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Abstract
A company with n geographically widely dispersed sites seeks an insurance policy that pays off if m out of the n
sites experience rarely occurring catastrophes (e.g., earthquakes) during a year. This study compares three strate-
gies for an insurance company wishing to offer such an m-out-of-n policy, assuming the existence of markets for
insurance on the individual sites with coverage periods of various lengths of a year or less. Strategy A is static: at the
beginning of the year it buys a reinsurance policy on each individual site covering the entire year and makes no later
adjustments. By contrast, Strategies S and C are dynamic and adaptive, exploiting the availability of individual-site
policies for shorter periods than a year to make changes in the coverage on individual sites as quakes occur during
the year. Strategy S uses the payoff from reinsurance when a quake occurs at a particular site to increase coverage
for the remainder of the year on the sites that have not yet had quakes. Strategy C buys individual-site policies
covering successive time periods of fixed length, observing the system at the beginning of each period and using
cash on hand plus cash obtained from a reinsurance payoff (if any) during the previous period to decide how much
cash to retain and how much reinsurance to purchase for the current period. The study relies on expected utility to
determine indifference premiums and compare the premiums and loss probabilities for the three strategies.

1. Introduction

During the past several decades, protecting property against catastrophes such as hurricanes, earth-
quakes, volcanic eruptions, and wildfires has become an increasing concern for insurance companies as
well as property owners. Innovative alternatives to conventional reinsurance, such as catastrophe bonds
and other insurance-linked securities (ILS), have been the subject of extensive study. A topic receiving
less (but an increasing amount of) attention has been that of multi-peril risks, which is the subject of
this paper.

To fix ideas, consider a large corporate entity owning a considerable number of globally distributed
properties that it wants to ensure against catastrophic events. Although catastrophes rarely occur at
any one site during a year, owning multiple sites exposes the company to considerably more risk than
owning just one. For example, if catastrophes occur at a site at rate q= 0.01 per year, an owner of a
single site can expect one such event every 100 years on average. However, owning n= 10 sites exposes
the company to a catastrophe once every 10 years on average. To protect against the substantial losses
that catastrophic events induce, the company has put aside sufficient funds to cover m − 1 (< n) such
events during any one year. But it wants to insure all n sites so that if these events occur at m or more of
its sites, it will receive a \ dollar payout from the insurer. For conciseness of exposition, we hereafter
refer to catastrophes as quakes, regardless of type.

Conceptually, this m-out-of-n insurance policy differs from conventional property insurance that
insures each site separately. Although policies that provide less than full coverage of a customer’s losses
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are common, they usually contain a deductible clause requiring a customer to self-insure the first d
dollars, where d is the deductible. But in the context of multi-peril catastrophes spread out over time
and space, an m-out-of-n policy offers an alternative option in which the deductible takes the form of
a minimal number of sites m incurring losses, rather than a minimal dollar amount, before a customer
receives a payout. The challenge for an insurer is to be able to offer the customer an m-out-of-n policy
at a competitive premium, but one that properly accounts for the assumed risk.

To offer this m-out-of-n policy, an insurer first needs to determine a premium per dollar of coverage to
charge a customer, presumably consistent with the level of risk of loss that the insurer is willing to accept.
A conventional way for the insurer to reduce that risk would be to purchase some form of reinsurance and
incorporate its cost into the premium. In the context of the present problem, it is reasonable to assume
that a market already exists for buying and selling insurance on individual sites, which the insurer can
exploit to provide a type of reinsurance.

This study describes and compares three strategies, A, S, and C, for determining both the premium,
c, per dollar of customer coverage and the initial reinsurance coverage per site, c. Each strategy pays \
dollars to the customer if at least m sites have quakes during a T-day coverage period. The study also
examines the loss/gain probability distribution for each strategy induced by its feasible (c, c) 2-tuples.

Strategy A is static, purchasing reinsurance only at the beginning of the coverage period. Both
Strategies S and C are dynamic and adaptive, capable of changing reinsurance coverage as time elapses
and/or as quakes occur at individual sites. Because the risk of m out of n sites having quakes during the
coverage period changes over time, decreasing as the time remaining decreases and increasing when-
ever a quake occurs, an adaptive dynamic strategy has a potential advantage over a strategy that is static.
Strategy S changes the reinsurance coverage only when a quake occurs, while allowing the new cover-
age value to depend on the time remaining. Strategy C purchases reinsurance coverage periodically, for
example, daily, weekly, or monthly. The coverage lasts only for one period, thus allowing the coverage
amount to change (decrease) if no quake occurs in that period, as well as change after a period in which
a quake does occur. However, since reinsurers typically demand a higher markup for a given amount of
coverage over a shorter as opposed to longer period (see Section 2.1), this added adaptability can come
at a cost.

To establish a basis for determining the (c, c) 2-tuples for each strategy and to facilitate comparison
among them, the study relies on expected utility theory.1 Each strategy determines a collection of 2-
tuples for which the insurer is indifferent between offering and not offering the policy because both
options have the same expected utility.

Because Strategies A and S generate multiple indifference 2-tuples, additional criteria are needed for
evaluating the benefit of each indifference 2-tuple, as well as comparing them for different strategies.
For example, price competitiveness and reinsurance coverage both affect loss probability. This paper
examines the indifference premiums and loss probabilities of Strategies A, S, and C, for a range of
values of the policy parameters, primarily by means of numerical analysis.

Preview of results

Table 1 provides a preview of the results of this paper, comparing the indifference premiums for
Strategies A, S, and C for some representative scenarios for the values of parameters n, m, and q, and
the risk-aversion coefficients, U and W, of the (exponential) utility functions of the insurer and the rein-
surer(s), respectively. (The larger the risk-aversion coefficient, the more risk averse is the insurer or
reinsurer.) For both Strategies A and S, option i corresponds to the indifference pair with the smallest
premium c charged to the customer and option ii to the indifference pair with the largest feasible value
of the initial reinsurance coverage c per site. Generally speaking, option i is the most cost competitive
and option ii offers the smallest loss probability for the insurer. As mentioned, Strategy C offers only one

1von Neumann and Morgenstern [11].

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0269964825100065
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 12 Oct 2025 at 19:09:06, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269964825100065
https://www.cambridge.org/core


Probability
in

the
Engineering

and
Inform

ationalSciences
3

Table 1. Indifference premium c.
(U = 4, W = 4)

c

m n q Ai Aii Si Sii C daily C weekly C monthly

2 4 0.01 5.165 × 10−3 5.212 × 10−3 2.096 × 10−3 7.197 × 10−3 7.806 × 10−3 7.781 × 10−3 7.695 × 10−3

0.05 6.955 × 10−2 7.347 × 10−2 4.423 × 10−2 1.127 × 10−1 1.403 × 10−1 1.412 × 10−1 1.463 × 10−1

2 10 0.01 2.635 × 10−2 2.733 × 10−2 1.446 × 10−2 4.425 × 10−2 5.153 × 10−2 5.185 × 10−2 5.343 × 10−2

0.05 2.672 × 10−1 3.127 × 10−1 2.390 × 10−1 6.317 × 10−1 4.326 × 10−1 4.402 × 10−1 4.938 × 10−1

3 10 0.01 1.3724 × 10−3 1.3724 × 10−3 5.1557 × 10−4 3.4379 × 10−3 1.5210 × 10−3 1.5190 × 10−3 1.5340 × 10−3

0.05 6.6892 × 10−2 6.6892 × 10−2 4.0544 × 10−2 1.7377 × 10−1 1.2050 × 10−1 1.2320 × 10−1 1.4740 × 10−1

https://w
w

w
.cam

bridge.org/core/term
s. https://doi.org/10.1017/S0269964825100065

D
ow

nloaded from
 https://w

w
w

.cam
bridge.org/core. IP address: 13.201.136.108, on 12 O

ct 2025 at 19:09:06, subject to the Cam
bridge Core term

s of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269964825100065
https://www.cambridge.org/core


4 G. Fishman and S. Stidham

m = 2, q = 0.01

5 10 15 20

1e
−0
8

1e
−0
6

1e
−0
4

1e
−0
2

Aii
Sii
Cdaily
Cweekly
Cmonthly

n

µ
(log scale)

Figure 1. Strategies A, C, and Sii: Loss probability µ.

option, corresponding to the smallest coverage c that guarantees zero probability of loss for all quake
histories in which there are no review intervals in which more than one site has a quake.

For all the examples in Table 1, Strategy S generates a smaller indifference premium than Strategy A
for option i (minimal premium), but a larger indifference premium for option ii (maximal coverage). By
contrast, Strategy C generates a single 2-tuple, usually with a greater premium than those for Strategies
A and S.

When based on daily review, however, Strategy C induces considerably smaller loss probabilities. It
does this by exploiting the rarity of more than one quake over daily intervals. This behavior is illustrated
in Figure 1 for a representative example, in which m= 2, q= 0.01, U = 4, and W = 4, for a range of values
of n ≥ m = 2. The figure plots the loss probability µ (vertical axis) as a function of the number of sites
n (horizontal axis) under Strategies A and S (both with option ii) and Strategy C. In this example, loss
probabilities are smaller with Strategy C than with A and S for all lengths of the review interval, but the
improvement is less dramatic as the review-interval length increases.

Section 6 contains additional numerical results and comparisons between the strategies. In particular,
these results demonstrate that, as the length of the review interval increases, Strategy C continues to
induce smaller loss probabilities than A and S for some, but not all, (m, n, q) scenarios.

Literature review

While there are relatively few references on multi-peril catastrophic insurance in the peer-reviewed
literature, there is indirect evidence of the underwriting of multi-peril risks in practice. In a NY Times
article on catastrophic risk, Lewis [10] cites an example of pricing the premium for coverage of the
m = n = 2 case by dynamic purchasing of policies on each site. The example is due to John Seo,
who founded Fermat Capital Management LLC, a firm specializing in coverage of multi-peril risks
by means of catastrophe bonds. Morton Lane (see Lane [9] and the references therein) provides an
insightful glimpse of Seo’s techniques, based on a talk Seo gave at the Conference on Risk-Linked
Securities in 2003. In the finance literature, Bielecki et al. [5] consider the pricing of contingent claims
on baskets of credit-default swaps (arguably a form of insurance) under arbitrage-free assumptions,
citing the m-out-of-n case as an example.

Fishman and Stidham [8] extend Seo’s model and dynamic pricing technique to a general m-out-of-n
model. They introduce Strategy C, giving a detailed analysis of its advantages over conventional static
reinsurance, with numerical illustrations for a small set of scenarios. The present paper expands this
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analysis by introducing Strategies A and S, while considering a larger set of scenarios and comparing
Strategy C to Strategies A and S with partial as well as full reinsurance.

Strategy C offers two potential benefits over traditional insurance/reinsurance: (1) it exploits the
fact that the m-out-of-n risk is a contingent claim, determined by the occurrence of events (quakes at
individual sites) for which there exist insurance markets; and (2) it is dynamic and adaptive rather than
static, taking advantage of new information at individual sites (quakes) to adjust its actions (reinsurance
coverages on sites that have not yet had quakes) over the course of the coverage period.

Our previous paper [8] compared Strategy C to a conventional form of reinsurance: simply ceding
to a reinsurer a fraction of the amount the insurer is obliged to pay the customer. That form does not
take advantage of either of the two benefits mentioned above. In the present paper, the baseline for
comparison is Strategy A, which has the real-world advantage that it is simple, while taking advantage
of the contingent-claim benefit by buying reinsurance on individual sites.

One objective of the present paper is to explore further the relative effects of the two potential benefits
of Strategy C and address the question: how much do the advantages of Strategy C (lower probability
of loss and, in some cases, lower premium) depend on each benefit? In particular, we compare Strategy
C to Strategy A, which exploits the contingent-claim benefit (1), but not the dynamic-adaptive bene-
fit (2). We also compare Strategy C to Strategy S, which, although also dynamic and adaptive, does
not depend as much as Strategy C does on the availability of reinsurance policies with short coverage
periods.

