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This paper is concerned with the asymptotic propagations for a nonlocal dispersal population model
with shifting habitats. In particular, we verify that the invading speed of the species is determined by
the speed c of the shifting habitat edge and the behaviours near infinity of the species’ growth rate
which is nondecreasing along the positive spatial direction. In the case where the species declines
near the negative infinity, we conclude that extinction occurs if c> c∗(∞), while c< c∗(∞), spread-
ing happens with a leftward speed min{−c, c∗(∞)} and a rightward speed c∗(∞), where c∗(∞) is the
minimum KPP travelling wave speed associated with the species’ growth rate at the positive infinity.
The same scenario will play out for the case where the species’ growth rate is zero at negative infin-
ity. In the case where the species still grows near negative infinity, we show that the species always
survives ‘by moving’ with the rightward spreading speed being either c∗(∞) or c∗(−∞) and the
leftward spreading speed being one of c∗(∞), c∗(−∞) and −c, where c∗(−∞) is the minimum KPP
travelling wave speed corresponding to the growth rate at the negative infinity. Finally, we give some
numeric simulations and discussions to present and explain the theoretical results. Our results indi-
cate that there may exists a solution like a two-layer wave with the propagation speeds analytically
determined for such type of nonlocal dispersal equations.
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1 Introduction

In this paper, we consider the following nonlocal dispersal population model:

ut(x, t) = d[J ∗ u(x, t) − u(x, t)] + u[r(x − ct) − u(x, t)], (1.1)

where d is the dispersal rate and J ∗ u represents the standard spatial convolution, and J ∗ u − u
denotes the so-called nonlocal dispersal of individuals. Throughout this paper, we always assume

(J) J ∈ C(R, R+) is symmetric with
∫
R

J (y)dy = 1 and
∫
R

J (y)eλydy<+∞ for any λ> 0.
(R) r(x) is a continuous and nondecreasing function satisfying −∞< r(−∞)< r(∞)<∞

and r(∞)> 0.
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Here the shifting environment is described by r(x − ct) with c being the speed of the shifting
habitat edge. Obviously, the habitat may be divided into two regions: the favourable region
{x ∈R : r(x)> r0} and the unfavourable or less favourable region {x ∈R : r(x) ≤ r0} with some
r0 satisfying r0 = 0 for r(−∞)< 0 and r0 ∈ (r(−∞), r(∞)) for r(−∞) ≥ 0. Particularly, the
unfavourable or less favourable region is expanding and the favourable region is shrinking if
c> 0. The habitat shifting phenomenon can be caused by many factors such as global climate
change and the worsening of the environment due to industrialisation. As it is of significant
biological meaning to find out whether species can keep pace with the habitat shifting and under-
stand how species live and spread in such a shifting environment, much attentions have been
attracted on this topic, see [1, 2, 9, 10, 14, 15, 16, 22] and reference therein.

To explore the effects of climate changes on the spatial dynamics of a species, Li et al. [22]
initially considered a monotone habitat whose favourable part shrinks through time (i.e., (R)
holds true with r(−∞)< 0 and c> 0) and studied the following classical reaction–diffusion
population model:

ut(x, t) = duxx(x, t) + u[r(x − ct) − u(x, t)], x ∈R, (1.2)

in which the main result states that, if the environment shifting speed c> c0 := 2
√

dr(∞), then
the species will die out in the long run, while in the case 0< c< c0, the species will survive
and spread into new territory in the direction of the moving environment with asymptotic speed
c0. Later, Hu et al. [17] obtained a similar result as that in [22] to the case r(−∞) = 0. To
allow a no-sign change scenario on the resource function (i.e., r(−∞)> 0), Hu et al. [15]
derived more comprehensive results on the asymptotic propagation behaviours for the solu-
tions corresponding to the initial value problem of (1.2). Furthermore, by using the asymptotic
annihilation features of the heat semigroup, Yi et al. [42] investigated the asymptotic propa-
gation of asymptotical monostable type equations with shifting habitats. Very recently, Lam
and Yu [19] characterised the asymptotic spreading of KPP fronts in heterogeneous shifting
habitats with any number of shifting speeds by developing the method based on the theory of
viscosity solutions of Hamilton–Jacobi equations. Taking the free and large-range migration
of the species into consideration, Li et al. [23] and Wang and Zhao [34] studied the spatial
propagation of the nonlocal dispersal equation (1.1) for the case r(−∞)< 0< r(∞) and c> 0.
Regarding the case where favourable habitat is bounded and surrounded by unfavourable zone,
we refer the readers to the work of [2, 5, 7, 30] for the one-dimensional and high-dimensional
spaces as well as infinite cylindrical-type domains. In addition, some other factors such as
Allee effect, seasonal succession and intra-species competition were considered in the frame-
work of shifting environments, see for example [1, 6, 11, 29, 45]. For recent studies on the
asymptotic propagations and forced waves for the ‘shifting environment’ problem, one can
refer to [4, 9, 14, 20, 46] on scalar equations and [3, 27, 32, 33, 37, 43, 44] on competi-
tion/cooperative systems. Motivated by [15, 42] and as a complement to [23], we continue
to study the nonlocal model (1.1) under more general assumptions (J) and (R) in contrast
with [23].

The nonlocal dispersal equations (1.1) without shifting feature have been extensively investi-
gated, one can see [8, 24, 25, 31, 35] and reference therein for travelling waves and spreading
speeds. In the present paper, we focus on the asymptotic behaviours of the initial value prob-
lem of (1.1) as time goes to infinity. That is to say, we verify the conditions determining
whether the species can persist and further obtain the rightward and leftward spreading speeds
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if the persistence happens, when the speed of the shifting habitat edge falls into different
intervals. More specifically, we show that when r(−∞) ≤ 0, the species goes extinct if c>
c∗(∞) := min

λ>0

1
λ

[
d

(∫
R

J (y)eλydy − 1
) + r(∞)

]
(Theorem 2.4), and if c< c∗(∞), then the left-

ward spreading speed is min{−c, c∗(∞)} and the rightward spreading speed is c∗(∞) (Theorem
2.5). When r(−∞)> 0, we investigate the persistence and the spreading speeds by dividing
the range of the habitat shifting speed c into the cases as follows: c> c∗(∞) (Theorem 2.6);
−c∗(−∞)< c< c∗(∞) (Theorem 2.7); −c∗(∞)< c<−c∗(−∞) (Theorem 2.8); c<−c∗(∞)
(Theorem 2.9), where c∗(−∞) := min

λ>0

1
λ

[
d

(∫
R

J (y)eλydy − 1
) + r(−∞)

]
.

In summary, our results show that the leftward and rightward spreading speeds are determined
by not only the speed c of the shifting habitat edge but also the behaviours near infinity of the
species’ growth rate which is nondecreasing in the positive spatial direction. We should point
out that this work is a complement to [23] since we discuss the spreading properties for not
only when r(−∞) ≤ 0 without asking for the sign of shifting speed c but also when r(−∞)> 0
with all c ∈R. For the case r(−∞)> 0, the spreading speed is more complex to be determined
due to the appearance of another threshold c∗(−∞). Particularly, for the persistence of species,
we find that it won’t make any differences if the unfavourable environment is not so hostile,
that is r(−∞) = 0 instead of r(−∞)< 0. Meanwhile, by virtue of a proper truncation function
introduced by [37], we remove the compacted supporting condition on the kernel J (x) in our
previous work [23]. The methods adopted here mainly depend on constructing several kinds of
appropriate sub- and super-solutions as well as the comparison principle. However, the appear-
ance of nonlocal diffusion and the special shifting heterogeneity make the problem (1.1) more
troublesome.

The rest of this paper is organised as follows. In Section 2, we give some preliminaries and
state the main results of this paper. Then we prove the spreading properties, that is, Theorems
2.5–2.9 in Section 3. Finally, in Section 4, some numeric simulations and discussions are
presented to illustrate and explain the analytical results.

2 Preliminaries and main results

2.1 Preliminaries

Let f (x, u) = u(r(x) − u). Then for any 0 ≤ u ≤ r(∞) and x ∈R, in view of the fact −∞<

r(−∞) ≤ r(x) ≤ r(∞)<∞, f (x, u) is Lipschitz continuous in u ∈ [0, r(∞)], since

|f (x, u1) − f (x, u2)| = |u1 − u2||r(x) − (u1 + u2)| ≤ (
max{|r(−∞)|, r(∞)} + 2r(∞)

)|u1 − u2|.

Meanwhile, we can take some ρ > 0 such that ρu + f (x, u) is nondecreasing in u ∈ [0, r(∞)].
Furthermore, the equation (1.1) can be rewritten as:

ut(x, t) + ρu(x, t) = d[J ∗ u(x, t) − u(x, t)] + u[ρ + r(x − ct) − u(x, t)]. (2.1)

Let

BC = {φ ∈ C(R) : φ is bounded and uniformly continuous on R}
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and BCr(∞) = {φ ∈BC : 0 ≤ φ ≤ r(∞)}. The solution of (2.1) or (1.1) with initial value u(·, 0) =
u0(·) ∈BCr(∞) is the fixed point of the nonlinear integral equation in C(R+, BCr(∞))

u(x, t) = [T u(·, t)](x) :=[e−ρtP(t)u0](x)

+
∫ t

0

[
e−ρ(t−s)P(t − s)u(·, s)(ρ + r(· − cs) − u(·, s))

]
(x)ds,

in which P(t) is the strongly continuous semigroup on BC generated by:{
vt(x, t) =d[J ∗ v(x, t) − v(x, t)], x ∈R, t> 0,

v(x, 0) =ψ(x), x ∈R

and [P(t)ψ](x) is the unique solution with the form of

[P(t)ψ](x) = e−dt
∞∑

n=0

(dt)n

n! an(ψ)(x),

where a0(ψ)(x) =ψ(x) and an+1(ψ)(x) = ∫
R

J (x − y)an(ψ)(y)dy for every nonnegative integer
n ∈Z, see Weng and Zhao [36].

