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Classification of Certain Simple
C*-Algebras with Torsion in K,

Jesper Mygind

Abstract. 'We show that the Elliott invariant is a classifying invariant for the class of C*-algebras that
are simple unital infinite dimensional inductive limits of finite direct sums of building blocks of the
form

{feCcM®M,: f(x;)) € Mg,i=1,2,...,N},

where x1,x2,...,xv € T, d1,da, ..., dn are integers dividing n, and My, is embedded unitally into
M,,. Furthermore we prove existence and uniqueness theorems for *-homomorphisms between such
algebras and we identify the range of the invariant.

1 Introduction

During the last decade the Elliott invariant has been used with amazing success to
classify simple unital C*-algebras (see e.g. [8], [10], [20], [27], [15], [16]). This
project is part of Elliott’s program which has the ambitious goal of a classification
result for all separable nuclear C*-algebras by invariants of K-theoretical nature.

The goal of the present paper is to unify and generalize classification results due to
Thomsen [27] and Jiang and Su [16]. In order to achieve this we will unfortunately
have to consider the rather complicated building blocks defined in the abstract. Our
main result (see Theorem 11.7) is the following:

Theorem 1.1 The Elliott invariant is a classifying invariant for the class of unital sim-
ple infinite dimensional inductive limits of sequences of finite direct sums of building
blocks.

The main ideas of the proof are similar to those of Thomsen [27] who considers
the simpler case d; = d, = --- = dy. The technical problems are greater in our
case, and in particular the possible lack of projections in our building blocks (see
Lemma 3.8) means there is no straightforward generalization of Thomsen’s proof.

Let us introduce the notation used in this paper before we describe our results in
greater detail. Recall that for a unital C*-algebra A the Elliott invariant consists of the
ordered group Ky(A) with order unit, the group K;(A), the compact convex set T'(A)
of tracial states, and the restriction map r4: T(A) — SKy(A), where SKy(A) denotes
the state space of Ky(A).

Let A be a unital C*-algebra. Let Aff T(A) denote the order unit space of all contin-
uous real-valued affine functions on T(A). Let pa: Ko(A) — Aff T(A) be the group
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homomorphism
paX)(w) = ra(w)(x), w e T(A),x € Ko(A).

Let U(A) denote the unitary group of A and let DU (A) denote its commutator sub-
group, i.e., the group generated by all unitaries of the form uvu*v*, u,v € U(A). If A
is a unital inductive limit of a sequence of finite direct sums of building blocks then
there is a natural short exact sequence of abelian groups (see Section 5)

0 — AFET(A)/pa(Ko(A)) —2 U(A)/DUA) 25 Ky (A) — 0

that splits (unnaturally). The group U(-)/DU(-) was introduced into the classifica-
tion program by Nielsen and Thomsen [20].

Let A and B be unital C*-algebras. An affine continuous map ¢r: T(B) — T(A)
gives rise to a linear positive order unit preserving map or,: Aff T(A) — Aff T(B)
by setting ¢r,(f) = f o er for f € Aff T(A). If furthermore w1, 0 pa = pp o
o for some group homomorphism ¢g: Ko(A) — Ko(B) then o7 induces a group
homomorphism

Br: MET(A)/pa(Ko(A) — AFET(B)/ pi(Ko(B)) -

Let¢: A — Bbe a unital *-homomorphism. Let v*: T(B) — T(A) be the affine
continuous map given by ¢¥* (w) = wotp, w € T(B). Definep: Aff T(A) — Aff T(B)

by ¥ = (¢*).. Note that 1//;(f)(w) = f(¥*(w)). Since ¥ 0 py = pp 0 1, on Ky(A),
we see that ¢ gives rise to a group homomorphism

Vs AFET(A)/pa(Ko(A)) — AFET(B)/ps(Ko(B)) -

Let ¢*: U(A)/DU(A) — U(B)/DU(B) be the homomorphism induced by 1.

Besides the Elliott invariant, two other invariants will be crucial in the proof of the
classification theorem, namely U(-)/DU(-) and Rerdam’s KL-bifunctor [22]. These
invariants are both determined by the Elliott invariant for the C*-algebras under con-
sideration, and are therefore useless as additional isomorphism invariants. They are,
however, not determined canonically. This means that *-homomorphisms (or even
automorphisms) between such C*-algebras that agree on the Elliott invariant may fail
to be approximately unitarily equivalent because they may act differently on these ad-
ditional invariants. This was demonstrated by Nielsen and Thomsen [20, Section 5]
for U(-)/DU(-) and by Dadarlat and Loring [6, pp. 375-376] for KL.

It is therefore necessary to include these invariants in the following uniqueness
theorem (see Theorem 11.5):

Theorem 1.2 Let A and B be unital inductive limits of sequences of finite direct sums
of building blocks, with A simple. Two unital x-homomorphisms @,9: A — B with
©* = * on T(B), ¢* = +* on U(A)/DU(A), and [p] = [+] in KL(A, B) are
approximately unitarily equivalent.
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Let KL(A, B)r denote the set of elements kK € KL(A, B) for which the induced
map K« : Ko(A) — Ko(B) preserves the order unit and for which there exists an affine
continuous map ¢7: T(B) — T(A) such that rB(w)(m (x)) = rA(cpT(w)) (x) for
x € Ko(A), w € T(B).

Let A and B be e.g. simple unital inductive limits of sequences of finite direct sums
of building blocks. It turns out, perhaps surprisingly, that there is a connection
between KL(A, B) and the torsion subgroups of U(A)/DU(A) and U(B)/DU(B),
see Section 10. If p,¢: A — B are unital x-homomorphisms with [¢] = [¢]
in KL(A, B) and if x is an element of finite order in the group U(A)/DU(A), then
¢*(x) = ¥*(x) in U(B)/DU(B). More generally, an element x € KL(A, B)r gives
rise to a group homomorphism

sp: Tor(U(A)/DU(A)) — Tor(U(B)/DU(B)).
The map
KL(4, B}y — Hom Tor(U (4)/DU(A)) , Tor(U(B)/DU(B)) ),

where k — s, is natural with respect to the Kasparov product and must be taken
into account in the existence theorem:

Theorem 1.3 Let A and B be simple unital inductive limits of sequences of finite direct
sums of building blocks, with B infinite dimensional. Let or: T(B) — T(A) be an affine
continuous map, let k € KL(A, B)r be an element such that

rp(W) (K () =1a(pr(w)) (x), x € Ko(A),w € T(B),

andlet ®: U(A)/DU(A) — U(B)/DU (B) be a homomorphism such that the diagram
AFFT(A)/pa(Ko(A)) —2— U(A)/DUA) —“— Ki(A)

| | I+

AffT(B)/ps(Ko(B)) —— U(B)/DU(B) —— Ki(B)

commutes. Assume finally that
s(y) = ®(y), y € Tor(U(4)/DU(A)).

There exists a unital x-homomorphism 1: A — B such that ¢¥* = @1 on T(B), such
that * = ® on U(A)/DU(A), and such that ()] = x in KL(A, B).

The above theorem follows by combining the slightly more general Theorem 11.2
with Lemma 9.6, Lemma 10.3 and Theorem 9.9. It should be noted that it is possible
to prove this existence theorem (and our classification theorem) for Ky (A) non-cyclic
without using the map s, see Corollary 11.3 (or [27]).

Let us finally describe the range of the invariant for the C*-algebras in our class.
By combining Theorem 12.1 and Corollary 12.5 we have the following:
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Theorem 1.4 Let G be a countable simple dimension group with order unit, H a count-
able abelian group, A a compact metrizable Choquet simplex, and \: A — SG an affine
continuous extreme point preserving surjection. There exists a simple unital inductive
limit of a sequence of finite direct sums of building blocks A together with an isomorphism
wo: Ko(A) — G of ordered groups with order unit, an isomorphism ¢,: K;(A) — H,
and an affine homeomorphism pr: A — T(A) such that

ra(erw)) (x) = AMw) (po(x)), w € A,x € Ko(A)

if and only if G is non-cyclic, or G is cyclic and H can be realized as an inductive limit of
a sequence of the form

where each Hy, is a finite abelian group.

Let A be a simple unital inductive limit of a sequence of finite direct sums of build-
ing blocks. It is easy to see that A is unital projectionless if and only if (K,(A),
Ko(A)*, [1]) >~ (7Z,7%,1). Hence our classification theorem can be applied to a
large class of simple unital projectionless C*-algebras, including the C*-algebra Z
constructed by Jiang and Su [16].

It would be interesting if one could extend our classification result to a class that
contains simple unital projectionless C*-algebras with arbitrary countable abelian
Kj-groups. This could probably be obtained by considering building blocks with
T replaced by a general 1-dimensional compact Hausdorff space. It would also be
interesting if one could include the class of C*-algebras considered by Jiang and Su
in [15].

Let A be a unital C*-algebra. If a € A, we define a € AffT(A) by a(w) = w(a),
w € T(A). It is well-known that a — a is a surjective map from Ay, to Aff T(A).
Let q4: U(A) — U(A)/DU(A) be the canonical map. We equip the abelian group
U(A)/DU (A) with the quotient metric

Dy (q4(w), q4(v)) = inf{|luv* — x| : x € DU(A)}.

Denote by d), the quotient metric on the group AffT(A)/pa(Ko(A)). This group
can be equipped with another metric which gives rise to the same topology, namely

2 dy(f,8) > 3
da(f,g) = - ANV =
A(f g) {|627r1dA(f,g)_1 d,Q(f,g)< %7
see [20, Chapter 3]. Let q4: AffT(A) — AffT(A)/pa (Ko (A)) be the quotient map.
Let finally s(A) be the smallest positive integer n for which there exists a unital *-
homomorphism A — M, (wesets(A) = oo if A has no non-trivial finite dimensional
representations).

https://doi.org/10.4153/CJM-2001-046-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2001-046-2

Classification of Certain Simple C*-Algebras with Torsion in K 1227

Let gcd denote the greatest common divisor and lcm the least common multiple of
a set of positive integers. Let Tr denote the (unnormalized) trace on a matrix algebra
(i.e., the number obtained by adding the diagonal entries). If

A 5 A, T A B

is a sequence of C*-algebras and *-homomorphisms with inductive limit A, we let
Oy = Q1 O Qyy—p O -+ 0yt Ay — A, when m > n. We set o, = id and let
Oy 00t Ay — A denote the canonical map.
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2 Building Blocks

Let T denote the unit circle of the complex plane. We will equip T with the metric

p(e¥™ ™) = min |s — t + k|
kez

which is easily seen to be equivalent to the usual metric on T inherited from C.

Asin [20] we say that a tuple (a;, ay, . . ., ar) of elements from T is naturally num-
bered if there exist numbers s;,s,,...,s; € [0,1[ such thats; < s, < --- < sy and
aj=¢€",j=1,2,...,L

We define a building block to be a C*-algebra of the form

A(n,dy,dy,....dy) ={f € C(T) @M, : f(x;) € Mg,i=1,2,...,N},

where (x1, x,, . . ., xy) is a naturally numbered tuple of (different) points in T, dy, d5,
..., dy are integers dividing #n, and My, is embedded unitally into M,, e.g. via the
*-homomorphism
a — diag(a,a,...,a).
—_——
ﬁ times

The points x1, x,, . . ., xy will be called the exceptional points of A. By allowing d; =
n we may always assume that N > 2. It will also be convenient to always assume that
1 is not an exceptional point.

Foreveryi =1,2,..., N, evaluation at x; gives rise to a unital *-homomorphism

from A to M,;, which will be denoted by A;, or sometimes AZ. If s is a non-negative
integer we define Aj: A — M, by

Ai(f) = diag (Ai(f), Ai(f)- -, Ai(f)) -

stimes
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Note that A7 (f) = f(x;) in M,, for f € Aandi =1,2,...,N.
The following lemmas are left as exercises.

Lemma2.1 LetA = A(n,d,d,,...,dn) be a building block. The irreducible rep-
resentations (up to unitary equivalence) of A are Ay, A,, ..., AN, together with point
evaluations at non-exceptional points.

Lemma 2.2 Let I be a closed two-sided ideal in A. There is a closed set F C T such
that

I={fe€A: f(x) =0forallx € F}.

Lemma 2.3 Let A = A(n,dy,d,,...,dn) be a building block and let w € T(A).
There exists a Borel probability measure p on I such that

)= /T T(f() duto).

It follows that Cy(T) and Aff T(A) are isomorphic as order unit spaces via the map
f — f ®1, f S C]R{(T)

Theorem 2.4  Let A be a finite direct sum of building blocks. Then A is finitely gener-
ated and semiprojective.

Proof First note that A is a one-dimensional non-commutative CW complex, as
defined in [7]. Hence A is semiprojective by [7, Theorem 6.2.2] and finitely generated
by [7, Lemma 2.4.3]. [ |

Note thatif A = A(n, dy, d,, . ..,dy) then s(A) = min(d,, d,, ..., dy).