The use of utility theory for the analysis of models for insurance and reinsurance is widespread in the
literature, going back at least to the 1960s (see, e.g., [1, 2, 7]). As an alternative to traditional actuarial
methods for setting premiums, Bühlmann [3, 4] develops an economic model based on an equilibrium
solution for prices in a market with utility-maximizing insurers and reinsurers, each with a concave
utility function.

Utility theory provides a mechanism for comparing reinsurance strategies for situations in which the
insurer is exposed to basis risk, due either to ceding less than the total risk to reinsurers or to using a
reinsurance instrument that does not exactly cover the risk being insured, as is the case for example with
cat bonds based on risk indices. Both types of basis risk are present in the models of the present paper.
Rather than relying completely on utility theory, however, we also compare strategies with respect to
the probability of loss or gain, as mentioned previously.

Additional discussion and interpretation of the models and results are in the final section of the paper
(Concluding remarks).

2. Preliminaries

The study assumes the existence of a market that dictates a premium, cM, per dollar of coverage for a T
day period m-out-of-n policy. An insurer can only be a player in this market if he can offer the policy at
a premium c no greater than cM. His ability to do so depends on his attitude toward risk, as embodied
in his utility function, {u(w),−∞ < w < ∞}, which we assume is increasing concave in wealth w. Let

wI = insurer’s initial wealth or working capital
and

^ = insurer’s final wealth or working capital,
(1)

so that ^ −wI denotes the gain or loss that the insurer realizes when coverage ends. For a given strategy,
u(wI) denotes the insurance company’s utility at the beginning of the coverage period and Eu(^), his
expected utility at its end. Assume the company’s objective is to preserve the expected utility of its
initial wealth wI, so that it is indifferent between offering and not offering the policy at a premium per
dollar of coverage satisfying

Eu(^) = u(wI). (2)
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6 G. Fishman and S. Stidham

To facilitate comparisons, subsequent sections assume the insurer has the exponential utility function

u(w) = −e−Uw U > 0, and −∞ < w < ∞, (3)

where U reflects his tolerance for risk. Aversion to risk increases with U. For a utility function given
by (3), the indifference equation (2) is equivalent to

Eu(^ − wI) = −1. (4)

Analogous comparisons can be made using other concave increasing utility functions.

2.1. Reinsurer’s markup

To reduce risk, an insurer purchases individual coverage policies in a reinsurance market on each active
site, that is, each site that has not yet had a quake. At the beginning of the coverage period, Strategies
A and S purchase an individual reinsurance policy covering the T-day coverage period on each of the n
active sites from n reinsurers. During the coverage period Strategy A purchases no additional insurance,
but each time a quake occurs, Strategy S purchases additional reinsurance coverage for the remainder
of the coverage period. By contrast, at the beginning of each review period, including the first, Strategy
C buys reinsurance on each active site covering that period only, the amount of coverage depending on
the number of active sites and the time remaining in the coverage period.

Acquiring reinsurance incurs a cost based on the coverage amount, the coverage period, and reinsur-
ers’ markups, which reflect their levels of risk aversion. Let r denote the probability that a quake occurs
during the reinsurance interval and b, the reinsurance coverage amount to purchase per active site. A
reinsurer charges the insurer g(r, b) × r×b per active site, where g(r, b) denotes the markup that makes
a reinsurer indifferent between offering and not offering reinsurance. To determine g(r, b), we again
rely on expected utility theory.

Suppose a reinsurer has the concave increasing utility function, {_(w), −∞ < w < ∞}, where w
denotes his wealth. For given initial wealth w, the reinsurer’s final wealth is

^ := w + g(r, b)rb −


b if a quake occurs at the reinsured site

0 otherwise.
(5)

Then, for given r and b, the reinsurer’s indifferencemarkup g(r, b) satisfies the expected utility equation,
E_(^) = _(w). In the present context, this equation is equivalent to

(1 − r)_(w + g(r, b)rb) + r_(w + g(r, b)rb − b) = _(w). (6)

Expression (6) has at least two notable properties. First, g(r, b) is strictly increasing in the coverage
for given r. Also, g(r, b) is decreasing in the probability r for given coverage b, provided that the
Arrow-Pratt measure of absolute risk aversion, −_′′ (w)

_′ (w) , is non-increasing in w (equivalently, _(w) is
log-convex).2

As an illustration of a utility function with these properties, suppose a reinsurer has the exponential
utility function

_(w) = −e−_w , W > 0. (7)

2Fishman and Stidham [8, Prop. 6.1 and 6.2].
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Then, for each active site, his indifference premium for coverage b is g(r, b) × b × r, with markup

g(r, b) =
ln

(
1 − r + reWb)

Wrb
(8)

with limiting behavior

lim
r→0

g(r, b) = eWb − 1
Wb

≤ eW\ − 1
W\

, b ∈ [0, \],

and

lim
b→0

g(r, b) = 1.

For convenience of exposition, we hereafter assume that all reinsurers have the same exponential utility
function given by (7). Then the insurer’s cost of reinsuring n active sites is

ng(r, b)rb = nW−1 ln(1 − r + reWb).

All illustrations in this study assume utility functions (3) and (7) for the insurer and reinsurer
respectively.

3. Strategy A

Strategy A is a relatively conventional procedure. For coverage of \ dollars, an insurer with initial
wealth wI offers a customer an m-out-of-n policy at premium c per coverage dollar for a total premium
c\. After receiving this premium, the insurer has working capital equal to wI + c\. At the beginning of
the coverage period, the insurer uses funds from this working capital to make a one-time purchase of
reinsurance with coverage q on each of the n sites at a total cost n×g(q, q) ×q×q, where the reinsurer’s
indifference markup per dollar of coverage is

g(q, q) = ln(1 − q + qeWq)
Wqq

.

If m or more quakes occur during the coverage period T, the insurer pays the customer \ dollars. If j
quakes occur during the coverage period, then the insurer’s final working capital is

^A = wI + c\ − nW−1 ln(1 − q + qeWq) − Y (q, j), (9)

where

Y (q, j) := −jq + (1 − Ij<m)\, j ∈ {0, 1, . . . , n}, (10)

where Ia<b = 1 if a< b and 0 otherwise. In words, Y (q, j) is the portion of the insurer’s obligation to
the customer that reinsurance does not cover—the amount that he self-insures—given that j sites have
quakes in the coverage period. Note that Y (q, j) < 0 for j > 0 and sufficiently large q, in which case
the insurer retains a surplus from reinsurance after paying his obligation to the customer, thus making
a profit. If Y (q, j) > 0, then he incurs a loss.

This study assumes that quakes at different sites are probabilistically independent. The independence
of quakes across sites that are “widely separated geographically” is well established in geophysics,
provided, of course, that the separation is wide enough. At one extreme, there is little dispute about
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8 G. Fishman and S. Stidham

independence across sites on different continents. Independence might not apply, however, to sites that
are relatively far apart but located near the same fault or near different faults that are close enough that
a quake on one fault might result in added strain on the other. (Independence across time at a particular
site is arguably more problematic, but our model assumes that only the first quake at a site during the
year is relevant, so this is not an issue.)

For k > 0, denote the binomial probability mass function and cumulative distribution function
respectively by

f (j; k, r) =
(k
j
)
rj (1 − r)k−j r ∈ (0, 1), j ∈ {0, 1, . . . , k},

F (j; k, r) = ∑j
j=0 f (j; k, r) j ∈ {0, 1, . . . , k}.

(11)

The insurer first identifies solutions (c, q) that satisfy the indifference condition (2) for his exponential
utility function (3), that is

Eu(^A) = −
n∑

j=0
e−U^A f (j; n, q) = u(wI) = −e−UwI ,

or equivalently, using (4),

Eu(^A − wI) = −e−U[c\−nqg(q,q)q] ×

m−1∑
j=0

e−Ujqf (j; n, q) + eU\

n∑
j=m

e−Ujqf (j; n, q)
︸                                                       ︷︷                                                       ︸

h(q)=

= −1, (12)

subject to the constraints

0 ≤ q ≤ qmax, 0 ≤ c ≤ 1, (13)

where qmax denotes the maximal value of q that is eligible for inclusion in an indifference pair (c, q).
Note that h(q) = E[eUY (q,J ) ], where the random variable J := the total number of sites that have
quakes in the coverage period, and Y (q, j) (defined in (10)) is the portion of the insurer’s obligation that
reinsurance does not cover (the amount that he self-insures) given that J = j. In other words, h(q) is the
insurer’s expected disutility of the out-of-pocket cost he incurs if he purchases reinsurance coverage q
on each of the n sites at the beginning of the year.

3.1. Indifference premium

Let

A = collection of all 2-tuples, (c, q), that satisfy (12) and (13).

That is, A is the feasible, indifference set of (c, q) solutions for Strategy A each of which satisfies

c\ = W−1n ln(1 − q + qeWq) + U−1 ln h(q), (14)

which is equivalent to (12). In words, the 2-tuple (c, q) is an indifference solution for the insurer if
and only if the total premium c\ received from the customer equals the certainty equivalent of the
insurer’s total outlay, that outlay being the sum of the insurer’s total premium paid for reinsurance and
the amount of the risk that he self-insures. If the market-determined premium cM is no less than the
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Probability in the Engineering and Informational Sciences 9

smallest premium c in A, the insurer can be competitive by choosing a 2-tuple (c, q) ∈ A with c no
greater than cM.

Because the reinsurers’ total premium nW−1 ln(1 − q + qeWq) is convex, strictly increasing in q and
ln h(q) is convex strictly decreasing in q, c is convex in q. Moreover,

dc
dq

����
q=0

= nq −
∑m−1

j=1 jf (j; n, q) + eU\
∑n

j=m jf (j; n, q)∑m−1
j=0 f (j; n, q) + eU\

∑n
j=m f (j; n, q)

,

so that q < 1
n is sufficient for dc

dq |q=0 < 0. Hereafter we assume this condition is satisfied.
The remainder of this section assumes that the upper bound qmax is defined by the equation,

ln h(q) = 0, (15)

so that qmax is the unique value of q for which the certainty equivalent of the self-insured risk, namely,
U−1 ln h(q), equals zero. Then it follows from (14) that the constraints (13) on (c, q) are equivalent to

0 ≤ \−1ng(q, q)qq ≤ c < 1, (16)

and the indifference 2-tuple (c, q) satisfies

c\ = ng(q, q)qq = nW−1 ln(1 − q + qeWq) (17)

if and only if q = qmax, in which case the insurer uses all funds received from the customer (and only
these funds) to purchase reinsurance.

This choice for q = qmax is intuitively appealing because any larger value of q would require that the
insurer pay a portion of the cost for reinsurance out of pocket at the beginning of the coverage period.
Conventional wisdom regarding the purchase of reinsurance frowns on this practice.3

Three premium options of particular interest are:

Ai. For a minimal premium, choose c corresponding to the largest q ∈ [0, qmax] satisfying dc
dq ≤ 0

Aii. For maximal reinsurance coverage qmax, choose c = n(W\)−1 ln(1 − q + qeWqmax)
Aiii. For no reinsurance (q = 0), choose c = (U\)−1 ln h(0).

Proposition 3.1. The condition q < 1
n and the convexity of c in (14) imply:

(i) If dc
dq |q=qmax ≤ 0, cAi = cAii and qAi = qAii = qmax.

(ii) If dc
dq |q=qmax > 0, cAi < cAii and qAi < qAii = qmax.

(iii) The condition qeWqmax > [h(0)]W/nU − (1 − q) is sufficient for cAi < cAii and qAi < qAii = qmax.
(iv) cAiii > max[cAi , cAii].

