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Abstract

The quotient set of A ⊆ N is defined as R(A) := {a/b : a, b ∈ A, b , 0}. Using algebraic number theory in
Q(
√

5), Garcia and Luca [‘Quotients of Fibonacci numbers’, Amer. Math. Monthly, to appear] proved
that the quotient set of Fibonacci numbers is dense in the p-adic numbers Qp for all prime numbers p.
For any integer k ≥ 2, let (F(k)

n )n≥−(k−2) be the sequence of k-generalised Fibonacci numbers, defined by
the initial values 0, 0, . . . , 0, 1 (k terms) and such that each successive term is the sum of the k preceding
terms. We use p-adic analysis to generalise the result of Garcia and Luca, by proving that the quotient set
of k-generalised Fibonacci numbers is dense in Qp for any integer k ≥ 2 and any prime number p.
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1. Introduction

Given a set of nonnegative integers A, the quotient set of A is defined as

R(A) := {a/b : a, b ∈ A, b , 0}.

The question of when R(A) is dense in R+ is a classical topic. Strauch and Tóth [15]
proved that if A has lower asymptotic density at least equal to 1/2, then R(A) is dense
in R+ (see also [1]). Bukor et al. [3] showed that if A ∪ B is a partition of N, then at
least one of R(A) or R(B) is dense in R+. Moreover, the density of R(P) in R+, where
P is the set of prime numbers, is a well-known consequence of the prime number
theorem [10].

On the other hand, the analogous question of when R(A) is dense in the
p-adic numbers Qp, for some prime number p, has been studied only recently [7, 8].
Let (Fn)n≥0 be the sequence of Fibonacci numbers, defined by F0 = 0, F1 = 1 and
Fn = Fn−1 + Fn−2 for all integers n > 1. Using algebraic number theory in the field
Q(
√

5), Garcia and Luca [8] proved the following result.

Theorem 1.1. For any prime p, the quotient set of Fibonacci numbers is dense in Qp.
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One of the many generalisations of the Fibonacci numbers is the sequence of
k-generalised Fibonacci numbers (F(k)

n )n≥−(k−2), also called the Fibonacci k-step
sequence, Fibonacci k-sequence or k-bonacci sequence. For any integer k ≥ 2, the
sequence (F(k)

n )n≥−(k−2) is defined by

F(k)
−(k−2) = · · · = F(k)

0 = 0, F(k)
1 = 1

and
F(k)

n = F(k)
n−1 + F(k)

n−2 + · · · + F(k)
n−k

for all integers n > 1.
Usually, the study of the arithmetic properties of the k-generalised Fibonacci

numbers is more difficult than that of Fibonacci numbers. Indeed, for k ≥ 3, the
sequence of k-generalised Fibonacci numbers lacks several nice properties of the
sequence of Fibonacci numbers, which is a strong divisibility sequence [13, page 9],
has a primitive divisor theorem [17] and has a simple formula for its p-adic
valuation [11, 14].

We prove the following generalisation of Theorem 1.1.

Theorem 1.2. For any integer k ≥ 2 and any prime number p, the quotient set of the
k-generalised Fibonacci numbers is dense in Qp.

It seems likely that Theorem 1.2 could be extended to other linear recurrences over
the integers. However, in our proof we use some specific features of the k-generalised
Fibonacci numbers. Therefore, we state the following open question.

Question 1.3. Let (S n)n≥0 be a linear recurrence of order k ≥ 2 satisfying

S n = a1S n−1 + a2S n−2 + · · · + akS n−k

for all integers n ≥ k, where a1, . . . , ak, S 0, . . . , S k−1 ∈ Z, with ak , 0. For which prime
numbers p is the quotient set of (S n)n≥0 dense in Qp?

Clearly, without loss of generality, one can suppose that gcd(S 0, . . . , S k−1) = 1.
Also, it seems reasonable to assume that (S n)n≥0 is nondegenerate, which in turn
implies that (S n)n≥0 is definitely nonzero [5, Section 2.1]. Finally, a necessary
condition for (S n)n≥0 to be dense in Qp is that (νp(S n))n≥0,S n,0 is unbounded. This is
certainly the case if S 0 = 0 and p - ak (since p - ak implies that (S n)n≥0 is periodic
modulo ph for any positive integer h [5, Section 3.1]), so this could be a useful
additional hypothesis.

2. Proof of Theorem 1.2

From now on, fix an integer k ≥ 2 and a prime number p. In light of Theorem 1.1,
we can suppose that k ≥ 3. Let

fk(X) = Xk − Xk−1 − · · · − X − 1

be the characteristic polynomial of the k-generalised Fibonacci numbers.
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It is known [16, Corollary 3.4] that fk is separable. Let K be the splitting field of fk
over Qp and let α1, . . . , αk ∈ K be the k distinct roots of fk. By [4, Theorem 1],

F(k)
n =

k∑
i=1

ciα
n
i (2.1)

for all integers n ≥ 0, where

ci :=
αi − 1

(k + 1)α2
i − 2kαi

(2.2)

for i = 1, . . . , k.
Now we shall interpolate a subsequence of (F(k)

n )n≥0 by an analytic function over
Zp. This is a classical method in the study of linear recurrences, which goes back at
least to the proof of the Skolem–Mahler–Lech theorem [5, Theorem 2.1].