Building blocks will sometimes be called circle building blocks in order to distin-
guish them from interval building blocks. An interval building block is a C*-algebra
A of the form

I(n,dy,da,...,dy) ={f €Cl0,1] @M, : f(xi) € My,,i=1,2,...,N},

where 0 = x; < x, < --- < xy = land dy,d,, ..., dy are integers dividing n. We
will call x1, x5, . . ., xy the exceptional points of A.
3 K-Theory

The purpose of this section is to calculate and interpret the K-theory of a building
block. We start out with the following lemma, which will be used to calculate the
K;-group.
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Lemma3.1 Let N > 2 andlet ay,a,,...,ayn be positive integers. Define a group
homomorphism o: 7N — 7N to be multiplication with the N x N matrix

a —az
a, —as
C= as
—ay

—d aN
Fork=1,2,...,N — 1, set

sk = lem(ay, ay, . .., ar)
and

ri = ged(se, ar1) = ged(lem(ay, az, . . ., ax), axi1) -
Choose integers oy and B such that
e = ogsg + Oragrr, k=1,2,...,N—1.

Then
coker(p) 22 &2y, &1Ly, B -+ B Zsy_,.

This isomorphism can be chosen such that for k = 1,2,...,N — 2, a generator of the
direct summand Z,, is mapped to the coset

Brak1 Qg Sk .
0,0,...,0,1,— ,0,0,...,0,——— | +im(¢p),
N——— Tk —— Tk
k—1 times N—k—2 times

such that a generator of the direct summand 7,,,,_, is mapped to the coset
(0,0,...,0,1,—1) + im(yp),
and such that a generator of the direct summand 7. is mapped to the coset
(0,0,...,0,1) +im(yp).

Proof Let I; denote the j x j identity matrix for any non-negative integer j. For
eachk =1,2,...,N — 2, define an integer matrix of size N x N by

I

_ OuSk 1
Tk
_ OgSk 1

_ OuSk 1
Tk
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Let Dy denote the 2 x 2 matrix
§ )
b
and define fork = 1,2,...,N — 1, an integer matrix of size N x N by
Iy
By = Dy
Ink—1

Fork=0,1,2,...,N — 2, define yet another N x N matrix by

1
)
Tk
X = Sk+1 —@ke2
Sk+1 —ak+3
Sk+1 —an
0 0
Finally, let P be the N x N matrix

1

1 1

1 1 1

1 1 1 1

Note that fork =1,2,...,N — 2,
SkAk+1

Ske1 = lem(sg, agrr) =
Tk

Using this, it is easily seen by induction that
AAr_1---APCB\By By =X, k=0,1,2,....N—2.

It follows that

"
§)

AN_2AN_3---APCB\B,---By_2By_1 =
'N—1
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Since all the matrices on the left-hand side, except C, are invertible in My(Z), we
obtain the desired calculation of coker(¢). Finally, it is easily verified that

1
_ by 1
o}
0 B
_ By
(AN—2AN—3---AP) "' = 0 0 s
0 0 _ BN—2aN—1 1
'N—2
s s .. R L et
21 2 'N—2
The last part of the lemma follows from this. ]

2Tity
>

Let A = A(n,dy,dy, . ..,dy) be a building block with exceptional points e
k=1,2,...,N,where0 < t; < t, < -+ < ty < L. Set tyy; = t; + 1. Define

continuous functions wy: T — Tfork=1,2,...,N, by
2mity _ eXP(ZWittjkt ) te <t < e,
wi(e™) = k1 — Ttk
1 e <t <t +1.

Let U} be the unitary in A defined by
U,f(z) = diag(wk(z), 1,1,..., 1) , zeT.

Theorem 3.2 Let A = A(n,dy,d,, . ..,dN) be a building block. Set fork = 1,2,...,

N —1,
lm(® o n
k — d17d27'-'7dk )

n n n n n
- M) Cged (dem (22 ) )
i = ged (5’" dk+1> ng<Cm(d1’d2’ ’dk>’dk+1>

Choose integers oy and B such that

and

e = ogsk + Be . , k=1,2,...,N—1.
dk+1
Then
KA XZ®L, &1,y ® - DLy,
This isomorphism can be chosen such that fork = 1,2,...,N — 1, a generator of the

direct summand Z,, is mapped to

Bxn

ks

[UL] — (U1 — 2,

Tk

and such that a generator of the direct summand 7. is mapped to [U%].
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Proof Define a x-homomorphism7: A = My @& My, @ - - - & My, by
w(f) = (M (), Aa(f), -, An(f)) .

Via the identification SM,, = {f € C[0,1] ® M,, : f(0) = f(1) = 0} we define a
*-homomorphism ¢: (SM,,)Y — A by

t_

Wfis fos s E™) = fi (

Ik
S T
Tre1 — Tk

The short exact sequence

0— (SM)Y "5 A" My, &My, @--- S My, — 0

gives rise to a six-term exact sequence

Lx

KO((SM,,)N) — 5 Ko(A) —— Ko(My, @ -+ @® Mg,)

I s

KMy, @+ & Mg,) +—— K(A) +—— Ky ((SM)N)

where § denotes the exponential map.
By Bott periodicity K;((SM,)N) = ZN is generated by [Vy],[V2],...,[Vx],
where

Vi) = (1,1,...,1,diag(e"™, 1,...,1),1,1,...,1), t€[0,1],

coordinate k

is a unitary in (SM,,)N. Note that «(V}, — 1) = U,? — 1 and hence ¢, ([Vi]) = [U?] in
K (A). Since the map ¢, : K ( (SM,,)N) — K (A) is surjective it follows that K; (A) is
generated by (U], [U4], ..., [U&], and that ¢, gives rise to an isomorphism between
the cokernel of § and K;(A).

Let {ef‘j} denote the standard matrix units in My, ®- - -@M,,,. Recall that Ko(My, &

<@ My,) = 7N is generated by [el,], [e2,], - . ., [e}]]. We leave it with the reader to
check that
5([ely]) = — 2 [Va] + o [Vi]
11 dl N dl 11

and fork =2,3,...,N,
n n
5(lef,]) = —d—k[VJH] + d—k[Vk]-

The conclusion follows from Lemma 3.1. [ |
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Choose a continuous function v: T — R such that
Det( U{f}(z)) =z exp(Zwi’y(z)) , z€T.

Define a unitary v* in A by

W(z) = Uf,(z) exp (—ZwiM) , z€T.

n
Note that Det(v*(z)) =z,z € T.

Lemma 3.3 Let A = A(n,dy,d,,...,dN) be a building block and let u € A be a
unitary. If

Det(Ax(w)) =1, k=1,2,...,N,

Det(u(z)) =1, ze€T,
then u can be connected to 1 via a continuous path of unitaries in A.

Proof Let us start with a simple and well-known observation. Let v be a unitary in
the C*-algebraB = {f € C[0,1]®M, : f(0) = f(1)} such that the winding number
of Det(v(')) is 0. Then v can be connected to 1 via a continuous path (v;);c[o,1] in
U(B). If v(0) = 1 we may assume that ;(0) = 1 for every ¢ € [0, 1].

Let 2™ ... €™ be the exceptional points of A, where t; < t, < --- < ty are
numbers in 0, 1[. Set ty = ty — 1, tyy1 = t; + 1 and let ¢x: My, — M, be the
inclusion, k = 1,2, ..., N. Since the group of unitaries in M, with determinant 1

is path-connected there exists a continuous function yi: [tx_1, tes1] = U(My,) such
that 3 (ti—1) = Ve(ter1) = L %(te) = Ax(u), and Det(1x(-)) = 1. Set

Wk(627rit) _ Lk(’Yk(t)) te [tk—l?tk+1]?
1 t € [teer, tr—1 + 1]

It follows from the above observation that wy can be connected to 1 via a continuous
path of unitaries in A. Upon replacing u with uwjw; - - - wi, we may thus assume that
u(e®™) = 1fork =1,2,...,N. Set

iy = §HE™) 1 E [t tal,
1 t € [tpr1, tx + 1],

Then u = y,y,--- yn. Again by the above observation, y; can be connected to 1
within U(A) fork=1,2,...,N. [ |
Let A = A(n,dy,d,, .. .,dy) be a building block and set d = ged(d, ds, . . ., dy).

Since d divides d; for every i = 1,2,..., N, there exists a unital and injective *-
homomorphism M; — A given by f — diag(f, f,..., f).
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Lemma 3.4 Let p be a projection in A = A(n,dy,ds,...,dN). Then p is unitarily
equivalent to a projection in My C A.

Proof Let r € 7 denote the rank of p and let &?™ ™2 . ¢?™N be the ex-

ceptional points of A, where 0 < t; < t, < --- < ty < 1. Since dﬂk divides r

for k = 1,2,...,N, it follows that 2 also divides r. Hence there is a projection
) ) d proj

e € My C A with the same trace as p.
For each t € [0, 1] there is a unitary u, € M,, such that

e = up(e™)u;.

We may assume that u;, € My, k=1,2,...,N, and that uy = u;. By compactness
-1
[0,1] = | JIsj, s,
j=1
where 0 =s; <s; < ---<sp =1L {t1,6,...,tn} C {s1,%,...,5.},and
t € [sj,sj1] = Husjp(ez’rit)u; —e| < 1.
Set zj(r) = vj(t)|vj(r)| "' fort € [sj,sja], j=1,2,...,L — 1, where
vi(t) =1— usjp(e”"’)u:_ —e+ 2eu5jp(e2””)u;kj.

Then t — z;(t), t € [sj,sj:1], is a continuous path of unitaries in M,, and by [19,
Lemma 6.2.1]

i
e = zj(t)ug; ple 7r’t)u;“jzj(t)*, t € [sj,sjnl

AsU(M,) N{e}’ is path-connected there is for each k = 1,2, ..., L — 1 a continuous
map ;: [sj,sj+1] = U(M,) N {e}’ such that

Yilsi) =1, jlsjen) = ug, g z(sj01)"
Since zj(s;) = 1 for j = 1,2,...,L — 1, we can define a unitary u € A by
u(@™) = y;(zj(thug,,  t € [sj,570)-
Then upu* =e. ]
Corollary3.5 Ifp € A= A(n,dy,d,...,dyN) is a projection of rank r # 0 then
pAp = A (r, %dl, %dz,...édN) .

Corollary 3.6  The embedding My C A gives rise to an isomorphism of ordered groups
with order units between Ko(My) and Ky(A). In other words,

(KO(A)7KO(A)+7 [1]) = (Zy ZJr’ d)
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By Lemma 2.3 we have the following:
Corollary 3.7 IfA = A(n,dy,dy, . ..,dy) then pa (KO(A)) = Z{l\ in Aff T(A).
Lemma 3.8 A= A(n,dy,d,,...,dN) is unital projectionless if and only if d = 1.

Proof As in the proof of Lemma 3.4 we see that there exists a projection p € A of
rank r < nif and only if g divides r. The conclusion follows. |

Lemma 3.9 Let K be a positive integer and let H be a finite abelian group. There exists
a unital projectionless building block A with s(A) > K such that K (A) = 7 & H.

Proof Let

H= Zpl](l @Zplzcz D--- @prnm,
where m is a positive integer, ki, .. ., k,, are non-negative integers, and py,..., pm
are prime numbers. Let 1,42, ..., gm+1 > K be prime numbers, mutually different

as well as different from py, pa, ..., pm. Define integers n and dy, d,, . . ., dy11 by

n=pipy - phraias - g,
di = 293+ Gms1,

ki ke L ok
di:p1p2 m g2 Qm+17 y<i<m+l.

k,'71 .
Piy i
Set A = A(n,dy,ds,...,dns1). Then K1(A) & 7 @ H by Theorem 3.2. A is unital
projectionless by Lemma 3.8. u
4 KK-Theory

Recall a few facts about KK-theory that can be found in e.g [2]. KK is a homo-
topy invariant bifunctor from the category of C*-algebras to the category of abelian
groups that is contravariant in the first variable and covariant in the second. A *-
homomorphism ¢: A — M,(B) defines an element [¢] € KK(A, B). We have an
associative map KK (B, C) x KK(A, B) — KK(A, C), the Kasparov product, that gen-
eralizes composition of x-homomorphisms.

The purpose of this section is to analyze the KK-theory of our building blocks.
Inspired by the work of Jiang and Su [16, Section 3], we will consider the K-homology
groups K°(A) = KK(A,C). A x-homomorphism ¢: A — M,(B) induces a group
homomorphism ¢*: K°(B) — K°(A) via the Kasparov product. K°(M,) = Z is
generated by the class of the identity map on M,,.

If A and B are unital C*-algebras we let KK(A, B), be the set of elements x €
KK(A, B) such that k. : Ky(A) — Ky(B) preserves the order unit.
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Lemma 4.1 Let
A={feCl0,1]1®@M,: ft;) € My,i=1,2,...,N}

where N >2,0<t) <t <--- <ty < lLandd, d,,...,dy areintegers dividing n.
Let Aj: A — My, be the x-homomorphism induced by evaluation att;, i = 1,2,...,N.
Then K°(A) is generated by [A1], [As], . .., [AN]. Furthermore, for ai, ay,...,an € 7
we have that

ar[Ai] +ax[As] +-- - +an[An] =0

if and only if there exist by, by, . .., by € Z such that Zil b; = 0and

n

a; :bijia

i=1,2,...,N.