The proof follows from the convexity of (14). As an illustration, for Proposition 3.1(iii), because we
have assumed that q < 1/n, (dc/dq) |q=0 < 0. Therefore, cAi < cAii if cAiii < cAii . The latter inequality
is equivalent to

3Appendix explores other possible choices for qmax and presents arguments in their favor based on reducing the indifference premium and/or
the probability of loss.
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10 G. Fishman and S. Stidham( W

nU

)
ln(h(0)) < ln(1 − q + qeWqmax), (18)

which in turn is equivalent to

[h(0)]W/nU < 1 − q + qeWqmax .

3.2. Loss and profit

Each solution in A has different implications for competitiveness, final working capital, and loss
probability. For all q ∈ [0, qmax], define

kj (q) := U−1 ln h(q) − Y (q, j), j ∈ {0, 1, . . . , n}, (19)

where Y (q, j) is defined by (10), and define

`A(q) :=
n∑

j=0
Ikj (q)<0 f (j; n, q). (20)

In words, kj (q) is the difference between the insurer’s certainty equivalent of the amount he self-insures
and the actual amount of self-insurance when j sites have quakes, and `A(q) is the probability that
this difference is negative. Note that these quantities are well defined and economically meaningful
regardless of the value of the premium c. For the special case where (c, q) ∈ A (that is, where c is the
indifference premium corresponding to q), it follows from the indifference equation (14) that

kj (q) = c\ − ng(q, q)qq − Y (q, j), j ∈ {0, 1, . . . , n},

so that in this case, kj (q) can also be interpreted as the net change in working capital when j quakes
occur during the coverage period and `A(q) as the probability that this net change is negative, that is,
the probability that the insurer incurs a loss.

Proposition 3.2. For options Ai and Aii, if

j >
W\ (1 − c)

q + (1 − q)e−Wq for some j ∈ {m, . . . , n}, (21)

then `A(q) = pr(# quakes ≥ m). If

q ≤ ln

[
1 − q

W\

n (1 − c) − q

]
, (22)

`A(q) = pr(# quakes ≥ m). If (22) holds, then the benefit of relying on reinsurance in Strategy A
arises from reducing loss while not affecting loss probability.

Because c ≤ 1 for option iii, `Aiii = pr(# quakes ≥ m) = 1 − F (m − 1; n, q).

3.3. Comparing options for Strategy A

Table 2 displays indifference premiums, loss probabilities, and reinsurance coverages for options i, ii,
and iii for Strategy A based on exponential utility functions for insurer and reinsurers and on variable
reinsurance markups as in (8). All entries were numerically computed.
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Table 2. Strategies A: Options i, ii, iii†.
(U = 4, W = 4, \ = 1, T = 365)

a. Indifference premium
q= 0.01
m option n= 2 n= 3 n= 4 n= 5 n= 10 n= 15 n= 20

2 Ai 1.097 × 10−3 2.869 × 10−3 5.165 × 10−3 7.895 × 10−3 2.635 × 10−2 5.039 × 10−2 7.812 × 10−2

Aii 1.098 × 10−3 2.883 × 10−3 5.212 × 10−3 8.003 × 10−3 2.733 × 10−2 5.342 × 10−2 8.453 × 10−2

Aiii 1.336 × 10−3 3.962 × 10−3 7.810 × 10−3 1.280 × 10−2 5.148 × 10−2 1.040 × 10−1 1.609 × 10−1

q= 0.05
2 Ai 1.853 × 10−2 4.218 × 10−2 6.966 × 10−2 9.980 × 10−2 2.672 × 10−1 4.287 × 10−1 5.627 × 10−1

Aii 1.881 × 10−2 4.368 × 10−2 7.347 × 10−2 1.071 × 10−1 3.127 × 10−1 5.505 × 10−1 7.975 × 10−1

Aiii 3.144 × 10−2 8.207 × 10−2 1.401 × 10−1 1.984 × 10−1 4.314 × 10−1 5.797 × 10−1 6.796 × 10−1

4 Ai … 1.085 × 10−2 4.152 × 10−2 8.995 × 10−2

Aii … 1.085 × 10−2 4.152 × 10−2 8.995 × 10−2

Aiii … 1.341 × 10−2 6.425 × 10−2 1.541 × 10−1

b. Loss probability
q= 0.01
2 Ai 10−4 2.980 × 10−4 5.920 × 10−4 9.801 × 10−4 4.266 × 10−3 9.630 × 10−3 1.686 × 10−2

Aii 10−4 2.980 × 10−4 5.920 × 10−4 9.801 × 10−4 4.266 × 10−3 9.629 × 10−3 1.686 × 10−2

Aiii 10−4 2.980 × 10−4 5.920 × 10−4 9.801 × 10−4 4.266 × 10−3 9.630 × 10−3 1.686 × 10−2

q= 0.05
2 Ai 2.500 × 10−3 7.250 × 10−3 1.402 × 10−2 2.259 × 10−2 8.607 × 10−2 1.655 × 10−1 2.483 × 10−1

Aii 2.500 × 10−3 7.250 × 10−3 1.402 × 10−2 2.256 × 10−2 8.511 × 10−2 1.348 × 10−1 1.887 × 10−1

Aiii 2.500 × 10−3 7.250 × 10−3 1.402 × 10−2 2.259 × 10−2 8.614 × 10−2 1.710 × 10−1 2.642 × 10−1

4 Ai … 1.028 × 10−3 5.467 × 10−3 1.590 × 10−2

Aii … 1.028 × 10−3 5.467 × 10−3 1.590 × 10−2

Aiii … 1.028 × 10−3 5.467 × 10−3 1.590 × 10−2

(Continued)
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Table 2. (Continued.)
q= 0.01
m option n= 2 n= 3 n= 4 n= 5 n= 10 n= 15 n= 20

c. Reinsurance coverage per active site
q= 0.01
2 Ai 0.0461 0.0731 0.0922 0.1071 0.1525 0.1771 0.1926

Aii 0.0497 0.0814 0.1051 0.1240 0.1854 0.2224 0.2488
q= 0.05
2 Ai 0.1229 0.1630 0.1857 0.2001 0.2203 0.2028 0.1717

Aii 0.1423 0.1970 0.2315 0.2565 0.3247 0.3565 0.3737
4 Ai ... 0.0209 0.0503 0.0774

Aii ... 0.0209 0.0503 0.0774

†Entries: blank := m> n; ... := `A (0) < 10−4.
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Probability in the Engineering and Informational Sciences 13

Because reinsurers tend to be less risk averse than insurers, it is not unreasonable to assume levels
of risk aversion W ≤ U. All comparisons are based on U = W = 4, allowing us to regard the reinsurer’s
markup as an upper bound. The tables show results for (m, n, q) scenarios for which option Aiii (no
reinsurance) has loss probabilities `A(0) ≥ 10−4. (When `A(0) < 10−4, there is arguably no incentive
for the insurer to consider reinsurance.)

The table reveals that:

A1. Option iii (no reinsurance) has the largest premiums. For q= 0.01, option ii premiums exceed those
for option i by relatively small amounts. For q= 0.05 andm= 2, option ii again has larger premiums,
but here the relative differences increase as n increases. For m= 4, options i and ii have the same
premiums for each n.

A2. For (m, q) = (2, 0.01) and (4, 0.05), all options have identical loss probabilities for each n, with one
minor exception. For (m.q) = (2, 0.05), they are also identical for n = 2, . . . , 5, but `A(qAii) <

`A(qAi) < `A(qAiii) for n = 10, 15, 20. That is, buying reinsurance for scenarios other than
(m.q) = (2, 0.05)

A3. For (m, q) = (2, 0.01) and (4, 0.05), option ii has smaller reinsurance coverage per active site. For
(m.q) = (2, 0.05), options i and ii have the same reinsurance coverages for each n, consistent with
having the same premiums in point A1. For this case, option i actually has the smaller loss for any
j ≥ m.

A4. The relatively large premiums for m = 2, q = 0.05, and n = 10, 15, 20 make an m-out-of-n
policy based on Strategy A unappealing for these scenarios. Later tables show the same is true for
Strategies S and C.

As expected for given m and q, option iii (no reinsurance) has the largest premiums and option ii has
the smallest in Table 2a. Moreover, premiums for option iii (maximal coverage) differ relatively little
from those for option ii, with the difference increasing as n increases.

With the exceptions of m= 2, q= 0.01, and n = 10, 15, 20, the three options have identical
loss probabilities to four digits in Table 2b. Clearly the condition of Proposition 3.1(i) is satis-
fied only for these exceptions. (See Appendix for further discussion of the implications of this
condition.) For m= 2 and q= 0.01, option ii’s reinsurance coverage per active site exceeds option
i’s by about 8% for n= 2, increasing to about 29% for n= 20. For m= 2 and q= 0.05, option ii’s
coverage exceeds that of option i by about 16% for n= 2, increasing to about 118% at n= 20.
However, both options have the same coverage for m= 4, consistent with their identical premiums in
Table 2a. This occurs because for (m, n, q) = (4, n, 0.05), c in (14) is strictly decreasing in q over
[0, qmax].

4. Strategy S

In contrast to Strategy A, which is static, Strategies S and C are adaptive. Each time a quake occurs,
Strategy S increases the amount of reinsurance coverage, whereas Strategy C (in the next section) adjusts
coverage periodically. Under Strategy S, the insurer offers the customer an m-out-of-n policy for a total
premium c\. After collecting the premium from the customer at the beginning of the coverage period,
the insurer with initial wealth wI now has working capital wI + c\. As with Strategy A, Strategy S uses
funds from working capital to purchase initial reinsurance coverage q on each of the n sites for the
entire coverage period. Both c and q are decision variables, the values of which are determined at the
beginning of the coverage period. Whereas Strategy A fixes the reinsurance coverage at the beginning
of the coverage period, Strategy S uses the proceeds from the reinsurance policies on the sites where
quakes have just occurred to purchase additional reinsurance for the remainder of the coverage period
on each remaining active site, until either m of the n sites have had quakes or the coverage period ends,
whichever occurs first.
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14 G. Fishman and S. Stidham

For a given quake history, let

T = number of days in coverage period

ji = number of quakes (≥ 1) on the i-th quake day , i ≥ 1

ki = ki−1 − ji = number of active sites at the end of the i-th quake day (k0 = n) , i ≥ 1

jl = (j1, . . . , jl) , 1 ≤ l ≤ m (j0 = (0))

Jl = {jl : ji ≥ 1 , 1 ≤ i ≤ l , j1 + · · · + jl < m} , 1 ≤ l ≤ m − 1

J ′
l = {jl : ji ≥ 1 , 1 ≤ i ≤ l , j1 + · · · + jl−1 < m ≤ j1 + · · · + jl} , 1 ≤ l ≤ m

si = day on which the i-th quake day occurs , i ≥ 1 (s0 = 0)

sl = (s0, s1, . . . , sl) , 1 ≤ l ≤ m

Sl = {sl : s0 < s1 < · · · < sl = T} , 1 ≤ l ≤ m

S ′
l = {sl : s0 < s1 < · · · < sl ≤ T} , 1 ≤ l ≤ m

S ′′
l = {sl : s0 < s1 < · · · < sl < T < sl+1}, 1 ≤ l ≤ m

For each definition, replacing a lower-case letter with a capital letter will denote the corresponding
random variable or vector.

Also let

xi = coverage per active site at the end of quake day si, i ≥ 0 (x0 = q)

bi = xi − xi−1 x−1 = 0 and i = 0, 1, . . . , l

p = 1 − (1 − q)1/T

=

(
probability that a quake occurs at an active

site on a given coverage day

)
qt = 1 − (1 − p)t

=

(
probability that a quake occurs at an active
site during the remaining t coverage days

)
.

(23)

Strategy S proceeds as follows:

S1. At the beginning of the coverage period, the insurer buys reinsurance coverage x0 on each of the n
sites for the entire coverage period.
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S2. Then, for 1 ≤ i ≤ l, if ji quakes occur on the ith quake day, si, the reinsurer pays jixi−1 to the insurer.
If ki = ki−1 − ji ≤ n − m, the insurer pays \ dollars to the customer and coverage ends.

