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ABSTRACT. We use simple numerical and analytical models of ice flow and heat flow to
characterize the shape of isochrones and isotherms beneath moving ice divides. Both non-
linear ice flow and reduced accumulation (wind scouring) at a divide can cause reduced
downward flow in a region about one ice thickness wide under a divide. Greater downward
velocities on the flanks cause isochrones and isotherms to become arched at depth. The
magnitudes and shapes of these arches depend on the history of divide position. Arch ampli-
tudes decrease by approximately e ' for each increase in migration rate of 3-5 times the
accumulation rate, the arches become asymmetric, with steeper leading edges and more
gentle trailing edges, and the arch apex lags behind the divide. Isochrone and isotherm
shapes can be used to infer past divide motions. In advection-dominated ice sheets, isochrone
shapes record a longer history of divide position than do isotherm shapes. The opposite is
true for diffusion-dominated ice sheets, in which a spatial array of ice-temperature measure-

ments might extend the recorded history of divide position.

INTRODUCTION

Ice divides are places on ice sheets where the ice-velocity and
heat-flow patterns are distinctive and unique because of the
non-linear nature of the constitutive relation for ice. The low
deviatoric-stress state at an ice divide causes deep ice to be stiff
to deformation directly beneath the divide (Raymond, 1983).
In addition, special accumulation patterns at ice divides such
as wind scouring (Fisher and others, 1983) can alter the flow
field. Altered ice flow also affects the temperature field. These
patterns in ice and heat flow cause isochrones and isotherms to
be arched in a zone a few ice thicknesses wide beneath a steady
ice divide. The shapes of 1sochrones and i1sotherms are also
sensitive to the history of the divide position. Under steady
flow conditions with no motion of the divide, the predicted
arch size for isochrones and isotherms is large. With relatively
slow movement of the divide, the arch is more subdued, while
with rapid divide motion the arch can be undetectable. The
present shape of isochrones and isotherms at a divide may
record past positions of the divide and provide clues to past
geometry of the ice sheet. The memory time depends on the
dynamic and thermal characteristics of the ice sheet and is
not necessarily the same for isochrones and isotherms.
Arched isochrones have been observed with ice-pene-
trating radar beneath several ice divides in West Antarctica.
Their shapes have been used to infer past motion of the
divide, relative changes at the boundaries of the ice sheet,
spatial accumulation variability, recent ice-sheet thinning
rates, and timing of ice-sheet formation (Nereson and
others, 1998; Conway and others, 1999; Vaughan and others,
1999; Nereson and Raymond, 2001). While each of these
interpretations is relevant to a specific site, we present here
the generic patterns of isotherms and isochrones associated
with moving ice divides. We develop a generic kinematic
flow model by abstracting only the features necessary to
deform isochrones and isotherms. We calculate characteristic
time and length scales governing the memory time and reso-
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lution of past changes in divide position that can be inferred
from isochrones and isotherms.

Our aim is to provide the theoretical framework in which
field measurements of isochrones and isotherms are used to
infer the divide-position history for an ice sheet. In theory,
1sochrones are identified by contouring the age field, and iso-
therms are identified by contouring the temperature field. In
practice, isochrone shapes are typically identified directly
using radar measurements without knowledge of the age
field, while isotherms are typically identified by temperature
measurements at various locations in a borehole or set of
boreholes. To be consistent with typical field measurements,
we describe the shape of a given 1sochrone in terms of a height
(not age)difference Az(z, z), relative to the far-field layer
height z; and we describe the shape of a given isotherm in
terms of a temperature difference AT'(x, z) relative to the
far-field ice-sheet temperature at a given depth.

ICE-FLOW MODEL

To calculate isochrone shapes in a migrating flow field, we
track ice particles in a continuous two-dimensional kine-
matic flow field in which the velocities at the ice surface are
determined by mass continuity (vertical velocity @ = accumu-
lation rate b(%) at the surface), and velocities at depth follow
prescribed shape functions which can vary with position.
Tildes indicate dimensional quantities. We consider two
mechanisms for the formation of a divide arch in the iso-
chrones: (I) a non-linear constitutive relation (strain-rate-
dependent viscosity) and (2) local accumulation scouring
(associated with the topography of a divide). For the first
case, the depth variation of the horizontal and vertical
velocity field varies with position Z and is described by a par-
titioning between shape functions typical of flow remote from
the divide (flank) and shape functions typical of flow at the
divide for ice deforming according to Glen’s flow law where
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the strain rate is proportional to the third power (n =3) of the
shear stress. For the second case, the velocities are scaled to
the accumulation rate at the ice surface, and the shape of the
depth variation of flow does not vary with Z. Our formulation
is similar to that of Reeh (1988) and Nereson and others (1998).
We choose to use a kinematic flow model over other methods
such as a stress-balance model (e.g. Raymond, 1983; Hvid-
berg, 1996) because this allows us to capture the essential
causes and effects of layer shape changes and to easily pre-
scribe and control the rate of divide motion, while keeping
the problem as simple as possible. Our kinematic model accu-
rately reproduces isochrone shapes predicted from a full
stress-balance model for a steady-state ice divide. Divide
motion is simulated by moving the flow field laterally at a con-
stant rate m as the ice particles are tracked. Isochrone shapes
are calculated by joining particle tracks at constant ages.

Shape-function description of ice velocities

Consider a steady-state ice sheet deforming in plane strain
with no divide motion. Let  denote distance along flow
from the divide and Z denote distance upward from the
bed. We assume flat bedrock and uniform ice thickness H
independent of Z. This assumption is justified for a kine-
matic model because ice-thickness variations are small near
an ice divide and because flow in our model can be deter-
mined by continuity, rather than by stress balance. Distance
coordinates are scaled to the ice thickness I:I, so that the
non-dimensional position is z = #/H, and z = %/ H. Hori-
zontal and vertical velocities @(z, z), W(x, z) and the accu-
h scaled to a reference
u(zx, z) = /by,

mulation pattern b(z) are

accumulation rate by so that
w(z, 2) = /by, and b(x) = b(z) /by

For a given accumulation pattern b(z), the horizontal
velocity averaged over depth (as indicated by an overbar)
() is determined by continuity:

/ " b(a) ' = a(x) (1)
0

The depth variation of horizontal velocity at a given scaled
distance z from the divide is represented by a shape function
¢(z, z) that varies with z and z so that

u(z, z) = u(x)p(x, 2) . (2)
The shape function must satisfy ¢(x,0) = 0 (frozen bed)
and fol ¢(z)dz = 1 so that ¢(x,1) = us/u where ug is the
non-dimensional horizontal velocity at the ice surface.