Proof Choose y € ]0,1[ such thatt; < y < t,. Set

B={feCl0,y] ®M,: f(t;) € My},
C={feCly,11®M,: f(tj) € My,i=2,3,...,N}.

We have a pull-back diagram
A2 B

gzl lfl

C —— M,
f

where g1, g are the restriction maps and fi, f, evaluation at y. Apply the Mayer-
Vietoris sequence [2, Theorem 21.5.1] to get a six-term exact sequence

KOM,) I ko) @ k() KO(A)

I |

K'(A) K'(B) ® K'(C) <(— K'(M,).
+gy -G

*
1

& +E

1 2

Note that K'(M,,) = 0 and K°(M,,) = Z. Thus the exact sequence becomes

7 —2 5 KB @K(C) —— K%(A)

I l

K'(A) +—— K'(B)® K'(C) +—— 0.

Since f; is homotopic to evaluation at x; in B and f; is homotopic to evaluation at x,
in C we see that

p(k) = <_kd£1[Al|B]>k%[AN|C]) , kel
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B is homotopic to My, via A;|p and hence K°(B) & 7 is generated by [A, |5].
For N = 2 we have that K°(C) is generated by [A;|c] and that

"/}(al[A1|B]7a2[A2|C]) =ai1[A] + ax[As].

Thus K°(A) is generated by [A;] and [A,] and

n

d’

n

al[A1]+a2[A2]:0<:>5|171€Z:a1:—b1 d .
2

a2:b1

Proceeding by induction, assume that the lemma holds for N—1. By the induction
hypothesis K°(C) is generated by [A|c], [As|c], - - -, [An]|c]. Note that

N
U (ar[Ar]s], (@fAalc] + -+ an[Anlc]) =) ailAi],
i=1

such that A is generated by [A;], ..., [An]. It also follows that
a[A] +ay[Ay] + - +an[AN] =0
if and only if there exists k € Z such that

k- [Auls] = ai[Aifal, k== [Awle] = @alAsle] +- -+ axlAlc].
1 N

By the induction hypothesis this happens if and only if there exist k, c;,...,cn € Z
such that Zfiz ¢ =0and

n no. n n
a = kd—l, ai:CiZ’, i=2,3,...,N—1, aka%:cN%.
The desired conclusion follows easily from these equations. ]

Proposition 4.2 Let A = A(n,dy,ds,...,dxn) be a building block. Then K°(A) is
generated by [A1], [Az], ..., [AN]. Furthermore, for aj, a,, . ..,aN € 7 we have that

ar[A] +ax[A] + - +an[AN] =0

if and only if there exist by, by, . .., by € Z such that Zil b; = 0and

ai=b i=1,2,...,N.

n
i —
d;’

Proof Chooset,ts,...,ty € ]0,1[ such that 2™, k = 1,2, ..., N, are the excep-
tional points for A. Set

B={feCl0,1]®M,: f(tx) € My, k=1,2,...,N}.
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Define a *-homomorphism ¢: A — B by «(f)(t) = f(e*™). Let m: A — M, be
evaluation at 1 € T. Let a: M, — M, & M, denote the map a(x) = (x,x). Let
B: B — M, & M, be the map 5(f) = (f(O), f(l)) . We have a pull-back diagram

A—"> M,

] |o

B — M, &M,
B

and hence by [2, Theorem 21.5.1] a six-term exact sequence of the form

KM, & M,) 5 kO, @ KOB) s KO(A)

| !

K'(A) +—— K'(M,) ®K'(B) +— K'(M,).
AR (—a*,5%)

K%M, & M,,) = 7 & 7 is generated by [m] and [m,] where 7, 7m,: M, ® M, — M,
are the coordinate projections. K°(M,) & 7 is generated by the class of the identity
map id on M,,. Note that

7 ([id]) = dﬁl[A‘f],
(AR = [AY], i=1,2,...,N,

(=a®, %) (alm ] + b[m]) = <(a+b)[id], (a+ b);[ﬁ]) :

As 7 + ¢* maps onto K°(A) (because K!(M,,) = 0) and as im(7*) C im(¢*), we see
that ¢* is surjective. Assume that ¢*(x) = 0. Then (0,x) € im(—a*, 8*) and hence
x = 0 by the above. Thus ¢* is an isomorphism and the conclusion follows from
Lemma 4.1. |

Proposition4.3 Let A = A(n,dy,d,,...,dy) and B = A(m, e, e, ..., en) be
building blocks and let h: K°(B) — K°(A) be a group homomorphism. For every
j=L2,...,M,i = 1,2,...,N, there is a uniquely determined integer hj;, with
0<hj< dﬂlfori # N, such that

B(AP)) T AT
MATD | [ b ey | [ 1)
BAED ) N\l b oo ) \[A%]

This will be called the standard form for h.
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The integers determined by h above satisfy the equations

m m n . .
—hﬂE—hMl l'IlOd—, ]:1,2,...,M,1:1,2,...,N,
ej em d,‘

N N
m m .
; E h]‘id,':e— E hM,'d,', ]:1,27...,M.
iz Mo

Proof By Proposition 4.2, or simply because homotopic *-homomorphisms A —
M, define the same elements in K°(A), we have that
n

n .
dN[AII?I]:E[A?]a i=1,2,...,N.

From this the existence follows.
To check uniqueness, assume

by hp - hin [Af]
hay hy -+ hi [A4]
by hava o0 hun [Afz]
where
n n . .
7—<hj,‘<— i=12,...,N—-1,7=1,2,..., M.

di d;’
Fix some j = 1,2,..., M. By Proposition 4.2 there exist integers bj; such that hj; =
bji%,iz 1,2,...,N. Therefore hj = 0 fori = 1,2,...,N.

Finally, to prove the equations above, fix again some j = 1,2, ..., M. Note that
m m al m m
0=h0)=h(——[Af]+ —[A}] ) = (——hji+ —hw | [A).
ej 1 eu — e em
Hence there exist integers bj;, i = 1,2,..., N, such that Zil bj; = 0and
m m n
——hji+ —hyi =bji—.
¢ ji e Mi ji di
The desired conclusion follows easily from these equations. ]

Fromnowon,letA = A(n,dy,d,,...,dy) and B = A(m, e, e, ..., epn) be build-
ing blocks. Define a group homomorphism

I': KK(A,B) — Hom(K"(B),K°(A)) & K;(B)

by
D(k) = (K%, ke [V']).

We want to show that I is an isomorphism in certain cases.
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Proposition 4.4  Let h: K°(B) — K°(A) be a group homomorphism with standard

form
h(IAB) By s e By [[AY]
WIS | b ko o Ry | | 1A]
hAED)  \ln he oo ) \[AY]

where hjny > ﬁ forj=1,2,...,M, and Zil hyid; = ey. Let x € Ki(B). There is
a unital x-homomorphism ¢: A — B such that T'([¢]) = (h, x).

Proof Let 1 < i < N. By Proposition 4.3 there is an integer s;, 0 < 5; < ﬁ, and
integers l;;, j = 1,2,..., M, such that

m n
(1) ;jhji:ljigi +s;.

Note that[; > 0fori =1,2,...,N — 1,and l;y > 1. By Proposition 4.3 we see that
forj=1,2,...,M,

N N N
m m
m = e— ZhMidi = e— Z hjidi = Z(lﬁn +S,'di).
M iy 7= i=1
By (1) there exists a unitary V; € M,, such that the matrix

Vjidiag (AY (), AN (), fGa), oy fGa), oy fln)s o, flan) ) VT

Ij; times Ijn times

belongs to M., € M,, forall f € A.

Set
1 N N
L:—(I/I’l—zsid,’) :Zlﬁ’ j:1,2,...,M.
n
i=1 i=1

Let x1,x,, . .., xn denote the exceptional points of A and let y1, v, ..., yu be those
of B. Choose continuous functions Ay, Ay, ..., A\;_1: T — T such that

(MG M)y A1 (7)) = (X1, X1y ooy XN 1y e e o XN 1, XN - 5 XN )
—— —_——

1) times lin—1) times iy —1 times

as ordered tuples. Choose a unitary U € C(T) ® M,, such that U(y;) = V;. Define
a unital x-homomorphism ¢: A — B by

P(f)(2)
—U(2) diag(Asf(f), AN, FN@) s F(A(2) ,f(xN)) U2)*.
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By Theorem 3.2 we have that xy = Z a5l U ] for some ay, a,...,ay € 7. Let

M

P[] =Y b;[U7]

i=1
in K;(B). Define£: T — T by
(2) £@2) = [[ Det(UF2))" 7,

=1

and define Ap: T — T by Ar(z) = £{(2)xn. Note that A\;(y;) = xn, j = 1,2,..., M.
Define p: A — Bby

#(N@ = U@ diag (AL (), AY (D, f(M@) -, f(N@) ) U
By Lemma 3.3 and (2) we see that in K; (B),
0[] = . [VA] + [z - Ul2) diag(l, 1o LA (A@) Vi )” ) U(z)*}
M M
A+ (a; - b)IUTT =) a;[UT].
=1 =1
Since o(f)(y;) = v(yj)s f €A, j=1,2,..., M, we conclude that
P* (A7) = [AP o ) = [A o] = Z <sl i ) ZA})
N
=D hilAf] = h([A%)). =

i=1

Lemma4.5 Let h: K°%B) — K°(A) be a group homomorphism and assume that
there exists a homomorphism h': K°(B) — K°(A) with standard form

' ([A%)) hiy  hiy - hiy\ [[A7]
RAASD | | e b hgy | [ [AS]
h([A%]) Mg Mo oo hgy/) \[AR]

where h;N > & forj=12,...,M, and Zil hidi = em. Then thereisa k €
KK(A, B) such that * = h in Hom(K°(B), K°(A)) .
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Proof By Proposition 4.4 there exists an element v € KK(A, B) such that v* = h’.
Leth € Hom(KO(B), K° (A)) have standard form

h((AP]) My e oo ) /A4]
WD | [ o By | [ 1A
BAED)  \l b - ) \[AY]

By adding an integer-multiple of i’ we may assume that hjy > 0 for j = 1,2,..., M.
Define [j; and s;, i = 1,2,..., N, as in the proof of Proposition 4.4. Let

N N N
m m .
C:a E hMidi:e_j E h]‘,‘d,‘: E (ljin+s,'di), ]:172,...7M.
i=1 i=1 i=1

Choose a positive integer d such that ¢ < dm. Choose for each j = 1,2,...,M, a
unitary V; € Mg, such that the matrix

Vidiag (A} (f), ., AN (), flx1) oo fx1), oy fOND, oo, f(8),0,...,0) VT
———

Ij; times I;n times dm—c

belongs to Mg,; C Mgy, forall f € A.

As in the proof of Proposition 4.4 these matrices can be connected to define a *-
homomorphism ¢: A — M;(B). We leave it with the reader to check that p* = h
on K°(B). Set k = [¢]. [}

Proposition 4.6  Assume that there exists a homomorphism h': K°(B) — K°(A) with

standard form
h'([A%]) hiy hiy - by [[A7]
W ([AS]) B hy  hy o hiy [A2]
h([AR]) hin Mo by \[AR]

where hiy, > - for j = 1,2,...,M, and SN higd; = ey. Then the map T':
KK(A,B) — Hom(K°(B),K°(A)) @ K,(B) is an isomorphism.

Proof By Theorem 3.2 there exist finite abelian groups G and H such that K;(A) =
7.& G, Ky(B) = 7 & H. By the universal coefficient theorem, [23, Theorem 1.17],

KK(A, B) 2 Ext(Ko(A), K, (B)) @ Ext(K;(A), Ko(B))
@ Hom (Ko(A), Ko(B)) @ Hom (K, (A), K, (B))
209 Gd7Z®Hom(G, H) P K, (B).
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By the universal coefficient theorem again, K°(A) = K;(A) and K°(B) =2 K;(B).
Hence

Hom(K°(B), K°(A)) & K(B) = K;(A) & Hom(H, G) & K (B).

Note that Hom(G,H) = Hom(H,G). Thus Hom(K°(B),K°(A)) & K;(B) and
KK(A, B) are isomorphic groups. Since any surjective endomorphism of a finitely
generated abelian group is an isomorphism, it suffices to show that I is surjective.
Let (h,x) € Hom(KO(B),KO(A)) @® K;(B). By Lemma 4.5 there exists an ele-
ment k € KK(A, B) such that I'(x) = (h — h’,n) for some np € K;(B). Next, by
Proposition 4.4 there exists a v € KK(A, B) such that I'(v) = (h’',x — n). Thus
T'(k+v) = (h,x). [ |

Theorem 4.7 LetA = A(n,dy,d,,...,dy)and B = A(m, e, ey, ..., ey) bebuilding
blocks such that s(B) > Nn and assume that there exists an element k in KK(A, B),.
Then the map I': KK(A, B) — Hom(K°(B),K°(A)) & K,(B) is an isomorphism and
there exists a unital x-homomorphism p: A — B such that [¢] = k.