In addition, as [15], we introduce the following auxiliary functions:

υ(x;μ) =

⎧⎪⎨
⎪⎩

e−μx sin(γ x), 0 ≤ x ≤ π

γ
,

0, x ∈R\[0,
π

γ
],

υ−(x;μ) =

⎧⎪⎨
⎪⎩

− eμx sin(γ x), −π
γ

≤ x ≤ 0,

0, x ∈R\[−π
γ

, 0],

and denote the maximum point of v(x;μ) by σ (μ), that is, v(σ (μ);μ) = max
x∈R

v(x;μ) with μ> 0

and γ > 0. Further, v−(−σ (μ);μ) = max
x∈R

v−(x;μ). Moreover, let

ϕ(λ, γ ) = d

∫
R

J (y)C(y)eλy sin(γ y)

γ
dy = d

∫ ∞

0
J (y)C(y)

(
eλy − e−λy

) sin(γ y)

γ
dy,

where C(x) is a continuous and symmetric cut-off function introduced by [37] as follows:

C(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, |x| ≤ π

4γ
,

e
μπ
4γ e−μ|x| sin(2γ |x|), π

4γ
< |x|< π

2γ
,

0, |x| ≥ π

2γ
.

As we can see that ϕ(0, γ ) = 0 and ϕ(λ, γ ) → d
∫ ∞

0 yJ (y)
(
eλy − e−λy

)
dy as γ → 0. For r(x)> 0,

we set

φ(x; λ) = 1

λ

[
d

(∫
R

J (y)eλydy − 1

)
+ r(x)

]

and let

c∗(x) = min
λ>0

φ(x; λ) = φ(x; λ∗(x)) for some λ∗(x)> 0.

Clearly, c∗(∞) = min
λ>0

φ(∞; λ) = φ(∞; λ∗(∞)) for some λ∗(∞)> 0 and for some λ∗(−∞)> 0,

c∗(−∞) = min
λ>0

φ(−∞; λ) = φ(−∞; λ∗(−∞)) (if r(−∞)> 0) . It follows from (J) and (R) that
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c∗(∞)> c∗(−∞) and λ∗(∞)>λ∗(−∞). Moreover, we define

φγ (x; λ) = 1

λ

[
d

(∫
R

J (y)C(y)eλy cos(γ y)dy − 1

)
+ r(x)

]

and let c∗
γ (x) = min

λ>0
φγ (x; λ). It follows that c∗

γ (x) → c∗(x) as γ → 0. In view of the definition of

c∗(∞), we have

∂φ(∞; λ)

∂λ

∣∣∣∣
λ=λ∗(∞)

= 1

(λ∗(∞))2

(
λ∗(∞)d

∫
R

yJ (y)eλ
∗(∞)ydy

−
[

d

(∫
R

J (y)eλ
∗(∞)ydy − 1

)
+ r(∞)

] )
= 0.

Therefore,

d

∫
R

yJ (y)eλ
∗(∞)ydy = 1

λ∗(∞)

[
d

(∫
R

J (y)eλ
∗(∞)ydy − 1

)
+ r(∞)

]
= φ(∞; λ∗(∞)) = c∗(∞).

Consequently,

ϕ(λ∗(∞), γ ) → c∗(∞) as γ → 0.

This, together with ϕ(0, γ ) = 0, implies that for any c̃ ∈ (0, c∗(∞)) and γ > 0 being sufficiently
small, there exists some λc̃ ∈ (0, λ∗(∞)) such that ϕ(λc̃, γ ) = c̃. We will use this fact to choose
some suitable parameters to construct appropriate sub-solutions in Lemmas 3.1–3.6.

Next, we give the definition of sub-/super-solutions and the comparison principle from [23].

Definition 2.1 ([23], Definition 2.2) u ∈ C([0, T), BC+) with 0< T ≤ ∞ is a sub- or super-
solution of (2.1), if u(x, t) ≤ [T u](x, t) or u(x, t) ≥ [T u](x, t) for all t ∈ [0, T) and x ∈R.

Theorem 2.2 ([23], Theorem 2.3) Let u0 ∈BCr(∞). Then (2.1) admits a unique solution u ∈
C(R+, BCr(∞)). Moreover, the comparison principle holds for (2.1), that is, if u1(x, t) and u2(x, t)
are two solutions of (2.1) associated with initial value u10, u20 ∈BCr(∞), respectively, with
u10(x) ≤ u20(x) for all x ∈R, then u1(x, t) ≤ u2(x, t) for all t ≥ 0 and x ∈R. If we further assume
that u10 
≡ u20, then u1(x, t)< u2(x, t) for all t> 0 and x ∈R.

Corollary 2.3 ([23], Corollary 2.4) For any sub- and super-solutions u, v ∈ C(R+, BCr(∞)) of
(2.1) for all t> 0 and x ∈R. If u(x, 0) ≤ v(x, 0) for all x ∈R, then u(x, t) ≤ v(x, t) for all t> 0 and
x ∈R.

2.2 The main theorems

Our main results on the persistence and spreading properties for (1.1) under (J) and (R) are
summarised in the following theorems.

Theorem 2.4 When r(−∞) ≤ 0 and c> c∗(∞), then the solution u(x, t, u0) to the Cauchy
problem of (1.1) with compactly supported initial value u0 ∈BCr(∞) satisfies that

lim
t→∞ sup

x∈R
u(x, t, u0) = 0.
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Theorem 2.5 When r(−∞) ≤ 0 and c< c∗(∞), then for any small ε > 0, the solution u(x, t, u0)
to the Cauchy problem of (1.1) with initial value u0 ∈BCr(∞) satisfies that

(i) if u0(x) ≡ 0 for all sufficiently large x, then

lim
t→∞ sup

x≥(c∗(∞)+ε)t
u(x, t, u0) = 0;

(ii) if u0(x) ≡ 0 for all sufficiently negative x and u0(x)< r(∞) for x ∈R, then

lim
t→∞ sup

x≤− min{−c+ε,c∗(∞)+ε}t
u(x, t, u0) = 0;

(iii) if u0(x)> 0 on a closed interval, then for each ε ∈
(

0, c∗(∞)−c
2

)
, we have

lim
t→∞, −min{−c−ε,c∗(∞)−ε}t≤x≤(c∗(∞)−ε)t

|u(x, t, u0) − r(∞)| = 0.

Theorem 2.6 When r(−∞)> 0 and c> c∗(∞), then for any small ε > 0, the solution u(x, t, u0)
to the Cauchy problem of (1.1) with initial value u0 ∈BCr(∞) satisfies that

(i) if u0(x) ≡ 0 for sufficiently large x and further c> c∗(∞) + λ∗(−∞)(c∗(∞)−c∗(−∞))
λ∗(∞)−λ∗(−∞) , then

lim
t→∞ sup

x≥(c∗(−∞)+ε)t
u(x, t, u0) = 0;

(ii) if u0(x) ≡ 0 for all sufficiently negative x, then

lim
t→∞ sup

x≤−(c∗(−∞)+ε)t
u(x, t, u0) = 0;

(iii) if u0(x)> 0 on a closed interval, then

lim
t→∞, −(c∗(−∞)−ε)t≤x≤(c∗(−∞)−ε)t

|u(x, t, u0) − r(−∞)| = 0.

We remark that, restricted by the current approach, the condition:

c> c∗(∞) + λ∗(−∞)(c∗(∞) − c∗(−∞))

λ∗(∞) − λ∗(−∞)

is needed to prove Theorem 2.6(i). This may be a technical condition. Indeed, our simulation in
Figure 3(b) verifies that statement (i) holds true for any c> c∗(∞).

Theorem 2.7 When r(−∞)> 0 and −c∗(−∞)< c< c∗(∞), then for any small ε > 0, the
solution u(x, t, u0) to the Cauchy problem of (1.1) with initial value u0 ∈BCr(∞) satisfies that

(i) if u0(x) ≡ 0 for all sufficiently large x, then

lim
t→∞ sup

x≥(c∗(∞)+ε)t
u(x, t, u0) = 0;

(ii) if u0(x) ≡ 0 for all sufficiently negative x, then

lim
t→∞ sup

x≤−(c∗(−∞)+ε)t
u(x, t, u0) = 0;
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(iii) if u0(x)> 0 on a closed interval, we have

lim
t→∞, (c+ε)t≤x≤(c∗(∞)−ε)t

|u(x, t, u0) − r(∞)| = 0,

and

lim
t→∞, −(c∗(−∞)−ε)t≤x≤min{c∗(−∞)−ε, c−ε}t

|u(x, t, u0) − r(−∞)| = 0.

Theorem 2.8 When r(−∞)> 0 and −c∗(∞)< c<−c∗(−∞), then for any small ε > 0, the
solution u(x, t, u0) to the Cauchy problem of (1.1) with initial value u0 ∈BCr(∞) satisfies that

(i) if u0(x) ≡ 0 for all sufficiently large x, then

lim
t→∞ sup

x≥(c∗(∞)+ε)t
u(x, t, u0) = 0;

(ii) if u0(x) ≡ 0 for all sufficiently negative x, then

lim
t→∞ sup

x≤(c−ε)t
u(x, t, u0) = 0;

(iii) if u0(x)> 0 on a closed interval, then

lim
t→∞, (c+ε)t≤x≤(c∗(∞)−ε)t

|u(x, t, u0) − r(∞)| = 0.

Theorem 2.9 When r(−∞)> 0 and c<−c∗(∞)< 0, then for any small ε > 0, the solution
u(x, t, u0) to the Cauchy problem of (1.1) with initial value u0 ∈BCr(∞) satisfies that

(i) if u0(x) ≡ 0 for all sufficiently large x, then

lim
t→∞ sup

x≥(c∗(∞)+ε)t
u(x, t, u0) = 0;

(ii) if u0(x) ≡ 0 for all sufficiently negative x, then

lim
t→∞ sup

x≤−(c∗(∞)+ε)t
u(x, t, u0) = 0;

(iii) if u0(x)> 0 on a closed interval, then

lim
t→∞, −(c∗(∞)−ε)t≤x≤(c∗(∞)−ε)t

|u(x, t, u0) − r(∞)| = 0.