The vertical velocity field w(z, z) is determined from in-
compressibility 0,u = —0,w. Differentiation of u(x, z) with
respect to x and integration with respect to 2 yields the vertical
velocity field:

w(z, z) = —b(z) /qubdz’ — u(x) /Ozang dZ.  (3)

When z =1, w(z, 1) = b(x). To simulate a moving divide, we
move the velocity field at a rate 77 = mby and make calcu-
lations in a reference frame (indicated by “*”) that moves
with the divide. The horizontal velocity in the moving-divide
reference frame is

U*((E*,Z*) :u(:r*,z*) —-m, (4)
and the vertical velocity in the moving reference frame is
unchanged so that w*(z*, 2*) = w(z*, z*). With this con-
struction, z = 0 1is always the divide position. We drop the
asterisks from now on and assume that we are always in the
moving-divide reference frame.
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Divide flow from non-linear constitutive law

Assuming that the arched internal layers beneath the divide
are caused solely by non-linearity of the stress—strain-rate
relation for ice, and the accumulation rate b(xz) = 1is uni-
form, we prescribe the horizontal velocity shape function
¢(z, z) in Equation (2) as a linear combination of a shape
function ¢q(z) for pure divide flow with a non-linear flow
law, and a shape function ¢¢(z) for pure flank flow,

¢(x,2) = a(z)da(z) + [1 — a(2)]d(2). (5)
The function a(x) describes the partitioning between flank-
like and divide-like flow regimes. The partitioning function
a(x) should decrease monotonically from unity at the
divide to zero far from the divide. Substitution of Equation
(5) into the vertical velocity Equation (3) yields

w(z, z) = —{(a + 20,) /OZ ¢a(7)d

+[1 - (a+20,0)] /0 “ () dz’} :

= —[B(x)da(2) + (1 = B(x))¥u(2)].  (6)
The integrals 1q(z) = [ ¢a(7)d2 and ¥¢(z) = [¢p()d2

are shape functions for the divide and flank vertical velocities.
The vertical velocity at position z is partitioned between 1)q
and 1) according to the function

B(z) = a(z) + z0p0(x), (7)
and the total velocity field can be written as:
u(z, z) = w(z){a(z)da(2) + [1 — ()] dr(2)}
w(z, 2) = —{B(z)¢a(2) + [1 - B@)]Yx(2)} -
The horizontal and vertical velocities have different par-
titioning functions which are related via continuity require-
ments according to Equation (7). Once we choose shape

functions ¢q(z) and ¢¢(z) (or 14(2) and v¢(2)) and a parti-

tioning function «(x) (or B(x)) for either horizontal or verti-

(8)

cal velocity, the other velocity equation directly follows.
Nereson and others (1998) took a slightly different approach
and used only one partitioning function for u(z, z). Vertical
velocity w was then determined directly from continuity.
Our present approach results in simpler and more intuitive
expressions for the velocity field.

We use a Dansgaard—Johnsen formulation for the
velocity shape functions (Dansgaard and Johnsen, 1969).
This allows a wide variety of velocity shapes to be repre-
sented while maintaining analytical simplicity. The flank
horizontal velocity shape function ¢y is given by:

_ 1 z/hy for z < hy,
d)f(Z)_l—hf/Q{ 1 fOI‘Zth, (9)

and ¢4(2) is defined by a similar equation with an associ-
ated hq value such that 0 < hy < hq <1.The corresponding
vertical velocity shape function is:

Yr(z) = /OZ oe(2) dd
1

B { 22/(2hy)
1= he/2 2= he/2
and an associated equation for 14(2) given hq.

Our choice for hy and h; determines the difference

forz < hy, (10)

forz > hy,

between flank and divide velocities (and hence arch ampli-
tude), which depends on degree of non-linearity n in the ice-
flow law (€ = A7"). When n =1, hq = hg, and an arch does
not form. When n = oo (perfectly plastic ice), ice beneath the
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Fig. 1. Depth profiles of vertical velocity w for pure flank
(B = 0, solid curve ) and pure divide (3 = 1) flow conditions.
The divide-flow regime is caused by either a non-linear flow
law (dot-dashed line) or local accumulation scouring that
moves with the divide (dashed curve ).

divide is infinitely stiff to deformation (w(0, z) = 0) and the
amplitude of the arch is equal to the ice thickness. The param-
eters hy = 0.2 and hq = 0.6 are chosen so that the velocity
profiles and associated age—depth relationships both at the
divide and remote from the divide match (within 5%) those
predicted by a full stress-balance calculation of ice flow where
the degree of non-linearity is given by n = 3 (Raymond, 1983;
Nereson and others, 1996). Figure I shows the vertical velocity
profiles for pure flank (o = 8 =0; solid line) and pure divide
(a = 3 =1; dash-dotted line)conditions.

Figure 2 shows the partitioning function pair a(z) (solid
dots) and [(z) (open circles) from a stress-balance model of
ice flow where the degree of non-linearity is given by n = 3
(Raymond, 1983; Nereseon and others, 1996). The divide influ-
ence on horizontal velocity extends several ice thicknesses out
from the divide. For vertical ice motion, however, the divide
influence is confined to within about 1 ice thickness of the
divide. This difference between horizontal and vertical parti-
tioning of flank and divide flow is evident in the stress-
balance models by Raymond (1983) and Hvidberg (1996).

For modeling purposes, we define analytical, continu-
ously differentiable partitioning function pairs that match
the stress-balance model (within 5%), have a value of 1 at
the limit as x — 0, monotonically approach 0 far away from
the divide, and obey Equation (7). We choose (§(z) to be a
Gaussian function where the divide zone is defined by the
characteristic width o:

Bla) = ex - %) | (1)

The positions = £o0 mark the inflection points of the func-
tion (3, and o is roughly equivalent to the half-width of 5(x)
at half its maximum value. Equation (7) requires

a(z) = % erf (J%) . (12)

The value o =~ 0.5 gives the best match in a least-squares sense
to the stress-balance model velocities in Figure 2. The resultant
total width of the divide zone of about 1 ice thickness is consis-
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Fig. 2. Partitioning functions o(x) (Equation (12), solid
curve) and B3(x) (Equation (11), dashed curve) for o =
0.5. Solid dots and open circles correspond to partitioning
between flank and divide flow from analysis of horizontal
(solid) and vertical (open) velocity profiles from a finite-
element stress-balance calculation.

tent with an estimate based on the transition from pure shear
to simple shear-type deformation in Raymond (1983).

We use velocity Equations (8) and (4), together with the
partitioning functions (11) and (12) and prescribed values for
hq and Ry to track ice particles in a migrating flow field. We
assume uniform accumulation, so that b(z) = 1.

Divide signature from local accumulation minimum

The traditional non-linear theory for ice deformation may
break down at some ice divides because of the low-stress
regime there (Waddington and others, 1996). If ice behaves
predominantly as a linear fluid in the divide zone, then an
arch would not be expected to form in the internal layers.
However, a local low in the accumulation pattern over an
ice divide caused by wind scouring (Fisher and others,
1983) could also leave an arched internal layer pattern.

To simulate this condition, we remove the influence of a
non-linear flow law by specifying velocity shape functions ¢
and 1) that do not vary with position x so that ¢(z, 2) = ¢¢(2)
and ¢(z, z) = (). However, we prescribe an accumu-
lation pattern b(z) that includes a local minimum over the
divide. We represent the accumulation low as one cycle of a
cosine bell curve where W defines the width of the divide
zone (in units of H) and Ab defines the scouring rate (in units
of the far-field accumulation rate 50):

b(x)z{l‘%[”COS(%ﬂ’ forlel =W 13
1, for|z| > W.