Proof Letx*: K°(B) — K°(A) have standard form

K*((AB)) T T AN Y
H*([Ag]) B h21 hzz hZN [AQ]
AN \n s e hay) \[AZ]

Let - denote the Kasparov product. By assumption we have that [14] - K = [15] in
KK(C,B) = Ky(B). Thus

N
(18] - [AF] = [14] - - [AS] = (1] - (D2 halaf))
i=1
in KK(C,C) = Z. Hence e¢; = Zil hjid; for j = 1,2,...,M. This implies that
hin > % since

|2

N N—-1
Nn < €; :Zhjidi < Z
i=1 i=1

4d,‘ + thdN = (N* n+ thdN.

W

Therefore I is an isomorphism by Proposition 4.6. By Proposition 4.4 there is a unital
x-homomorphism ¢: A — B such that I'([¢]) = I'(x). Thus [¢] = k. [ |

5 The Commutator Subgroup of the Unitary Group

In this section we analyze the unitary group modulo the closure of its commutator
subgroup for building blocks.
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Lemma 5.1 Let A be a unital inductive limit of a sequence of finite direct sums of
building blocks. Then the canonical maps WO(U(A)) — Ky(A) and 7T1(U(A)) —
Ko(A) are isomorphisms.

Proof Following [24] we let k,(-) = 7rn+1(U(-)) for every integer n > —1. By [24,
Proposition 2.6] it suffices to show that the canonical maps k_;(A) — k_1(A®X) =
Ki(A) and ko(A) — ko(A ® K) = Ko(A) are isomorphisms, where K denotes the set
of compact operators on a separable infinite dimensional Hilbert-space. As noted in
[24] it follows from [14, Proposition 4.4] that k, is a continuous functor. Since it is
obviously additive, we may assume that A is a building block.

As in the proof of Theorem 3.2 we see that there exists finite dimensional C*-
algebras F; and F, such that we have a short exact sequence of the form

0—SFL —A—F, —0.

Apply [24, Proposition 2.5] to this short exact sequence and the one obtained by
tensoring with X to obtain two long exact sequences for k. It is well-known that the
canonical maps k;(F,) — k;(F, ® X) and k;(SF;) — k;(SF; ® K) are isomorphisms
fori = —1,0 (¢f. [24, Lemma 2.3]), so the theorem follows from the five lemma in
algebra. ]

Let A be a unital C*-algebra. Let m4: U(A)/DU(A) — K;(A) denote the group
homomorphism WA(q/Q(u)) = [u].

Proposition 5.2  Let A be a unital inductive limit of a sequence of finite direct sums of
building blocks. There exists a group homomorphism

At AffT(A)/pa(Ko(A)) — U(A)/DU(A),
M (94@) = q4(E™), a € Ag.

This map is an isometry when AffT(A)/pa (Ko (A)) is equipped with the metric dy,
and it gives rise to a short exact sequence of abelian groups

0 — AFFT(A)/pa (Ko(A)) 25 U(A)/DUA) ™5 Ky (A) — 0.
This sequence is natural in A and splits unnaturally.
Proof Combine Lemma 5.1 with [27, Lemma 6.4]. [ |

Proposition 5.3 Let A = A(n,dy,d,,...,dyN) be a building block. Let u € A be a
unitary. Assume that

Det(u(z)) =1, zeT,
Det(Ai(u)) =1, i=1,2,...,N.

Then u € DU(A).
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Proof First note that [u] = 0 in K;(A) by Lemma 3.3. Hence g/, (1) = g}(e™) by
Proposition 5.2 for some self-adjoint element a € A. Since

Det( M(Z)) — Det(e27ria(z)) _ eZﬂ'i Tr(a(z))

it follows that Tr(a(z)) = kforsomek € Zandallz € T. Hence a = %T in
AffT(A) by Lemma 2.3. By applying A\ we get that /(1) = q4(e*™®) = q}(A1),
where \ = ¢¥™1. Since Det(A;(u)) = lweseethat \* =1,i =1,2,...,N. Thus
M = 1 whered = ged(dy, dy, ..., dy). But then % = é for some [ € Z. It follows
by Corollary 3.7 that %T € pA(Ko(A)) and hence by Proposition 5.2 we get that
Al € DU(A). |

Lemma 5.4 LetA = A(n,d,d,,...,dxN) beabuilding block with exceptional points
X1,X2, ..., %N. Let g: T — T be a continuous function and let h; € T be such that

hi =g(x;),i=1,2,...,N. There exists a unitary u € A such that

Det(u(z)) =g(z), zeT,
Det(Ai(u)) =h;, i=12,...,N.

Proof Choose a continuous function f: T — T such that f (x;)% = h;. Define a
unitary v € Abyv = f ® 1. Since

Fla)" = B = g(x),
we can define a unitary w € A by
w(z) = diag(g(z)f(z)_”, 1,1,..., 1) , z€eT.
Set u = wv. [ ]

Let A = A(n,dy, d,, . ..,dy) be a building block. By Lemma 5.4 there exist uni-
taries wf, w4, ..., wfy € A such that Det(w{(z)) =1,z€ T,k=1,2,...,N, and
such that

1 L#k,
Det(Ai(wg)) = {exp(zmﬂ) lik

Let A = A(n,dy,dy,...,dy)and B = A(m, ey, ey, .., eym) be building blocks. Let
¢: A — B be a unital x-homomorphism. As in [27, Chapter 1] we define s¥(j, 1)
to be the multiplicity of the representation A% in the representation A? opfori =
1,2,...,N,j=1,2,..., M.

The following theorem shows that there is a connection between KK(A, B) and
the torsion subgroups of U(A) /DU (A) and U (B)/DU (B) when A and B are building
blocks.

https://doi.org/10.4153/CJM-2001-046-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2001-046-2

1246 Jesper Mygind

Theorem 5.5 LetA = A(n,dy,d,,...,dy)and B = A(m, ey, e, ..., ey) bebuilding
blocks and let p,v: A — B be unital x-homomorphisms. The following are equivalent.
(i) ¢* =" in Hom(K°(B), K°(4)),

(ii) s°(j,i) =sY(j,i) mod d%’ i=1,2,...,N,j=12,...,M,

(iii) ¢*(x) = P*(x), x € Tor(U(A)/DU(A)),

(iv) ¢*(qh(wi)) =v*(qh(w)), k=1,2,...,N.

Proof Foreachi =1,2,...,N,j=1,2,...,M,let rlj and slj be the integers with
0< rl,sf < dﬁ andr] = S‘P(],z) mod d,s] =

there exist al, . ,a}g, b 1 b] € Tand unitaries u;,v; € M,, such that

s”(j,i) mod #. By Lemma 2.1

3)
A% o o(f) = ujdiag (AT (), AF(F), ..., AR (F), f(a]), fad),..., fla)) u,

(4) AP ou(f) = v diag (AT (P, AT, AT, FBD, FBD, .., FB)) 7.
Since
N . N .
= Zr{di + K]’Tl = ZS{d,’ + L]'Tl,
i=1 i=1

we remark that if (ii) holds then K; = L;, j = 1,2,..., M.
Note that

N N—1
e (M%) = r/[Af] +K%[Am = AN+ ( i r{V) [AN],
i=1 i=1

N N-1
. n A
WA = YOS Ly (0] = (ga +sf\,> A4,
i=1
By Proposition 4.3 we see that ¢* = ¢* if and only if for every j = 1,2,..., M,

+sl,, and rh=sl, i=12,...,N—-1

1

n
K;— i dn + rN Li— d
It follows that (i) holds if and only if r/ = s/ and K; = L; for every i, j. But this
statement is equivalent to (ii) by the remark above.

Assume (ii) holds. To prove (iii), let u € A be a unitary such that g4 (u) has finite
order in the group U(A)/DU(A). Then Det( u(')) is constant. By (3), (4), and since
K;=1L;,j=1,2,...,M, it follows that

Det(A; () ) = Det(A;(v(w) ), j=1,2....M.

In particular, Det( ap(u)(‘)) equals Det(q/z(u)(~)) at the exceptional points of B. On
the other hand, Det(ga(u)(o)) and Det(w(u)(~)) are constant functions on T and
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are hence equal everywhere. We may therefore use Proposition 5.3 to conclude that
w#(qA(u)) = 1/)#(qA(u)) . (iii) = (iv) is trivial. Assume (iv). By (3) and (4),

exp <27riikr,{> = Det(A% o p(w})) = Det( A% o gp(wf)) = exp <27riiksi) :

Henceri zsifork: 1,2,...,N,j=1,2,..., M, and we have (ii). [ ]

Proposition 5.6  Let A and B be finite direct sums of building blocks, let ,¢: A —
B be unital x-homomorphisms, and let x be an element of finite order in the group
U(A)/DU(A). If [p] = [¢] in KK(A, B) then ¢*(x) = 1*(x).

Proof We may assume that B is a building block rather than a finite direct sum of
building blocks. Let A = A ®A, & - - - ® Ag where each A; is a building block, and let
tit Ai — A denote the inclusion. Let py, ps, . . . , pr be the minimal non-zero central
projections in A. Since . [p;] = ¥«[p;i] in Ko(B), it follows from Lemma 3.4 that
there is a unitary u € B such that up(p;)u* = (p;),i = 1,2, ..., R. Hence we may
assume that o(p;) = ¢¥(pi),i =1,2,...,R. Setqi = p(pi).

Let ¢;,%i: Aj — qiBq; be the induced maps and let ¢;: g;Bg; — B be the inclu-
sion,i = 1,2,...,R. If g; # 0 then [¢;] € KK(g;Bg;, B) is a KK-equivalence by [23,
Theorem 7.3]. Thus

il =[] - [l - [l = [e]7" - (9] - (1] = (]
in KK(A;, qiBqi). Let x = q)(u) where u € A is a unitary. Let u = Zil i (1)

where u; € A;. By Theorem 5.5 and Corollary 3.5 we see that ¢;(1;) = 1;(1;) mod
DU (giBq;) and thus €; 0 ;(u;) + (1 — q;) = €; o i(u;) + (1 — q;) mod DU (B). Hence

=

R

o) = [[e(u)+ 0 —pi) =] (e owitw)+ (1 —q)

i=1

Il
—_

=

R

= [[(eiowitw) + (1 —a)) =[] (uiluw)+ 0 —p) = ¢(w)

=1 i=1

modulo DU (B). [ |

6 Homomorphisms Between Building Blocks

In this section we improve a result of Thomsen on *-homomorphisms between build-
ing blocks that will be needed in the next section.
Whenever 601, 6,, ..., 0; are real numbers such that

0y <6 <--- <0 <6 +1,
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it will be convenient for us in the following to define 8, for every n € Z by the formula
Oprir = 0, + p,where p € Z,r = 1,2,..., L. Note that for every n € 7,

0n§0n+1§"'§0n+L§0n+la

and

(627”'91 , e27r16’| , 627”61‘) — (627”9 2710,41 . 27r16’,,+,/)

Yoo e N

as unordered L-tuples.

Lemma 6.1 Letay,a,,...,a; € T and let k be an integer. There exist real numbers
01,0,,...,0; such that

0 <O < <O <0 +1,
such that Zle 0. € [k, k+ 1[ and such that
((7[1, Az, ..., al) = (6271'1'01’627ri92, R eZﬂ—ieL)

as unordered L-tuples.

Proof Choose wy,ws,...,wr € [0, 1] such that w; < w; < --+ < wy and such that

(6271'1w1 , eZﬂ'lwz7 . 271'1w1_)

(a17a27°'-7aL): €

as unordered L-tuples. Let I be the integer such that 25:1 w, € [L,I+1]. Set 6, =
Wrrk—1- u

Lemma 6.2  Assume that
(exp(27ri91), ey exp(27ri9L)) = (exp(27riw1), ... ,exp(27riwL))

as unordered L-tuples, where 61,0, ...,0r and wy,w,, . ..,wy are real numbers such
that

0 <0< <O <6 +1,

w Sw, < <wp <wt 1
. L
Then 0; = wyyj, j = 1,2,...,L, wherer = 21:1(9]' — wj).
Proof Choose m € 7 such that8,, < 6,,,1 and choose n € 7 such that
0m+1 = Wnt1 > Wy

Assume that
Omip = Wniq + k.
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for some integers p, gwith 1 < p < L,1 < g < L, and an integer k. Then

—1 <01 — Opyr < Oy — 0m+p = Wnt1 — Wnig — k< _k7

0<0pip— O = wnigtk—wpi1 <wpgtk—w, <1+k
Hence k = 0. By assumption it follows that for every x € R,
#j=1,2,...,L: 0 j=x} =#{j =1,2,...,L: wyyj = x}.

Thus
(9m+17 9m+27 v 79m+L) = (wn+1 y W2y« - 7wn+L)

as unordered L-tuples. Therefore
Omij =wnrj, Jj=1,2,...,L

Hence 0; = wy_yj for j = 1,2,..., L. From this it follows that r = n — m. [ |
Proposition 6.3  Let A\j, Ay, ..., Ar: [0,1] — T be continuous functions and let k
be an integer. There exist continuous functions Fy, F,, ..., Fr: [0,1] — R such that
Z?:l F;(0) € [k, k + 1[ and such that for each t € [0, 1],

Fi(t) S R((t) <--- < Ft) <F(t)+1,
and
(M), Xa(0), .., Aule)) = <exp(27TiF1(t)) Lexp(2miFy (1)) . . ., exp(2miFL (1)) )

as unordered L-tuples.

