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POLYNOMIAL APPROXIMATION AND GROWTH OF 
GENERALIZED AXISYMMETRIG POTENTIALS 

PETER A. McCOY 

1. I n t r o d u c t i o n . Generalized axisymmetric potentials Fa (GASP) are regular 
solutions to the generalized axisymmetric potential equation 

d2Fa d2Fa 2a: 4- 1 dF" 

(1.1) --A + -A + ——- ~- = 0, a > - 1/2 
dx dy y dy 

in some neighborhood Q of the origin where they are subject to the initial d a t a 

(1.2) F"(* ,0) = / ( * ) , ^ ( * . 0 ) = 0 

along the singular line y = 0. In 12, these potentials may be uniquely expanded 
in terms of the complete set of normalized ultraspherical polynomials 

(1.3) Fn
a(x, y) = rnPn^^{xr~l)/Pn^^(l), n = 0,1,2, . . . 

r = (x 2 + y 2 ) 1 / 2 

defined from the symmetric Jacobi polynomials i V a , a ) ( £ ) of degree n with 
parameter a as Fourier series 

oo 

(1.4) Fa(x,y) = £ anFn
a(x,y). 

Series terminat ing with zero coefficients for index n ^ m + 1 are referred to 
here as harmonic polynomials of degree m. 

For integers 2a = k — 3, k = 3, 4, . . . equation (1.1) reduces to the 
axisymmetric LaPlace equation in Rk whose solutions, axisymmetric poten­
tials, serve as fundamental models for higher dimensional generalizations of 
the theory of harmonic or analytic functions in the complex C-plane and also 
provide models for the s tudy of solutions of more general elliptic equations by 
the Method of Ascent (see [8]). The common idea unifying many techniques 
used to analyse GASP stems from the Bergman [2; 23] and Gilbert [7] Integral 
Operator Methods whereby classes of associated analytic functions are mapped 
onto GASP by LaPlace type integral representations. Conversely, generating 
function expansions are used to define operators which map GASP onto their 
associates. Properties of the operators determine those of the associate which 
are " t r ansp lan ted" to the GASP. 
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R. P. Gilbert [7, p . 167 ff.] developed the A^ operator (and A^1) mapping 
associated analyt ic functions of one complex variable onto Fourier series 
expansions of GASP in terms of the complete set of harmonics {rnCn

{-a~ll2) (£)}£Lo 
defined from the Gegenbauer polynomials Cn

(a~1/2)(£) of degree n with param­
eter a — 1/2. The coefficients were shown to identify properties of the GASP 
such as the singularities (Gilbert [7, p. 182]), zeros (Marden [13], McCoy 
[16]) and extrema (McCoy [7]) by transformation of the corresponding known 
properties of the associates due to Hadamard-Mande lb ro j t [4, p . 335], Cara-
théodory-Toepli tz [21, p. 157] and Carathéodory-Fejer [10, p. 147] respec­
tively. These are essentially local characteristics. 

The singularities theorem identified GASP which are entire functions. This 
led Gilbert [7; 9] to consider global properties. Defining order and type of an 
entire function GASP as in complex function theory [11, p. 182] he developed 
coefficient theorems computing their values (when finite and positive) in the 
classical sense of Dienes [4, p . 293]. Subsequent application of these [5; 6] 
produced complete sequences of axisymmetric harmonic polynomials to 
approximate GASP uniformly on simply connected compact sets about the 
origin in the sense of Gel ' fond-Markusevic [11, p. 217]. T h u s global properties 
of GASP are deduced from local behavior, viz. the Fourier coefficients may be 
computed from derivatives of GASP regular abou t the origin. 

Recent application of Integral Operator Methods by Marden [14] produced 
simultaneous interpolation and local uniform approximation of axisymmetric 
potentials by harmonic polynomials. A principal goal then, in analogy with the 
coefficient problem, is to establish global existence and characterize the growth 
of GASP asymptot ical ly as a function of uniform local approximat ion by 
harmonic polynomials. 