We expect that W = [ since our accumulation minimum is
associated with local scouring at the divide and the topog-
raphy of ice divides becomes rounded about 1 ice thickness
from the divide (Scambos and others, 1998). We take W =1
for the remaining analysis in this paper. Since the velocity
shape function does not vary in z, the velocity equations
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Ing. 3. Isochrone pattern caused by (a—d) non-linear flow law (1 =3) and by (e—h) local accumulation minimum (30% ) over divide
(W =1, Ab = 0.3)_for various divide-migration rates m. The divide is at x = 0 and moving to the righ.

reduce to the familiar Dansgaard—Johnsen formulation
(Dansgaard and Johnsen, 1969):

z
1 —, forz < he,
u(z, z) = ﬂ(ac)—ht he (14)
1-— 5 1, forhs<z,
and
2
1 QZT’ for z < hy,
w(x, z) = fb(:z:)ihf £ (15)
1_5 z——, forhs <z.

Figure 1 shows the depth variation of vertical velocity for pure
flank (solid curve) and pure divide flow (dashed curve).
Given accumulation scouring parameters W and Ab
(Equation (13)),we simulate divide motion according to
Equation (4) by moving the flow field defined by Equations
(14) and (15) at a constant rate m. For these calculations we

set W =1, Ab =03 and h; = 0.2.

MODEL RESULTS: ISOCHRONES

In reality, most ice divides probably have signatures from
both non-linear rheological properties and a local accumu-
lation minimum. Both processes may need to be considered
when interpreting internal layering beneath specific ice
divides (Nereson and others, 1998). However, here we con-
sider only the two end-members.

Figure 3 shows the predicted isochrone shapes for vari-
ous rates of divide migration, m, for each mechanism of
layer arch formation. Qualitatively, the arch shape is
similar in both cases. We define the amplitude of the arch
Az as the difference between the maximum height of a
given isochrone (near the divide) and its far-field height
remote from the divide. With no divide motion, the divide
arch 1s pronounced and symmetric, and reaches a maxi-
mum amplitude that depends either on the non-linearity of
the ice constitutive relation (e.g., when n = 3, maximum
Az =~ 0.10) or on the degree of accumulation scouring (e.g.,
when Ab= 0.3, maximum Az~ 0.2). With increasing
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divide-motion rates, the amplitude of the divide arch is
more subdued and the shape 1s more asymmetric.

Figure 4 shows how the amplitude Az of the arch varies
with the far-field layer height z for increasing migration rate
m and for each mechanism of divide flow. Since the layers
must conform to the surface and the bed, the largest arch
occurs at a depth some distance above the bed. The amplitude
of the arch is large when m < 1, is reduced to half of its ori-
ginal amplitude when m = 2, and is nearly gone when m > 10.

The depth profile of the arch amplitude is different for
each of the two divide-flow mechanisms. The maximum
arch amplitude occurs at shallower depths in the accumu-
lation scouring case. Further experiments (not shown) indi-
cate that this is true regardless of choice of scouring
parameters Ab and W. At high migration rates, the maxi-
mum arch amplitude is found very near the surface. Also,
the amplitude of the arch caused by the accumulation low
has a linear variation with depth near the ice surface, while
the arch caused by a non-linear constitutive relation has a
quadratic variation with depth. This difference is related to
the depth variation of vertical velocity w(z) for each mech-
anism. With a non-linear flow law, the difference between
the vertical velocity profiles for divide and flank flow is most
pronounced at depth, while for accumulation scouring it is
most pronounced at the surface (Fig. 1). Vaughan and others
(1999) used this near-surface difference to determine which
process caused internal layer arching at several sites on
Fletcher Promontory, West Antarctica.

The location of the shallowest point on each isochrone
(which we will call the apex) is related to the divide-motion
rate. Without divide motion, the apex of each layer is directly
under the divide. With increasing divide motion, the apex is
increasingly offset from the modern divide location, and the
magnitude of the offset increases with depth. For isochrones
detected with radio-echo sounding techniques at ice divides,
this simple measure can be used as a quick estimate of direc-
tion and relative rate of divide motion (Nereson and others,
1998). Figure 5 shows how the position of the apex varies
with depth and with migration rate for each divide-flow
mechanism. For m < 4, the apex-position curve has a positive
curvature and a slope greater than unity near the divide,
while for m > 4, the trend has a negative curvature and a
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Fig. 4. Divide arch amplitude vs height above the bed on flanks for (a) non-linear constitutive relation (n = 5) and (b) local accumulation
minimum (Ab =0.5) at various migration rates: m = [0, 0.5, 0.5, 1, 2,4, 6, 10, 15, 20]. In both cases, when m = 2, the maximum arch
amplitude is approximately half of the value at m = 0 (no divide migration ).

slope less than 1 near the divide. In general, the arch offset at
depth for a given migration rate is less for a non-linear flow
law than for accumulation scouring.

AN ANALYTICAL APPROACH: ISOCHRONES

A simple analytical description of the problem would show
which features of the numerical solution are fundamental
and robust. In addition, analytical tools would allow simple
interpretation of isochrone arch amplitude and position in
terms of migration rate, without numerical models. We
propose that only a few free parameters are necessary to
capture the essential features of isochrone shape, and that
this shape can be described analytically. These fundamental
parameters are ice thickness ET, accumulation rate b~0,
divide-motion rate 1, and scalars defining the velocity field

(e.g. hy and hg).
Layer shapes
The asymmetry of the layer shapes in Figure 3 can be ex-

plained by a simple conceptual model of divide migration.
Consider an Eulerian view where we are interested in the
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ice-deformation process at a particular position (x, z) in
the ice column. We imagine a migrating divide zone as a
“boxcar” function that passes by our position on the ice
sheet. Divide flow is “on” during the time the divide zone
passes our position and “oft” otherwise. We assume that ice
moves only downward, and we ignore complications such as
smooth partitioning (Equation (5)) between flank- and
divide-flow regimes, and the extending component of flow
away from the divide.

We define a characteristic time 7, associated with the
time a given column of ice spends in the divide zone as the
divide passes by at a rate 1

WH  Fay
Fo =t — Tdym (16)
m m

where gy, = H / 50 is the characteristic time for vertical ice
flow and m = T?L/I;O is the non-dimensional migration rate.
Since we take W = 1 for accumulation scouring, 7, is the
same for both divide-flow mechanisms. When m =1, the char-
acteristic time for horizontal divide motion 7,, is the same as
the characteristic time for vertical ice flow 7qy,. For m <1,
vertical ice flow dominates the development of isochrone
shapes, and horizontal divide motion has a minimal effect.
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Iug. 5. Position of arch apex vs height above the bed for various migration rates: m= [0,0.3,0.5, 1, 2,4, 6, 10, 15, 20]. ( a) Non-linear ice-
Slow law,n = 3. (b) Local accumulation minimum, W = I, Ab = 0.5.

https://doi.org/10.3189/172756502781831647 Published online by Cambridge University Press

99


https://doi.org/10.3189/172756502781831647

Journal of Glaciology

e e
= %

e
'S

Height above bed, z

0.2

Distance from divide, x

Fig. 6. Boundaries of diwvide-flow influence for various
migration rates (m = [0, 0.5,0.5, 1, 2,4, 8, 15] ). The gray
shaded region shows the area of divide influence for m = 1.
Below the boundary, ice has experienced some divide flow
and isochrones are arched. Above the boundary, ice has experi-
enced pure flank flow. Form > 0.5, the upstream influence of
the divide zone s restricted to x < 0.5 because no ice escapes
the front of the moving divide zone.