3 The proof of main theorems

Proof of Theorem 2.4 The case r(−∞)< 0 in Theorem 2.4 follows directly from [23, Theorem
3.1]. Notice that by [16, Lemma 2.1], [23, Theorem 4.5] and [45, Theorem 1.2], we can conclude
that when r(−∞) ≤ 0, for any given c>−c∗(∞), (1.1) admits a nondecreasing forced wave

(x − ct) satisfying 
(−∞) = 0 and 
(∞) = r(∞). Regarding the case r(−∞) = 0, we can
prove Theorem 2.4 using exactly the same method as that for [23, Theorem 3.1] together with
the existence result of forced waves. We omit the details here.
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Proof of Theorem 2.5 The case c> 0 has been proved by Li et al. [23], next we consider the
case c ≤ 0.

The proof of (i). Let λε > 0 satisfy

λε

(
c∗(∞) + ε

2

)
= d

(∫
R

J (y)eλεydy − 1

)
+ r(∞),

and denote v(x, t) = Ae−λε(x−(c∗(∞)+ ε
2 )t), where A is some sufficiently large constant. Then,

v(x, t) satisfies

vt(x, t) = λε

(
c∗(∞) + ε

2

)
v(x, t) =

[
d

(∫
R

J (y)eλεydy − 1

)
+ r(∞)

]
v(x, t).

In addition, since u0(x) ≡ 0 for sufficiently large x, we can choose A> 0 sufficiently large such
that u0(x) ≤ v(x, 0) for all x ∈R. Then the comparison principle yields that u(x, t) ≤ v(x, t), and
hence the conclusion easily follows.

The proof of (ii). If −c∗(∞)< c< c∗(∞), then min{−c + ε, c∗(∞) + ε} = −c + ε. Since
u0(x) ≡ 0 for all sufficiently negative x and u0(x)< r(∞), there exists some x0 ∈R such that the
translation of the forced wave 
(x − ct + x0) is a super-solution to (1.1) with 
(x + x0) ≥ u0(x)
for all x ∈R. Then by Corollary 2.3, we know that

lim
t→∞ sup

x≤(c−ε)t
u(x, t) ≤ lim

t→∞ sup
x≤(c−ε)t


(x − ct + x0) ≤ lim
t→∞
(−εt + x0) = 0.

On the other hand, if c ≤ −c∗(∞), then min{−c + ε, c∗(∞) + ε} = c∗(∞) + ε. Similarly to (i),
it can be shown that u(x, t) ≤ v(x, t) = Aeλε(x+(c

∗(∞)+ ε
2 )t) with λε defined in the proof of (i). This

finishes the proof.

The proof of (iii) The main ingredient of this part is to construct proper sub-solutions.

Lemma 3.1 For −c∗(∞) ≤ c< 0 and any sufficiently small ε, γ > 0, let λi > 0 for i = 1, 2,
such that ϕ(λ1, γ ) = −c − ε and ϕ(λ2, γ ) = c∗(∞) − ε. Then there exists some a> 0 small
enough such that for some sufficiently large l> 0, aυ−(x − l + ϕ(λ1, γ )t; λ1) and aυ(x − l −
ϕ(λ2, γ )t; λ2) are continuous sub-solutions of (1.1). Furthermore, for a solution u(x, t) of (1.1)
with 0 ≤ u(x, 0) ≤ r(∞), if u0(x) ≥ aυ−(x − l; λ1) (u0(x) ≥ aυ(x − l; λ2)), then u(x, t) ≥ aυ−(x −
l + ϕ(λ1, γ )t; λ1) (u(x, t) ≥ aυ(x − l − ϕ(λ2, γ )t); λ2) for all t> 0 and x ∈R.

Proof Denote w(x, t) = aυ−(x − l + ϕ(λ1, γ )t; λ1), we are going to show

wt(x, t) ≤ d[J ∗ w(x, t) − w(x, t)] + w[r(x − ct) − w(x, t)]. (3.1)

For x< l − ϕ(λ1, γ )t − π
γ

or x> l − ϕ(λ1, γ )t, w(x, t) = aυ−(x − l + ϕ(λ1, γ )t; λ1) ≡ 0. It is suf-

ficient to show that w(x, t) = −aeλ1(x−l+ϕ(λ1,γ )t) sin γ (x − l + ϕ(λ1, γ )t) is a sub-solution of (1.1)
for x ∈ [l − ϕ(λ1, γ )t − π

γ
, l − ϕ(λ1, γ )t]. Notice that

wt(x, t) = − aλ1ϕ(λ1, γ )eλ1(x−l+ϕ(λ1,γ )t) sin γ (x − l + ϕ(λ1, γ )t)

− aγ ϕ(λ1, γ )eλ1(x−l+ϕ(λ1,γ )t) cos γ (x − l + ϕ(λ1, γ )t)
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and ∫
R

J (y)[w(x − y, t) − w(x, t)]dy

≥
∫
R

J (y)C(y)w(x − y, t)dy − w(x, t)

≥ − a

∫ π
2γ

− π
2γ

J (y)C(y)eλ1(x−y−l+ϕ(λ1,γ )t) sin γ (x − y − l + ϕ(λ1, γ )t)dy

+ aeλ1(x−l+ϕ(λ1,γ )t) sin γ (x − l + ϕ(λ1, γ )t)

= − a

∫ π
2γ

− π
2γ

J (y)C(y)eλ1(x−y−l+ϕ(λ1,γ )t)
[

sin γ (x − l + ϕ(λ1, γ )t) cos γ y

− cos γ (x − l + ϕ(λ1, γ )t) sin γ y
]
dy

+ aeλ1(x−l+ϕ(λ1,γ )t) sin γ (x − l + ϕ(λ1, γ )t).

Then (3.1) holds true provided that

− λ1ϕ(λ1, γ ) sin γ (x − l + ϕ(λ1, γ )t)

≤d

∫
R

J (y)C(y)e−λ1y(−1)
[

sin γ (x − l + ϕ(λ1, γ )t) cos γ y − cos γ (x − l + ϕ(λ1, γ )t) sin γ y
]
dy

+ γ ϕ(λ1, γ ) cos γ (x − l + ϕ(λ1, γ )t) + d sin γ (x − l + ϕ(λ1, γ )t)

− sin γ (x − l + ϕ(λ1, γ )t)(r(x − ct) − w(x, t))

= − sin γ (x − l + ϕ(λ1, γ )t)

[
d

(∫
R

J (y)C(y) cos γ ye−λ1ydy − 1

)
+ r(x − ct) − w(x, t)

]

+
[

d

∫
R

J (y)C(y)e−λ1y sin γ ydy + γ ϕ(λ1, γ )

]
cos γ (x − l + ϕ(λ1, γ )t)

= − sin γ (x − l + ϕ(λ1, γ )t)

[
d

(∫
R

J (y)C(y) cos γ yeλ1ydy − 1

)
+ r(x − ct) − w(x, t)

]
,

in which we use the facts that J (y) = J (−y) and C(y) = C(−y). This is equivalent to

λ1ϕ(λ1, γ ) ≤ d

(∫
R

J (y)C(y) cos γ yeλ1ydy − 1

)
+ r(x − ct) − w(x, t).

Since x ≥ l − ϕ(λ1, γ )t − π
γ

, then x − (c + ε)t ≥ l − π
γ

. Note that r(x) is a nondecreasing function,
we only need to verify that

λ1ϕ(λ1, γ ) ≤ d

(∫
R

J (y)C(y) cos γ yeλ1ydy − 1

)
+ r

(
l − π

γ

)
− a. (3.2)

Recall that

d

(∫
R

J (y)C(y)eλ1y cos γ ydy − 1

)
+ r

(
l − π

γ

)
= λ1φγ

(
l − π

γ
; λ1

)
.
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Thus, we can obtain (3.2) by choosing a<λ1

(
φγ

(
l − π

γ
; λ1

)
− ϕ(λ1, γ )

)
. Indeed, since 0<

−c ≤ c∗(∞), there exists δ > 0 such that −c − ε < c∗(∞) − 5δ. Let γ > 0 be sufficiently small
and l be sufficiently large such that

φγ

(
l − π

γ
; λ1

)
≥ c∗

γ

(
l − π

γ

)
≥ c∗

γ (∞) − 2δ ≥ c∗(∞) − 3δ.

It then follows that (3.2) and further (3.1) hold true by choosing a<λ1(c∗(∞) − 3δ − c∗(∞) +
5δ) = 2δλ1, which, in return, shows that for sufficiently small a> 0 and sufficiently large l> 0,
w(x, t) = aυ−(x − l + ϕ(λ1, γ )t; λ1) is a continuous sub-solution of (1.1). Furthermore, if u0(x) ≥
aυ−(x − l; λ1), then it follows from Corollary 2.3 that u(x, t) ≥ aυ−(x − l + ϕ(λ1, γ )t; λ1) for all
t> 0 and x ∈R.

Similar to the discussion above, we can also show aυ(x − l − ϕ(λ2, γ )t; λ2) is a continuous
sub-solution of (1.1).

Lemma 3.2 For c<−c∗(∞) and any sufficiently small ε, γ > 0, let λ2 > 0 such that
ϕ(λ2, γ ) = c∗(∞) − ε. Then there exists some a> 0 small enough such that for some suf-
ficiently large l> 0, aυ−(x − l + ϕ(λ2, γ )t; λ2) and aυ(x − l − ϕ(λ2, γ )t; λ2) are continuous
sub-solutions of (1.1). Furthermore, for a solution u(x, t) of (1.1) with 0 ≤ u(x, 0) ≤ r(∞), if
u0(x) ≥ aυ−(x − l; λ2) (u0(x) ≥ aυ(x − l; λ2)), then u(x, t) ≥ aυ−(x − l + ϕ(λ2, γ )t; λ2) (u(x, t) ≥
aυ(x − l − ϕ(λ2, γ )t; λ2)) for all t> 0 and x ∈R.

Proof In view of the proof of Lemma 3.1, we only need to show that

λ2ϕ(λ2, γ ) ≤ d

(∫
R

J (y)C(y) cos γ yeλ2ydy − 1

)
+ r(x − ct) − a.