In this paper, the error in the local uniform harmonic polynomial approxi­
mation is determined as a function of the degree of the extremal approximat ing 
polynomial in the sense of Chebyshev. Suitable limits defined from the error 
identify real GASP wi thout finite singularities and measure their growth, viz. 
order and type. We accomplish this by developing integral operators which 
" t r a n s p l a n t " the classical theorems of S. N . Bernstein [3; 22, p. 176] and 
R. S. Yarga [22] describing related properties for polynomial approximation 
of associated real entire analyt ic functions of one complex variable. 

2. De f in i t i ons a n d p r e l i m i n a r y r e s u l t s . T h e vehicle for this investigation 
is an invertible integral operator Wa, an a l ternate to A^, mapping Wa-associated 
analyt ic functions 

(2.1) f(z) = £ anz\ z = x + iytC 
n=0 

onto GASP (1.4). We now construct the operator , the inverse operator and 
establish basic properties as summarized in Theorem 1. 
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To define the Wa operator, the ultraspherical harmonics are written by the 
LaPlace type integral for the symmetric Jacobi polynomials [1, p. 32] as the 
transform 

(2.2) Fn
a(x, y) = J r ^ a ( / ) , n = 0, 1, 2, . . . 

J o 

of the Bergman-Whittaker variable 

f = x + iy cos t 

relative to the non-negative measure 

dna(t) = [V^T(a + 1/2)/T(a + 1)] (sin t)**dt. 

Defining Fa = Wa[f] from the associated function f analytic in the disk 
DR = {z£ C : \z\ < R] by the operator 

F"(X, y) = I 
J o 

(2.3) Fa(x,y) = / f(t)d„a(t) 
J 0 

generates GASP regular on compacta in the open set XR
a = {(x, y) : 

(x2 + y2)112 < R] which is referred to as a hyper sphere in view of the geometric 
interpretation of the GASP equation for integers 2a. In the C-plane (aI — 1/2), 
the hypersphere 2^1/2 corresponds to the disk DR. The subscript is dropped 
for hyperspheres of unit radius. 

The transform inverse to (2.3) employs orthogonality of the symmetric 
Jacobi polynomials [1, p. 8] to write 

I Ka(zr~\ £)Fn
a(rl;, ryj\ - t)iva{&\ n = 0, 1, 2, . . . 

J £=-1 
(2.4) zr 

for the kernel 
oo 

Ka(zr-\0 = Y, 2"i ,
B

( a , a ) t t )P, ( a , a )( l) /rV a , a ) , 

A «~> = g ^ t e L + j » + I)]2
 w = 0 1 2 

(2» + 2 a + 1 ) I > + l)T(« + 2 a + 1) * 
relative to the non-negative measure 

dva(g) = (1 - $*)•#. 

Evidently for each R > 0 and all — 1 ^ J ^ + 1 , the kernel defines an analytic 
function of z on compacta in the disk DR upon which the kernel is summed in 
closed form by application of the binomial theorem to the Poisson formula 
[1, p. 12] as 

*«("> *) = -{T^f^> t1 - 2,(i + o/(i + ,)p-1/2 

ya = (a + l ) r ( « + l / 2 ) 2 / r ( « + 1). 
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The complex 77-plane contains no branch points of Ka for \y}\ < 1, e.g. \z\ < R. 
This justifies definition of the radicals by their principle values on the segment 
0 < r] < 1 (see [1, p. 128]). Consequently, the operator inverse to (2.3) 
represents the function/ analytic on compacta in the disk DR as the transform 

(2.5) /(*)= f +lKa(zr~\Onr£,rVl - t'VMS), 

of the unique GASP Fa regular in the hypersphere 2R
a. We summarize the 

above properties of the operators in the following theorem. 

THEOREM 1. For each GASP Fa regular in the hypersphere 2R
a, there is a 

unique Wa associated function f analytic in disk DR and conversely. 

Moving from the useful information concerning the operators, we begin a 
preliminary study of growth with the definition of the maximum moduli for 
the entire function GASP Fa and the Wa associate / as 

M(r, Fa) = sup {\Fa(x, y)\ : (x2 + y2)1/2 ^ r\ and 

m(r,f) = sup {|/(z)|: \z\ g r). 