The time a given column of ice spends in the divide zone is
greater than the age of the ice in most of the ice column, and
most layers in the column have enough time to develop a
steady-state arch. Since divide flow is “on” uniformly inside
the divide zone, each layer develops a “boxcar”-like arch.

For increasing m, horizontal divide motion inhibits the
development of the isochrone arch. Most of the ice in the
ice column passes through the divide zone before the layers
can fully develop an arch. In addition, the arch becomes
more asymmetric. Ice at the leading edge of the divide zone
is just leaving the flank zone and encountering divide flow
for the first time; 1t has had no time to develop an arch. Ice
at the trailing edge of the divide zone may have experienced
divide flow for most or all of its history, so layers there have a
well-developed arch. Ice behind the moving divide has some
memory of previously being in the divide zone, so the iso-
chrones there are still somewhat elevated. Because informa-
tion about the past divide position is lost after the migrating
divide zone passes over a column of'ice, 7,,, is also a memory
time, marking how long isochrones can maintain a record of
divide position (given a migration rate m).

Although we neglect horizontal ice flow in our conceptual
model, horizontal flow extends the influence of the divide by
carrying arched layers out of the divide zone. With divide
motion, this influence is asymmetric. In our analytical model
where the divide zone has a distinct edge, flowlines originat-
ing at the edges (z ~ % 0.5) mark the boundary between ice
that has experienced divide flow and ice that has not. Using a
simple flank-flow vertical velocity (k¢ =0), and now incorpor-
ating the extending horizontal flow (previously neglected),
the flowlines originating at the edges of the divide zone are

Zinfluence(Z) = (£0.5 —m)/(x —m) (17)

for positive and negative values of z, respectively. The region of
divide influence, defined by Equation (17), is shown in Figure 6
for various values of m. When m > 0.5, the scaled half-width of
the divide zone, a vertical boundary develops ahead of the
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moving divide front so that no ice ahead of the divide has
experienced divide flow. In the lee of the moving divide, its
influence is felt at large distances away from the divide when
m > 1. More generally, for hy > 0, Equation (17) determines
the divide influence boundary in the upper part of the ice sheet
(z > hg) where the vertical strain rate is constant. This asym-
metric influence pattern also contributes to the asymmetric
layer shapes in Figure 3. When the velocity in the divide zone
is controlled by continuous partitioning functions(Fig. 2), the
divide-zone edge is less distinct, but Equation (17) still approxi-
mates the zone of divide influence.

Arch amplitude

For a steady-state divide, the arch amplitude Azeady is simply
the difference between heights (2 and 2q) for a given layer of
age a when comparing flank and divide depth—age relation-
ships. This can be found by integrating the vertical velocity
profiles w(z) and wq(z). For a new divide, where divide flow
1s imposed at time ¢ = 0 on a set of initially flat flank layers,
the total evolution time for arch growth at a given depth is
equal to the age of ice at that depth. The layer that was at the
surface at the moment of divide onset separates layers below,
which experienced the prior flow pattern, from those above,
which have no memory of the prior flow pattern. When this
layer reaches any depth, the arch at that depth has evolved to
its final steady-state value. Conversely, the time for total decay
of the arch (Az =0) at a given depth after the divide moves
away is also equal to the age of the flank ice at that depth.
The transitional layer is the ice deposited at the surface at
the moment that the divide left. When this layer reaches
any depth, then the arch is entirely gone at that depth.

This analysis can be applied to the case where the migrat-
ing divide zone is simplified as a moving “boxcar” function of
width W =1 that passes over each column of ice at rate m.
Let ¢ = 0 denote the time when the moving divide zone
encounters a particular ice column. The time that this col-
umn of ice spends in the divide zone is 7,;, = f[/ﬁz In scaled
units, 7, = 7~'m/7~'dyn = 1/m. During this time (¢ < 7,), a
divide arch can grow in the ice column. At shallow depths,
where scaled age a = d/f'dyn of the flank ice is less than 7,
ice in the column has experienced only divide flow since its
deposition, and the arch is fully developed. At greater depths,
where the age of the ice is greater than 7,,, ice in the column
has experienced a combination of first flank then divide flow,
and arch growth terminates prematurely at ¢t = 7, before
reaching full steady-state amplitude. At times ¢ > 7,,, after
the divide has passed by our ice column, the divide arch
decays from either its steady-state value or its truncated value.

To arrive at expressions for the development of the
divide arch amplitude, Az, for a given migration rate m,
we apply these concepts to a series of adjacent ice columns
for the specific cases where divide flow is due to a non-linear
flow law or to a local minimum in the accumulation pattern.

Non-linear flow law

A simple way to represent a non-linear constitutive relation is
to use the end-member velocities where hy = 0 (“Nye flow”
(Nye, 1963)) and hq = 1 (“Raymond flow” (Raymond,
1983)). Then wg(z) = —3/H = —z for flank flow and
wq(z) = —(2/H)* = —#2 for divide flow. These arches are
larger than those found with a more realistic vertical velocity
pattern, but have the advantage of being analytical. The
steady-state arch amplitude Azgeady(a) for a layer with age
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0.3 ( Equation (25) ).
a 1s then the difference in layer height between the divide and
flank:
Azstcady(a) =

= o) — 2la) = 1 — expl—a).

14+a
(18)

The variation of arch amplitude Az(z) with height above
the bed is found by substituting the age—depth relation for
flank ice, zr(a) = exp(—a). This fully developed arch is
found at shallow depths where time ¢ since divide arrival is
greater than the age a of the layer.

Straightforward analysis (unpublished) shows that the
divide arch growth at a given depth 2 in time ¢ since divide
onset for a set of initially flat layers is

_ Zl — (exp(—t) + t2)
grow exp(—t) + tz

Az(z,t) , t<a=-—In(2)

(19)
and the decay of a steady-state arch in time ¢ after the divide
moves elsewhere is

Az(z,1) :M_Z,

. t<a=-1 .
decay 1— 11’1(2) —t >a D(Z)

(20)

For a divide moving at rate m (and associated total time

T = 1 /m that a given column of ice is in the divide zone), the

arch amplitude for a layer at height z on the flank that has

experienced divide flow since its deposition (z > exp(—1/m))

is found by substituting the age of the flank ice @ = In(1/%)

for ¢ in Equation (19). For older, deeper ice at z <

exp(—1/m) that experienced flank flow prior to ¢t = 0, the

arch amplitude is found by substituting ¢t = 7, = 1/m in

Equation (19) so that
1

1 —1In(z)

1 —exp(—=1/m)+ z/m
T exp(—1/m) + 2/m

-z, z > exp(—1/m),
Az(z) =

, z<exp(—1/m).