By the definition of φγ (x; λ) and the facts that x> l − ϕ(λ2, γ )t − π
γ

and that r(x) is nondecreas-
ing, the inequality above can be obtained by choosing a> 0 small enough such that

a<λ2

(
φγ

(
l − π

γ
; λ2

)
− ϕ(λ2, γ )

)
. (3.3)

In fact, since γ > 0 is sufficiently small and l> 0 is sufficiently large such that

φγ

(
l − π

γ
; λ2

)
≥ c∗

γ

(
l − π

γ

)
> c∗

γ (∞) − ε

4
> c∗(∞) − ε

2
,

we have (3.3) by choosing a< λ2ε

2 . Similar process as that for Lemma 3.1, we finish the proof of
Lemma 3.2.

Now we are ready to finish the proof of Theorem 2.5. Since when 0< c< c∗(∞), Theorem
2.5(iii) has been proved in [23, Theorem 3.3 (iii)] and we further notice that the conclusion in
[23, Theorem 3.3(iii)] as well as its proof is also valid for c = 0, we only discuss the case c< 0
in the following. Define the function w(x, t; α, λ1, λ2) by
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w(x, t; α, λ1, λ2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α−
1 υ−(x + ϕ(λ1, γ )t; λ1), −ϕ(λ1, γ )t − π

γ
≤ x ≤ −σ (λ1) − ϕ(λ1, γ )t,

α, − σ (λ1) − ϕ(λ1, γ )t ≤ x ≤ 3π

γ
+ σ (λ2) + ϕ(λ2, γ )t,

α2υ

(
x − 3π

γ
− ϕ(λ2, γ )t; λ2

)
,

3π

γ
+ σ (λ2) + ϕ(λ2, γ )t ≤ x

≤ 4π

γ
+ ϕ(λ2, γ )t,

0, elsewhere,

(3.4)

where α > 0 and

α−
1 = α

υ−(−σ (λ1); λ1)
, α2 = α

υ(σ (λ2); λ2)
.

Next, we shall show the solution u(x, t) of (1.1) satisfies u(x, t) ≥ w(x − l, t − t0; α, λ1, λ2) for
some t0 > 0 and some sufficiently large l> 0. We divide the proof into two cases.

Case (a): 0<−c< c∗(∞). Let λ1 = λ1, λ2 = λ2 and ϕ(λ1, γ ) = −c − ε and ϕ(λ2, γ ) =
c∗(∞) − ε. Then it follows from Lemma 3.1 that

u(x, t) ≥ aυ−(x − l + ϕ(λ1, γ )t; λ1), u(x, t) ≥ aυ(x − l − ϕ(λ2, γ )t; λ2), ∀t> 0, x ∈R.

Since u0(x)> 0 on a closed interval, it follows that u(x, t)> 0 for all t> 0 and x ∈R. Choose

0< t0 <
σ (λ1)
ϕ(λ1,γ ) , α > 0 and 0< γ < 1 such that u(x, t0) ≥ α for x ∈

[
l − π

γ
, l + 4π

γ

]
. Then for any

0 ≤ s ≤ 3π
γ

and x ∈R, we claim that

⎧⎪⎨
⎪⎩

w(x − l, 0; α, λ1, λ2) ≥ α−
1 υ−(x − l − s; λ1),

w(x − l, 0; α, λ1, λ2) ≥ α2υ

(
x − l − 3π

γ
+ s; λ2

)
.

(3.5)

Since the two inequalities in (3.5) can be proved in a similar way, we only show the first
inequality:

w(x − l, 0; α, λ1, λ2) ≥ α−
1 υ−(x − l − s; λ1). (3.6)

Indeed, for x ∈ [l − π
γ

, l − σ (λ1)], w(x − l, 0; α, λ1, λ2) = α−
1 υ−(x − l; λ1) and x − l − s ∈

[− 4π
γ

, −σ (λ1)]. Note that α−
1 υ−(y; λ1) is nondecreasing in (−∞, σ (λ1)]. Then α−

1 υ−(x −
l; λ1) ≥ α−

1 υ−(x − l − s; λ1), which yields that (3.6) holds true; for x ∈ [l − σ (λ1), l + 3π
γ

+
σ (λ2)], w(x − l, 0; α, λ1, λ2) = α. Since υ−(−σ (λ1); λ1) is the maximum of υ−(·; λ1) on R,
we have υ−(x−l−s;λ1)

υ−(−σ (λ1);λ1) ≤ 1, and hence, (3.6) holds true; For x ∈ [l + 3π
γ

+ σ (λ2), l + 4π
γ

], x − l −
s ∈ [σ (λ2), 4π

γ
] and w(x − l, 0; α, λ1, λ2) = α2υ−(x − l; λ2) ≥ 0. Then υ−(x − l − s; λ1) = 0, and

hence, (3.6) holds; for x< l − π
γ

or x> l + 4π
γ

, we have x − l − s<−π
γ

or x − l − s> π
γ

, then
w(x − l, 0; α, λ1, λ2) = 0. It follows that υ−(x − l − s; λ1) = 0, which yields (3.6). Therefore, we
have shown the claim.
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Furthermore, by virtue of (3.5) and Lemma 3.1, we have⎧⎪⎨
⎪⎩

u(x, t) ≥ α−
1 υ−(x − l + ϕ(λ1, γ )(t − t0) − s; λ1),

u(x, t) ≥ α2υ

(
x − l − 3π

γ
− ϕ(λ2, γ )(t − t0) + s; λ2

)
.

(3.7)

Then for t ≥ t0, it follows from (3.7) that

u(x, t) ≥

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

α−
1 υ−(x − l + ϕ(λ1, γ )(t − t0); λ1), l − ϕ(λ1, γ )t − π

γ
≤ x

≤ l − σ (λ1) − ϕ(λ1, γ )(t − t0),

α, l − σ (λ1) − ϕ(λ1, γ )(t − t0) ≤ x ≤ l + 3π

γ
− σ (λ1) − ϕ(λ1, γ )(t − t0),

0, elsewhere,

and

u(x, t) ≥

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α, l + σ (λ2) + ϕ(λ2, γ )(t − t0) ≤ x ≤ l + 3π

γ
+ σ (λ2) + ϕ(λ2, γ )(t − t0),

α2υ

(
x − l − 3π

γ
− ϕ(λ2, γ )(t − t0); λ2

)
, l + 3π

γ
+ σ (λ2) + ϕ(λ2, γ )(t − t0)

≤ x ≤ l + 4π

γ
+ σ (λ2) + ϕ(λ2, γ )(t − t0),

0, elsewhere.

Now set

h =
3π
γ

− σ (λ1) − σ (λ2)

ϕ(λ1, γ ) + ϕ(λ2, γ )
> 0,

we then have

l + 3π

γ
− σ (λ1) − ϕ(λ1, γ )(t − t0) ≥ l + σ (λ2) + ϕ(λ2, γ )(t − t0), ∀t0 ≤ t ≤ t0 + h.

This yields that u(x, t) ≥ w(x − l, t − t0; α, λ1, λ2) for t0 ≤ t ≤ t0 + h and x ∈R. Now assume that,
for t0 ≤ t ≤ t0 + nh with any positive integer n ∈Z, the above inequality holds true. Then⎧⎪⎨

⎪⎩
w(x − l, nh; α, λ1, λ2) ≥ α−

1 υ−(x − l + nhϕ(λ1, γ ) − s; λ1),

w(x − l, nh; α, λ1, λ2) ≥ α2υ

(
x − l − 3π

γ
− nhϕ(λ2, γ ) + s; λ2

)
,

where 0 ≤ s ≤ 3π
γ

+ (ϕ(λ1, γ ) + ϕ(λ2, γ ))nh. Therefore, in view of the choice of h, we have⎧⎪⎨
⎪⎩

u(x, t) ≥ α−
1 υ−(x − l + nhϕ(λ1, γ ) + ϕ(λ1, γ )(t − (t0 + nh)) − s; λ1),

u(x, t) ≥ α2υ

(
x − l − 3π

γ
− nhϕ(λ2, γ ) − ϕ(λ2, γ )(t − (t0 + nh)) + s; λ2

)
.

(3.8)

This and the range of values for s indicate that u(x, t) ≥ α for

t0 + nh ≤ t ≤ t0 + nh +
3π
γ

− σ (λ1) − σ (λ2)

ϕ(λ1, γ ) + ϕ(λ2, γ )
= t0 + (n + 1)h.
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We hence obtain u(x, t) ≥ w(x − l, t − t0; α, λ1, λ2) for t0 + nh ≤ t ≤ t0 + (n + 1)h and x ∈R. By
induction, u(x, t) ≥ w(x − l, t − t0; α, λ1, λ2) holds true for all t ≥ t0 and x ∈R.

Assume u(x, t0) is the initial value and u(x, t) is the solution of (1.1). Let

r∗ = sup

{
r′ ∈ [0, ∞) : there exist t′ > 0,

ε

2
< ε′ < ε such that u(x, t) ≥ r′

for t ≥ t′ and − (−c − ε′)t ≤ x ≤ (c∗(∞) − ε′)t
}

.

Clearly, r∗ ≥ α. If r∗ ≥ r(∞), then the proof is finished. Otherwise, suppose that 0< r∗ < r(∞)
and take r′ ∈ (0, r∗) such that r′(1 + 2γ ) ≥ (1 + γ )r∗. By the definition of r∗, there exist t′ > 0
and ε

2 < ε
′ < ε with u(x, t) ≥ r′ for t ≥ t′ and −(−c − ε)t ≤ x ≤ (c∗(∞) − ε)t.

For any ε̃ ∈ (ε′, ε), let t̃> t′ be sufficiently large such that∫ t̃−t′

0
e−ρ(t̃−t′−s)ds ≥ 1

ρ(1 + γ )

and for t ≥ t̃ as well as −(−c − ε̃)t ≤ x ≤ (c∗(∞) − ε̃)t, there holds u(x, t) ≥ r′, then for t ≥ t̃,

u(x, t) ≥
∫ t−t′

0

[
e−ρ(t−t′−s)P(t − t′ − s)u(·, s + t′))(ρ + r(· − c(s + t′)) − u(·, s + t′))

]
(x)ds

≥
∫ t−t′

0
e−ρ(t−t′−s)P(t − t′ − s)r′(ρ + r(∞) − r′)ds

=r′(ρ + r(∞) − r′)
∫ t−t′

0
e−ρ(t−t′−s)ds

≥r′(ρ + r(∞) − r′)
1

(1 + γ )ρ

≥ r∗

1 + 2γ

(
1 + r(∞) − r∗

ρ

)
,

where r′ ∈ (0, r∗) satisfying r′(1 + 2γ ) ≥ (1 + γ )r∗. This gives that for γ < r(∞)−r∗
3ρ , there holds

u(x, t) ≥ 1 + 3γ

1 + 2γ
r∗ > r∗.