The order P = P(F«) and type T = T(Fa) of GASP are defined as in [6; 9] by 

(2.6) P(Fa) = lim sup {log log M(r, Fa)/\og r} and 

(2.7) T(Fa) = lim sup {log M(r, F")/rP\ 
7"->oo 

following the function theory definitions [11, p. 182] of order and type of the 
associate which are respectively 

(2.8) p(/) = lim sup {log log m(r , / ) / log r] and 
7"->00 

(2.9) r ( / ) = lim sup {log m (r, f)/rp}. 

We now assert the respective growth measures are identical through the 
following. 

THEOREM 2. The real entire function GASP Fa has finite positive order and 
type if, and only if, the entire function Wa associate f has positive order and type. 
Then the orders and types are respectively equal. 

Proof. We shall prove the statement for orders. Let / , an entire analytic 
function of finite positive order p(/) , generate the GASP Fa = Wa[f]. From 
the normalization W«[l] = 1 and non-negativity of the measure of Wa, we 
see that 

M(r, Fa) ^ m(f, / ) , r > 0. 
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Monotonici ty of the logarithm with definitions (2.8) and (2,6) gives 

Then the order of Fa is finite. For the reverse inequali ty we set zr~l = \e'\ 
0 < X < 1, and reason w i t h / = W a

- I [F a ] as in [6] to obtain the appraisal 

m(r,f) è Ka(\)M(r\-1, F«), 

Ka(\) = sup [\Ka(\e",S)\ : 0 g 0 < 2ir, - 1 £ £ Û. + 11 

leading to 

p( / ) g lim sup {log log M{r\-\ Fa)/\og r\~l\ = P(Fa). 

I t follows tha t the order of Fa is positive. Combination of the inequalities above 
verifies tha t 

p(f) = P(F"). 

T h e converse s ta tement for orders is obtained by reversing the argument . 
Similarly, verification of equality of types is accomplished. 

Henceforth, we adopt the notat ions p = p(f) = P(Fa) and r = r(f) = 
T(Fa). The order and type are computed not from the Fourier coefficients as in 
the Gilbert formula [7, p. 188] but rather from approximations in the uniform 
norm 

(2.10) \\\Fa - Pa\\\ = sup {\Fa(x,y) - Pa(x,y)\ : x2 + y2 = 1} 

of the GASP Fa regular in the hypersphere S a and continuous on S a with Pa 

in the set Hn
a of all real harmonic polynomials of degree a t most n. Specifically, 

the essential measure is the error in the approximation defined by the Cheby-
shev norms 

(2.11) En(P>) = inf {|||/* - P-m :P^Hn"\, n = 0, 1, 2, . . . . 

This error is analyzed by " t ransp lan t ing" characterizations of the error in the 
Chebyshev norms 

(2.12) en(f) = inf {||/ - p\\ : p G An}, n = 0, 1, 2, . . . 

over the sets hn = {Wa~
l[Pa] : Pa € Sn

a), « = 0, 1, 2, . . . found by Bernstein 
[3; 22] and Varga [22] for the entire function associates in the uniform norm 

(2.14) | | / - p\\ s sup {|/(x) - p(x)\ : - 1 ^ x ^ + 1 ) . 

This brings us to the main objective which we t rea t in the next section. 

3. G r o w t h a n d a p p r o x i m a t i o n . We establish a global existence criterion 
for GASP before computing order and type ; this is achieved by analogy with 
S. N . Bernstein. 
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THEOREM 3. Let the real GASP Fa be regular in the hyper sphere 2a and con­
tinuous on 2a. Then a necessary and sufficient condition for Fa to have an analytic 
continuation as an entire function is that 

lim En
1,n(F") = 0. 

W->co 

Proof. Let the real GASP Fa be regular in the hypersphere 2 a and continuous 
on Xa and let 

(3.1) lim£n
1 / n(Fa) = 0. 

Then by Theorem 1, the associate / = W0T
l[Fa'] is regular in the disk D. 

Moreover, by the normalization Wa[l] = Wa - 1^] = 1, the identity 

f(x) - p(x) = Fa(x, 0) - Pa(x, 0), - 1 ^ x ^ + 1 

is valid on the symmetry axis for each positive integer n and all Pa £ Hn
a with 

P = Wa~
l[Pa~\. From the initial data, the GASP Fa may be continued analyt­

ically as an even function in y about the symmetry axis so that application of 
the maximum principle for GASP [19, p. 26] to Fa — Pa gives 

(3.2) \F«(x, 0) - Pa(x, 0)| g \\\Fa - Pa\\\, - l ^ ^ + l . 