Proof Choose a positive integer n such that

1 1
|s —t] < - = p(Aj(s), A1) < o StE [0,1],j=1,2,...,L.

L )
We will prove by induction in m that there exist continuous functions Fj, . . ., Fy that
satisfy the above for t € [0, 2']. The case m = 0 follows from Lemma 6.1.
Now assume that for some m = 0,1,...,n — 1 we have constructed continuous

functions Fi, Fp, ..., Fr: [0, 7] — R such that Z?:l F;(0) € [k, k+ 1], and such
that for each t € [0, 7], F1(t) < Fy(t) < --- < Fi(t) < Fi(t) + 1, and

(M), Xa(0), .., Ault)) = (exp(Zﬂ'iFl(t)) Lexp(2miFy(1)) .. ., exp(2miFL (1)) )

as unordered L-tuples. Choose o, € R such that p(ez’”a"’, )\j(%)) > ﬁ for j =

1,2,...,L. Choose continuous functions G;: [%, ’”7“] — ], oy + 1] such that
foreacht € [7, mT“],

Gi(t) < Gy(t) < -+ - < Grl1)
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and

(A0, Xa(0), -, M)

= (exp(Zm'Gl(t)) ,exp(27riG2(t)) e ,exp(ZﬂiGL(t)) )

as unordered L-tuples. Set for j = 1,2,...,L, p € Z,

m m+1
GpL+j(t) = G](t) +p, te |:;7 n :| .

By Lemma 6.2 there exists an integer r such that for j = 1,2,...,L,

()0 (%)

Define for j = 1,2,..., L, a continuous function F]’ [o, ’”T“] — R by

o JFit) e (o, ],
B = {GH]m fe [z, ),

F|/,F;, ..., F] satisfy the conclusion of the lemma for t € [0, '”T“]. [ |

Proposition 6.4 Let A = A(n,d\,dy,...,dy) and B = A(m, ey, e, ..., en) be
building blocks and let ¢: A — B be a unital x-homomorphism. There exist inte-

gers i, 1y, ..., iy with0 < r; < &, an integer L > 0, and a unitary w € M, such
that if : A — B is a unital x-homomorphism with ©* (g} (wl)) = ¥*(q4(wf)),
k=1,2,...,N,and ifv: T — Ris a continuous function such that

Det(w(vA)(z)) = Det(go(vA)(z)) exp(Zm”y(z)) , z€T,

then @ and 1 are approximately unitarily equivalent to x-homomorphisms of the form

(p/(f)(ezmt) _ u(t) diag(A?(f), o 7ArNN(f)7 f(eZﬂ-iFl(t))7 ol f(eZm'FL(t))) u(t)>k7

P (™) = v(t) diag (AT (f), ..., AF (), f(@7D), ..., f(&H D)) v(r)*,
where u,v € C[0, 1] ® M,, are unitaries with u(0) = v(0) = 1, u(1) = v(1) = w, and
Fi,Fp,...,F: [0,1] — Rand Gy,G,,...,Gr: [0,1] — R are continuous functions
such that for every t € [0, 1],

Fi(t) < F(t) <--- < F(t) < Fi() + 1,

Gi(t) £ Gy(t) < -+ <Gr(t) £ Gi(8) +1,

and such that ~v(e*™) = Zle(Gr(t) — Fr(t)) foreveryt € [0, 1].

https://doi.org/10.4153/CJM-2001-046-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2001-046-2

Classification of Certain Simple C*-Algebras with Torsion in K 1251

Proof By [27, Chapter 1] it follows that ¢ is approximately unitarily equivalent to a
*-homomorphism ¢;: A — B of the form

(5)

(™) = un(e) diag (AT (), AR, F(A(0) - f(Nul0)) ) wo(0)”
for t € [0,1], where r1,r,,...,ry are integers, 0 < 1; < dﬂi, i=12,...,N,
A1, A2, ..., Ap: [0,1] — T are continuous functions, and 1y € C[0,1] ® M,, is

a unitary. Let [ denote the winding number of Det(go(vA)(-)) . Let y be a unitary
(Ln) x (Ln) matrix such that

ydiag(ay,aa,...,ar)y™ = diag(ar, a1, az,...,a.-1)
forall aj,ay,...,a; € M,,. Set

w = diag(1,1,...,1,y").
——

m—Ln times

Let now ¢: A — B be given. As above 1 is approximately unitarily equivalent to
a *-homomorphism ¢, : A — B of the form

(™) = wole) diag (AT (1), AV (i ®) -, f (1) ) vo(0)"
Note that
s‘f(j,ng = s@l(ﬁi)eﬂj =r+#{r=12...,L: \(y) = xi}dﬁl_,

sd’(],l)— :swl(],t)— =si+#{r=12,...,K:p(yj) = xi} 5.
6]‘ 6]' di

By Theorem 5.5 it follows that r; = s;,i = 1,2,...,N. And since

N N
m :Kn+Zsidi = Ln+2ridi
i=1 i=1

we see that K = L.
By Proposition 6.3 choose continuous functions F, F,, ..., F; : [0,1] — R such
that for every ¢ € [0, 1],
Fi(t) < F(t) <--- < F(t) < Fi(t) + 1,

and such that

(A0, A1), -, Au(r)) = (2700, TR0, 2
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as unordered L-tuples for each t € [0, 1]. Again by Proposition 6.3 there exist con-
tinuous functions Gy, Gy, ..., Gr: [0, 1] — R such that for every ¢t € [0, 1],

Gi(t) < Gy(t) < --- < Gr(t) < Gi(1) +1,
such that
(0, p2(0), ., (D) = (E7OD, TR0 i)

as unordered L-tuples for each t € [0, 1], and such that

L L
(6) 1> G =Y RO+ <1.
r=1 r=1

It follows from (5) that
(exp(2miF1 @) ... exp(2miF(0) ) = (exp(2miFi(D) ..., exp(2miFy(D) )

as unordered L-tuples. Since | = Zle(Fr(l) — Fr(O)) we see by Lemma 6.2
that F,(1) = F,4(0) for each r = 1,2,...,L. Similarly, as Det(cp(vA)(o)) and
Det(i/)(vA)(-)) have the same winding number, G,(1) = G,(0),r =1,2,...,L.

Let t1,ty,...,ty € ]0,1[ be numbers such that 2™, j = 1,2,..., M, are the
exceptional points of B. By (5) there exist a unitary u; € M, such that

ujdiag (A7 (f), ..., AR (), f(&™FGD), ., (&™) uf € My, © M,

for every f € A. Choose a unitary u € C[0, 1] ® M,, such that u(t;) = uj, j =
1,2,...,M,u(0) = 1 and u(1) = w. Note that for every f € A,

u(0) diag (A7 (f), - .., AR (f), f(@™H ), .., f(&™ D)) u(0)*
= u(1) diag (A} (f), ..., AF(f), F@™ W), L, fe™ ) u(1)*.
It follows that we may define a unital *-homomorphism ¢’: A — Bby
0" ()(E™) = ult) diag (AL (), ..., AR (), f(&™FD), ..., f(@ D)) u(t)*,
for f € A,t € [0,1]. Then forevery f € A,z € T,
Tr(p(f)(2) = Tr(pi(N)2) =Tr(¢'(N)2).

Hence ¢ and ¢’ are approximately unitarily equivalent by [27, Theorem 1.4].
Similarly we see that there exists a unitary v € C[0, 1] ® M,, such that v(0) = 1
and v(1) = w, and such that

(™) = v(t) diag (A} (f), .., AR (), f(&™OD), ., f(e™D)) w(t)*

defines a x-homomorphism that is approximately unitarily equivalent to . Finally
note that by (6) we have that v(e?™) = Zf:l (G,(t) - Fr(t)) for every t € [0, 1].
|
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7 Uniqueness

The purpose of this section is to prove a uniqueness theorem, i.e., a theorem saying
that two unital *-homomorphisms between (finite direct sums of) building blocks
are close in a suitable sense if they approximately agree on the invariant. Many of the
arguments here are inspired by similar arguments in [8], [10], [20], [27], and [16].
We start out with some definitions. Let k be a positive integer. A k-arc is an arc-

segment of the form
= {ezm‘t,te [ﬂ f}}
' k’k

where m and # are integers, m < n. We set

Iie:{ezm:te {%—e,%+e}}.

Define a metric on the set of unordered L-tuples consisting of elements from T by

RL((al,ab s 7aL)7 (bh b27 ) bL)) = ?égi(lrgflg)(Lp(Qh ba(i))) ’

where ¥; denotes the group of permutations of the set {1,2, ..., L}. It follows from

Lemma 7.3 below that it suffices to take the minimum over a certain subset of X;.

Lemma 7.1 Letay,a,,...,a;,b1,b,y,...,bp € Tandlete > 0. Assume that there is
a positive integer k such that

#H{roa el <#{r:b,clte}
for all k-arcs 1. Then

1
Ri((ar,az,...,a), (b1, by, ... b)) <e+ T

Proof Forj=1,2,...,L,set
1
X;=1:x€T:px,aj) §6+E

and
C]—:{rZI,Z,...,L:bTEXj}-

Let S C {1,2,...,L} be arbitrary. We will show that #5 < #J 5 C;.
Let Y1,Y,,...,Y,, be the connected components of Ujes Xj. Choose for each
n=1,2,...,mak-arcl, suchthatl, £ e CY,and {a;: j € S} NY, C I,. Then
#{r:a,el,} <#{r:bel,te} <#{r:b €Y,}.
If r € S then a, € I, for some n. Hence
m m
ss<#l{riacnp <#{rineUn} =#{rneUx} =+Jc:
n=1 n=1 JjES JjES
By Hall’s marriage lemma, see e.g. [4, Theorem 2.2], the sets Cj, j = 1,2,..., 1L,

have distinct representatives. In other words, there exists a permutation ¢ of
{1,2,...,L} such that p(a;, bs(j)) < €+ % forj=1,2,...,L. [ ]
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Lemma 72 Leta; <a, <---<apandb, < b, <--- < by be real numbers and
let o be a permutation of {1,2,...,L}. Then

M~ bl = i i = b

Proof Lete = max|a; — by(j)|. Ife.g. bj < a; — € for some j then ¢ must map the
set{1,2,...,j}into {1,2,..., j — 1}. Contradiction. ]

The corresponding statement for the circle is slightly more complicated. It can be
viewed as a generalization of Lemma 6.2.

Lemma 7.3 Let0,,0,,...,0; and wy,w,, ...,w; be real numbers such that

0 <6< <0 <6 +1,

w Swy <o <Swp Swypt

There exists an integer p such that

lrgf}L |0] o wj+p| _ RL((eZﬂ'iGl’ s eZﬂ'iGL)’ (eZﬂiwl’ s eZﬂ'iwL)) .
Proof Lete = Rp((e2™,... e*™0), (2™, .. €*™L)). Note that 0 < € < 1.

There exist y1, y2, ..., y1 € Rsuch that

(7) (eZWiwl , eZﬂ'iu&’ o ,eZWiwL) _ (eZ7riy1 , eZ‘/riyz’ . 6271'1')/1_)

as unordered tuples, and such that

(8) |0]_y]|§€a ]:17237L
By Lemma 7.2 we may assume that y; < y, < --- < y; and still have that (7) and
(8) hold.

Choose an integer n, 0 < n < L — 1, such that y1,y2,...,y, < yr — 1 and

YL —1 < ¥Yui1, Yus2y- -, yr- Then y1 + 1, ...y, +1 € [yr — 1, yr] since yp < y1+2
by (8). Choose z1,2,,...,21 € [y — 1, yr] suchthatz; <z, <..- <z and

(z1,20,..,zt) =i+ 1,0y + L Yuin, o5 V1)

as unordered L-tuples. By (8) and Lemma 7.2 we see that max |z; — 6,,; ;| < €. By (7)
and Lemma 6.2 we have that z; = wj,,, for some integer m. Hence

m]ax 10 — Wjim—n| = mjax 0 j — Wism| < €.

The reversed inequality is trivial. ]

The following lemma is fundamental in the proof of Theorem 7.5.
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Lemma 7.4 Let0,,0,,...,0; andw;,w,,...,wy be real numbers such that

0 <6 <--- <O <0 +1,

w) Cwy <-o-Swp Swy t,

and | Zﬁzl(ej — wj)| < 6 for some § > 0. Let € > 0 satisfy that Le < § and
RL((ezww]’ezmaz’ L BT (e Pmier ,e2”i“L)) <e
Assume finally that for some positive integer s,
) #j: i eI}y >25, j=1,2,...,L,
for every s-arc I. Then
10; —wj| < e+§, i=12,...,L
Proof By Lemma 7.3 there exists an integer p such that
0, —wisp| <€, j=1,2,...,L

Note that
L L L
2l =[S @y = )| |3 winp = 0] + | 3206~ wp)| <Le+s <26,
=1 j=1 j=1

Fixsome j =1,2,...,L. Set

J— {e“’:’:wj <t <wj,} ifp>0
{m™  wi, <t <wj} ifp<O.