Then we reach a contradiction against the choice of r∗.

Case (b): −c ≥ c∗(∞). The proof of such case is similar to that for Case (a) with λ1 = λ2 := λ2

and we omit the details here. The proof is complete.

In order to show Theorems 2.6–2.9, we first construct some appropriate sub-solutions in the
following lemmas. Starting at the current position, we always suppose that r(−∞)> 0.

Lemma 3.3 For any sufficiently small ε, γ > 0, choosing λ3 > 0 such that ϕ(λ3, γ ) = c∗(−∞) −
ε, there exists some a> 0 small enough such that for any real number l, the functions aυ−(x − l +
ϕ(λ3, γ )t; λ3) and aυ(x − l − ϕ(λ3, γ )t; λ3) are continuous sub-solutions of (1.1). Furthermore,
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for a solution u(x, t) of (1.1) with 0 ≤ u(x, 0) ≤ r(∞), if u0(x) ≥ aυ−(x − l; λ3) (u0(x) ≥ aυ(x −
l; λ3)), then

u(x, t) ≥ aυ−(x − l + ϕ(λ3, γ )t; λ3) (u(x, t) ≥ aυ(x − l − ϕ(λ3, γ )t; λ3))

for all t> 0 and x ∈R.

Proof Denote ω−(x, t) = aυ−(x − l + ϕ(λ3, γ )t; λ3). For x> l − ϕ(λ3, γ )t or x< l − ϕ(λ3, γ )
t − π

γ
, ω−(x, t) = aυ−(x − l + ϕ(λ3, γ )t; λ3) ≡ 0, then the conclusion is natural. We only need to

show

∂ω−(x, t)

∂t
≤ d[J ∗ω−(x, t) −ω−(x, t)] +ω−(x, t)[r(x − ct) −ω−(x, t)]

for x ∈ [l − ϕ(λ3γ )t − π
γ

, l − ϕ(λ3γ )t] and t> 0. Similar to the proof of Lemma 3.1, it is
sufficient to prove

λ3ϕ(λ3, γ ) ≤ d

(∫
R

J (y)C(y)eλ3y cos γ ydy − 1

)
+ r(x − ct) − a. (3.9)

Based on the fact that r(x − ct) ≥ r(−∞) and the definition of φγ (x; λ), we find that (3.9) holds
true if a> 0 satisfies that

a<λ3(φγ (−∞; λ3) − ϕ(λ3, γ )). (3.10)

In fact, since γ > 0 is sufficiently small such that

φγ (−∞; λ3) ≥ c∗(−∞) − ε

2

and ϕ(λ3, γ ) = c∗(−∞) − ε, we can obtain (3.10), and hence (3.9), by choosing a> 0 such that

a<λ3

(
c∗(−∞) − ε

2
− c∗(−∞) + ε

)
= λ3ε

2
.

This implies that for any a> 0 small enough and l ∈R, aυ−(x − l + ϕ(λ3, γ )t; λ3) is a continuous
sub-solution of (1.1). Similarly, we show aυ(x − l − ϕ(λ3, γ )t; λ3) is a continuous sub-solution
of (1.1) for any sufficiently small a> 0. Furthermore, by Corollary 2.3, if u0(x) ≥ aυ−(x − l; λ3)
(u0(x) ≥ aυ(x − l; λ3)), then for all t> 0 and x ∈R,

u(x, t) ≥ aυ−(x − l + ϕ(λ3, γ )t; λ3) (u(x, t) ≥ aυ(x − l − ϕ(λ3, γ )t; λ3)).

The proof is complete.

Lemma 3.4 Let 0 ≤ c< c∗(∞). For any sufficiently small ε, γ > 0, choose λ4 > 0 and λ2 > 0
such that ϕ(λ4, γ ) = c + ε and ϕ(λ2, γ ) = c∗(∞) − ε. Then there exists some a> 0 small enough
such that for some sufficiently large l> 0, the function aυ(x − l − ϕ(λi, γ )t; λi) (i = 4, 2) is a
continuous sub-solution of (1.1). Furthermore, for a solution u(x, t) of (1.1) with 0 ≤ u(x, 0) ≤
r(∞), if u(x, 0) ≥ aυ(x − l; λi) (i = 4, 2), then u(x, t) ≥ aυ(x − l − ϕ(λi, γ )t; λi) (i = 4, 2) for all
t> 0 and x ∈R.
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Proof We can easily conclude from the proof of Lemma 3.1 that it is sufficient to show

λiϕ(λi, γ ) ≤ d

(∫
R

J (y)C(y) cos(γ y)eλiydy − 1

)
+ r(x − ct) − a, i = 2, 4.

Here we only show the case i = 4, since the case i = 2 follows directly from the proofs of Lemmas
3.1 and 3.2. By same arguments as that for Lemmas 3.1–3.3, it follows that we just need to
explain

a<λ4(φγ (l; λ4) − ϕ(λ4, γ )). (3.11)

In fact, by letting l> 0 large enough and γ small enough such that c∗(l) ≥ c∗(∞) − ε
4 and

c∗
γ (l) ≥ c∗(l) − ε

4 , we have φγ (l; λ4) ≥ c∗(∞) − ε
2 . This, together with the fact ϕ(λ4, γ ) = c + ε <

c∗(∞) − ε, implies that (3.11) holds true as long as we select a> 0 such that

a<λ4

(
c∗(∞) − ε

2
− c∗(∞) + ε

)
= λ4ε

2
.

The remaining proof is similar to that of Lemmas 3.1–3.3, we omit it here. The proof is
finished.

Next, we give another two lemmas, the proofs of which directly follow from Lemmas 3.1–3.4.

Lemma 3.5 Let −c∗(−∞)< c< 0. For any sufficiently small ε, γ > 0, choose λi for
i = 1, 2, 3, 5 such that ϕ(λ1, γ ) = −c − ε, ϕ(λ2, γ ) = c∗(∞) − ε, ϕ(λ3, γ ) = c∗(−∞) − ε and
ϕ(λ5, γ ) = −c + ε. Then there exists some a> 0 small enough such that for sufficiently
large l> 0, the function aυ(x − l − ϕ(λ2, γ )t; λ2) is a continuous sub-solution of (1.1).
For any l̄ ∈R, aυ−(x − l̄ + ϕ(λi, γ )t; λi) (i = 1, 3, 5) is a continuous sub-solution of (1.1).
Furthermore, for a solution u(x, t) of (1.1) with 0 ≤ u(x, 0) ≤ r(∞), if u(x, 0) ≥ aυ(x − l; λ2)
(u(x, 0) ≥ aυ−(x − l̄; λi) (i = 1, 3, 5)), then u(x, t) ≥ aυ(x − l − ϕ(λ2, γ )t; λ2) (u(x, t) ≥ aυ−(x −
l̄ + ϕ(λ̄i, γ )t; λi) (i = 1, 3, 5)) for all t> 0 and x ∈R.

Lemma 3.6 Let −c∗(∞)< c<−c∗(−∞). For any sufficiently small ε, γ > 0, let λi > 0 for
i = 1, 2 such that ϕ(λ1, γ ) = −c − ε and ϕ(λ2, γ ) = c∗(∞) − ε. Then there exists some a> 0
small enough such that for sufficiently large l> 0, aυ−(x − l + ϕ(λ1, γ )t; λ1) and aυ(x − l −
ϕ(λ2, γ )t; λ2) are continuous sub-solutions of (1.1). Furthermore, for a solution u(x, t) of
(1.1) with 0 ≤ u(x, 0) ≤ r(∞), if u(x, 0) ≥ aυ−(x − l; λ1) (u(x, 0) ≥ aυ(x − l; λ2)), then u(x, t) ≥
aυ−(x − l + ϕ(λ1, γ )t; λ1) (u(x, t) ≥ aυ(x − l − ϕ(λ2, γ )t; λ2)) for t> 0 and x ∈R.

Based on the above sub-solutions, we further define the following functions. Let

wr(x, t; α, λ1, λ2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1υ(x − ϕ(λ1, γ )t; λ1), ϕ(λ1, γ )t ≤ x ≤ σ (λ1) + ϕ(λ1, γ )t,

α, σ (λ1) + ϕ(λ1, γ )t ≤ x ≤ 3π

γ
+ σ (λ2) + ϕ(λ2, γ )t,

α2υ

(
x − 3π

γ
− ϕ(λ2, γ )t; λ2

)
,

3π

γ
+ σ (λ2) + ϕ(λ2, γ )t ≤ x

≤ 4π

γ
+ ϕ(λ2, γ )t,

0, elsewhere,
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where α > 0 and

α1 = α

υ(σ (λ1); λ1)
, α2 = α

υ(σ (λ2); λ2)
.

Notice that for

x ∈
[
σ (λ1) + ϕ(λ1, γ )t,

3π

γ
+ σ (λ2) + ϕ(λ2, γ )t

]
,

wr(x, t; α, λ1, λ2) = α with the end points shifting rightward at speeds ϕ(λ1, γ ) and ϕ(λ2, γ ) as
t → ∞. Let w(x, t; α, λ1, λ2) be defined as (3.4), we see that for

x ∈
[
−σ (λ1) − ϕ(λ1, γ )t,

3π

γ
+ σ (λ2) + ϕ(λ2, γ )t

]
,

w(x, t; α, λ1, λ2) = α with the left end point shifting leftward at speed ϕ(λ1, γ ) and the right end
point shifting rightward at speed ϕ(λ2, γ ) as t → ∞. Let

wl(x, t; α, λ1, λ2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α−
1 υ−(x + ϕ(λ1, γ )t; λ1), − ϕ(λ1, γ )t − π

γ
≤ x ≤ −σ (λ1) − ϕ(λ1, γ )t,

α, − σ (λ1) − ϕ(λ1, γ )t ≤ x ≤ 3π

γ
− σ (λ2) − ϕ(λ2, γ )t,

α−
2 υ−

(
x − 3π

γ
+ ϕ(λ2, γ )t; λ2

)
,

3π

γ
− σ (λ2) − ϕ(λ2, γ )t ≤ x

≤ 3π

γ
− ϕ(λ2, γ )t,

0, elsewhere,

where α > 0 and

α−
1 = α

υ−(−σ (λ1); λ1)
, α−

2 = α

υ−(−σ (λ2); λ2)
.