Therefore 

(3.3) e„(f) g | | | / * - P ° | | | , P"£ H„a 

for n = 0, 1, 2, . . . . Let e > 0 be given; then for each n there exists a subset 
{Pn,i, Pan,2, • • •} Ci Htl

a such that for each positive integer k, 

(3.4) \\\F° - Pa
n,k\\\ è En(F") + e. 

Combining (3.3) and (3.4) gives 

e„(f) éEn(F") + e, « = 1,2, . . . 
and 

(3.5) limeH
1M(f) è lim En

lln{F«). 
W->CO 71-ÏCO 

Consequently, by hypothesis (3.1) the Wa associate / of Fa satisfies the 
Bernstein limit 

lim en
lln{f) = 0 

and is necessarily an entire function/ = f{z),z Ç C (see [22]). By Theorem 1, 
the GASP Fa is an entire function. 

Now let the real GASP Fa be regular in the hypersphere 2", continuous on 
S01 and have analytic continuation as an entire function. By Theorem 1 the 
associate / = Wa~

l[Fa] is entire. We select for each n, any p G ïin, define 
Pa = WaM and write the global relation 

(3.6) F"(x, y) - P°(x, y) = Wa[f ~ pi 
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The measure of the Wa transform is non-negative and Wa[l] = 1, so t ha t 
from (3.6) 

|||/7a _ p« | | | g s u p {|^(z) _ p(z)\ ; | z | g 1}. 

We arrive a t the est imate 

(3.7) En(F") g sup ( | / (Z) - p(z)\ :\z\èl},pe hn 

which we shall use to obtain an upper bound on En(F
a) for each positive 

integer n. T o do this, we expand the entire function Wa a s soc i a t e / in a series 
[ — 1 , + 1 ] in terms of the Chebyshev polynomials JHW[20; 22, p. 32] defined by 

in/2] 

^v-2k 
(2x) \x\ S 1 Tn(x) = 1/2 Z „ h 

and continue analytically as 

OQ 

f(z) = ao + 2 XI anTn(z) 

to the ellipse Ë0 = {z Ç C : \z - 1| + \z + 11 S 2/3) for 0 > 2. The Cheby­
shev coefficients an = an(f), defined as contour integrals o f / over dEp (see 
[20; 22, p. 91]), are bounded as 

\an\ S M($)/t3n, n = 0, 1, 2, . . . 

M(P) - sup {|/(z)| :ze Ep}. 

We now choose the unique extremal polynomial p* Ç //„ (see [22, p. 91]), 

P*(z) =«o + 2 Ê «*r*(8), 

relative to the norm (2.12). Inequali ty (3.7) together with the fact t ha t 
E$^_D for the specified range of fi gives the est imates 

En(F
a) è sup 

(3.8) 

for 

^ aj\(z) N è i} ^ Ê ikl sup |rt(2)|} 

^ ?M£2 £ (5/4j8)* < 2nRn(J},f), n = 0, 1, 2, . . . , 0 > 2 

(3.9) RnQ3,f) = 2MQ3)/(p-l)p. 

Now 

£ B
I / n ( ^ ) < 2 i V / " ( p \ / ) / P \ » = 1, 2, . . . . 

and 

(3.10) lim En
lln(Fa) rg 2/0, /S > 2. 

T h u s the Bernstein limit holds when /3 oo. 
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Having identified the characteristic approximation of entire function GASP, 
we show that a measure of the convergence rate of the sequence En

lln(Fa) 
defines the order of Fa. We now consider this analogy of the classical Varga 
result. 

THEOREM 2. Let the real GASP Fa be regular in the hyper sphere 2a and con­
tinuous on Sa. Then 

p = lim sup {n log n/ — log En(F
a)} 

is non-negative and finite if, and only if, the GASP Fa has analytic continuation 
as an entire function of finite order p = p(Fa). 