S3. If si < T , and ki = ki−1 − ji > n − m, the insurer uses the ith payment from reinsurance, jixi−1, to
buy additional reinsurance coverage bi = xi − xi−1 on each of the ki remaining active sites for the
remaining coverage interval T − si. That is,

jixi−1 = kig(qT−si , bi)qT−sibi, 1 ≤ i ≤ l, (24)

with reinsurer’s markup (see (8))

g(qT−si , bi) =
ln(1 − qT−si + qT−sieWbi)

WqT−sibi
, 1 ≤ i ≤ l. (25)

Thus,

jixi−1 = W−1ki ln(1 − qT−si + qT−sie
Wbi), 1 ≤ i ≤ l. (26)

For given xi−1, ki, ji, and si, this equation has a unique solution for b i. (Uniqueness follows from
the fact that the r.h.s of (26) is strictly increasing in b i. Equation (29) below exhibits this solution
in closed form.) The corresponding value for the reinsurance coverage on each active site on day
si + 1 is

xi = xi−1 + bi, 1 ≤ i ≤ l. (27)

S4. If ji sites, each with coverage xi−1, have quakes on quake day si, 1 ≤ i ≤ l, then the insurer’s final
working capital is

^S = wI + c − nqg(q, x0)x0 +



0 if l = 0 (no quakes occur)

0 if kl > n − m and sl < T .

jlxl−1 if kl > n − m and sl = T

jlxl−1 − \ if kl−1 > n − m and kl ≤ n − m.

(28)

The unique solution to (26) is

bi = W−1
{
ln

[
eWjixi−1/ki − (1 − qT−si )

]
− ln qT−si

}
, 1 ≤ i ≤ l, (29)

from which it follows that

xi = xi−1 + W−1 {
ln

[
eWjixi−1/ki − (1 − qT−si )

]
− ln qT−si

}
, 1 ≤ i ≤ l,

xl = x0 + W−1 ∑l
i=1 ln

[
1 +

(
eWjixi−1/ki − 1

)
/qT−si

]
.

(30)
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16 G. Fishman and S. Stidham

The properties of xl play an essential role in subsequent sections. Clearly for every quake history, xl
increases with l. Moreover, because

dxl
dx0 =

dxl−1
dx0

[
1 + jl

kl
× 1

1−(1−qT−sl )e
−Wjl xl−1/kl

]
= 1 + ∑l

i=1

[
dxi−1
dx0 × ji

ki
× 1

1−(1−qT−si )e
−Wjixi−1/ki

]
> 0

l = 1, 2, . . . , (31)

and

d2xl
dx20

=
d2xl−1
dx20

[
1 + jl

kl
× 1

1−(1−qT−sl )e
−Wjl xl−1/kl

]

+
(
dxl−1
dx0

)2
×

W

(
jl
kl

)2
×(1−qT−sl )e

−Wjixi−1/ki[
1−(1−qT−sl )e

−Wjl xl−1/kl
]2

≥ 0,

l = 1, 2, . . . (32)

each xl is convex increasing in x0. Also, for given x0 each quake history, (jl, sl) ∈ (Jl ∪ J ′
l ) × Sl,

determines the locus of increments {b1, . . . , bl−1}.

4.1. Indifference premium

The challenge now is to determine H, the collection of all (c, x0) 2-tuples that make an insurer indif-
ferent between offering and not offering an m-out-of-n policy. That is, determine (c, x0) that solves the
indifference equation (4), which in this case takes the form,

Eu (^S − wI) = −e−U[c\−ng(q,x0 )qx0 ] × l(x0) = −1, (33)

or, equivalently,

c\ = ng(q, x0)qx0 + U−1 lnl(x0), (34)

subject to

0 ≤ \−1ng(q, x0)qx0 ≤ c ≤ 1, and x0 ≥ 0, (35)

wherel(x0) := expected disutility of the insurer’s self-insured share of the difference between final and
initial working capital for Strategy S (analogous to the function h(q) for Strategy A, defined in Eq. (12)
in Section 3).

To derive an explicit expression for l(x0), first note that

^S = wI + c\ − ng(q, x0)qx0 − Y (x0, (jl, sl)), (36)

where Y (x0, (jl, sl)) is the history-dependent component of the final working capital. See the analogous
expression (9) for ^A for Strategy A in Section 3. Like Y (q, j) for Strategy A, Y (x0, (jl, sl)) represents
the portion of the insurer’s obligation to the customer that is self-insured under Strategy S and l(x0) =
E(eUY (x0,(Jl ,Sl ) ) ).
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Probability in the Engineering and Informational Sciences 17

Now divide the collection of all histories, (jl, sl), l ≥ 1, into three non-overlapping sets, correspond-
ing to the three different possible expressions (see (28)) for Y (x0, (jl, sl)).

• for 1 ≤ l < m, Jl × S ′′
l is the set of histories (jl, sl) with fewer than m quakes in the coverage

period, the last one occurring on quake day sl < T , in which case Y (x0, (jl, sl)) = 0;
• for 1 ≤ l < m, Jl×S ′

l is the set of histories (jl, sl) with fewer than m quakes in the coverage period,
the last one occurring on quake day sl = T , in which case Y (x0, (jl, sl)) = −jlxl−1;

• for 1 ≤ l ≤ m, J ′
l × Sl is the set of histories (jl, sl) with m or more quakes in the coverage period,

with quake day sl ≤ T being the last quake day that begins with more than n−m active sites, in
which case Y (x0, (jl, sl)) = −jlxl−1 + \.

The corresponding probabilities for histories in each of three sets are:

• for 1 ≤ l < m and (jl, sl) ∈ Jl × S ′′
l ,

pr(Jl = jl,Sl = sl) =
l∏

i=1
[(1 − p)ki−1 (si−si−1−1) f (ji; ki−1, p)] (1 − p)kl (T−sl ) (37)

• for 1 ≤ l < m and (jl, sl) ∈ Jl × S ′
l ,

pr(Jl = jl,Sl = sl) =
l−1∏
i=1

[(1−p)ki−1 (si−si−1−1) f (ji; ki−1, p)] × (1−p)kl−1 (T−sl−1−1) f (jl; kl−1, p) (38)

• for 1 ≤ l ≤ m and (jl, sl) ∈ J ′
l × Sl,

pr(Jl = jl,Sl = sl) =
l∏

i=1
[(1 − p)ki−1 (si−si−1−1) × f (ji; ki−1, p)]. (39)

In all three equations, the quantity in brackets in the product is the conditional joint probability that the
ith quake day occurs on day si and that the number of quakes on that day is ji, given that the i − 1st quake
day occurs on day si−1 and ends with ki−1 active sites. In (37) the final expression after the product gives
the conditional probability that sl is the last quake day, given the history up to and including quake day
sl, since sl is the last quake day if and only if there are no quakes between sl and the end of the coverage
period. In (38), the final expression after the product gives the conditional probability that sl = T and
that jl quakes occur on that day, given the history up to and including quake day sl−1. In both (37) and
(38) fewer than m sites have quakes in the coverage period by the definition of Jl and the fact that sl
is the last quake day, by the definitions of S ′′

l and S ′
l . It follows that sl is also the last quake day in the

coverage period that begins with more than n−m active sites. In (39) the definition of the set of histories
J ′

l × Sl itself implies that the number of active sites at the end of quake day sl is less than or equal to
n−m and that it is the last quake day in the coverage period that begins with more than n−m active
sites. In this case, since m or more sites have had quakes by the end of quake day sl, what happens after
that day does not change the final working capital and therefore no additional probability expression is
needed. Note that in all three cases, the integer l equals the number of quake days in the coverage period
that begin with more than n−m active sites.
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18 G. Fishman and S. Stidham

It follows from (28) that

l(x0) := (1 − q)n + ∑m−1
l=1

∑
(jl ,sl ) ∈Jl×S′′

l
pr(Jl = jl,Sl = sl)

+∑m−1
l=1

∑
(jl ,sl ) ∈Jl×S′

l
e−Ujlxl−1pr(Jl = jl,Sl = sl)

+eU\
∑m

l=1
∑

(jl ,sl ) ∈J ′
l ×Sl e

−Ujlxl−1pr(Jl = jl,Sl = sl),

(40)

where the probabilities, pr(Jl = jl,Sl = sl), for the histories inJl×S ′′
l are given by (37), the probabilities

for those in Jl × S ′
l by (38), and the probabilities for those in J ′

l × Sl by (39).
Every 2-tuple (c, x0) in H satisfies (33) and (35), implying

c\ = ng(q, x0)qx0 + U−1 lnl(x0)

= W−1n ln(1 − q + qeWx0) + U−1 lnl(x0)
x0 ∈ [0, x0max], (41)

where x0max is defined as the unique value of x0 such that lnl(x0) = 0. The reinsurers’ initial premium,
W−1n ln(1 − q + qeWx0), is convex strictly increasing in x0, and lnl(x0) is convex in x0, so that c\ is
convex in x0, with derivative

dc
dx0

=
nq

q + (1 − q)e−Wx0
+ 1
Ul(x0)

dl(x0)
dx0

. (42)

Unlike Strategy A, Strategy S uses payments from reinsurers to insurer to increase the amount of
coverage for the original m-out-of-n policy. But like Strategy A, it has two options of special interest:

Si : choose x0 ∈ [0, x0max] to minimize c in (41)

Sii : choose x0 = x0max to maximize coverage per active site.
(43)

(Note that the option of choosing x0 = 0 (no reinsurance) coincides with option Aiii, which we already
considered in Section 3.)

Consider option Sii, for which U−1 lnl(x0) = 0. It follows from the indifference equation (41) that
the indifference 2-tuple (c, x0) satisfies the equation

c\ = ng(q, x0)qx0.

Now suppose l quake days occur during the coverage period. For an l − 1 (< m) day quake history
(jl−1, sl−1) followed by jl quakes on the lth quake day, it follows from (28) that final working capital is

^S = wI +



0 if kl > n − m and sl < T

jlxl−1 if kl > n − m and sl = T

jlxl−1 − \ if kl + jl > n − m and kl ≤ n − m,

where (30) defines xl−1. Interestingly, the insurer incurs a profit (that is, ^S − wI > 0) if at least one
quake occurs on the last coverage day T but fewer than m quakes occur during the coverage period.
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4.2. Loss and loss probability

Recall thatJ ′
l ×Sl denotes the collection of quake histories with l (≤ m) quake days for which reinsurers

pay the insurer jlxl−1 dollars on the last quake day sl and the insurer pays the customer \ dollars. For all
x0 ∈ [0, x0max], define

[(x0, jl, sl) := U−1 lnl(x0) − Y (x0, (jl, sl)) = U−1 lnl(x0) + jlxl−1 − \ , (jl, sl) ∈ J ′
l × Sl . (44)

In words, [(x0, jl, sl) is the difference between the insurer’s certainty equivalent of the amount he self-
insures and the actual amount of self-insurance for a quake history (jl, sl) ∈ J ′

l × Sl (cf. the function
k(q, j) for Strategy A, defined in Eq. (19) in Section 3). For the special case where (c, x0) ∈ H (that is,
where c is the indifference premium corresponding to x0) it follows from the indifference equation (41)
that

[(x0, jl, sl) = c\ − W−1n ln(1 − q + qeWx0) + jlxl−1 − \ , (jl, sl) ∈ J ′
l × Sl, (45)

so that in this case [(x0, jl, sl) can also be interpreted as the net change in working capital for the quake
history (jl, sl). A loss occurs if and only if [(x0, jl, sl) < 0, in which case the amount of the loss equals
−[(x0, jl, sl) > 0.