Clearly, for

x ∈
[
−σ (λ1) − ϕ(λ1, γ )t,

3π

γ
− σ (λ2) − ϕ(λ2, γ )t

]
,

wl(x, t; α, λ1, λ2) = α with the end points shifting leftward at speeds ϕ(λ1, γ ) and ϕ(λ2, γ ),
respectively, as t → ∞.

The following lemma shows that the proper translations of wr(x, t; α, λ1, λ2), w(x, t; α, λ1, λ2),
and wl(x, t; α, λ1, λ2) are sub-solutions of (1.1) as time evolves. It is observed that the size of the
region for the density function u(x, t) ≥ α is increasing linearly with respect to t under appropriate
conditions on α, γ , λ1 and λ2.

Lemma 3.7 Let u(x, t) be a solution of (1.1) with u(·, 0) ∈BCr(∞) and u(x, 0)> 0 on a closed
interval. Then for any small positive ε > 0, there exist α, γ and t0 > 0 such that the following
conclusions hold true:

(i) If c ≥ c∗(∞), then for any real number l, we have u(x, t) ≥ w(x − l, t − t0; α, λ3, λ3) for
all t> t0 and x ∈R, where λ3 > 0 satisfies ϕ(λ3, γ ) = c∗(−∞) − ε.
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(ii) If c∗(−∞) ≤ c< c∗(∞), then for some sufficiently large l> 0, we have u(x, t) ≥ wr(x −
l, t − t0; α, λ4, λ2) for all t> t0 and x ∈R, where λ4, λ2 > 0 satisfy ϕ(λ4, γ ) = c + ε and
ϕ(λ2, γ ) = c∗(∞) − ε, and for any l′ > 0, we have u(x, t) ≥ w(x − l′, t − t0; α, λ3, λ3) for
all t> t0 and x ∈R, where λ3 > 0 satisfies ϕ(λ3, γ ) = c∗(−∞) − ε.

(iii) If 0< c< c∗(−∞), then for some large l> 0, u(x, t) ≥ wr(x − l, t − t0; α, λ4, λ2) for all
t> t0 and x ∈R, where λ4, λ2 > 0 satisfy ϕ(λ4, γ ) = c + ε and ϕ(λ2, γ ) = c∗(∞) − ε, and
for any l′ > 0, u(x, t) ≥ w(x − l′, t − t0; α, λ3, λ6) for all t> t0 and x ∈R, where λ3, λ6 > 0
satisfy ϕ(λ3, γ ) = c∗(−∞) − ε and ϕ(λ6, γ ) = c − ε. The first part of this statement is
valid for c = 0.

(iv) If −c∗(−∞)< c< 0, then for some large l> 0, we have u(x, t) ≥ w(x − l, t −
t0; α, λ1, λ2) for all t> t0 and x ∈R, where λ1, λ2 > 0 satisfy ϕ(λ1, γ ) = −c − ε and
ϕ(λ2, γ ) = c∗(∞) − ε, and for any l′ > 0, we have u(x, t) ≥ wl(x − l′, t − t0; α, λ3, λ5) for
all t> t0 and x ∈R, where λ3, λ5 > 0 satisfy ϕ(λ3, γ ) = c∗(−∞) − ε and ϕ(λ5, γ ) =
−c + ε. The first part of this statement is valid for c = 0.

(v) If c∗(−∞) ≤ −c< c∗(∞), u(x, t) ≥ w(x − l, t − t0; α, λ1, λ2) for all t> t0 and x ∈R,
where λ1, λ2 > 0 satisfy ϕ(λ1, γ ) = −c − ε and ϕ(λ2, γ ) = c∗(∞) − ε.

(vi) If c ≤ −c∗(∞), then for large l, we have u(x, t) ≥ w(x − l, t − t0; α, λ2, λ2) for all t> t0
and x ∈R, where λ2 > 0 satisfying ϕ(λ2, γ ) = c∗(∞) − ε.

Proof It follows from Lemmas 3.1–3.6 that u(x, t) ≥ aV (x; λ) with V (x; λ) = υ(x − l −
ϕ(λ, γ )t; λ) or υ−(x − l + ϕ(λ, γ )t; λ), where λ can be λi for i = 1, 2, 3, 4, 5. As for λ= λ6 =
c − ε with 0< c< c∗(−∞), the same arguments as that for Lemma 3.4 with λ4 = c + ε replaced
by λ6 = c − ε can be applied to obtain that u(x, t) ≥ aυ(x − l − ϕ(λ6, γ )t; λ). By a similar argu-
ment to that for Theorem 2.5(iii), we can obtain that u(x, t) ≥ w(x − l, t − t0; α, λ1, λ2), u(x, t) ≥
wr(x − l, t − t0; α, λ1, λ2) and u(x, t) ≥ wl(x − l, t − t0; α, λ1, λ2), where the parameters λ1, λ2 and
l are chosen properly as in Lemma 3.7. We omit the details here.

Now we are in the position to prove Theorems 2.6–2.9.

Proof of Theorem 2.6 We start with the following lemma.

Lemma 3.8 Let u(x, t) be the solution of (1.1) with u(·, 0) ∈BCr(∞).

(i) If u(x, 0) ≡ 0 for all sufficiently large x, then for any small ε > 0, there exist some A> 0
and λε > 0 such that

u(x, t) ≤ Ae−λε(x−(c∗(∞)+ ε
2 )t).

(ii) There exist K1, K2 > 0 and sufficiently negative s satisfying that for any small ε > 0, one

can choose λ′
ε such that φ(s; λ′

ε) = c∗(s) + ε
2 , furthermore, for c> ĉ = λεc∗(∞)−λ′

εc∗(s)
λε−λ′

ε
,

ŭ(x, t) = min
{

K1e−λε(x−(c∗(∞)+ ε
2 )t), K2e−λ′

ε(x−(c∗(s)+ ε
2 )t)

}
is a super-solution of (1.1), where λε is defined in the proof of Theorem 2.5(i).

(iii) Assume that c>−c∗(−∞) and u(x, 0) ≡ 0 for sufficiently negative x. Then there exist
some B> 0 and λδε > 0 such that for any small ε > 0, there holds

u(x, t) ≤ Beλ
δ
ε (x+c∗(−∞)+ε)t.
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Proof (i). The proof is similar to that of Theorem 2.5(i), so we omit it here.
(ii). Since s is sufficiently negative, it follows that c∗(s)< c∗(∞). Recall that in Section 2.1, we

derive that c∗(x) = d
∫
R

yJ (y)eλ
∗(x)ydy, and hence, λ∗(s)<λ∗(∞). Note that φ(s; λ′

ε) = c∗(s) + ε
2

and φ(∞; λε) = c∗(∞) + ε
2 . Thus, λε > λ′

ε for any ε > 0 small enough. Denote

Q(x, t) = K2e−λ′
ε(x−(c∗(s)+ ε

2 )t)

K1e−λε(x−(c∗(∞)+ ε
2 )t)

.

By a direct calculation, we have

Q(x, t) = K2

K1
exp

{
(λε − λ′

ε)

[
x −

(
λεc∗(∞) − λ′

εc
∗(s)

λε − λ′
ε

+ ε

2

)
t

]}
.

Recall that c> ĉ, we have

Q(x, t) ≥ K2

K1
exp{(λε − λ′

ε)(x − ct)}.

Choose K1, K2 > 0 properly such that Q(x, t) ≥ 1 for x − ct ≥ s. Then

ŭ(x, t) = K1e−λε(x−(c∗(∞)+ ε
2 )t)

for x − ct ≥ s. By the proof of (i), we know that

ŭt(x, t) ≥ d(J ∗ ŭ(x, t) − ŭ(x, t)) + ŭ(x, t)(r(x − ct) − ŭ(x, t)) (3.12)

for x − ct ≥ s. Meanwhile, for x − ct< s, ŭ(x, t) = K2e−λ′
ε(x−(c∗(s)+ ε

2 )t) satisfies that

ŭt(x, t) − d(J ∗ ŭ(x, t) − ŭ(x, t)) = r(s)ŭ(x, t) ≥ ŭ(r(x − ct) − ŭ).

This implies that statement (ii) holds true.
(iii). Rewrite that

c∗(−∞) = lim
δ→0

min
λ>0

d
∫
R

J (y)e−λydy − d + r(−∞) + δ

λ
.

Therefore, for any ε > 0, there exist δ > 0 and 0<λδε < λ
∗(−∞) such that

c∗(−∞) + ε = d
∫
R

J (y)e−λδεydy − d + r(−∞) + δ

λδε
. (3.13)

Indeed, let λδε be the smaller positive root of (3.13). Then it is not difficult to find that lim
δ→0

λδε = λ−
ε

with λ−
ε < λ

∗(−∞) being the smaller positive root of

c∗(−∞) + ε = d
∫
R

J (y)e−λ−
ε ydy − d + r(−∞)

λ−
ε

.

It follows that we can find δ > 0 being sufficiently small such that λδε <
λ−
ε +λ∗(−∞)

2 <λ∗(−∞).
Since r(x) is continuous and nondecreasing in x ∈R, there exists x1 such that if x< x1, then

r(x) ≤ r(−∞) + δ.
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It follows that for any t> 0, if x< x1 + ct then

r(x − ct) ≤ r(−∞) + δ.

Let B> 0 be sufficiently large such that Beλ
δ
εx1 ≥ r(∞) and u(x, 0) ≤ Beλ

δ
εx for all x ∈R.