Since #{j : e2™@ € J} < |p| we see by (9) that J cannot contain an s-arc. Thus
lwj — wjsp| < 2. Itfollows that |0; —w;| < e+ 2%, j=1,2,...,L [ |

Let A = A(n,d,, d,, . ..,dn) be a building block and p a positive integer. Let I be
a p-arc. Choose a continuous function f{: T — [0, +] such that @ # supp f; C I
and such that fI equals 0 at all the exceptional points of A. Choose a continuous
function g! : T — [0, 1] such that g/ equals 1 on I, such that supp g} C I + ﬁ, and

such that supp gl \ I contains no exceptional points of A. Set

H(A, p) = {fl @ 1:1 prarc},
ﬁ(A,p) = {g,ﬂ ®1:1 p-arc}.
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Theorem 7.5 Let A = A(n,dy,d,,...,dN) be a building block. Let ¢ > 0 and let
F C A be a finite set. There exists a positive integer ly such that if |, p and q are positive
integers with ly < 1 < p < g, if B = A(m, ey, e,,...,ey) is a building block, if
©,: A — B are unital x-homomorphisms, and if 6 > 0, such that

(i) $) > 2 he HA,D,

(ii) $(h) > 2, h e H(A, p),

(iii) |P(h) ~ (0| < 6, h € H(A, 29),

(iv) (h) > 6, h € H(A, 4q),

@) o (qhw)) =v*(qhw)), k=1,2,...,N,
(vi) Dy (4) 0 (a4 0M) ) < &

then there exists a unitary W € B such that
le(f) =We(/IW"|| <€, fEE

Proof Choose [y such that for x, y € T,

p) < T =W - fl <5 fer

Let integers q > p > | > I, a building block B = A(m, ey, €3, . . ., enr), and unital
*x-homomorphisms ¢, 9: A — B be given such that (i)—(vi) are satisfied. Choose
¢ > Osuchthatforx,y €T,

plx,y) < e = () — eI < 2, fER

plx,y) < e = [W(H@W - (N < &, fEE

Let x1,x,, . . ., xy denote the exceptional points of A and let y1, y2, . .., yum be those
of B. Let for each j = 1,2,...,M, t; € ]0, 1[ be the number such that et = V-
Let 7: T — T be a continuous function such that p(T(z), z) < cforeveryz € T,
and such that for each j = 1,2, ..., M, 7 is constantly equal to y; on some arc

I]‘ = {627rit it e [a]‘, bj]},

where 0 < a; < t; < b; < 1. Define a unital *-homomorphism x: B — B by
X(f) = for7.Setp; = xoepand; = xow. Then

Hso(f)—sol(f>|\<§, fer
Hw<f>—w1<f>|\<g feE

1 and ¢y satisfy (i)—(vi). Let

o1V = b (V)™
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where ¢ € DU(B) and b € B is a self-adjoint element with ||b|| < %. Note that

(10) Det(cpl(vA)(z)) = Det(wl(vA)(z)) exp(Zm' Tr(b(z)) ) , z€T,

(11)
Det(A;j o 1 (v')) = Det(A;j o (vh)) exp(ZwiTr(Aj(b))), i=1,2,...,M.

Fix some j = 1,2,...,M. Let tj: M,; — M,, denote the (unital) inclusion. By
Theorem 5.5 and (v) we have that s71(j,i) = s%1(j,i) mod Zi=12,...,N,

j=1,2,...,M. Chooses/,0 < s 7> such that slj = s¥1(j,i) mod 7. By

i

Lemma 2.1 we see that for each z € I;,
. ; i > il o\
01(N)z) = Lj(y{ diag (A (f), ..., AY(F), F(@7), .., f(&™"0) i )

0i(N@ =1 Yidiag (AT, - A, F@, o, FE™ ) 1),

for some unitaries y{,y; € M., and numbers 67,... ,GJDj,w{, .. ,ng € R. By

changing y{ and yg we may by (11) and Lemma 6.1 assume that

b] <)< <6, <0+,

W] Sw] < <) <wl 1,
and
Dj
(12) > (0] — wl) =Tr(A(D)) .
r=1

Let I be a 2g-arc. By (iii),

#{r:eme{ eln+ Z Sljd;‘ STT(A]‘O%((??@U)
{ix; €I}
<eid+Tr(Ajoy(gl ®1))
. 27iw! 1 j
<ej5+#{r.e rEIj:4—q n+ Z s;d;

{izx; €supp ¢}

, 1 .
<#{r:e2”’“561:|:2—q}n+ Z s{di.

{i:x;E€supp gt}

The last inequality uses (iv) and that || fX|| o < 1 for some 4g-arc K. Hence

i s 1
#{r: &m0 EI}S#{r:ezm“’z elt+ 2—}
q
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Therefore by Lemma 7.1,

2mif]  2mif) 2mif),. 2miw!  2miw) 2miwp,
Rp, (™%, ™% . e 00), (™, e ) < — 4+ —

<
=2 2q°

| =

By (ii), if Jis a p-arc then
. e
#{r: ™ e JV >2-2,
q
since || f/[|oc < L. Clearly % < %. Furthermore,

= | Tr(A;(0)) | < ejl|b]| < %J

D;
>0 i)
r=1
By Lemma 7.4 it follows that
3

< > r=1,2,...,D;.

6] —wl| < -+

S
AR

Let grj: [aj,b;] — R be the continuous function such that grj(aj) = g,j(bj) = H,j,
g,] (tj) = wj, and such that gﬂ is linear when restricted to each of the two intervals
laj,t;] and (¢, b;]. Note that

. .3
(13) |gfl(t)_0%’|§;7 r=12,...,Dj.
Finally, define a *-homomorphism §;: A — C(I;) ® M,, by

§N@™) = 1 (¥l diag (AT (1), AR, F@TE0), L f@70) 1),

fort € [a]‘, bj], f € A.
Define a unital *-homomorphism £: A — B by

&), zel,j=1,2,....M,

aﬁ@{%m@,zamuﬁu

Then by (13)
lei(f) — () < g fek

Note that f + A; o £(f) and f > A; o 1),(f) are equivalent representations of
AonM,, j = 1,2,...,M. In particular, s$(j, i) = s9(j,i), i = 1,2,...,N,
j=1,2,...,M, and hence f#(qg(w?)) = Wf(qé(w?)) ,k=1,2,...,N by Theo-
rem 5.5. Let : T — R be the continuous function

n(e™) = %Z?:jl(gi(t) — 92) t € laj,bjl,j=1,2,...,M,
0 otherwise.
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Forze T,
Det (€(v)(2)) = Det(p1(v)(2)) exp(2rin(2))
= Det(11(¥)(2)) exp( 27i Tr(b(2)) ) exp(2rin(2))
= Det(t(¥)(2) exp(2rin(2)) ,
where v: T — R is defined by 7(2) = 1(z) + Tr(b(2)) . Note that by (12)

(i) =nlyj) +Te(b(y))
Dj
= BN W] =)+ ZTe(A;() =0, j=1,2,...,M,
¢j = ¢j
and
m

p

3
Voo < llo + || Te(6C) || . < %Dj + 23 ey
)

q p

m
q

By Proposition 6.4, ¢1, ¥, and £ are approximately unitarily equivalent to ¢, 1],
and &’, respectively, where @7, 11{,&’: A — B are x-homomorphisms of the form

Pl (AE™) = u(t) diag (A7 (f), ..., AN (), f(&™ D), ., f(eO)) u(t)®,
Y{(AE™) = v(t) diag (A} (f), ..., AR (f), f(7OD), L, (@) v(r)*,
(™) = w(t) diag (A} (f), .., AN (), f(™HD) L, F(@™ D)) w(t)*,

for integers r1,12,...,ry with 0 < r; < F,i = 1,2,..., N, unitaries u, v, w in
C[0,1] ® M,, with u(0) = v(0) = w(0), u(1) = v(1) = w(1), and continuous
functions F,, G,, H,: [0,1] = R, r=1,2,..., L, such that fort € [0, 1],
Fi(t) S FB@E) <. <F() < Fi()+1,
GI(t) S G(t) < <GL(t) < Gi(F) +1,
Hy(t) < Hy(t) <--- < Hp(t) < Hi(¢) + 1,

and such that for each t € [0, 1],

L
(14) YE™) =Y (Hi1) = G(1)) .
r=1
Hence
L m
(15) > (Hi0 - G0) | < 4
r=1

https://doi.org/10.4153/CJM-2001-046-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2001-046-2

1260 Jesper Mygind

It follows from (13) that for each t € [0, 1],

RL((eZﬂ'iFl(t), L ,eZWiFL(t)), (elﬂ'iHl(t)’ s eZﬂ'iHL(t))) S

W

Lett € [0, 1] and let I be a 2g-arc. Then by (iii) and (iv)
#Hr:e™ et Y nd;
{ix; €I}
< Tr(pi(g! ® (™))
< md+ Tr(z/;l'(gf‘ ® 1)(627Tit))

. 1
. 2miG(t) A.
§m6+#{r.e GIi4q}n+ E r;d;
{i:x; Esupp gt}

. 1
. 2miG(t) A.
<#{r.e EI:I:—zq}n+ A E rid;.
{i:x; Esupp gi'}

Hence

#r:mE0 e} <#lr: MO0 14 1 i
< 2

It follows from Lemma 7.1 that for each t € [0, 1],

R (7RO, FHR0) (260 2riGi)) < i, 111
29 29 q
We conclude that
27iG (1) 27iGr(t) 2miH; (1) 2miH (t) 1 3 4
RL((e yeei, € ), (e Seee,€ ))§5+;§E.

Since f — P{(f)(y;) and f — &'(f)(y;) are equivalent representations of A on
M,, for j = 1,2,..., M, it follows that
(276 4))

ATiGL)Y — (2T 2riH (1))

yeees ..,e

as unordered L-tuples. Therefore,asy(y;) = 0, j = 1,2,..., M, we see by Lemma 6.2
and (14) that

G(t;)) = H,(t}), r=1,2,...,L,j=1,2,...,M.

) )

As v(0) = w(0), v(1) = w(1), we may thus define a *-homomorphism p: A — B by

p()(@™) = v(t) diag (A} (f); ..., AY (), F(@™HO), ., f(@™ ) v(n)*,
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for f € A,t € [0,1]. Since

Tr(u(N)2) =T (¢ (NH@) =Te(E(f)2), z€T,fEA,

we get from [27, Theorem 1.4] that  and € are approximately unitarily equivalent.
By (i) we have that for every l-arc J,

#{r: M0 ¢ 1) > 8.
As L% < 4%, we conclude from (15) and Lemma 7.4 that

|Gr(t) - Hr(t)| S

—l

6
< -.
— 1

RSN
+

Hence

u(f) — ()] < g, fek

Choose unitaries U,V € B such that
leH) —UnHutl <2, feE
[9i(h = vin(Hvili< 2, feF
Set W = UV. Thenfor f € F,

le(f) = Wi (HHw™||
< lle(f) = 1D+l (f) = ENDN+ IEC) = UnHU™|
+[Un(HU™ = U{(AU[| + [[UL1(HUT = UV (VU
+ Wi (HIW* = W (HW™||

€ € €
<—+-+-+

E+ + - =¢. | ]
6 6 6 6

€
6 6
Lemma 7.6 Let B = A(m,ey,e,...,em) be a building block and let r € B be a
non-zero projection of rank s € 7. Let C = rBr and let u,v € C be unitaries. Then

D¢ (qé(u), ql(v)) < ZW%DB(qé(uﬂ- (1—=1),q5(v+1— r))) .

Proof Lete = DB<ql§(u+ 1- r)) ,qé(v+ 1- r))). We may assume that € < 1.

Let b € Bbe a self-adjoint element such that uv*+(1—r) = 2™ modulo DU (B) and
[b]| < €. Define ¢ € C by c(z) = L Tr(b(2)) r. Since b = ¢ we have that e2™" = "¢
modulo DU (B). Thus

w* + (1 —71) = ™ = re®™r + (1 —r) modulo DU(B).
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C is a building block by Corollary 3.5, and therefore it follows from Proposition 5.3
that uv* = re?™*r modulo DU (C). Thus

D¢ (qé(u), qt(v) < |re*™r — r|| < ||¥™ — 1| < 27| < 271'%6. ]

LetA=A @A, D DAg, where A; = A(n;, di,db, ..., d}'\,’,) is a building block.
Foreachi = 1,2,..., R, we define unitaries in A by

viE=(1,...,,vN L.

wh=,...,Lwy,1,...,1, k=12,...,Ns.

Set U = Ule{wfk :k=1,2,...,N;}. If p is a positive integer, we set

R

H(Avp) = ULi(H(Ah P)) 9
i=1
R

ﬁ(A,P) = Ubi(ﬁ(Ai,P)%

i=1

where ¢;: A; — A denotes the inclusion, i = 1,2,...,R.

