propose that a much better bound is possible for the special case of prime
fields Fp, which have no proper subfields.

Let Rp,t = max{R(f) : f ∈ F1(p, t)}. Obviously Rp,1 = 0 and Rp,2 = 1, because monomials
have no roots in F∗p, and a binomial defines a coset in F∗p if it has a root at all. We have checked
by computer that the following inequalities hold:
• Rp,3 < 1.8 log p for p 6 139 571;
• Rp,4 < 2.5 log p for p 6 907;
• Rp,5 < 2.9 log p for p 6 101.

Therefore, the current bound of Rp,t = O(p1−1/(t−1)) appears to be far from optimal for
t-nomials over Fp which do not vanish on a nontrivial coset.
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It is easy to see that the proportion of polynomials f ∈ F(p) which have R(f) = r is bounded
by 1/r!. Indeed, simply count the proportion of polynomials of the form( r∏

i=1

(x− αi)
)( p−2−r∑

i=0

cix
i

)
,

with αi ∈ F∗p distinct, which gives(
p−1
r

)
pp−1−r

|F(p)|
=

(
p− 1

r

)
1

pr
6

1

r!
.

With this in mind, we propose that the observed logarithmic behavior of Rp,t can be
explained by the following heuristic. Let t(f) denote the number of nonzero terms of f . Then
R(f) and t(f) are statistically independent properties of a random f ∈ F1(p). This heuristic
does not hold precisely, but it motivates the following conjecture, which captures the sentiment
while allowing for some error.

Conjecture 3.2. There exists a constant γ > 0 such that

|F1(p, t, r)|
|F1(p, t)|

6

(
1

r!

)γ
for all p prime, t ∈ N, and r ∈ N.

We have checked by computer that the inequality in Conjecture 3.2 holds with γ = 1/2 for
all r ∈ N in the following cases:
• t = 3, p 6 30 977;
• t = 4, p 6 907;
• t = 5, p 6 101.

Theorem 3.3. If Conjecture 3.2 is true, then Rp,t = O(t log p).

Proof. Suppose Conjecture 3.2 is true. Then we have

|F1(p, t, r)| 6 |F1(p, t)|
(

1

r!

)γ
6 p2t/(r!)γ .

If p2t/(r!)γ < 1 then the set F1(p, t, r) is empty, so we must have p2t/(Rp,t!)
γ > 1, or

equivalently, log(Rp,t!) 6 log(p2t/γ). Applying Stirling’s approximation, we get

Rp,t 6 Rp,t logRp,t ∼ log(Rp,t!) 6 (2/γ)t log p = O(t log p).

For a more detailed account of the computational and heuristic support for the conjectural
logarithmic bound in the case of trinomials, see [4, 6].

4. Proofs

The general strategy employed here (and in [2, 3]) for obtaining sparsity-dependent bounds
on R(f) can be loosely sketched as follows. Consider integers e prime to q− 1, which have the
property that the map x 7→ xe is a bijection on F∗q . Since x 7→ xe simply permutes the elements
of F∗q , we have R(f(x)) = R(f(xe)). Furthermore, f(xe) is equivalent (as a mapping on F∗q) to

any g(x) = c1x
b1 + . . . + ctx

bt with bi ≡ eai mod (q − 1). Thus the basic idea is to find some
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e so that the remainders of eai mod (q − 1) are all small, yielding a g of small degree, and so
R(f) = R(g) 6 deg(g).

The following lemma, a fact about the geometry of numbers, will be our main tool for
achieving the desired degree reduction.

Lemma 4.1. Fix the natural numbers a1, a2, . . . , at, N . If n 6 N/gcd(a1, a2, . . . , at, N), there
is an e ∈ {1, 2, . . . , n− 1} and a v ∈ NZt so that

0 < max
16i6t

|eai + vi| 6 N/n1/t.