Define Ql := J ′
l × Sl for l ∈ {1, . . . ,m}. The probability of loss is

`S(x0) :=
m∑

l=1

∑
(jl ,sl ) ∈Ql

I[ (x0,jl ,sl )<0 pr(Jl = jl,Sl = sl), (46)

where pr(Jl = jl,Sl = sl) is given by (39). Obvious properties are:

• If mx0 ≥ \, then `S(x0) < pr(# quakes ≥ m).
• If there exists a quake history (jl, sl) ∈ Jl × Sl for l ∈ {1, . . . ,m} such that jlxl−1 ≥ \, then
`S(x0) < pr(# quakes ≥ m).

• Of special interest is a quake on each of m days, which has

pr[Jm = (1, . . . , 1︸   ︷︷   ︸
m

)] = n!
(n−m)!

(
p

1−p

)m
× ∑

1≤s1<· · ·<sm≤T (1 − p)s1+···+sm−1+(n−m+1)sm .

We first focus on loss.

Proposition 4.1. Let

Q = Q∞ ∪ · · · ∪ Qm

=

(
collection of all quake histories that end

with a payment of \ dollars to the customer

)
.

If [(x0max, jl, sl) > 0 for at least one quake history inQwith l quake days, there exists an x∗0 ∈ (0, x0max]
such that `S(x0) < 1 − F (m − 1; n, q) for all x0 ∈ (x∗0, x0max].

In words, Proposition 4.1 says that, if there is a quake history for which the net change in working
capital is positive on l quake days during the coverage period, there exists an initial reinsurance coverage,
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20 G. Fishman and S. Stidham

x0, on the n sites for the entire coverage period that ensures a probability of loss less than the probability
that at least m quakes occur at the n sites during the coverage period.

Proof of Proposition 4.1 Because [(x0, jl, sl) is convex in x0, it has its global maximum at either x0 = 0
or x0max. If it occurs at x0 = 0 for all quake histories in Q, then constraint (35) implies [(x0, jl, sl) < 0.
Moreover, d[ (x0,jl ,sl )

dx0

���
x0=0

< 0. Therefore, if for at least one quake history with l ∈ {1, . . . ,m} quake

days, the maximum occurs at x0max and [(x0max, jl, sl) > 0 then d[ (x0,jl ,sl )
dx0

���
x0=0

≥ 0, which proves the
existence of an x∗0 for which `S(x0) < 1 − F (m − 1; n, q) for all x0 ∈ (x∗0, x0max]. �

Proposition 4.2. Consider an m-out-of-n policy based on Strategy S with premium and initial coverage
per site (c, x0) ∈ H.

(i) If

q <
eWx0/n − 1

eW (m−1)x0 − 1
, (47)

then for a quake history in Q the most negative value of [(x0, jl, sl) (i.e., the maximum possible
loss) occurs when −[(x0, jl, sl) = L := −c\ + nW−1 ln(1 − q + qeWx0) − mx0 + \.

(ii) If q < m
m+(n−m)eW\/m , then x0 = x0max minimizes the maximum possible loss, L. ◽

An insurer sensitive to loss might want to guarantee, not only that the probability of loss is small,
but also that the maximum possible loss is not too large. Proposition 3.2 gives such “min-max” insurer
guidelines for making this maximum possible loss as small as possible. For options Si and Sii with m= 2
and q= 0.01, inequality (47) is satisfied for all 2 ≤ n ≤ 20. For m= 2 and q= 0.05, it is satisfied for all
2 ≤ n ≤ 14 for option Si and for 2 ≤ n ≤ 8 for option Sii. All (m, n, q) scenarios in Table 3 satisfy the
inequality in part ii.

Proof of Proposition 4.2 If inequality (47) is satisfied, then xi > mx0 for i ∈ {1, . . . ,m − 1}. Because
xi > xi−1 and q > qT−si > qT−si+1 , mxi > mx0 for i = 1, . . . ,m, the loss, −[(x0, jl, sl), can be no
larger than L = −c\ + nW−1 ln(1 − q + qeWx0) − mx0 + \, proving part i. To prove part ii, first note
that the upper bound on q implies that x0 < W−1 ln

[
m(1−q)
(n−m)q

]
for x0 ≤ \/m, which in turn implies that

dL
dx0 =

nq
q+(1−q)e−Wx0 − m < 0. Since x0max ≤ \/m, it follows that x0 = x0max minimizes the maximal

possible loss L. �

If there exists a quake history, (jl, sl) ∈ Ql, such that xl−1 ≥ \
n−l+1 , then `S(x0) < pr(# quakes ) ≥

m). More importantly, d2xi
dx20

≥ 0 (see (32)) and d2 ln l (x0 )
dx20

≥ 0 (see (40)) imply that {[(x0, jl, sl)} is convex
in x0, a property that motivates Propositions 4.1 and 4.2.

Some quake histories may produce a profit for the insurer. Suppose cSi < cSii , implying x0i < x0ii
and cSi\ −nqg(q, x0i)x0i > cSii\ −nqg(q, x0ii)x0ii = 0. Therefore, option Si, has the probability of profit
dS(x0i) = 1 − `S(x0i) whereas option Sii, has probability dS(x0ii) = 1 − (1 − q)n − `S(x0ii). Because
`S(x0i) − `S(x0ii) is usually small compared to (1 − q)n for small q, option Si has a greater probability
of profit than option Sii.

4.3. Comparing options for Strategy S

Table 3 displays premiums, reinsurance coverages, and loss probabilities for Strategy S. Most notably,
Strategy S’s premiums in Table 3a increase much more rapidly than those for Strategy A in Table 2a.
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Table 3. Strategy S†.
(U = 4, W = 4, \ = 1, T = 365)

a. Indifference premium
q= 0.01
m option n= 2 n= 3 n= 4 n= 5 n= 10 n= 15 n= 20

2 Si 3.592 × 10−4 1.061 × 10−3 2.091 × 10−3 3.435 × 10−3 1.446 × 10−2 3.173 × 10−2 5.419 × 10−2

Sii 1.353 × 10−3 3.786 × 10−3 7.174 × 10−3 1.144 × 10−2 4.425 × 10−2 9.361 × 10−2 1.573 × 10−1

q= 0.05
2 Si 8.337 × 10−3 2.344 × 10−2 4.414 × 10−2 6.947 × 10−2 2.390 × 10−1 4.265 × 10−1 5.870 × 10−1

Sii 2.229 × 10−2 6.061 × 10−2 1.124 × 10−1 1.758 × 10−1 6.317 × 10−1 n.f. n.f.
4 Si … 3.160 × 10−3 1.614 × 10−2 4.318 × 10−2

Sii … 7.178 × 10−3 4.481 × 10−2 1.268 × 10−1

b. Loss probability
q= 0.01
2 Si 9.952 × 10−5 2.966 × 10−4 5.894 × 10−4 9.754 × 10−4 4.243 × 10−3 9.577 × 10−3 1.676 × 10−2

Sii 5.833 × 10−5 1.750 × 10−4 3.480 × 10−4 5.731 × 10−4 2.490 × 10−3 5.611 × 10−3 9.866 × 10−3

q= 0.05
2 Si 2.485 × 10−3 7.208 × 10−3 1.393 × 10−2 2.245 × 10−2 8.551 × 10−2 1.696 × 10−1 2.620 × 10−1

Sii 1.438 × 10−3 4.214 × 10−3 8.184 × 10−3 1.317 × 10−2 5.072 × 10−2 n.f. n.f.
4 Si … 1.004 × 10−3 5.328 × 10−3 1.552 × 10−2

Sii … 8.680 × 10−4 3.952 × 10−3 1.028 × 10−2

(Continued)
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Table 3. (Continued.)
q= 0.01
m option n= 2 n= 3 n= 4 n= 5 n= 10 n= 15 n= 20

c. Initial reinsurance coverage per active site x0
q= 0.01
2 Si 0.0090 0.0174 0.0244 0.0326 0.0666 0.0914 0.1112

Sii 0.0600 0.1024 0.1356 0.1630 0.2561 0.3152 0.3585
q= 0.05
2 Si 0.0405 0.0716 0.0974 0.1183 0.1623 0.1594 0.1258

Sii 0.1620 0.2468 0.3044 0.3478 0.4774 n.f. n.f.
4 Si … 0.0029 0.0102 0.0197

Sii … 0.0140 0.0539 0.1036

†Entries: n.f. = not feasible; blank := m> n; … := `Aiii < 10−4.
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This is especially true for m= 5 and q= 0.05 where no feasible solutions exist for n> 15. A comparison
of Tables 2b and 3b reveals that:

S7. Strategy S has substantially smaller loss probabilities than Strategy A for options Ai and Aii.
S8. Option Sii has smaller loss probabilities than option Si.
S9. Both Si and Sii have loss probabilities that increase with n, whereas Strategy A’s loss probabilities

remain constant for options Ai and Aii for all but a few (m, n, q) scenarios.
S10. For both scenarios, option ii has considerably greater initial reinsurance coverage per site than

option i.

5. Strategy C

Strategy A determines its set of indifference solutions A as a function of m, n, q, and T. In addition to
these parameters, Strategy S also relies on the collection of quake histories∪m

l=1Jl×Sl and∪m
l=1J

′
l ×Sl to

determine its set of indifference solutions H, thus becoming both dynamic and adaptive. Specifically,
at the end of each coverage day on which a quake occurs, Strategy S buys additional reinsurance on
each remaining active site based on its choice of (c, x0) ∈ H and on the elapsed quake history. Thus,
reinsurance is purchased at random times during the coverage period.

Strategy C is also dynamic and adaptive, but in contrast to Strategy S, it buys short-term reinsurance
coverage periodically, for example, daily, weekly, or monthly, enabling it to decrease coverage when no
site has a quake during the period in question, as well as increase coverage when quakes do occur. This
section begins by describing daily review and then extends the approach to longer periods in Section 5.3.

By periodically purchasing short-term reinsurance coverage at individual sites, Strategy C is able
to exploit the rarity of more than one quake over short intervals. It bases its decisions on an algorithm
that uses backwards recursion to construct a schedule for the amounts of reinsurance to purchase and
cash to retain at the beginning of each period, given the number of active sites. This schedule in turn
determines the amount of working capital required to fund the initial purchases and retained cash. The
motivation for the algorithm is that following this schedule guarantees that this amount will exactly
cover the obligation to the customer regardless of the quake history, provided that no more than one site
has a quake in any given period. Quake histories with this property become more and more probable
as the length of the review period decreases. Moreover, in the limit as the length of the review period
approaches zero, with probability one an insurer using Strategy C incurs neither a loss nor a profit.

As with Strategies A and S, under Strategy C the insurer offers the customer an m-out-of-n policy for
a total premium c\. After collecting this premium from the customer at the beginning of the coverage
period, the insurer with initial wealthwI now hasworking capitalwI+c\. Strategy C divides the coverage
period into T review periods of equal length. To fix ideas, assume a coverage period of one year with
daily review and T = 365. At the beginning of the year the insurer sets aside funds from working capital,
wI+c\, to use during the year for (1) daily purchases of reinsurance with one-day coverage, and (2) cash
retained for future use. At the beginning of each day, the insurer uses retained cash from the previous
day plus proceeds from reinsurance on any site with a quake on the previous day as the source of
funds for the purchase of new reinsurance covering the current day and for cash to retain until the next
day.

In order to determine the schedule for periodic purchases of reinsurance and cash retention, and the
amount of working capital to set aside at the beginning of the year, Strategy C first constructs a table

v = {vtk; k = n − m + 1, . . . , n and t = 1, . . . ,T}, (48)

where

vtk := minimal required working capital at the beginning of remaining day t with
k remaining active sites that guarantees zero loss if Condition (50) holds.

(49)
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Condition:

Either
a. fewer thanm quakes occur during the coverage period and

no more than one quake occurs on each quake day,
or

b. more thanm − 1quakes occur during the coverage period but
no more than one quake occurs on each of the firstm − 1 quake days.

(50)

The amount of working capital to be set aside at the beginning of the year with n sites is given
by vTn. Presently we shall exhibit a system of equations (51) for v = {vtk} with a unique solution
which can be found by solving the equations by backward recursion from boundary conditions (52)
for t = 0 and k = n − m. Using the v table and expected utility, Strategy C determines the unique
premium c that makes the insurer indifferent between offering and not offering the m-out-of-n policy
(Section 5.1).