(21)

Figure 7a shows Az(z) profiles from Equation (21) for vari-
ous values of m. Also shown for comparison are the arch
amplitudes calculated from the numerical model with h¢ =
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0 and hg =1. Our analytical expression predicts all the quali-
tative features of the full numerical result, and, given the
additional assumptions, predicts the magnitude acceptably
well. Our slight over-prediction arises because we neglect
extending ice flow and we apply the divide vertical velocity
over the full width of the divide zone.

Local accumulation minimum

Again assuming the Nye end-member velocity field where
hs = 0, we can obtain a comparable expression for the arch
amplitude Az(z), given a migration rate m for divide flow
caused by a local accumulation minimum. Vertical velocities
are wy = —z and wg = —z(1 — Ab). As before, the steady-
state arch amplitude is the difference in heights at a given
age a:

AZgeady(a) = za(a) — 2zt (a) = exp(—a)[exp(aAd) — 1] .
(22)

A series expansion of the exponentials in Equation (22)
shows that the steady-state arch amplitude is proportional
to Ab for small Ab.

For divide onset at ¢ = 0 in initially flat layers, it is
straightforward to show that the arch amplitude in the layer
at depth z on the flank at time ¢ grows according to
Az(2,1) gy = 2tlexp(tAb) —1]. (23)
Similarly, the decay of a steady-state arch after the divide
moves away (when ¢ > 7,) can be shown (unpublished
analysis) to follow

Az(z,t)

decay

- exp(aAb) — exp[(t — 7,,) Ab]
= Azgrow(z7 aor Tm){ exp(aAb) -1 } .
(24)

In the Eulerian view of the “boxcar” divide zone passing
over a column of ice at a rate m, the divide arch at height 2z
grows according to Equation (22) until the ice that was at
the surface at divide onset (¢ = 0) reaches z. If the divide
zone passes by before this ice reaches z, then the arch
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growth (Equation (23)) terminates at ¢t = 7,,, = 1/m. The
arch amplitude in a layer at flank depth z 1s

_ z (Z’Ab — 1),
259 = { istom
Figure 7b shows the amplitude Az(z) of the arch for various

values of m (and associated 7,,) according to Equation (22)
and the prediction from the full numerical model for Ab =

z>exp(—1/m),
z <exp(—1/m). (25)

0.3. Our analytical approximation, which is based only on
the differing vertical velocities between divide and flank
flow, is similar to the full numerical calculation for a wide
range of m values, demonstrating that we have captured
the essential processes.

Apex position

Another useful quantity that characterizes the shape of iso-
chrones under a migrating divide is the position of the arch
apex (Fig. 5). To locate the apex, it is necessary to describe
how isochrone shape varies with position z. If the divide is
not moving, all ice in the divide zone experiences divide flow
and a“boxcar” layer shape develops in our analytical model.
The amplitude of this “boxcar” is given by the steady-state
amplitude at each depth (Equation (21) or (25)). The “apex”
of the layer in this case is the center of the “boxcar” If the
divide is moving, the isochrone shapes can be obtained from
the equations for arch growth and decay using the trans-
formation to the Lagrangian reference frame:

t:WT_x, (26)

where 1/2 is the scaled half-width of the divide zone. Divide
motion to the right implies time progression (since divide
onset)to the left along the negative z axis. In the Eulerian
reference frame, Equation (26) places the first contact with
the divide zone at x = 1/2 when ¢t = 0. Using the transform-
ation (26), Az(t, z) becomes Az(x, z) in Equations (19), (20),
(23) and (24), which then describe the shape of the layers,
rather than their evolution at a fixed point.

When the divide is moving, not all ice in the divide zone
has experienced divide-flow conditions for a sufficient
amount of time to develop a steady-state arch. Ice deposited
at the surface at the leading edge of the divide zone (z =0.5
or W/2) travels downward according to the appropriate
age—depth relationship for flow in the divide zone as the
divide moves by at speed m. Using Equation (26), the path
of this ice particle in a Lagrangian reference frame moving
with the divide is

Ztrans (.’L‘)
m .
_— for non-linear flow,
m— (z—1/2)
- —1/2)(1 - Ab
exp((x /2)( )> , accumulation scouring.
m

(27)

For any position z in the divide zone, Equation (27)
marks a transition between (a) shallower ice that has
experienced divide-flow conditions since its surface depos-
ition so that layers have a steady-state arch, and (b) deeper
ice that has experienced first flank then divide flow so that
layers have not developed a steady-state arch. The path
leaves the divide zone at = —1/2 where Zyans = m/(m+ 1)
(non-linear flow) or Ztyans = exp[—( 1—Ab)/m] (accumu-
lation low). Since Ziyans rises for increasing migration rates,
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Fig. 8. Solid curves show analytical estimate of position of arch
apex for non-linear flow law ( Equation (28), solid lines) for
m = [0.5,05, 1, 2,4 8 15]. All analytical curves descend to
bed at trailing edge of divide zone. Corresponding numerical
model results shown by dashed lines.

the amount of ice in the divide zone above the transition
path (where a steady-state arch exists) becomes smaller.

For ice in the divide zone above the transition height 2z,
the arch for a given layer has a flat section at the steady-state
arch amplitude (Equation (21) or (25)). We take the apex of the
layer to be the midpoint of that flat section. This position is
halfway between the transition path (Equation (27)) and the
trailing edge of the divide zone:

m(11>7
2 \z

mln(z),

for non-linear flow,
Tapex = 1
m accumulation scouring .

(28)

Solid curves in Figure 8 show the position of the apex for
various migration rates m for non-linear ice flow in the
divide zone. Dashed curves show results from the corres-
ponding numerical model with hf = 0 and hq = 1. The
agreement, with concave upward curvature for low m
values, suggests that both approaches capture the essential
controls on layer shape.

For steady migration rates, the apex must occur in the
divide zone. For a given layer, the portion that has experi-
enced the most divide flow (and is therefore the apex of the
divide arch) is either in the divide zone or at the trailing edge
of the divide zone. Portions of the same layer behind the
divide zone have experienced flank flow subsequent to divide
flow, and thus are deeper than portions still in the divide
zone. The apex position for the numerical model (dashed
lines in Fig. 8) can exist farther from the divide because the
divide zone for a non-linear flow law is defined by 8(z) (Fig. 2)
which has smooth tails that extend the influence of divide flow
to more than 1 ice thickness from the divide.

HEAT-FLOW MODEL

Ice temperature tends to be warmer at a given depth in the
divide zone compared to the flanks because of the decreased
downward advection of cold ice at the divide. Therefore, iso-
therms, horizons of constant temperature, are also arched up-
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ward in this zone (Paterson and Waddington, 1986; Hvidberg,
1996). This “hot spot” beneath the divide can also influence the
temperature distribution in the rock below (Waddington,
1987). Different divide-motion rates create different isotherm
shapes. Isotherms therefore contain an additional record of
divide-motion history.