Proof. Consider the vectors li = i(a1, . . . , at) = (ia1, . . . , iat) ∈ (R/NZ)t for i ∈ {1, 2, . . . n}.
Let ‖·‖∞ denote the standard infinity norm on Rt. We wish to view these vectors geometrically
as points in Rt, but they are only defined up to equivalence in (R/NZ)t, so define

‖l‖N = min
v∈NZt

‖l + v‖∞,

which gives the smallest norm of any representative of the equivalence class l + NZt viewed
as a point in Rt (equivalently, ‖l‖N gives the distance from l to the nearest lattice point in
NZt). Suppose that

d = min
i 6=j
‖lj − li‖N .

Since the vectors are all at least d apart, the sets

Bi = {x ∈ (R/NZ)t : ‖x− li‖N < d/2}

are disjoint, so each li sits in its own personal box of volume dt. We may choose to represent
these n disjoint sets uniquely in the fundamental domain [0, N)t, which has volume N t.
Therefore we have a total volume of n · dt sitting in a volume of N t; we conclude that
d 6 N/n1/t.

Note that the modular definition of distance is crucial here; consider instead n points in
[0, N ]t that are d-separated only in the standard l∞ metric. A volume-packing argument
becomes more complicated in this case because the box around a point near the boundary
may lie partly outside [0, N ]t (it does not ‘wrap around’), and so some points do not absorb a
full dt worth of volume from [0, N ]t.

To finish, we find i, j (with 1 6 i < j 6 n) so that ‖lj − li‖N = d and set le = l(j−i) =
(j − i)(a1, . . . , at) = lj − li. We have

‖le‖N = min
v∈NZt

‖(ea1, . . . , eat) + v‖∞ 6 N/n1/t,

and e satisfies 1 6 e 6 n − 1. The subgroup of (Z/NZ)t generated by (a1, . . . , an) has order
N/gcd(a1, . . . , at, N) > n. Since 0 < e < n, e(a1, . . . , an) 6≡ (0, . . . , 0) ∈ (Z/NZ)t, which
verifies that ‖le‖N > 0.

Lemma 4.1 and its proof are extremely similar in spirit to the argument used by Canetti
et al. in [3]. They also viewed the n vectors as points in [0, N)t, but to find a pair of nearby
points they partitioned the hypercube into less than n equal-sized sub-cubes and appealed to
the pigeonhole principle. Here we were able to avoid this discretization of space which led to
the small asymptotic term appearing in Theorem 1.1, which turns out to be unnecessary.

Proof of Theorem 2.3. The second claim is immediate from Theorem 2.1, since there can be
no H2-cosets of roots. We now prove the first claim.
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Let f(x) = c1x
a1 + c2x

a2 + . . .+ ctx
at ∈ Fq[x] with ci nonzero, and let C denote the size of

the largest coset in F∗q on which f vanishes completely. For our purposes, we may assume that
a1 = 0, since otherwise we can write

f(x) = xa1 f̃(x),

f̃(x) = c1 + c2x
a2−a1 + . . .+ ctx

at−a1 ,

showing that f has a root at zero, but its nonzero roots are just the roots of f̃ , so R(f) = R(f̃)
and C(f) = C(f̃). Therefore we continue assuming that a1 = 0.

Consider δ(f) = gcd(a2, . . . , at, q − 1). The nonzero roots of f(x) = c1 + c2x
a2 + . . .+ ctx

at

are in one-to-one correspondence with the solutions of the system

c1 + c2y
a2/δ + . . .+ cty

at/δ = 0 y ∈ 〈gδ〉,
xδ = y x ∈ F∗q .

If f has no roots in F∗q then our bound is of course true, so suppose this system has at
least one solution (y0, x0). Then in fact the system has at least δ solutions and f vanishes
on the coset {x : xδ = y0}. This allows us to conclude that C > δ, and so ((q − 1)/C) 6
(q − 1)/gcd(a2, . . . , at, q − 1).

Therefore we can apply Lemma 4.1 to find an e ∈ {1, 2, . . . , (q − 1)/C − 1} and a v ∈
(q − 1)Zt−1 so that

0 < ‖(ea2, . . . , eat) + v‖∞ 6 (q − 1)

/(
q − 1

C

)1/(t−1)

.