As we have noted, Strategy C is motivated by the observation that for a small quake probability
q, quake days rarely occur during short review periods. More precisely, if a quake day does occur
when k sites are active, the condition np < nq < 1 implies that the conditional probability that
j quakes occur on that day, f (j; k, p)/(1 − (1 − p)k), is monotone decreasing in j. That is, a single
quake is most probable. Strategy C exploits this property by concentrating on a particular subset of
quake histories, namely those satisfying (a) or (b). By constructing v to induce zero loss if (a) or (b)
hold, Strategy C reduces the probability of loss for the collection of all quake histories. In addition, as
we shall see, Strategy C continues to offer a benefit even when the quake history satisfies neither (a)
nor (b) of Condition (50). If no more than one quake occurs on each of the first l <m quake days but
quakes occur j > m − l on the next quake day l + 1, then the insurer may realize a profit with positive
probability.4

Most notably, for all quake histories satisfying either (a) or (b) in Condition (50), this m-out-of-n
policy is self-financing, that is, no additional funds beyond those set aside at the beginning of the year,
namely, vTn, are required to cover the obligation to the customer, regardless of howmany quakes actually
occur during the coverage period. Moreover, the schedule v = {vtk} is independent of an insurer’s level
of risk aversion. Finally, if instead of using our model in which multiple-quake days can occur, one
simply makes the fiat assumption that no more than one site can ever have a quake on a single day (so
that (a) holds for all quake histories), then the indifference premium c exactly equals vTn, the probability
of a loss or a gain equals zero, and the insurer’s indifference premium is also independent of his level
of risk aversion.

As promised, we now present the equations that uniquely define the table, v = {vtk}. Assuming
Condition (50) holds, the minimal working capital needed in state (t, k) is given by

vtk = kg(p, vt−1,k−1 − vt−1,k)p(vt−1,k−1 − vt−1,k) + vt−1,k

for all k ∈ {n − m + 1, . . . , n} and t ∈ {1, . . . ,T},
(51)

subject to the boundary conditions

vtk = \ k ∈ {0, 1, . . . , n − m} and t ∈ {0, 1, . . . ,T}

v0k = 0 k ∈ {n − m + 1, . . . . . . , n}.
(52)

4Fishman and Stidham [8, Sect. 6.1].
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Fishman and Stidham [8] describe Strategy C more comprehensively, providing a detailed deriva-
tion of these equations, the backwards recursive algorithm for solving them, and a rigorous proof (see
Proposition 3.1) that the solution to these equations satisfies Condition (50). The logic behind the equa-
tions and the algorithm is straightforward, however, and particularly easy to explain intuitively for a
quake history with no multiple-quake days (case (a) in Condition (50)). In this case, from state (t, k)
there are only two possible states at the beginning of the next day: (t − 1, k) if no quake on remaining
day t, and (t − 1, k − 1) if one quake. Suppose we already know the values of vt−1,k and vt−1,k−1, the
working capital required in states (t − 1, k) and (t − 1, k − 1), respectively. At the end of remaining day
t, there are two possible sources of funds: retained cash and the proceeds from reinsurance coverage if
there was a quake that day. The former is the only source of working capital for the next day if no quake
has occurred and must therefore equal vt−1,k . If there has been a quake then the payout from reinsurance
is added to this retained cash. Since the sum of the two must equal vt−1,k−1, the reinsurance coverage
x purchased on each of k active sites at the beginning of remaining day t must equal the difference,
vt−1,k−1 − vt−1,k . Hence the total working capital at the beginning of remaining day t must equal the
cash to be carried over to the next day, vt−1,k , plus the premium required to pay for this reinsurance,
kg(p, x)px. That is, Eq. (51) must hold.

If no quake occurs during the coverage period (quake-day history = (0,0)), the assignment v in (51)
and (52) induces final working capital

^C(0,0) = wI + c\ −
∑T

i=1
(vT−i+1,n − vT−i,n)

= wI + c\ − vTn,

where c denotes the premium per coverage dollar at which the insurer offers the m-out-of-n policy.
Thus, for c\ < vTn the insurer incurs a loss when no quakes occur, arguably an undesirable property.
Hereafter, we restrict attention to values of c such that c\ ≥ vTn. This restriction can affect the range of
parameter values for which an indifference premium exists. (See Section 5.1 below, which also presents
an alternative rationale for the restriction.)

More generally, an l ≥ 1 quake-day history (jl, sl) during the coverage period implies final working
capital

^C(jl, sl) = wI + c\ + Z (jl, sl) −


\ if kl−1 > n − m and kl ≤ n − m

vT−sl ,kl elsewhere,
where

Z (jl, sl) =
∑l

i=1

[
ji

(
vT−si,ki−1−1 − vT−si,ki−1

)
−

si−1∑
s=si−1

(vT−s,ki−1 − vT−s−1,ki−1)︸                              ︷︷                              ︸
=(vT−si−1,ki−1−vT−si ,ki−1 )

]

=
∑l

i=1(ji − 1)
(
vT−si,ki−1−1 − vT−si,ki−1

)
+ ∑l

i=1
(
vT−si,ki−1−1 − vT−si−1,ki−1

)
=

∑l
i=1 jivT−si,ki−1−1 −

∑l
i=1

[
vT−si−1,ki−1 + (ji − 1)vT−si,ki−1

]
.

(53)

The following quake histories illustrate the varied behavior of final working capital:
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C1. For one quake on each of l (< m) quake days (i.e., jl = (1, . . . , 1︸   ︷︷   ︸
l ones

)) (Condition (50 a)),

Z (jl, sl) =
∑l

i=1
(
vT−si,n−i − vT−si−1,n−i+1

)
= −vTn + vT−sl ,n−l,

(54)

so that ^C(jl, sl) − wI = c\ − vTn ≥ 0.
C2. For m quake days with jm = (1, . . . , 1︸   ︷︷   ︸

m−1ones

, jm) and jm ≥ 2 (Condition (50 b))

Z (jm, sm) = jm (vT−sm,n−m − vT−sm,n−m+1) + vT−sm,n−m+1 − vTn.

Although the insurer must pay the customer \ dollars, final working capital is

^C(jm, sm) − wI = (jm − 1) (\ − vT−sm,n−m+1) + c\ − vTn > 0

because boundary condition (52) implies vT−sm,n−m = \, and for fixed t {vtk} is monotone non-
increasing in k. In this case, the insurer earns a positive profit (i.e., ^C(jl, sl) > wI).

C3. Strategy C may also induce a profit for some quake histories with m or more quakes on l <m quake
days. even though Condition (50) does not hold, provided c\ − vTn and jl are large enough. As an
illustration, for an l-quake-day history with l <m and jl = (1, . . . , 1︸   ︷︷   ︸

l−1 ones

, jl) and jl > m − l + 1, final

working capital is

^C(jl, sl) = wI + jl (vT−sl ,n−l − vT−sl ,n−l+1) − \ (1 − c) + vT−sl ,n−l+1 − vTn.

The insurer realizes a profit if

jl >
\−vT−sl ,n−l+1

vT−sl ,n−l−vT−sl ,n−l+1
− (c\−vTn )

vT−sl ,n−l−vT−sl ,n−l+1

= 1 + \−vT−sl ,n−l
vT−sl ,n−l−vT−sl ,n−l+1

− (c\−vTn )
vT−sl ,n−l−vT−sl ,n−l+1

.

C4. When a multiple-quake day occurs, Strategy C continues to use the remainder of its v schedule,
starting in the new (t, k) state, and the conditional probability of incurring a loss increases. For
example, suppose j1 ∈ {2, . . . ,m − 1} quakes first occur on remaining coverage day t and that no
other quakes occur during the coverage period. At the end of coverage, the insurer’s final working
capital is

^C(jl, sl) = wI + c\ − (vTn − vt−1,n) + j1(vt−1,n−1 − vt−1,n) − (vt−1,n−j1 + v0,n−j1)

= wI + (c\ − vTn) + j1(vt−1,n−1 − vt−1,n) − (vt−1,n−j1 − vt−1,n).

Then a loss occurs if

j1 <
vt−1,n−j1−vt−1,n
vt−1,n−1−vt−1,n

− c\−vTn
vt−1,n−1−vt−1,n

.
(55)

If satisfied for all t, a loss. If satisfied for some but not all t, a loss occurs with probability less
than 1; if no t satisfies (55), then no loss occurs. Because {vtk} is convex non increasing in k,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0269964825100065
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 12 Oct 2025 at 19:09:06, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269964825100065
https://www.cambridge.org/core


Probability in the Engineering and Informational Sciences 27

vt−1,n−j−vt−1,n
vt−1,n−1−vt−1,n

>
vt−1,n−j−1−vt−1,n
vt−1,n−1−vt−1,n

≥ j. Therefore, if c\ = vTn, a loss occurs w.p.1. If c\ > vTn, then a
loss is more probable with large, rather than small, j1. As shown in Table 4 where \ = 1, c differs
relatively little from vTn.

5.1. Indifference premium

For a final working capital ^C based on a random quake history and given the v table, the indifference
premium c for Strategy C is the unique solution to Eu(^C) = u(wI). For an insurer with exponential util-
ity function (3) and reinsurers with exponential utility function (7), c solves the equivalent indifference
equation,5

c\ = U−1 ln{eUvTn (1 − q)n + eU\
∑m

l=1
∑

(jl ,sl ) ∈J ′
l ×Sl e

−UZ (jl ,sl )pr(Jl = jl,Sl = sl)

+∑m−1
l=1

∑
(jl ,sl ) ∈Jl×(S′

l ∪S
′′
l ) e−U[Z (jl ,sl )−vT−sl ,kl ]pr(Jl = jl,Sl = sl)},

(56)

where the probabilities, pr(Jl = jl,Sl = sl), for (jl, sl) ∈ J ′
l × Sl and (jl, sl) ∈ Jl × (S ′

l ∪ S ′′
l ) are given

by Eqs. (39) and (37), respectively, in Section 4.
In contrast to Strategies A and S where the expected utility equations (12) and (33), respectively, are

functions of both coverage and premium, Strategy C takes the coverage schedule (51) as given. Recall
that we have chosen to restrict attention to values of c such that c\ ≥ vTn, based on the observation
that otherwise the quake history (0, 0) with no quakes during coverage period incurs a loss, which is
counter intuitive and arguably an undesirable property. The following is an alternative rationale for this
restriction.

Suppose c\ < vTn(\), where the notation, vTn(\), recognizes the dependence of vTn on \ through
the boundary condition (52). Let a(\) := c\ − vTn(\) and suppose that c satisfies the indifference equa-
tion (56), so that a(\) is the certainty equivalent of the insurer’s expected disutility of his (random) share
of the obligation to the customer, analogous to the functions ln h(q)/U and lnl(x0)/U for Strategies A
and S, respectively. A negative value of a(\) therefore implies that an insurer using the expected-utility-
indifference criterion must pay the excess, −a(\) = vTn(\) − c\ > 0, out of pocket at the beginning
of the coverage period, behavior that again seems counter intuitive. But, following the expected-utility-
indifference criterion strictly, he should be willing to do this because at the end of the coverage period
he stands to recoup this expense exactly (in terms of expected utility) from the random profit, which,
although it can assume both negative and positive values, has a positive certainty equivalent, namely,
−a(\) > 0.6

By ruling out such behavior, our restriction to values of c such that c\ ≥ vTn(\) for Strategy C is
consistent with the restrictions, q ≤ qmax and x0 ≤ x0max for Strategies A and S, respectively. The
justification for these restrictions is the same for all three strategies: conventional wisdom dictates that
a prudent insurer should not accept a contract in which the total premium he receives from the customer
does not cover the reinsurance cost in full.