We refer the reader to [9, Chs. 4–6] for the p-adic analysis used hereafter. Let OK

be the valuation ring of K, e and f the ramification index and the inertial degree of K
over Qp, respectively, and π a uniformiser of K.

Since fk(0) = −1, each αi (i = 1, . . . , k) is a unit of OK , so that |αi|p = 1. In
particular, αi . 0 (mod π). Since OK/πOK is a finite field of p f elements, it follows
that αp f−1

i ≡ 1 (mod π). Now pick any positive integer s such that ps ≥ e + 1. Since
|π|p = p−1/e, we have πps

≡ 0 (mod pπ) and, in turn, it follows that αt
i ≡ 1 (mod pπ),

where t := ps(p f − 1). At this point,

|αt
i − 1|p ≤ |pπ|p = p−1−1/e < p−1/(p−1) (2.3)

for i = 1, . . . , k.
Now let logp and expp denote the p-adic logarithm and the p-adic exponential

functions, respectively. From (2.3),

αt
i = expp(logp(αt

i))

for i = 1, . . . , k, which together with (2.1) implies that F(k)
nt = G(n) for all integers n ≥ 0,

where

G(z) :=
k∑

i=1

ci expp(z logp(αt
i))

is an analytic function over Zp.
Let r > 0 be the radius of convergence of the Taylor series of G(z) at z = 0 and let

` ≥ 0 be an integer. On the one hand, the radius of convergence of the Taylor series of
G(p`z) at z = 0 is p`r. On the other hand,

G(p`z) =

k∑
i=1

ci expp(p`z logp(αt
i)) =

k∑
i=1

ci expp(z logp(αp`t
i )).
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Therefore, taking s sufficiently large, we can assume that r > 1. In particular,

G(z) =

∞∑
j=0

G( j)(0)
j!

z j (2.4)

for all z ∈ Zp.
Now we shall prove that G′(0) , 0. For the sake of contradiction, assume that

G′(0) =

k∑
i=1

ci logp(αt
i) = 0.

Since fk(0) = −1 and t is even, we have αt
1 · · ·α

t
k = 1, so that

logp(αt
k) = − logp(αt

1) − · · · − logp(αt
k−1)

and consequently
k−1∑
i=1

(ci − ck) logp(αt
i) = 0. (2.5)

We need the following lemma, which is a special case of a general result of
Mignotte [12] on Pisot numbers.

Lemma 2.1 [6, Lemma 1]. The roots α1, . . . , αk−1 are multiplicatively independent, that
is, αe1

1 · · ·α
ek−1
k−1 = 1 for some integers e1, . . . , ek−1 if and only if e1 = · · · = ek−1 = 0.

Thanks to Lemma 2.1, αt
1, . . . , α

t
k−1 are multiplicatively independent. Hence,

logp(αt
1), . . . , logp(αt

k−1) are linearly independent over Z. Then, by [2, Theorem 1],
logp(αt

1), . . . , logp(αt
k−1) are linearly independent over the algebraic numbers; hence,

(2.5) implies that
c1 = c2 = · · · = ck. (2.6)

At this point, from (2.2) and (2.6), it follows that α1, . . . , αk are all roots of the
polynomial

c1(k + 1)X2 − (2c1k + 1)X + 1,

but that is clearly impossible, since k ≥ 3. Hence, we have proved that G′(0) , 0.
Taking z = 1 in (2.4), we find that νp(G( j)(0)/ j!)→ +∞ as j→ +∞. In particular,

there exists an integer ` ≥ 0 such that νp(G( j)(0)/ j!) ≥ −` for all integers j ≥ 0. As a
consequence of this, and since G(0) = F(k)

0 = 0, taking z = mph in (2.4) gives

G(mph) = G′(0)mph + O(p2h−`)

for all integers m, h ≥ 0. Therefore, for h > h0 := ` + νp(G′(0)),

G(mph)
G(ph)

− m =
G′(0)mph + O(p2h−`)
G′(0)ph + O(p2h−`)

− m =
O(ph−`)

G′(0) + O(ph−`)
= O(ph−h0 ),
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that is,

lim
h→+∞

∣∣∣∣∣G(mph)
G(ph)

− m
∣∣∣∣∣
p

= 0.

In conclusion, we have proved that

lim
v→+∞

∣∣∣∣∣∣∣∣
F(k)

mpv(p f−1)

F(k)
pv(p f−1)

− m

∣∣∣∣∣∣∣∣
p

= 0

for all integers m ≥ 0. In other words, the closure (with respect to the p-adic topology)
of the quotient set of k-generalised Fibonacci numbers contains the nonnegative
integers N.

The next easy lemma is enough to conclude the proof.

Lemma 2.2. Let A ⊆ N. If the closure of R(A) contains N, then R(A) is dense in Qp.

Proof. Let C be the closure of R(A) as a subspace of Qp. Since N is dense in Zp,
we have Zp ⊆ C. Moreover, the inversion ι : Z×p → Qp : x→ x−1 is continuous and,
obviously, sends nonzero elements of R(A) to R(A) and hence ι(Zp) ⊆ C. Finally,
Qp = Zp ∪ ι(Zp) and thus C = Qp and R(A) is dense in Qp. �

The proof of Theorem 1.2 is complete.
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