Theorem 7.7 Let A=A, ® Ay @ - - B Ag be a finite direct sum of building blocks.
Let p1, p2, . .., pr be the minimal non-zero central projections in A. Let € > 0 and let
F C A be a finite set. There exists a positive integer | such that if p and q are positive
integers with | < p < g, if B is a finite direct sum of building blocks, if p,1: A — B are
unital x-homomorphisms, if 6 > 0, if

(i) D) > he HA,D,

(i) D) > 2, h € H(A, p)U{p1, pa.-.., pr}

(iii) | @(h) — p(h)]| < 6, h € H(A, 2q),

(iv) (h) > 6, h € H(A,4q),

) Ds( ¢ (@01) W (a01) ) < i= 1,2, R

and if at least one of the two statements

(vi) [yl = [¢] in KK(A, B),
(vii) @, = 1, on Ky(A) and ¢* (x) = ¢*(x), x € U4,

are true; then there exists a unitary W € B such that

le(f) =Wy )W™|| <e, fE€EF
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Proof Foreachi = 1,2,...,R,lett;: A; — A be the inclusion and let 7;: A — A;
be the projection. Choose by Theorem 7.5 a positive integer I with respect to the
finite set 7;(F) C A; and € > 0. Set | = max; lf).

Let integers ¢ > p > I, a finite direct sum of building blocks B, and unital *-
homomorphisms ¢, 1¥: A — B be given such that the above holds. Since (vi) implies
(vii) by Proposition 5.6, we may assume that (vii) holds. It is easy to reduce to the
case where B = A(m, ey, ey, ..., ep) is a single building block.

Since . [pi] = Y«[pi] in Ko(B) for i = 1,2,...,R, there is by Lemma 3.4 a
unitary u € B such that up(p;)u* = ¢(p;) for everyi = 1,2,..., R. Hence we may
assume that o(p;) = ¥(pi), i = 1,2,...,R. Set g; = 1(p;). It follows from (ii) that
qi #0,i=1,2,...,R. Let t; be the (normalized) trace of g;.

Let ¢;,9;: A;i — q;Bq; be the induced maps. Note that g;Bg; is a building block
by Corollary 3.5. Fix somei = 1,2,...,R.

Every tracial state on g;Bg; is of the form tliw|q,. Bq; for some w € T(B). Therefore

; and 9; satisfy (i)—(iv) of Theorem 7.5, with § replaced by %. Note that t; > % by
(ii). Since

/ . ’ ) 1
Ih@ﬂwwﬂ+uf%»ﬁﬂwwﬂ+u—%»)<Z;

by (vi), we have that

. _ 11 q 1 1
#00y ; #( 1 ;
Dq,‘qu (Q&l (qA‘(‘VA )) ?1/}1‘ (qA’(‘VA ))) < 27Tt_,4_qz < 271'54—q2 < 6
by Lemma 7.6, which is (v) of Theorem 7.5 for ¢; and ;. Similarly we get that
@f(w‘,?") = ¢f(w‘£”), k = 1,2,...,N; which is (vi) of Theorem 7.5. Hence there
exists a unitary W; € ¢q,;Bg; such that

[pi(f) = Withi(HWi*[| <, f € mi(F).
SetW = S"®  W;. Then W € Bis a unitary and

lo(f) —Wp()W*|| <e, fEFE -

8 Existence

The goal of this section is to prove an existence theorem that is the counterpart of the
uniqueness theorem of the previous section.

Let A and B be building blocks and let ¢: A — B be a x-homomorphism. We say
that continuous functions Ay, A, ..., Ay: T — T are eigenvalue functions for ¢ if
A1(2), Aa(2), - . ., An(2) are eigenvalues for the matrix (¢ ® 1)(z) (counting multi-
plicities) for every z € T, where ¢: T — C denotes the inclusion.

Theorem 8.1 Let A = A(n,dy,dy,...,dN) be a building block, let € > 0, and let C
be a positive integer. There exists a positive integer K such that if
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(i) B=A(m,ey,e,,...,ey) isabuilding block with s(B) > K,
(ii) Kk € KK(A, B),,

(i1i) A, A2y, Ac: T — T are continuous functions,

(iv) u € Bis a unitary such that k. [v!] = [u] in K;(B);

then there exists a unital x-homomorphism @: A — B such that A\, Ay, ..., Ac are
eigenvalue functions for o, and such that

[p] =k inKK(A,B),

¢ (g4(¥")) = q4(w), inU(B)/DU(B),

<ellfll,  fe AT,

1 9
so(f)—gk;foxk

when we identify Aff T(A) and Aft T(B) with Cg(T) as order unit spaces.

Proof We may assume that € < 4 and, by repeating the functions Aj, A5, ..., A,
that C > 2. Let K be a positive integer such that

4N+C+2)n
K> — ——,
€

Let B, A1, A2, ..., Acs K, and u be as above. By Proposition 4.3 there are integers hj;,
i=12,...,N,j=1,2,...,M,with0 < hj; < dﬁforiséN,suchthat

i

H*([Alf]) hiy hi -+ hin [A?]
n*([A‘E]) B ha hy -+ oy [A?]
w(05D) \ma e o ) AR

As in the proof of Theorem 4.7 we see that

N
(16) Zhjidi :e]',
i=1

since k4 : Ko(A) — Ko(B) preserves the order unit, and hjy > di,\,’ because s(B)
Nn. By Proposition 4.3 we have fori = 1,2,...,N,j=1,2,..., M,

Y

m n
17 —h‘,‘:l‘i—-f— i,
(17) e, it =i, s

where [;; and s; are integers such that 0 < s; < 7. Note that [;; > 0. For j =
1,2,...,M, choose integers h‘]’-N, 0< h;’-N < %, and r; > 0 such that

n
(18) th :T‘j%-i-h(}N,
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and note that

+ SN

m._, , N
(19) ;jth = le%

for some integers Z;N >0,7=1,2,...,M. Then

(20) lin =iy = —1;.
¢j
Let for each j

for some integers k; > 0 and 0 < u; < C + 2 and set

. m
b= min k;—.
1<j<M e;

Note that for j = 1,2,..., M,

N
ej = Zhﬁdi <(N—=Dn+rin+hiydy < Nn+rjn
i=1

:(N+C+2)n+(rj—(C+2))n§zej+(rj—(C+2))n.

Hence .
(1 - ;) ej < (rj—(C+2))n.
Therefore
. SR S L S ()
€j €j € 4
Since by (16)
nki(C+2)" < < By < m,
Ej ej ej
we see that
8
(23) nb— < nbC < nb(C +2) < m.
€

By this and (22),
€ €
- < —m.
m(l 4) < nb(C +2) _an+4m

Hence from (23) we conclude that

nbC ¢
0<]l—— < —.
m 2
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Let x1,x,,...,xy denote the exceptional points of A and let y, y,,..., ym be
those of B. Setfor j = 1,2,..., M,

N—1 o
= ( H Det(Ai(vA)) hj') Det(AN(VA)) thv

i=1

then by (17) and (19)

N—1 N
(24) ajq = (H xiln') le?N HDet(Al(‘VA))S
i=1 i=1
Setforj=1,2,..., M,
¢ = Det(A]-(u))

and note that

m

(25) cff = Det(u(yj)) .

By (22) we see that k; # 0, j = 1,2,..., M, and hence there exists a continuous
function Ac;q: T — T such that

C
(26) (>\C+l(y] )*a] ]1H Ak()/] ) ':1,25"',M‘
k=1

Letfor f € Aand j = 1,2,...,M, D;(f) be the m x m matrix

diag<AT(f), e AN fGxn)s s fCxa), o floen—1), s flen—1),

1;; times Ljn—1) times

fGen)y ooy flaxn), f( 1()’] ) f()‘l(yj))v"-v

l]N times kj 2 —btimes
J

f()\CH(}’])) >af()\C+1()/])) 7f(1)77f(1)7

kj 2 —b times (kﬁw)%fbtimes
j

FMG)) s F(NMGD) s f (e o f(Aen (),

b times b times

[, f).
—_—

b times

Since D;(f) is a block-diagonal matrix with eﬂjh]-,- blocks of the form A;(f), i =
1,2,...,N—1, eﬂjh‘J’-N blocks of the form An(f), k]-emj blocks of the form f()\k(yj)) ,
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k=1,2,...,C+1, and (k; + u;)Z blocks of the form f(1), there exists a unitary
]
W; € M,, such that

WD ()W} € M, C M,

forevery f € A. SetL = %(m — Zf\il sidi) —(C+2)b. Foreach j =1,2,..., M, we
have by (16), (17), (20), (21) that

N N—1
m
L= E lj,'—(C+2)b: E lji+l(])'N+e_j(kj(C+2)+uj)_(C+2)b'
i=1 i=1

Choose for k = 1,2,...,L continuous functions ug: T — T such that for each
i=1,2,..., M,

(1 (yi)s (), -y mi(yy))
= (xlv"‘uxlv"‘7xN717-'-7xN717xN7"'7xN7
—_——— N——_— e ——

1j; times Lin—1) times l‘JTN times

A1()/]')7'''a)\l(yj)a"'7AC+1(}/]')7"'7AC+1(}/]')7 1713"'71 )
——

k; It —b times kj I —b times (kj+u;j) 2 —btimes
€ ‘i ]

as ordered tuples.
Choose a unitary W € C(T) ® M,, such that W(y;) = W, for j = 1,2,..., M.
Define a continuous function g: T — T such that

L c+l N
g(2) H i (z) H()\k(z)) b H Det(Ai(vA)) ¥ = Det(u(z)) , z€eT.
k=1 k=1 i=1

Then by (24), (25), and (26) we have that g(y;) = 1for j = 1,2,..., M. Define a
unital x-homomorphism ¢: A — Bby

e(f)(z) =W(2) diag(A?(f),.-.,A?(f),f(m(Z)) v f(m(2)
f()\l(z))7"'7f()\l(z))7-'-7

b times

f()\c+1(2)) PR f()\c+1(2)) )

b times

f(8@), f),- o, F)) W),

b—1 times
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By the remarks following the definition of D;( f) we see that for j = 1,2,..., M,

N-—1

P (A2 =Yy AA]+hoN[Ag]+(kj(c+1)+(kj+uj))%[/\g]
i=1
N-1

N
hii[A2] + <th+r,d > [AR] =D hulAf] = k*[A%],
i=1

i=1

and hence p* = k* in Hom(KO(B),KO(A)). Furthermore, as Det(VA(-)) is the
identity map on T, we have that forz € T,

C+1
Det(o(v")(2)) HDet (Ai(rh) Huk(z)(HAk(z) ) 8(2) = Det(u(z)),
i=1 k=1 k=1
and by (26), for j = 1,2,..., M,
N—-1 C+1

)

Det(A; o (') = (HDet M) ) Det( An()) HAk(y,)f

i=1

N-1
- ( H Det(A,-(VA)) hj') Det(AN(VA)) thaflcj = Det(Aj(u)) .

i=1

Hence g, ( np(vA)) = qp(u) in U(B)/DU (B) by Proposition 5.3. It follows from The-
orem 4.7 that [¢] = k in KK(A, B).
Finally, forw € T(B) and f € AffT(A) = Cr(T),

C

BN~ & f o M)

i=1

1 C
= |w(v(feD) E;“’ (o @1)

C C
1 1 1
< |—(m—Cbm)| [[fl+||—bn Y for— =D foh
k=1 k=1
1 Cbn
< |—(m—Cbm)| |f]l + bn——‘C||f|—2 L= —= 1 Ifll <ellfll
Hence
1 C
BN =D Fox|| <elfl n
k=1

The following result is due to Li [17, Theorem 2.1]. It generalizes a theorem of
Thomsen [26, Theorem 2.1] and it is the key stone in the proof of Theorem 8.3 below.
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Theorem 8.2  Let X be a path-connected compact metric space, let F C Cr(X) be a
finite subset and let € > 0. There exists a positive integer L such that for all integers N >
L, for all compact metric spaces Y, and for all positive linear order unit preserving maps
O: Cr(X) — Cgr(Y), there exist continuous functions \y: Y — X, k = 1,2,...,N,
such that

N
@(f)—%z:fo)\k <e, fE€F
k=1

Theorem 8.3 Let A = A(n,dy,d,,...,dn) be a building block, let € > 0, let F C
AffT(A) be a finite set, and let C be a non-negative integer. There exists a positive
integer K such that if

(i) B=A(m,e,ey,...,ey)isabuilding block with s(B) > K,

(ii)) Kk € KK(A, B),,

(iii) A, A2y ..., Ac: T — T are continuous functions,

(iv) ©: AffT(A) — Aff T(B) is a positive linear order unit preserving map,
(v) u € Bis a unitary such that k.[v*] = [u] in K;(B);

then there exists a unital x-homomorphism @: A — B such that A\j, Ay, ..., Ac are
eigenvalue functions for @ and such that

[¢] =k nKK(A,B),
¢ (q4(")) = q4(w) inU(B)/DU(B)
lo(f) =0 <e feFE

Proof We may assume that ||f|| < 1, f € F. Choose by Theorem 8.2 an integer L
with respect to F C Aff T(A) = Cg(T) and 5. We may assume that L > C and that

1 — L€ < £ Then choose by Theorem 8.1 an integer K with respect to C + L and &.