5.2. Loss

Strategy C has loss probability

5Appendix B in Fishman and Stidham [8] describes a procedure for computing cC.
6The appendix contains similar observations in the context of Strategy A.
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Table 4. Strategy C†.
(U = 4, W = 4, \ = 1, T = 365)

a. Indifference premium
q= 0.01
m days n= 2 n= 3 n= 4 n= 5 n= 10 n= 15 n= 20

2 1 1.335 × 10−3 3.958 × 10−3 7.806 × 10−3 1.280 × 10−2 5.153 × 10−2 1.042 × 10−1 1.613 × 10−1

7 1.328 × 10−3 3.940 × 10−3 7.781 × 10−3 1.278 × 10−2 5.185 × 10−2 1.054 × 10−1 1.638 × 10−1

30 1.301 × 10−3 3.874 × 10−3 7.695 × 10−3 1.272 × 10−2 5.343 × 10−2 1.116 × 10−1 1.768 × 10−1

q= 0.05
2 1 3.139 × 10−2 8.208 × 10−2 1.403 × 10−1 1.987 × 10−1 4.326 × 10−1 5.812 × 10−1 6.813 × 10−1

7 3.109 × 10−2 8.212 × 10−2 1.412 × 10−1 2.009 × 10−1 4.402 × 10−1 5.916 × 10−1 6.931 × 10−1

30 2.999 × 10−2 8.258 × 10−2 1.463 × 10−1 2.125 × 10−1 4.938 × 10−1 7.080 × 10−1 9.877 × 10−1

4 1 … 1.343 × 10−2 6.453 × 10−2 1.551 × 10−1

7 … 1.358 × 10−2 6.670 × 10−2 1.628 × 10−1

30 … 1.579 × 10−2 1.058 × 10−1 4.001 × 10−1

b. Loss probability
q= 0.01
2 1 2.740 × 10−7 8.178 × 10−7 1.627 × 10−6 2.699 × 10−6 1.185 × 10−5 2.697 × 10−5 4.576 × 10−5

7 1.923 × 10−6 5.740 × 10−6 1.142 × 10−5 1.894 × 10−5 8.313 × 10−5 1.892 × 10−4 3.127 × 10−4

30 8.333 × 10−6 2.487 × 10−5 4.949 × 10−5 8.206 × 10−5 3.596 × 10−4 8.172 × 10−4 1.179 × 10−3

q= 0.05
2 1 6.851 × 10−6 2.004 × 10−5 3.910 × 10−5 6.357 × 10−5 8.881 × 10−5 9.980 × 10−5 1.017 × 10−4

7 4.809 × 10−5 1.406 × 10−4 2.743 × 10−4 4.361 × 10−4 5.778 × 10−4 6.184 × 10−4 5.704 × 10−4

30 2.084 × 10−4 6.088 × 10−4 1.185 × 10−3 1.568 × 10−3 1.016 × 10−3 9.094 × 10−4 1.283 × 10−3

4 1 … 3.046 × 10−4 6.967 × 10−4 1.167 × 10−3

7 … 2.080 × 10−3 4.742 × 10−3 7.843 × 10−3

30 … 7.880 × 10−3 1.691 × 10−2 8.357 × 10−3

(Continued)
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Table 4. (Continued.)
q= 0.01
m days n= 2 n= 3 n= 4 n= 5 n= 10 n= 15 n= 20

c. vTn
q= 0.01
2 1 1.333 × 10−3 3.953 × 10−3 7.797 × 10−3 1.279 × 10−2 5.151 × 10−2 1.042 × 10−1 1.613 × 10−1

7 1.311 × 10−3 3.903 × 10−3 7.723 × 10−3 1.270 × 10−2 5.167 × 10−2 1.052 × 10−1 1.634 × 10−1

30 1.226 × 10−3 3.706 × 10−3 7.429 × 10−3 1.236 × 10−2 5.254 × 10−2 1.102 × 10−1 1.749 × 10−1

q= 0.05
2 7 3.092 × 10−2 8.184 × 10−2 1.409 × 10−1 2.004 × 10−1 4.396 × 10−1 5.911 × 10−1 6.928 × 10−1

30 2.917 × 10−2 8.116 × 10−2 1.443 × 10−1 2.099 × 10−1 4.878 × 10−1 6.984 × 10−1 9.720 × 10−1

4 1 … 1.336 × 10−2 6.435 × 10−2 1.548 × 10−1

7 … 1.305 × 10−2 6.535 × 10−2 1.608 × 10−1

30 … 1.291 × 10−2 9.728 × 10−2 3.818 × 10−1

†Entries: blank := m> n; ... := `Aiii < 10−4.
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`C(v) = pr(^C < wI)

=
∑m

l=1
∑

(jl ,sl ) ∈J ′
l ×Sl IZ (jl ,sl )<\ (1−c ) × pr(Jl = jl,Sl = sl)

+∑m−1
l=1

∑
(jl ,sl ) ∈Jl×(S′

l ∪S
′′
l ) IZ (jl ,sl )<vT−sl ,kl −\ c × pr(Jl = jl,Sl = sl),

(57)

where (53) defines Z (jl, sl), and the probabilities, pr(Jl = jl,Sl = sl), for (jl, sl) ∈ J ′
l × Sl and (jl, sl) ∈

Jl × (S ′
l ∪ S ′′

l ) are given by Eqs. (39) and (37), respectively, in Section 4. The first double summation
accounts for losses that may arise in quake histories with m or more quakes, and the second double
summation arises from losses due to quake histories with fewer than m quakes in total but at least one
multiple-quake day. As an illustration, for m= 2 and \ = 1,

`C(v) =
∑T

s=1 [F (max(Λs,2 − 1; n, p) − F (1; n, p)] (1 − p)n(s−1)

≤ [1 − (1 − q)n] ×
[
1 − np(1−p)n−1

1−(1−p)n

]
,

where
Λsn =

⌈
1−c+vTn−vT−s,n
vT−s,n−1−vT−s,n

⌉
.

(58)

For some quake histories with m or more quakes on fewer than m quake days, Strategy C may induce
a loss. As an illustration, consider a quake history with more than one and fewer than m on the first
quake day followed by l − 1 quake days each with one quake, and a total of m or more quakes in the
coverage period. The final working capital is

^C(jl, sl) = wI + c\ − vTn + j1(vT−s1,n−1 − vT−s1,n) + vT−s1,n − vT−s1,n−j1 .

The insurer incurs a loss (i.e., ^C(jl, sl) < wI if

1 < j1 <
vT−s1,n−j1−vT−s1,n+vTn−c\

vT−s1,n−1−vT−s1,n

= 1 + vT−s1,n−j1−vT−s1,n−1+vTn−c\

vT−s1,n−1−vT−s1,n
.

(59)

5.3. Multiple-day review

Although a daily reinsurance market may not exist, the previous description based on the one-day
concept provided a convenient way to introduce Strategy C.

Strategy C with daily review is an idealized model, designed to highlight the benefits of adaptive
dynamic purchasing of reinsurance in the context of multi-peril insurance. Although daily review and
daily coverage periods may not be realized in real-world applications (at least at present), neverthe-
less they demonstrate the full extent of the potential advantages that adaptive dynamic models offer.
The choice of one “day” as the length of the review interval was arbitrary and is not crucial to the
effectiveness of Strategy C. What is crucial is that there exists a review interval (1) short enough that
the probability of more than one site having a quake in that interval is “small,” and (2) long enough
that an insurance company is willing to offer a policy with the length of that interval as the coverage
period. In this context, “small” means small enough that quake histories with multiple-quake days have
a negligible effect on the indifference premium.

An insurer’s willingness to offer a policy with a “short” coverage period is affected by fixed costs as
well as the probability of a quake at the site during that period. Our model takes account of the latter
by assigning a higher markup (based on utility indifference) to risks with lower probabilities. As for

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0269964825100065
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 12 Oct 2025 at 19:09:06, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269964825100065
https://www.cambridge.org/core


Probability in the Engineering and Informational Sciences 31

fixed costs, we believe that the future for insurance as a whole will see more and more automation of
insurance for routine simple risks (e.g., coverage for a catastrophe at a single site in our model), with
minimal human intervention, perhaps with assistance from AI. ILS such as catastrophe bonds provide
an example where the underwriting process can either be bypassed or automated or both, resulting in
lower fixed costs.

In any event, to cover situations where one or both of conditions (1) and (2) fail to hold, we now
consider examples with longer review intervals and probabilities too large to make the effect of multiple-
quake days non-negligible, precisely because we recognize the ambitiousness of our assumptions for
the daily-review model.

To accommodate insurance markets with longer review intervals, when the probability of more than
one site having a quake in a single interval is non-negligible, a new model is needed. Let

Δ := number of coverage days between successive reviews

pΔ := probability that a quake occurs during Δ days

= 1 − (1 − q)1/bT/Δc .

For example, T = 365 and Δ = 1, 7, and 30 days correspond to bT/Δc = 365, 52, and 12 reviews
respectively.7 (Note that Strategy C with Δ = 365 corresponds to one review, namely at the begin-
ning of the year, in which case Strategy C is equivalent to Strategy A with an appropriate choice
of q. As expected, the indifference premiums and loss probabilities for Strategy C approach those
for Strategy A as Δ increases.) For q= 0.01, the corresponding quake probabilities are, respectively,
2.753× 10−5, 1.933× 10−4, and 8.372× 10−4. The working capital tableau v in (51) is computed with
pΔ replacing p.

Table 4 displays numerical results for Strategy C analogous to those for Strategies A and S. All
examples satisfy the restriction that we have imposed on the indifference premium c, namely, c\ ≥ vTn.
The table reveals that:

C5. Strategy C tends to have larger indifference premiums than Strategies A and S in Tables 2 and 3
respectively.

C6. Strategy C’s daily, weekly, and monthly premiums differ relatively little for small n. But as n
becomes large, monthly reviews have notably larger premiums than daily and weekly reviews.

C7. Daily-review loss probabilities are considerably smaller for Strategy C than those for A and S.
However, as review-interval length increases, Strategy C’s loss probabilities increase. That is an
expected result because the probability of multiple quakes during a review interval increases as
the number of days in the interval increases, so that ^C < wI for some quake histories with fewer
than m quakes.

C8. For fixed n and q= 0.05, loss probability increases for Strategy C as m increases from 2 to 4, in
contrast to Strategies A and S where it decreases.

6. Graphical comparisons between strategies

For a given scenario (m, n, q) and risk specification (U, W), each strategy generates one or more indiffer-
ence (premium,coverage) 2-tuples each of which induces a loss probability for the insurer. A graphical
analysis provides a convenient way to examine the tradeoffs between premium and loss probability for
each strategy and for comparing strategies.

7Review intervalsΔ = 1, 7, and 30 correspond to 365, 364, and 360 day coverage periods, respectively. The differences have a relatively negligible
effect on the numerical results presented here.
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a. m = 2, n = 2, q = 0.01
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Figure 2. Feasible indifference (c, `).

Figures 2 and 3 show these tradeoffs for the three strategies. All illustrations have U = W = 4. The
right end of the solid (blue) line in Figure 2a shows the largest feasible premium for Strategy A and the
left end, the smallest premium. As implied by Proposition 3.2 in Section 3, Strategy A’s loss probability
remains constant for all feasible 2-tuples. Strategy S’s indifference 2-tuples exhibit considerably dif-
ferent behavior. Recall from Section 4 that its premium decreases to a minimum as coverage increases
and then increases as coverage continues to increase. Its smallest premium in Figure 2a occurs at the
inflection point of the dashed (red) curve. The curve’s lower arm shows that loss probability decreases
as the coverage and corresponding indifference premium c increase, whereas its upper arm shows that
loss probability appears almost invariant as premium increases, but coverage decreases. As previously
mentioned, Strategy C has a single indifference 2-tuple for a given review period. Daily, weekly, and
monthly review intervals in Figure 2a all exhibit loss probabilities considerably smaller than those for
the other strategies, but show larger premiums. Moreover, loss probability increases with the length of
the review interval.