Just as for isochrones, the isotherm pattern under a mi-
grating divide can be found by solving a steady-state
problem because (a) we assume the divide is migrating at
constant rate m, and (b) we make calculations in a refer-
ence frame that moves with the divide so that x = 0 is
always the divide position. To predict the shape of these iso-
therms in the ice and bed when the divide is migrating, we
solve the steady-state two-dimensional heat-flow equation
for a ridge of uniform ice thickness, underlain by flat con-
ductive bedrock:

V- (kVT) — pcaVT =0, (29)

where T is temperature, and the two-dimensional ice-
velocity field i is specified. We neglect strain heating. Values
for thermal conductivity & specific heat ¢, density p, and
thermal diffusivity K = k/(pc) for rock and ice are specified
in'Table 1.

Using characteristic values for velocity, time, tempera-
ture, density, heat capacity and conductivity (Table 2),
Equation (29)can be written in non-dimensional form as

V- (KVT) — PeRCuVT =0, (30)

where K, T, R and C are non-dimensional values for con-
ductivity, temperature, density and specific heat. In the ice,
R = C' = K = 1. The non-dimensional ice velocity field u is
given by Equations (4) and (8). The Péclet number Pe, defined
by the characteristic thermal and geometric values of the
problem, can be written as the ratio of a thermal-diffusion
time constant Tiperm and the advective time constant 7qyy:

~ o~ =9 _
_ bOH o H /"fi _ Ttherm
Ri H / b() 7:dyn

This ratio defines the trade-off between the advective and

Pe

(31)

Table 1. Property values used for ice and rock in the heat-flow

model
Thermal property Ice Rock
Clonductivity k=23Wm 'K k,=28Wm 'K
Specific heat ¢ =1950] kg 'K ! ¢ =760 kg 'K
Density i =917kgm® pr =2300kgm >
Diffusivity R =13x10 °m?s ' K =16x10 °m’s !

Geothermal heat flux ¢ =0050Wm 2

Note: Values for ice correspond to average ice temperature of ~20°C and are

Table 2. Characteristic values used to non-dimensionalize

Equation (29)
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Fig. 9. Isotherms (with non-linear ice dynamics) in units of
O for an ice sheet with (a) low (Pe =2) and (b) high
(Pe =20) Péclet numbers. Isotherms for divide flow from a

local accumulation minimum are qualitatively similar.

diffusive processes in the ice sheet. Temperature distributions
in ice sheets with high Péclet numbers (thick, high accumu-
lation rate, fast dynamic response times)are dominated by
advection, while ice sheets with low Péclet numbers are dom-
inated by conduction. Péclet numbers and characteristic
times for several ice sheets are shown in'Table 3.

Equation (29) or (30) is solved by the method of control
volumes described by Patankar (1980). A spatially uniform
temperature T, is prescribed at the ice surface. A temperature
gradient 85T, determined by the geothermal heat flux ¢ and
the rock conductivity k,, is uniformly prescribed 8 ice thick-
nesses below the bedrock/ice interface as recommended by
Ritz (1987). The horizontal temperature gradient 0:T is set
to zero at the lateral boundaries of the domain.

MODEL RESULTS: ISOTHERMS

Figure 9 shows steady-state isotherms with no divide motion
for ice sheets with different Péclet numbers when we use a
non-linear ice-flow law (n = 3) to define the divide-zone
flow. With divide migration, the isotherm shapes in the ice
look qualitatively similar to the isochrone shapes shown in
Figure 3, with steep slopes on the leading sides and shallow
slopes on the trailing sides of isotherms. Figure 10 shows the
depth distribution of the divide/flank temperature differ-
ence AT (z) in the ice. The maximum temperature differ-
ences tend to occur near depths where the isochrone arches
are also large. However, the temperature arch amplitudes
are also controlled by the Péclet number, and are insensitive
to the particular description of divide flow. Ice sheets with
moderate Péclet numbers (Fig. 9a) are dominated by con-
duction, and the warming at the divide is apparent through-
out the ice column. For advection-dominated ice sheets
(high Péclet numbers), the temperature hot spot is concen-
trated at depth because fast downward advection of cold ice

Table 3. Characteristic values for specific ice sheels

Measure Characteristic value

~ I:I 5() 7-dyn i—thcrm Pe
Length <L) ]jl -1 3 3
Velocity (u) _bo m ma 107a 10%a
Temperature (©) H(q/k)
Time (Tayn) H/by Dome F, Antarctica 3000 0.03 100 220 22
Density (p.) pi Summit, Greenland 3000 0.25 12 200 17
Heat capacity (c.) G Siple Dome, Antarctica 1000 0.10 10 20 20
Conductivity (k) ki Taylor Dome, Antarctica 550 0.07 8 7 09
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Fig. 12. Basal temperature paittern AT relative to flank in units

of © for various divide-motion rates to the right (m =0, I, 4
and 10). (a) Low Péclet number (Pe =2). (b) High Péclet
number (Pe =20). Dashed line denotes basal temperature in
absence of divide effect. Divide flow results from ice non-
linearity with he = 0.2 and hq = 0.6.

inhibits the upward diffusion of heat and tends to make the
upper part of the ice sheet isothermal.

There is a significant temperature signal at the ice/rock
interface. Unlike isochrones, isotherms need not conform to
the bed geometry. For a given set of parameters that govern
ice flow (50, H, hy, hq or by, H, Ab and W), the size of the
temperature signal at the bed depends on the characteristic
temperature © = Hq /k; (the temperature difference between
the surface and bed in the absence of flow) and the Péclet
number. As for isochrones, increasing divide motion progres-
sively reduces the amplitude of the temperature signal AT
because ice spends less time in the presence of divide flow for
faster divide-motion rates.

The influence of diffusion in the bedrock is evident in the
depth distribution of temperature amplitudes AT(x, z) for
high migration rates. Figure 11 shows the temperature field
for m = 0 and m = 6. With increasing migration rates, the
region of warmest ice is spread horizontally behind the
moving divide. Diffusion of heat through the ice and bed-
rock causes the divide temperature signature to vary slowly
with depth across the ice/rock interface. This effect is clearly
seen in AT amplitudes in Figure 10. At high migration rates,
AT has little variation with depth in the deepest ice.

Figure 12 shows basal temperature variations (in units of
the characteristic temperature ©) for various migration
rates for ice sheets with high and low Péclet numbers where
the divide flow is caused by non-linear ice dynamics. As dis-
cussed in the next section, ice sheets with moderately high
Péclet numbers (5—15) have the largest basal temperature
signal. However, since ice sheets with high Pe values are
dominated by advection, the temperature signal in the ice
is carried away by ice flow faster than it is in ice sheets with
low Péclet numbers. Warmest basal temperatures are offset a
few ice thicknesses from the modern divide position.

AN ANALYTICAL APPROACH: ISOTHERMS

The fundamental features of the heat-flow numerical model
can be revealed with an analytical approach. We propose
that a few dynamic (ﬁ and 50) and thermal (Pe and ©)
parameters define the fundamental characteristics of iso-
therm shapes under a migrating divide.