Moreover, denote w+(x, t) = Beλ
δ
ε (x+(c∗(−∞)+ε)t). It then follows that

w+
t (x, t) − d(J ∗ w+(x, t) − w+(x, t)) − w+(r(x − ct) − w+)

=w+
[
λδε(c

∗(−∞) + ε) − d

(∫
R

J (y)e−λδεydy − 1

)
− r(x − ct) + w+

]

=w+
(

r(−∞) + δ− r(x − ct) + Beλ
δ
ε (x+(c∗(−∞)+ε)t)

)
≥0

for any t> 0 and x< x1 + ct. On the other hand, for x ≥ x1 + ct, we know that

Beλ
δ
ε (x+(c∗(−∞)+ε)t) ≥ Beλ

δ
ε (x1+ct+(c∗(−∞)+ε)t) ≥ Beλ

δ
εx1 ≥ r(∞).

Therefore, w+(x, t) is a super-solution of (1.1). It follows from the comparison principle that
u(x, t) ≤ w+(x, t). The proof is complete.

Now we start to verify Theorem 2.6.
(i). By Lemma 3.8(ii), we have u(x, t) ≤ ŭ(x, t). Note that ŭ(x, t) = K1e−λε(x−(c∗(∞)+ ε

2 )t)

for x ≥ ct + s with s being sufficiently negative. This implies that limt→∞ supx≥(c∗(∞)+ε)t

u(x, t) = 0. Since c> c∗(∞), it follows that (c∗(∞) + ε)t ≤ ct + s for any s ∈R and t> T , where
T > 0 satisfies that (c − c∗(∞) − ε)T >−s. Thus, we have

lim
t→∞ sup

x≥ct+s
u(x, t) = 0. (3.14)

While for x< ct + s, we know that ŭ(x, t) = K2e−λ′
ε(x−(c∗(s)+ ε

2 )t). Recall that s is
sufficiently negative such that x ≥ (c∗(−∞) + ε

2 )t ≥ (c∗(s) + ε) t with t ≥ T , it then follows that

lim
t→∞ sup

(c∗(−∞)+ε)t≤x<ct+s
u(x, t) = 0. (3.15)

Combining (3.14) and (3.15), we have limt→∞ supx≥(c∗(−∞)+ε)t u(x, t, u0) = 0.
(ii). Statement (ii) follows from Lemma 3.8(iii) directly.
(iii). We first claim that for any ε > 0, there exists a sufficiently large T > 0 such that u(x, t) ≤

r(−∞) + ε for all x ∈R and t> T . Indeed, let ũ(ξ , t) be the solution of

ut(ξ , t) = d(J ∗ u − u) + cuξ + u(r(ξ ) − u)

with ũ(ξ , 0) = r(∞), where ξ = x − ct. It follows that ũ(ξ , t) is nonincreasing with respect
to t. Therefore, there exists a continuously function ũ(ξ ) such that limt→∞ ũ(ξ , t) = ũ(ξ ).
Furthermore, it follows from [34, Lemmas 3.1 and 3.2] that ũ(ξ ) is continuously nondecreasing
in ξ ∈R and satisfies
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ũ(ξ ) =
∫ ∞

0
e−(d+ρ)s

∞∑
k=0

(ds)k

k! ak(ũ(ξ + cs)(ρ + r(ξ + cs) − ũ(ξ + cs)))ds.

It follows that

ũ(±∞) = ũ(±∞)

ρ
(ρ + r(±∞) − ũ(±∞)).

This implies that ũ(±∞) = r(±∞). The comparison principle yields that u(x, t) ≤ ũ(ξ , t). Then
for any ε > 0, there exist T > 0 and sufficiently large M > 0 such that for any t> T , u(x, t) ≤
ũ(ξ , t) ≤ r(−∞) + ε for x ≤ ct − M . Additionally, since c> c∗(∞), we have ct − M ≥ (c∗(∞) +
ε)t for t> T (we can increase T if necessary). It follows from Lemma 3.8(i) that u(x, t) ≤ ε for
x ≥ ct − M and t> T . Then we have that for any ε > 0, there exists a T > 0 such that u(x, t) ≤
r(−∞) + ε for any t> T and x ∈R.

On the other hand, according to Lemma 3.7(i), for any ε > 0, there exist positive numbers
α, γ , λ3, l and t0 such that u(x, t) ≥ w(x − l, t − t0; α, λ3, λ3) for all t> t0 and x ∈R, where
ϕ(λ3, γ ) = c∗(−∞) − ε. Then define

r∗
− = sup

{
r′
− ∈ [0, ∞) : there exist t′ > 0,

ε

2
< ε′ < ε with u(x, t) ≥ r′

−

for t ≥ t′, −(c∗(−∞) − ε′)t ≤ x ≤ (c∗(−∞) − ε′)t
}
,

similarly to the proof of Theorem 2.5(iii), we can show that r∗− = r(−∞). This ends the
proof.

Proof of Theorem 2.7
(i). By Lemma 3.8(i), for any ε > 0, there exist A, λε > 0 such that u(x, t) ≤ Ae−λε (x−(c∗(∞)+ ε

2 )t).
It follows that

lim
t→∞ sup

x≥(c∗(∞)+ε)t
u(x, t) ≤ lim

t→∞ sup
x≥(c∗(∞)+ε)t

Ae−λε (x−(c∗(∞)+ ε
2 )t) = 0.

This implies that lim
t→∞ sup

x≥(c∗(∞)+ε)t
u(x, t) = 0.

(ii). Statement (ii) follows directly from Lemma 3.8(iii).
(iii). We use a similar argument to the proof of Theorem 2.5(iii) to obtain

lim
t→∞ inf

t(c+ε)≤x≤(c∗(∞)−ε)t
u(x, t) ≥ r(∞)

by virtue of the sub-solution wr(x − l, t − t0; α, λ4, λ2) with ϕ(λ4, γ ) = c + ε and ϕ(λ2, γ ) =
c∗(∞) − ε defined in the Lemma 3.7(ii) for c ≥ 0, or the sub-solution w(x − l, t − t0; α, λ1, λ2)
with ϕ(λ1, γ ) = −c − ε and ϕ(λ2.γ ) = c∗(∞) − ε defined in Lemma 3.7(v) for c< 0. This,
together with 0 ≤ u(x, t) ≤ r(∞), leads to the first conclusion in Theorem 2.7(iii).

By using the sub-solution w(x − l, t − t0; α, λ3, λ3) with ϕ(λ3, γ ) = c∗(−∞) − ε defined
in Lemma 3.7(ii) for c∗(−∞) ≤ c< c∗(∞), the sub-solution w(x − l, t − t0; α, λ3, λ6) with
ϕ(λ3, γ ) = c∗(−∞) − ε and ϕ(λ6, γ ) = c − ε defined in Lemma 3.7(iii) for 0 ≤ c< c∗(−∞) or
the sub-solution wl(x − l, t − t0; α, λ3, λ5) with ϕ(λ3, γ ) = c∗(−∞) − ε and ϕ(λ5, γ ) = −c + ε

defined in Lemma 3.7(iv) for c< 0 , and following a similar process as that for Theorem 2.6(iii),
we can easily obtain the latter result in Theorem 2.7(iii).
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Proof of Theorem 2.8

(i). Statement (i) can be shown as that for Theorem 2.7(i).
(ii). Since −c> c∗(−∞), there exist δ > 0 and 0<λδ < λ∗(−∞) such that

−cλδ = d

(∫
R

J (y)e−λδydy − 1

)
+ r(−∞) + δ.

Let uδ(x, t) = Aδeλδ (x−ct) and x̂< 0 such that r(x)< r(−∞) + δ, ∀x< x̂. Choose sufficiently large
Aδ > 0 such that Aδeλδ x̂ ≥ r(∞) and u(x, 0) ≤ uδ(x, 0) = Aδeλδx for all x ∈R. For x ≥ ct + x̂,
uδ(x, t) ≥ Aδeλδ x̂ ≥ r(∞) ≥ u(x, t). As in the proof of Lemma 3.8(ii), one can show that uδ(x, t)
is a super-solution of (1.1) with uδ(x, t) ≥ u(x, t) for t ≥ 0 and x< ct + S. Thus, we have

0 ≤ lim
t→∞ sup

x≤−(−c+ε)t
u(x, t) ≤ lim

t→∞ sup
x≤−(−c+ε)t

Aδe
λδ (x−ct) = 0.

This shows that (ii) holds true.
(iii). By Lemma 3.7(v), we see that when t> t0, u(x, t) ≥ w(x − l, t − t0; α, λ1, λ2) with

ϕ(λ1, γ ) = −c − ε and ϕ(λ2, γ ) = c∗(∞) − ε. It then follows from Theorem 2.5(iii) that

lim
t→∞ inf

(c+ε)t≤x≤(c∗(∞)−ε)t
u(x, t) ≥ r(∞).

This, together with 0 ≤ u(x, t) ≤ r(∞), implies that statement (iii) holds true. The proof is
complete.

Proof of Theorem 2.9

(i). Statement (i) can be shown as that for Theorem 2.7(i).
(ii). For any ε > 0, there exist A, λε > 0 such that

u(x, t) ≤ Aeλε (x+(c∗(∞)+ ε
2 )t) := v(x, t).

In fact, let λε satisfy

(
c∗(∞) + ε

2

)
λε = d

(∫
R

J (y)e−λεydy − 1

)
+ r(∞).

It then follows that

vt − d(J ∗ v − v) − v(r(x − ct) − v)

≥Aeλε (x+(c∗(∞)+ ε
2 )t)

[(
c∗(∞) + ε

2

)
λε − d

(∫
R

J (y)e−λεydy − 1

)
− r(∞)

]
= 0.

We can choose A> 0 large enough such that u(x, 0) ≤ Aeλεx due to u(x, 0) = 0 for all sufficiently
negative x. By the comparison principle, we have

0 ≤ lim
t→∞ sup

x≤−(c∗(∞)+ε)t
u(x, t) ≤ lim

t→∞ sup
x≤−(c∗(∞)+ε)t

Aeλε(x+(c
∗(∞)+ ε

2 )t) = 0,

which leads to the desired conclusion.
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(iii). By using the sub-solution w(x − l, t − t0; α, λ2, λ2) with ϕ(λ2, γ ) = c∗(∞) − ε defined in
Lemma 3.7(vi) and following a similar argument in the proof of Theorem 2.5(iii), we can obtain

lim
t→∞ inf

−(c∗(∞)−ε)t≤x≤(c∗(∞)−ε)t
u(x, t) ≥ r(∞),

which implies that statement (iii) holds true since 0 ≤ u(x, t) ≤ r(∞). The proof is complete.