When the number of sites is increased to n= 4 in Figure 2b, the same relationships remain among the
three strategies. However, those relationships change markedly when the quake probability q increases.
In addition to larger premiums, Figure 3a reveals that longer review intervals for Strategy C result in
greater loss probabilities than those for Strategies A and S. Nevertheless, daily review intervals continue
to give a substantially smaller loss probability. But increasing the number of sites to n= 20 in Figure 3b
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a. m = 4, n = 10, q = 0.05
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Figure 3. Strategies A, C, and Sii: Feasible indifference (c, `).

again shows that for the three review periods, Strategy C’s loss probabilities are smaller than those for
Strategies A and S.

Figures 4 through 6 reveal how loss probability behaves as m, n, and q increase. For m= 2 and
q= 0.01, Figure 4 shows that option ii of Strategy S has smaller loss probabilities than Strategy A
but Strategy C’s are substantially smaller than Strategy S’s for all three review periods. Although that
ordering continues for m= 2 and increased quake probability q= 0.05 in Figure 5, Strategy C’s monthly
review curve is not strictly increasing in n.

Figure 6 for m= 4 and q= 0.05 shows a more varied ordering.8 Daily reviews for Strategy C continue
to show the smallest loss probabilities but monthly reviews have the largest ones for n= 7 through 18.
Table 5 shows the loss probability orderings for Figure 6.

7. Concluding remarks

In contrast to Strategy A which is static, Strategies S and C are dynamic and adaptive. Both respond to
quakes during the year by increasing the amount of reinsurance coverage on each remaining active site.

8For n< 7 and q= 0.01, Strategy A’s loss probabilities are less than 10−4.
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m = 2, q = 0.01
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Figure 4. Strategies A, C, and Sii: Loss probability µ.

m = 2, q = 0.05
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Figure 5. Strategies A, C, and S: Loss probability µ.

Strategy C is the more adaptive of the two, in that it can change the coverage—increasing or decreasing
it—at any of a discrete set of review points, whether or not a quake has occurred. Themore review points
the better when it comes to adaptability. In the limit as the length of the interval between review points
approaches zero, the probability of more than one quake occurring in a review interval approaches
zero and the behavior of Strategy C becomes deterministic. Specifically, no matter how many sites
have quakes during the year, the remaining working capital dictated by its schedule exactly covers the
amount owed to the customer, namely, \ if m or more sites have had quakes and 0 if not. It follows that,
if the premium charged the customer equals the beginning working capital dictated by the Strategy C
schedule, then in the limit both the probability of a gain and the probability of a loss become zero.

But this “beneficial” behavior comes at a price, since the premiummarkup for reinsurance coverage at
each active site increases as the length of the review/coverage interval decreases. It is for this reason that
Strategy S often outperforms (i.e., has a smaller indifference premium than) Strategy C, even though
it is permitted to change the reinsurance coverage only at time points where one or more sites has a
quake. Specifically, while lacking Strategy C’s ability to decrease this coverage at time points where
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m = 4, q = 0.05, µAii < 10−4 for n < 7
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Figure 6. Strategies A, C, and S: Loss probability µ.

Table 5. Loss probability orderings.
Loss probability ordering in Figure 6

(1= smallest, 5=largest)

n Aii Sii Cdaily Cweekly Cmonthly

7-14 3 2 1 4 5
15-17 4 2 1 3 5
18 4 3 1 2 5
19 5 3 1 2 4
20 5 4 1 2 3

no quake occurs, Strategy S benefits from the fact that the additional reinsurance coverage purchased
whenever a quake does occur has as its coverage period, not just the time until the next review point, but
the time remaining until the end of the year. Since the markup decreases as the length of the coverage
period increases, this gives Strategy S a potential advantage over Strategy C, which can overcome the
disadvantage of not being able to reduce the coverage at review points where no quakes occur. The
numerical results in this paper illustrate the range of possibilities.

Strategy S is a generalization of the strategy proposed by John Seo for the special case m = n = 2, as
presented in Lewis [10]. Seo uses this example to examine the relationship between the premiums for
single-peril andmulti-peril risks. Inspired by Seo, Lane [9] picks up this topic in the context of cat bonds,
observing that “John Seo’s basic message is that in choosing among different cat bonds and evaluating
their pricing it is first important to simplify.” He begins by making the simplifying assumption that “if
a bond suffers a loss, it is a total loss.” The reader will have noted that we make the corresponding total-
loss-only assumption in our analysis of premium pricing for m-out-of-n policies, leaving the analysis of
policies covering partial losses for another day.

Seo’s model and the analysis in Lane [9] make two additional (implicit) assumptions, which we
have not made in this paper: (1) no more than one site can have a quake during any review interval; (2)
single-peril insurance purchased during the year has a markup that is independent of its coverage period,
that is, the time remaining in the year. By itself assumption (1) leads Seo’s model to underestimate the
expected-utility indifference premium as compared with Strategy S. Assumption (2) is equivalent to
assuming that all single-peril policies have a coverage period of one year and that, if no quake has
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occurred at a particular site by the end of the year, the policy on that site has zero redemption value
for the remaining unused duration of its coverage period. By itself Assumption (2) has the effect of
overestimating the indifference premium relative to Strategy S. The effects of these two simplifying
assumptions therefore tend partially to cancel each other. Again, the numerical results in the present
paper provide illustrations.

If one were tomake all of the above three assumptions, and in addition assume a complete frictionless
market for buying and selling single-peril policies with no arbitrage allowed,9 then there would be only
one possible premium that an insurer could charge for the m-out-of-n policy, namely the one dictated
by our recursive algorithm for Strategy S. Fishman and Stidham [8] observe that making these same
assumptions in the context of Strategy C leads to a similar conclusion.

Under these (unrealistic) assumptions our m-out-of-n model would resemble models for pricing
derivatives of financial instruments and the arguments would be basically the same, albeit in a discrete-
time, discrete-state setting rather than the setting of continuous time and state used, for example, in the
model of Black and Scholes [6]. But the result of making all these assumptions would not be a realistic
model in the insurance setting. For these reasons, in the present paper (as in Fishman and Stidham [8])
we have chosen not to make all these assumptions, while retaining the total-loss-only assumption, and
we use expected utility combined with the probability of loss to compare strategies.
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Appendix A

The discussion of indifferent pairs (c, q) in Section 3 used the equation,

ln h(q) = 0, (A.1)

to define the upper bound qmax for feasible values of q. This choice, now denoted q
(1)
max, is the unique

value of q for which the certainty equivalent of the self-insured risk, namely ln(h(q))/U, equals zero.
Different choices for qmax are possible, depending on the insurer’s preferences. For example,

q
(2)
max := \/m, (A.2)

is the smallest value of q that guarantees zero loss with probability one.

9Cf. Lane [9]: “Our approach is to explore ‘arbitrage-equivalent’ pricing in which covers can be either bought or sold.”
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For the first choice, q (1)
max, the constraints on (c, q) are equivalent to

0 ≤ \−1ng(q, q)qq ≤ c < 1, (A.3)

and the indifference pair (c, q) satisfies

c\ = ng(q, q)qq = n ln(1 − q + qeWq)/W (A.4)

if and only if q = q
(1)
max. Note that in this case the insurer uses all of the funds received from the customer

(and only these funds) to purchase reinsurance. Even though the probability of loss after reinsurance
is positive, so is the probability of gain. The certainty equivalent of loss mixes these probabilities, and
since it equals zero in this case, there is no need to retain funds for self-insurance in order to meet the
utility-indifference criterion.

By contrast, for q = q
(2)
max, the loss after reinsurance equals zero with probability 1. An insurer who is

extremely sensitive to loss might wish to consider utility-indifferent pairs (c, q) with q ∈ (q (1)
max, q

(2)
max],

even though the funds received from the customer are not sufficient to cover the reinsurance required to
achieve utility indifference. In this case, the insurer has, in effect, two sources of funds, those received
from the customer, namely c\, and the certainty equivalent of the net gain, − ln h(q)/U > 0, so that the
indifference condition implies

c\ − ln h(q)/U = ng(q, q))qq > c\.

That is, even though the total cost of reinsurance exceeds the revenue received from the customer, the
indifference condition is still satisfied because of the additional revenue source, the certainty equivalent
of the net gain that the insurer will receive.

We also note the following surprising property: even an insurer interested only in maximizing the
expected utility of his final wealth (equivalently, minimizing the indifference premium to charge the
customer) may prefer a value of q ∈ (q (1)

max, q
(2)
max]. Letting q∗ denote the value of q that minimizes

(over all q ∈ [0,∞)) the expected disutility of the insurer’s total outlay, namely,

eUn ln(1−q+qeWq )/W × E(eUY (q,J ) ] = eUng(q,q)qq × h(q).

Then it can be shown that q∗ < q
(2)
max, but it is possible that q∗ ∈ (q (1)

max, q
(2)
max]. (See examples below.)

Since q∗ also minimizes the certainty equivalent of the disutility of the insurer’s total outlay, it follows
that its associated indifference premium, c∗, is the minimal indifference premium c corresponding to
a value of q ∈ [0, q (2)

max]. Thus these examples exhibit an indifference pair (c∗, q∗), in which c∗ is the
minimal premium, but q∗ > q

(1)
max. In addition, (c∗, q∗) provides a smaller loss probability than any pair

(c, q) with q ≤ q
(1)
max.

As an illustration, consider the case m= 2, n= 5, \ = 1, with q= 0.05 and U = 4. For W = 0 (the extreme
case of a risk-neutral reinsurer), Figure A1 displays three curves, each as a function of q:

• the total premium paid for reinsurance, n ln(1 − q + qeWq)/W (in blue);
• the certainty equivalent of the self-insured risk, ln h(q)/U (in red);
• the sum of these two, which is the indifference premium associated with q (in yellow).

Note that the coverage q∗ corresponding to the minimal premium, c∗ lies in the interval (q (1)
max, q

(2)
max).

Figures A2, A3, A4, and A5 illustrate the effect of increasing W to 1, 2, 3, and 4, respectively. For W = 1,
q∗ still lies in the interval (q (1)

max, q
(2)
max), whereas for W = 2, W = 3, and W = 4, q∗ ∈ [0, q (1)

max). (Note that
for W = 2, q∗ is only slightly less than q

(1)
max).
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n = 5, m = 2, q = 0.05, θ = 1, α = 4, γ = 0
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Figure A1. Strategy A: Indifference premium c as function of q.

n = 5, m = 2, q = 0.05, θ = 1, α = 4, γ = 1
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Figure A2. Strategy A: Indifference premium c as function of q.

The conventional wisdom in the insurance community is that reinsurance should be paid for only out
of the proceeds the insurer receives in the form of a premium from the customer. The body of this paper
adheres to this conventional wisdom. For many situations, this is not just accepted practice but can be
justified by mathematical arguments, for example, using utility theory. In the present paper, however,
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n = 5, m = 2, q = 0.05, θ = 1, α = 4, γ = 2
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Figure A3. Strategy A: Indifference premium c as function of q.

n = 5, m = 2, q = 0.05, θ = 1, α = 4, γ = 3
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Figure A4. Strategy A: Indifference premium c as function of q.

the kind of reinsurance under consideration differs in significant ways from conventional reinsurance,
in which the reinsurer is simply agreeing to share the amount of the insurer’s obligation (in this case,
to pay if at least m out of the n sites have quakes), whereas in the models of this paper each reinsurer is
assuming a related but different obligation (namely, to pay if a quake occurs at a particular site). This can
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n = 5, m = 2, q = 0.05, θ = 1, α = 4, γ = 4
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Figure A5. Strategy A: Indifference premium c as function of q.

result in the proceeds from reinsurance only approximating the needs of the insurer, with the possibility
of both profits and losses to the insurer, which in turn leads to the sort of surprising phenomena we have
illustrated with these examples.
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