Consider the one-dimensional heat-flow equation:

0T = kO*T — wo:T . (32)

Assume the temperature field in the ice is initially at steady
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state consistent with flank-flow conditions. At t = 0, we
impose a vertical velocity profile typical of divide flow so that
w(2) = wo(2) + @1 (2), where wy(2) is the flank-flow profile
and wy(Z) = wq(2) — we(Z). The associated temperature

field is T(2,£) = Ty(2) + T (3, 1), where Ty (%) is steady-state,
consistent with flank flow, and T7 (2, ) is the perturbation
due to divide flow. We assume Tl and w; are small compared
to the characteristic temperature © and velocity by. Substitut-
ing these expressions in the one-dimensional heat equation

and keeping only first-order terms yields
8ij1 = m??fl — ’l])()ang — @185T0 . (33)

The last term in Equation (33) determines the magnitude of
the temperature perturbation, but is not part of the transi-
ent solution. We use a scale analysis to estimate the charac-
teristic time-scale of the transient perturbation in the ice.
Substituting scale values l/ﬁ (inverse length scale), and
—bo /2 (average vertical velocity in the ice column) for 0,
and wy, and solving for a characteristic time yields:

~ 1 Ttherm

T T + b/ (2l) 1+ Pej2’ (34)

where Pe is the Péclet number. This characteristic time
roughly represents the time it takes for the ice temperature
to respond to a perturbation of the vertical velocity profile.
Ice sheets that are advection-dominated (high Pe) have a
faster thermal response time. However, this time-scale does
not account for the associated temperature perturbation in
the bedrock below the ice. When the temperature perturba-
tion reaches the bed, warming the basal ice in the divide
zone, the bedrock adjusts with a time-scale 7 = (2H)?/ky,
where 2H is the approximate width of the basal tempera-
ture perturbation (Waddington, 1987). The transient tem-
perature perturbation at the ice/rock interface is a
combination of ice and rock response time-scales. Since
Ty > Tdyn for most ice sheets, thermal inertia of the bedrock
tends to lengthen the total response time for basal tempera-
tures.

Although this problem has more than one time constant,
we can get an approximate analytical solution by assuming
that the growth of the basal temperature signal associated
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with divide flow is exponential with a characteristic time-
scale given by a linear combination of 7i¢. and 7;:

AT (F) = AT [1 —exp (— m» , (35)

where f is the fractional contribution to the response time
from 7ice and AT™ is the steady-state flank—divide tempera-
ture difference at the bed with no divide migration.

To estimate f, we use a time-dependent control-volume
model to calculate the evolution of the basal temperature in
an ice sheet initially at steady state with flank-flow condi-
tions. Figure 13 shows how the basal temperature beneath
the divide increases with time after a divide-flow regime is
then imposed. Dashed lines show the evolution from the
time-dependent, two-dimensional, control-volume model,
and the solid lines show Equation (35) where f = 0.95 for
both high and low Pe values. This combination of jce and
T glves a reasonable analytical approximation to the evolu-
tion time-scale. The time 7; is typically much larger than
Tice, SO 1ts contribution to the evolution of basal temperature
over the long-term temperature is significant, even though
in Equation (35) its weight is only (1 — f) =0.05.

AT* can be estimated from a steady one-dimensional
temperature model for “Raymond” divide (hq = 1) and
“Nye” flank (hg = 0) velocity regimes (Firestone and others,
1990; Paterson, 1994, p.218).

AT = Tdividc(z = 0) - Tﬂank(Z = 0) 5
! 2 T\ /2
_/0 exp (— gPe> dz — (Q—Pe) erf(\/Pe/2).
(36)

For accumulation scouring, AT™ can be estimated with a
one-dimensional temperature model using “Nye” velocity
regimes where the accumulation rate b = 1 for the flank site

and b = (1—Ab) for the divide site:

AT = (g5)
1 1/2
. <1——Ab> erf( Pe(1 — Ab)/Q) ferf< Pe/2>] .

(37)

Figure 14 shows the basal temperature difference (relative to
flank ice) given by Equations (36) and (37) for a range of Pe
values. At the limit as Pe — 0 (no advection), the tempera-
ture difference approaches zero because there is no ice flow to
differentiate the divide zone from the flank zone. With
increasing Pe, the increased downward advection of cold ice
on the flanks (compared to the divide zone) keeps the base
relatively cold on the flanks. The maximum basal tempera-
ture difference occurs when Pe = 5-15. At larger Pe values,
the increasingly strong downward advection of uniformly
cold ice from the surface tends to make the ice sheet iso-
thermal and inhibits the development of a divide temperature
signal; as Pe — 0o, the temperature difference approaches
zero everywhere.

The magnitude of the temperature difference at the bed
from Equation (36) (0.11 and 0.19 in units of © for Pe = 2 and
20) is about a factor of 2 higher than the difference predicted
by the numerical model with the same divide and flank
velocities (AT* = 0.05 and 0.1, respectively). This over-
prediction results from the absence of horizontal diffusion in
the one-dimensional temperature model. Since the width of
the temperature hot spot is comparable to the ice thickness,
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Fig. 14. Analytical estimate of basal temperature differences
Jor various Pe values. Heavy line corresponds to “non-linear”
divide zone with “Raymond” divide and “Nye” flank flow
( Equation (36) ). Light line corresponds to “accumulation
minimum” divide zone with “Nye” divide (b= (1 —Ab))
and flank (b =1) flow ( Equation (37) ), where Ab = 0.5.

the scale magnitudes of the horizontal and vertical diffusion
terms are similar. This accounts for about a factor of 2 over-
prediction of the temperature difference from Equations
(36)and (37) (Paterson and Waddington, 1986).

Just as for isochrones, we can imagine the divide zone as a
moving “boxcar” in which the divide flow pattern is “on” and
in which the divide thermal signal is allowed to grow accord-
ing to Equation (35) while the divide zone is passing by
(t < ﬁ/ﬁl), after the divide zone passes by, the temperature
decays with the same time constant as in Equation (35). Con-
verting to the Lagrangian reference frame with the transfor-
mation (26) allows us to estimate the basal temperature
difference (relative to flank ice) for two ice sheets with differ-
ent Pe numbers and for various rates of divide migration
(Fig. 15). The basal temperature is scaled to its maximum
steady-state value to show how the shape of the basal tem-
perature varies with m. These patterns show the same quali-
tative features seen in Figure 12. However, unlike the results
shown in Figure 12, the magnitude of the divide temperature
hot spot is dramatically reduced at even small migration
rates. One possible explanation is that the actual width of
the thermal divide zone is greater than H because advection
and diffusion processes spread the thermal effects of the
dynamic divide zone. A wider thermal divide zone would
allow more time for a basal temperature signal to develop as
the divide passes by.