Suppose k = gcd(e, q − 1) = 1. Then the mapping x 7→ xe is a bijection on F∗q that simply
reorders the elements of F∗q , thus R(f(x)) = R(f(xe)). We are interested in f(xe) only as a
function on F∗q (rather than as a formal object in Fq[x]), and since F∗q is a group of order q−1,
this function is not changed by shifting its exponents by vi ∈ (q− 1)Z. Thus we may represent
the function f(xe) as the (possibly Laurent) polynomial

f(xe) = c1 + c2x
ea2+v2 + . . .+ ctx

eat+vt ,

which satisfies
0 < M = max

16i6t
|eai + vi| 6 (q − 1)1−1/(t−1)C1/(t−1).

Again we are only interested in nonzero roots; note that R(f(xe)) = R(xMf(xe)). Since
xMf(xe) is an honest polynomial in Fq[x] with nonnegative exponents, we have R(f) =
R(xMf(xe)) 6 deg(xMf(xe)) 6 2M and we are done.

However, we might have k = gcd(e, q−1) > 1. In this case x 7→ xe is not a bijection: it takes
F∗q = 〈g〉 to a smaller subgroup 〈ge〉 = 〈gk〉 of size ((q − 1)/k). However, we can still cover F∗q
by k cosets of this subgroup. We have

R(f(xe)) =

k−1∑
i=0

1

k
R(f(gixe)),

since F∗q =
⋃k−1
i=0 g

i〈ge〉, and xe = y has k solutions for each y ∈ 〈ge〉. Now we repeat our
earlier tricks and arrive at

R(f) 6
k−1∑
i=0

1

k
deg(xMf(gixe)) 6 2M,
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except that we must be careful that no f(gixe) is identically zero, preventing us from using
degree to bound root number. If f(gixe) is identically zero then f vanishes completely on the
coset gi〈ge〉 = gi〈gk〉 of size ((q − 1)/k). However, since k = gcd(e, q − 1) 6 e < ((q − 1)/C),
we have

q − 1

k
>

q − 1

((q − 1)/C)
= C,

so this is impossible by the definition of C; the cosets are too large for f to vanish on
completely.

Proof of Proposition 2.4. For f(x) = c1x
a1 + . . . + ctx

at ∈ Fq[x], we have the following
equivalent definitions for S:

S(f) = {k | (q − 1) : ∀i,∃j 6= i such that ai ≡ aj mod k}
= {k | (q − 1) : ∀i,∃j 6= i such that k | (ai − aj)}
= {k ∈ N : ∀i,∃j 6= i such that k | gcd(ai − aj , q − 1)}

=

t⋂
i=1

⋃
j 6=i

{k ∈ N : k | gcd(ai − aj , q − 1)}.

Clearly by the second definition we have δ(f) = gcd(a1, a2, . . . , at, q− 1) ∈ S. From the fourth
definition we can get an upper bound for S by passing to the superset

t⋂
i=1

⋃
j 6=i

{k ∈ N : k 6 gcd(ai − aj , q − 1)} ⊇ S,

which has maximal element

D = min
i

max
j 6=i

(gcd(ai − aj , q − 1)).

Alternatively, by considering a different lattice structure on the integers, we can pass to the
superset

t⋂
i=1

{k ∈ N : k | gcd(Lj , q − 1)} = {k ∈ N : k | Q} ⊇ S,

where

Li = lcm(ai − a1, . . . , ai − ai−1, ai − ai+1, . . . , ai − at),
Q = gcd(L1, . . . , Lt, q − 1) = gcd

i
lcm
j 6=i

(gcd(ai − aj , q − 1)).

Since we now know that, in the end, any member of S must be a divisor of Q, we can redefine
S (equivalently) using a smaller ambient space:

S(f) = {k | Q : ∀i,∃j 6= i such that k | (ai − aj)}

=

t⋂
i=1

⋃
j 6=i

{k ∈ N : k | gcd(ai − aj , Q)}

⊆
t⋂
i=1

⋃
j 6=i

{k ∈ N : k 6 gcd(ai − aj , Q)}.

Considering the maximal element of this last superset of S gives the final upper bound

K = min
i

max
j 6=i

(gcd(ai − aj , Q)),

which is obviously no larger than either D or Q.
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