Proof. Let the real GASP Fa be regular in the specified hypersphere and 
continuous on its boundary. Let us assume that Fa has an analytic continuation 
as an entire function of finite positive order p. The same is necessarily true of 
the Wa associate/ by Theorems 1 and 2. The reasoning of the previous theorem 
has shown that 

(3.11) *„(/) g En(F«) S 2nRM / ) , n = 1, 2, . . . , 0 > 2. 

Then monotonoci ty of the logarithm gives 

- l o g e . ( / ) > - l o g £ „ ( n > - l og 2 _ logR n ( f t / ) „ = 2 3 

n log n ~ n log n ~ n log n n log n 

Each term in this appraisal is positive for all n sufficiently large because the 
largest member of inequality (3.11) is ultimately less than one. It follows by 
the Varga's theorem [22] and limit properties of sequences that 

p = lim mi f — ^ hm mi -.—— — 
/ q 1 9 \ n-*» n log n n-,00 n log n 

n log n 

Moreover, by Varga's proof [22, p. 177] we see that it was shown that for every 
6 > 0, 

(3.13) H m i n f ^ g ^ û ^ ( p + ey\ 
n log n 

Then from (3.12), (3.13) and ultimate positivity of the sequences 

(3.14) p g hm sup —r ^ y ^ r é P + e, e > 0 

which establishes the first assertion. At this point, we complete the proof by 
considering a real GASP Fa regular in Sa and continuous on Xa for which 

(3.15) hm sup — 7 — # T ^ \ " = a 
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is finite and positive. Appealing to the previous proof we find tha t for the Wa 

associate / , 

(3.16) en(f) SEn(F°), « = 1 , 2 , . . . . 

From (3.8) and (3.9) we see tha t as in Yarga [see 22, p. 177; eqn. (8) ff.] for 
e > 0 and N = N(e) 

En(F«) S l /V / < r +% n ^ 7V(e). 

Combining with (3.16) gives 

(3.17) en
l,n{f) g 1/»»>*+% n ^ TV (e) 

and lim„,_^œ en
1/n(f) = 0. T h e r e f o r e / continues analytically as an entire func­

tion of finite order by the classical Bernstein theorem. The same is t rue of the 
GASP Fa. I t remains to show tha t a is the order of Fa. 

Inequal i ty (3.12) permits the order of the entire func t ion / to be computed 
by Varga 's formula. Moreover, inequality (3.12) is valid so t ha t 

p - 1 = lim inf = *f°M è a-1 > lim inf =^&MêJl . 
n^ n log n n_,œ n log n 

Earlier in our discussion we established (3.13). Therefore for e > 0 given 

(3.18) p - 1 = lim inf = ^ U 1 ^ „ - i ^ ( p + ey\ 
n log n 

Thus , p = a and the order of the associate is also given by 

,. n log n 
p = hm sup —: , a . . 

Because this is also the order of the entire function GASP Fa, the proof is 
completed. 

As a final application, we cite the inequalities (3.14) and (3.18) along with 
essential relations between orders and types of entire function GASP and 
associate to s tate a characterization of finite type. I t is the " t r a n s p l a n t " of the 
Varga result [22] which we now find. 

T H E O R E M 3. Let the real GASP Fa be regular in the hyper sphere S a and con­
tinuous on Sa . Fhen Fa has an extension as an entire GASP of order p and some 
finite type r if, and only if, 

lim sup n1/pEn(F
a) 

is finite. 

4. Genera l i za t ions . We find tha t the GASP equation is invariant under 
nomothetic transformations and translations along the singular line. The 
ultraspherical polynomials Fk

a are homogeneous functions of degree k in x and y 
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and are invariant under translations along y = 0. Therefore, the preceding 
development can be taken up directly for hyperspheres of arbitrary positive 
radius center on the singular line. 

The Methods of Ascent and Descent (see Gilbert [8]) transform GASP onto 
solutions of more general elliptic partial differential equations and conversely. 
For second or higher order equations where the coefficients of the lower order 
derivatives permit construction of ascending and descending operators from 
GASP which preserve norms and map entire functions onto entire functions, 
direct generalization of the preceding is suggested by composition of operators. 
For equations whose coefficients do not have this property, viz. the operators 
map entire functions onto entire functions in one direction, upper or lower 
estimates on the order and type are possible as are necessary or sufficient con­
ditions for the existence of solutions which are entire functions. 
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