DISCUSSION

In order to characterize how isochrones or isotherms respond
to divide motion, we have abstracted only those features of ice
and heat flow that are essential to creating the arches, and
not those features that might be unique to individual ice
divides. By satisfying conservation laws and following widely
recognized modeling approaches, our numerical models are
quantitatively realistic approximations to this ideal, and we
expect them to provide quantitatively realistic estimates of
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arch behaviors. Our analytical models, which are based on
even simpler abstractions, cannot be expected to produce
quantitatively reliable predictions of arch evolution through-
out space and time. However, the fact that the analytical
models show similar qualitative and quantitative behaviors
to the numerical models gives strong confidence that the
results of the numerical models should be broadly applicable
to ice divides.

In our kinematic model, we assume that the velocity pat-
tern is symmetric about the instantaneous flow divide, and
the ice thickness does not change, despite the horizontal
movement of the divide. In reality, flow divides occur at
topographic crests, where slopes in opposite directions drive
flow away from the divide. For a surface crest and its flow
divide to migrate at rate i while preserving its shape, there
must be an asymmetric imbalance between the accumu-
lation rate and the downward velocity pattern that thickens
the ice sheet in the forward direction, and thins it behind.
This asymmetric velocity imbalance must equal 7md; H ()
at the ice-sheet surface. For an ice sheet with thickness H
and span L, 8;ﬁ(£‘) near the divide is generally signifi-
cantly smaller than H/L. On typical ice sheets, H/L is
approximately 10 *~10 %, and we introduce an error signifi-
cantly less than 1% into our downward velocity field when
m is O(l. When m is larger, the instantaneous error in
velocity can also be larger, but the ice spends less time in the
divide zone, and the error in our calculated layer positions
remains small. Continuity requires a small asymmetry in
the corresponding horizontal velocity fields; however, since
the isochrones and isotherms are sub-horizontal, this has
negligible effect on their shapes. Therefore, this neglected
but small asymmetric flow component that makes a divide
migrate does not affect our conclusions.

Our analysis focuses on one type of divide motion:
migration in one direction at a constant velocity. Other types
of divide motion include acceleration, changes in direction,
or random motion of the divide position. Hindmarsh (1996)
shows how random stochastic motion of the ice divide can
eliminate the perceptible signature of divide flow in the
internal layer shapes. Nereson and Raymond (2001) invoke
fast motion of the ice divide to explain the absence of divide
signatures at ridge BC, West Antarctica. They also invoke
small-amplitude oscillations in divide position to explain the
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wide divide arches at ridge DE. The analysis that we report
here can be viewed as the basic building-blocks for these more
complex behaviors.

For isochrones, the divide arch amplitude Az(z) depends
on n with a non-linear constitutive law, or on Ab for accumu-
lation scouring. The size of the thermal signal AT(z)
depends on Pe; the largest AT values are associated with
Pe ~ 5-15. With divide motion, the size of the signal is
reduced. At low migration rates, m < 1, the time
Tm = ﬁ/m that a given column of ice spends in the divide
zone is greater than the time Ty, = lff/l;o for vertical
motion. Most ice in the divide zone resides there for a time
comparable to its age. Therefore, slow divide motion has little
effect on the 1sochrone and isotherm arch amplitudes for ice
sheets with low Péclet numbers. When m > 1, ice spends less
time than 74y, in the divide zone; this inhibits the develop-
ment of an isochrone arch. Ice sheets with high Péclet num-
bers are a special case. They have a slow thermal response
time compared to 7qy,. Even with very slow divide motion
m < 1, the ice column does not have enough time to develop
a thermal hot spot to near its steady-state value (see Fig. 10).

Figure 16 shows how the divide signal, either isochrone
arch amplitude (max[Az(z)]) or basal temperature difference
(max[AT(z)]), varies with migration rate. The divide signal
decreases with increasing migration rates, with an e-folding
m value of about 3-5. The e-folding migration rate for basal
temperature anomalies is higher for ice sheets with low Péclet
numbers. These ice sheets have a relatively fast thermal
response time so that basal ice temperatures beneath the divide
can approach steady-state values even when the divide is mov-
ing relatively fast. However, ice sheets with low Péclet numbers
tend to be thinner and have smaller temperature anomalies
than ice sheets with high Péclet numbers. Therefore, even
though ice sheets with low Péclet numbers retain the tempera-
ture signal for faster migration rates, the absolute value of the
signal may be more difficult to detect.

Since different characteristic times govern the develop-
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ment of 1sochrone and isotherm arches, it may be possible
to use measurements of isotherms and isochrones together
to extend the measurable record of divide migration. If the
response time is fast, then the isochrones or isotherms can
record a divide signal even if the divide is moving rapidly.
If the response time is slow, then the isochrones or isotherms
may not have enough time in the divide zone to develop a
detectable arch before the divide passes by. The important
time-scales are the age of the ice for isochrones and Tice
(Equation (34)) for isotherms. At a height z where age
= Tdyn, the ratio Tice/age is greater than unity when Pe > 2.

For high Péclet numbers, the thermal response time is
slower (larger Ti¢) than the isochrone arch-growth response
time, and the isochrone shapes record a longer history of
divide position than the temperature signal. In this case, it
may be possible to determine the long-term average divide-
motion rate from isochrone shapes, and the more recent
divide-motion rate from basal temperatures. A comparison
would allow detection of changes in the divide-migration
rate over time.

For very low Péclet numbers, the situation is reversed so
that the temperature signal has a faster response time than
the i1sochrone arch. In this case, the temperatures record a
longer history of divide position, and measurements of tem-
peratures may extend the record of divide-motion history as
inferred from isochrone shapes. Measuring ice tempera-
tures at enough points and depths to be useful is currently
beyond our ability to achieve at a reasonable cost. However,
when the capability to drill low-cost access holes 1s devel-
oped, this would be a promising application at divides with
low Pe values.

CONCLUSIONS

Simple numerical and analytical models reveal the general
characteristics of arched isochrones and isotherms beneath
moving ice divides. The isochrones and isotherms are asym-
metric, with steep slopes on their leading edges and shallow
slopes on their trailing sides. This asymmetry is due to (1)
total time the ice is exposed to divide flow, (2) the relaxation
of the divide signal since divide passage, and (3) the hori-
zontal strain that moves and stretches the arches. The mag-
nitude of the signal depends on n or Ab for isochrones and
also on © and Pe for isotherms.

For isochrones, the arch amplitude given a steady
divide-migration rate m can be estimated from Equation
(21) or (25) for non-linear or accumulation-low divide flow,
respectively. The position of the arch can be estimated from
Equation (28). Basal temperatures under steady divide
motion can be roughly estimated from Equation (35), but
neglect of horizontal heat flow leads to an over-prediction
by about a factor of 2.

The amplitude of the arch is similar to its steady-state
value for m < 1, when deformation from vertical ice flow
dominates and effects for horizontal motion of the divide are
small. At higher m values, the amplitude of the isochrone
arch or temperature signal decreases with an e-folding value
of m ~ 3-5. Temperatures may record a longer history of
divide position than isochrone shapes for ice sheets where
Pe ~ 2 or less. Otherwise, 1sochrone shapes record a longer
history of divide motion. Of course, to apply these concepts at
specific sites will require detailed numerical models with
specific geometric, dynamic and thermal parameters.
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