4 Simulations and discussions

4.1 Simulations

In this subsection, we present some numerical simulations for model (1.1) to demonstrate our
analytic results. To be computable, we choose

d = 1, J (x) = e−x2

√
π

, ri(x − ct) = 2

π
arctan(x − ct) + κi, i = 1, 2, 3,

where κ1 = 1
2 , κ2 = 1 and κ3 = 2. Clearly, we have r1(−∞) = − 1

2 < 0, r2(−∞) = 0 and
r3(−∞) = 1> 0, while r1(∞) = 3

2 > 0, r2(∞) = 2> 0 and r3(∞) = 3> 0. Recall that

c∗
i (∞) = 1

λ∗
i (∞)

[
d

(∫
R

J (y)eλ
∗
i (∞)ydy − 1

)
+ ri(∞)

]
, i = 1, 2, 3,

and

c∗
3(−∞) = 1

λ∗
3(−∞)

[
d

(∫
R

J (y)eλ
∗
3(−∞)ydy − 1

)
+ r3(−∞)

]
.

Moreover, we can calculate to obtain

λ∗
1(∞) = 1.5909, λ∗

2(∞) = 1.7191, λ∗
3(∞) = 1.9023, λ∗

3(−∞) = 1.4142.

c∗
1(∞) = 1.49977, c∗

2(∞) = 1.7995, c∗
3(∞) = 2.3504, c∗

3(−∞) = 1.1658.

We use the following initial data

u(x, 0) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−0.05x + 1, x ∈ (10, 20),

0.5, x ∈ [−10, 10],

0.05x + 1, x ∈ (−20, −10),

0, elsewhere.

Numerical simulations were conducted using MATLAB.
In the case r1(−∞)< 0, we first choose c = 1.5 such that c> c∗

1(∞), then Theorem 2.4
declares that the species eventually becomes extinct, as presented in Figure 1(a). Choose
c = 0.5 ∈ (0, c∗

1(∞)), then Figure 1(b) indicates the species will persist and spread rightward.
Further, choose c = −0.5 ∈ (−c∗

1(∞), 0) and c = −1.5<−c∗
1(∞), respectively, we then see from

Figure 1(c) and (d) that the species invades not only rightward but also leftward, agreeing with
Theorem 2.5.

In the case r2(−∞) = 0, we first set c = 2> c∗
2(∞) and the numeric result presented in Figure

2(a) illustrates that the species will disappear in the whole habitat, as shown in Theorem 2.4. Then
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FIGURE 1. The case of r(−∞)< 0. (a) r(−∞)< 0, c> c∗(∞). (b) r(−∞)< 0, 0< c< c∗(∞). (c)
r(−∞)< 0, − c∗(∞)< c< 0. (d) r(−∞)< 0, c<−c∗(∞).

choose c = 1 ∈ (0, c∗
2(∞)), Figure 2(b) indicates the species will persist and spread towards the

better resource. Regarding the case c< 0, we set c = −1 ∈ (−c∗
2(∞), 0) and c = −2<−c∗

2(∞),
respectively, then Figure 2(c) and (d) show the species spreads towards both right and left, as
described in Theorem 2.5.

In the case r3(−∞)> 0, we first choose c = 6> c∗
3(∞) + ĉ with ĉ = λ∗(−∞)(c∗

3(∞)−c∗(−∞))

λ∗
3(∞)−λ∗(−∞) =

3.4322, Figure 3(a) reveals that the species still spreads leftward and rightward with same speed
c∗(−∞), agreeing with Theorem 2.6. Meanwhile, choose c = 3 ∈ (c∗

3(∞), c∗
3(∞) + ĉ), we find

from Figure 3(b) that statement (i) of Theorem 2.6 still holds true. This indicates that Theorem
2.6 may be valid for all c> c∗

3(∞). Now set c = 1.5 ∈ (c∗
3(−∞), c∗

3(∞)), c = 0.5 ∈ (0, c∗
3(−∞))

and c = −0.5 ∈ (−c∗
3(−∞), 0), respectively, then Theorem 2.7 demonstrates that the species

spreads leftward and rightward with different speeds and the density of the species will even-
tually be different in the good-quality and poor-quality habitats, as presented in Figure 3(c),
(d) and (e), which suggests that there may exist a two-layer wave solution. Next, we choose
c = −2 ∈ (−c∗

3(∞), −c∗
3(−∞)) and c = −3<−c∗

3(∞), respectively, that is the good-quality
habitat expands leftward with a relatively fast speed, then by Theorems 2.8 and 2.9, we know
that the species will spread both leftward (with different speeds) and rightward (with same
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FIGURE 2. The case of r(−∞) = 0. (a) r(−∞) = 0, c> c∗(∞). (b) r(−∞) = 0, 0< c< c∗(∞).
(c) r(−∞) = 0, − c∗(∞)< c< 0. (d) r(−∞) = 0, c<−c∗(∞).

speed) and grow to the capacity corresponding to the best-quality habitat, as presented in
Figure 3(f) and (g).

4.2 Discussions

Nowadays, the so-called ‘shifting environment’ problem has become a hot topic, since its sig-
nificant biological meanings and distinctive phenomena, brought by the ‘shifting feature’, about
the persistence and spread of the species. To understand the effects of shifting habitats on spa-
tial population dynamics, we investigated the spreading properties for solutions associated to the
initial value problem of

ut = d(J ∗ u − u) + u(r(x − ct) − u).

Here, the convolution operator J ∗ u − u is adopted to describe the spatial dispersal of species.
More specifically, if we use J (x − y) to denote the probability distribution of the population
jumping from location y to location x, then

∫
R

J (x − y)u(y, t)dy is the rate at which individuals
are arriving to location x from all other places, while

∫
R

J (y − x)u(x, t)dy = u(x, t) is the rate at
which they are leaving location x to all other sites. Obviously, migration of the species here is
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FIGURE 3. The case of r(−∞)> 0. (a) r(−∞)> 0, c> c∗(∞) + ĉ. (b) r(−∞)> 0, c∗(∞)< c< c∗(∞) +
ĉ. (c) r(−∞)> 0, c∗(−∞)< c< c∗(∞). (d) r(−∞)> 0, 0< c< c∗(−∞). (e) r(−∞)> 0, − c∗(−∞)<
c< 0. (f) r(−∞)> 0, − c∗(∞)< c<−c∗(−∞). (g) r(−∞)> 0, c<−c∗(∞).
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free and large-range with ‘position-jump process’ in contrast with the class of reaction-diffusion
models with its fundamental assumption that motion is governed by a random walk. Meanwhile,
the ‘shifting habitat’ is represented as r(x − ct) by assuming that the habitat shifts with a constant
speed c as time goes and becomes more favourable along the positive spatial direction. It is not
a infrequent scenario that the unfavourable domain for a biological species is not hostile and the
species is able to survive but grows relatively slow in contrast to favourable domain, as discussed
in [15, 21, 42]. To this end, we do not ask for the sign of r(−∞). Besides, considering the threats
or benefits associated with climate changes which induce the transition of the habitat, the speed
c of shifting habitat edge can be any real number in our circumstances here.

Concretely speaking, when the habitat near the negative infinity is hostile for the species (i.e.,
r(−∞) ≤ 0), our results indicate that the population will die out in the whole habitat if the habitat
shifting speed c is lager than c∗(∞), where c∗(∞) denotes the minimum KPP travelling wave
speed associated with the species’ growth rate at the positive infinity. This means that a fast
shrinking of favourable habitat leads to extinction. Conversely, if the shrinking speed is modest
(i.e., 0< c< c∗(∞)), then the species can survive ‘by moving’ and spread towards new territory
at speed c∗(∞), but lost the original domain at speed c as a result of the shifting habitat. However,
if the favourable habitat is expanding with a modest speed |c| (i.e., −c∗(∞)< c< 0), then the
species can spread not only rightward with speed c∗(∞) but also leftward at speed |c|. And if
the expanding speed is relatively fast (i.e., c<−c∗(∞)), the leftward speed is also c∗(∞). In the
current situation, the population will eventually approach the higher quality r(∞).

When the habitat near the negative infinity is not so harsh (i.e., r(−∞)> 0), no matter how fast
(even c> c∗(∞)) the good-quality habitat shrinks, the species can always persist ‘by moving’
and spread to both right and left at the asymptotic speed c∗(−∞) and will eventually approach
the lower quality r(−∞). If the favourable zone shrinks or expands at a moderate speed (i.e.,
−c∗(−∞)< c< c∗(∞)), then the species spreads to the right at the asymptotic speed c∗(∞) and
will eventually approach the higher quality r(∞) near positive infinity, while to the left at the
asymptotic speed c∗(−∞) and will eventually approach the lower quality r(−∞) near negative
infinity. If the favourable region expands with a relatively fast speed (i.e., c<−c∗(−∞)), we
see that the species can spread to the right at the asymptotic speed c∗(∞), and to the left at the
asymptotic speed −c when −c∗(∞)< c<−c∗(−∞) and at the asymptotic speed c∗(∞) when
c<−c∗(∞), and will eventually approach the higher quality r(∞).

Finally, we point out that the spreading properties of model (1.1) were obtained for a class
of thin-tailed kernels J (·), which satisfies the so-called Mollison condition:

∫
R

J (y)eλydy<+∞,
∀λ> 0. When the dispersal kernel is fat-tailed in the sense that |J ′(y)| = o(J (y)) as |y| → ∞, the
asymptotic propagation of model (1.1) remains an open problem. Here we refer the readers to the
work of [12, 38, 39, 40, 41] and the reference therein for the study of nonlocal dispersal equa-
tions and systems with fat-tailed kernels and without shifting feature. To explore the asymptotic
propagations of model (1.1) with fat-tailed kernels will be an interesting but challenging problem
and we leave it as a future investigation.
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