Now let B, ©, Aj, A,...,A¢, k and u be given as above. Choose continuous
functions )\C+17 )\C+2a ey Acir: T — T such that in Aff T(B) =2 Cr(T),

1 C+L
O =1 D foh
k=C+1

€
<<, f€eFE
5

By Theorem 8.1 there exists a unital *-homomorphism ¢: A — B such that A,
A2, ..., Acsr are eigenvalue functions for ¢ and such that

[¢] =k inKK(A,B),

¢*(q4(")) = qj(u) inU(B)/DU(B),
C+L

~ 1
PN =2 foN

k=1

<3Ifl, f € AffT().
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Since for f € Aff T'(A),

C+L C+L

1 1
SIS ON S fon
k=1 k=C+1
1 C+L 1 C+L 1 C
< M — — M|+ || =— A
Slgag 2 fod—1 D fodftlamgd fon
k=C+1 k=C+1 k=1

1 1 1 L-C €
< — = L|fll + C =|1- =
<|aig - | genn = (1- 555 ) I < 50,
we get that

() —e(fl <e, fEF n

Lemma 8.4 LetA = A(n,dy,d,,...,dy) beabuildingblock, let p € A be a non-zero
projection, and let u € A be a unitary. Then there exists a unitary w € pAp such that

qu(w) = q(w+ (1 —p)) inU(A)/DUA).

Proof Note that pAp is a building block by Corollary 3.5. Hence by Lemma 5.4
there exists a unitary w € pAp such that

Det(w(z)) = Det(u(z)) , z€T,

Det(A;(w)) = Det(A;(w)), i=1,2,...,N.
Then g} (u) = qf’\(w +(1— p)) in U(A)/DU(A) by Theorem 5.3. [ |

Theorem 8.5 LetA = A, ® Ay @ - P Ag be a finite direct sum of building blocks.
Let F C Aff T(A) be a finite set and let e > 0. There exists a positive integer K such that

if

(i) B=B,®B,®- D B is a finite direct sum of building blocks and k is an element
in KK(A, B),,

(ii)  for every minimal non-zero central projection p in A we have that

s(B)pp(r«[p]) = K in AffT(B),

(iii) there exists a linear positive order unit preserving map ©: Aff T(A) — Aff T(B)
such that the diagram

Ko(A) —2— AffT(A)

.| o

Ko(B) —— AffT(B)
PB

commautes,
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(iv) ui,uy,...,un € Bare unitaries such that
Vi) = [w] inKi(A), i=1,2,...,R;

then there exists a unital x-homomorphism @: A — B such that [¢] = x in KK(A, B),
and such that

e(f) =Nl <e fEF
0" (qa()) = qp(uw) inU(B)/DUB), i=1,2,...,R.

Proof Let m!: A — A; be the projection and (4: A; — A be the inclusion, i =
1,2,...,R. Let py, p2, - . ., pr denote the minimal non-zero central projections in A.

Choose by Theorem 8.3 an integer K; with respect to 74(F) C AffT(4;), e > 0 and
C=0.SetK = maxj<;<r K;.

Let B, k, ©, and uy, uy, ..., uy be as above. We may assume that S = 1. To see
this, assume that the case S = 1 has been settled. Let 7TIB: B — B be the projection
and let .7: B; — B be the inclusion. As the diagram

Ko(A) —2— AffT(A)

B ok B
ﬂ,*on*l lﬂ'l 0®

Ko(B)) —— AffT(B))
P8

commutes for/ = 1,2,...,S,and since s(B)) pp, (7] ok, [pi]) > Kfori = 1,2,...,R,
I=1,2,...,S, we get unital *-homomorphisms ¢;: A — B; such that

(@] =[] -k inKK(A,B)),

1G(f) —FoO(f)| <€, fEF
ot (ghv) = ap, (7F(w)) inU(B)/DUB), i=1,2,...,R.

Define ¢p: A — Bby p(a) = (c,ol(a)7 wa(a),. .., goS(a)) . Then

(/][] k=K inKK(A,B),
1

[p] = [ZL?OSOI} =

I=1 I

18(H) — Ol = max|[Tf o 3(H) ~ 7 0O <€, fEF

S S

¢*(q4(v})) = qi(w;) inUB)/DUB), i=1,2,...,R.

So assume B = A(m,ey,e,,...,ey). Note that by assumption x.[p;] > 0 in
Ko(B) fori = 1,2,...,R. Lete = gcd(ey,e,,...,enm). Choose by Corollary 3.6
orthogonal non-zero projections g; € M, C B, fori = 1,2, ..., R, with sum 1 such
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that k. [p;] = [q:]. Lett; > 0 be the normalized trace of g;. Note that we have a well-

defined map J;: AffT(A;) — AffT(A) such that J;(a) = ¢4(a) for every self-adjoint
element a € A;. Define O;: Aff T(A;) — Aft T(q;Bq;) by

0i(f) ( TO€1> = %G(ji(f)) (1), 7e€T(B),

where €;: q;Bq; — B denotes the inclusion.
O; is a linear positive map, and it preserves the order unit since

1 ~ 1
0i(1) (t Toe,> = ;@(Pi)(T) = P50 Ka[pil(T) = 1.
By [23, Theorem 7.3] we get that [¢;] € KK(q;Bqi, B) is a KK-equivalence. Note that
[ei]7" - k- [t}] € KK(A;, q:Bgi)e-

By Corollary 3.5 we have that g;Bq; = A(t;m, tie;, tiea, . . ., tiepr). Using Lemma 8.4,
choose a unitary w; € g;Bg; such that

ap(wi + (1 —q;)) = q4(w;) inU(B)/DU(B).

Sincetie; > K for j = 1,2,..., M, we get by Theorem 8.3 a unital *-homomorphism
@i+ Ai — qiBq; such that

[pi] = [&]7" k- [tf] inKK(A;, q:Bgi),

IG:f) — Ol <e, femiE),
<p,-(vA’) =w; mod DU (q;Bq;).

Now define p: A — Bby

R
pla) = eopioni(a).

(o is a unital x-homomorphism and

[l = el loi] - [m}] = Zm — & in KK(A, B).

For f € AffT(A), T € T(B), we have that

R —
0N =320 (1 () )(T)—Ztl (#0) (roa).
i=1
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and

R R —~ 1
Bf) (1) = flrop) = f (213 HToG 0 pio w;‘) = ;ti@(wﬂf)) (ET o ei) :
It follows that

18(f) —e(f)| <e feE
Finally, fori =1,2,...,R,

e =€opi()+(1—g)=wi+(1—q) =u

modulo DU (B). [ |

9 Injective Connecting Maps

The purpose of this section is to show that a simple unital infinite dimensional in-
ductive limit of a sequence of finite direct sums of building blocks can be realized as
an inductive limit of a sequence of finite direct sums of building blocks with unital
and injective connecting maps.

From now on, we will consider inductive limits in the category of order unit spaces
and linear positive order unit preserving maps, as introduced by Thomsen [26]. It
follows from [26, Lemma 3.3] that Aff T(-) is a continuous functor from the category
of separable unital C*-algebras and unital *-homomorphisms to the category of or-
der unit spaces. We will also need Elliott’s approximative intertwining argument, see
[9, Theorem 2.1] or [25].

Lemma 9.1 Let A be a finite direct sum of building blocks, interval building blocks,
and matrix algebras. Let ¢ > 0 and let F C A be a finite set. There exists a finite
set of positive non-zero elements H C A such that if B is a building block or an interval
building block, and ¢: A — Bis a unital x-homomorphism with p(h) # 0, h € H, then
there exists a unital injective x-homomorphism 1: A — B such that ||o(f) — ¥ (f)] <
6 f €L

Proof By Corollary 3.5 (and the corresponding result for interval building blocks)

we may assume that A is a building block, an interval building block or a matrix

algebra rather than a finite direct sum of such algebras. We will carry out the proof in

the case that A = A(n,d,, d,, . .., dy) is a circle building block. The proof in the case

that A is an interval building block is similar, and the matrix algebra case is trivial.
Choose § > 0 such that forx, y € T,

plx,y) <20 = |f(x) — f(y)l <€, fEE

Let T = Ufil Vi where each V; is an open arc-segment of length less than §. Choose
for eachi = 1,2,...,K, a non-zero continuous function x;: T — [0, 1] with sup-
port in V; such that ; is zero at every exceptional point of A. Set

H:{X1®15X2®17“'7XK®1}'
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Let ¢: A — B be given such that ¢(h) # 0, h € H. By [27, Chapter 1] we may
assume that

PNE™) = u(e) diag (A7 (), AY D, F(A(0) - f(Aul0)) ) lt)*

if B= A(m,ei,e,,...,ey) is a circle building block, and

P = ut) diag (A7 (., AR, F(ND) -0, F(0) ) ule)”

if B = I(m,ey,e,...,ey) is an interval building block. Here u € C[0,1] ® M,,
is a unitary, Ay, ..., Ar: [0,1] — T are continuous functions, and sy, 5,, ..., sy are
non-negative integers. Since @(h) # 0, h € H, it follows that the set ULI ([0, 1])
intersects non-trivially with every V.

If B is an interval building block, let #,,1,,...,f € [0,1] be the exceptional
points of B. If B is a circle building block, let #;, 15, ..., o € [0, 1] be numbers such
that e?™, j = 1,2, ..., M, are the exceptional points of B.

Foreachk = 1,2,...,L, choose a continuous function py: [0,1] — T such that
p(uk(t),Ak(t)) < 26,t € [0, 1], such that p(t) = M (¢) fort € {t1,t2,...,80m,0,1},
and such that Uf;l ue([0,1]) = Uf;l V; =T. Define¢: A — Bby

BOE™) = u(o) diag (A7 (s, AR, F(0) - F(1e0) ) ue)*

if Bis a circle building block, and

N0 = ut) diag (AL (s A, F (@) -, f (D) ) ue)*

if B is an interval building block. Note that 4 is injective and ||¢(f) — ¥(f)]| < ¢,
f€eF. [ |

Lemma 9.2  Let A be a unital C*-algebra that is the inductive limit of a sequence
A Ay S A S

of finite direct sums of building blocks. Then A is the inductive limit of a similar sequence,
with unital connecting maps.

Proof Note that we may assume that a, o (p) # 0 for every positive integer # and
every minimal non-zero central projection p € A,. By Lemma 2.2 it follows that
0400(q) # 0 for every non-zero projection g € A,. Let 1, € A, denote the unit.
Since {a 00(1,)}22, is an approximate unit for A there exists a positive integer N
such that o o (15) = 1 forall k > N. Hence o (1) = g1, k > N. [ |

Lemma 9.3 Let X C T be a closed set and let G C X be a finite subset. Let 6 > 0 be
given. There exist a closed subset R C X with finitely many connected components such
that G C R, together with a continuous surjective map g: X — R such that g(z) = z,
z € G, andp(g(z),z) <J,zeX.
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Proof LetG = {&*™ :j=1,2,...,N}where0 <t <t <--- <ty <l Set
tNe1 =t + 1. Set I; = {2t : t € [tj,tj+1]1}. We may assume that tj,; —t; < 0
unless the interior of I; intersects non-trivially with X. On each I; let either g be the
identity map (if I; C X) or a continuous map onto {¢*™'7, ¢*™'i* } that is constant on
the set of boundary points of I;. Set R = g(X). ]

Lemma 9.4 Let A be a quotient of a finite direct sum of building blocks. Let F C A
be a finite set and let € > 0. There exists a finite direct sum of building blocks, interval
building blocks and matrix algebras B, and unital x-homomorphisms ¢: A — B and
¥: B — A such that 1 is injective and ||y o p(f) — f]| <& f € F.

Proof We may assume that A is a quotient of a building block rather than of a finite
direct sum of building blocks. Hence by Lemma 2.2

A={feCX)®M,: f(x;) € My,i=1,2,...,N}
where X C T is a closed subset and x1, x,, . . . ,xy € X. Choose § > 0 such that
12X, p(r2) <d=|f(y) - fdll<e, fEF
Choose by Lemma 9.3 a closed subset R C X with finitely many connected compo-
nents such that x1,x,,...,xy € R, and a continuous surjective map g: X — R such
that g(x;) = x;,i = 1,2,...,N, and such thatp(g(z),z) <d,ze X. Let

B:{fEC(R)®Man(xi) EMdi,l.: 1,2,...,N}.

Define ¢p: B — A by ¥(f) = f o gand let ¢p: A — B be restriction. Then
low(f)—fll <e fEF. -

Proposition 9.5  Let A be a unital simple inductive limit of a sequence of finite direct
sums of building blocks. Then A is the inductive limit of a sequence of finite direct sums
of building blocks, interval building blocks and matrix algebras, with unital and injective
connecting maps.

Proof By Lemma 9.2 we have that A is the inductive limit of a sequence
A A, A B

where each o, is unital and injective and each A, is a quotient of a finite direct sum of
building blocks. We will construct a strictly increasing sequence of positive integers
{n}, a sequence

3 3.
B 5B, 2By 2y
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of finite direct sums of building blocks, interval building blocks and matrix algebras
with unital connecting maps, unital *-homomorphisms p: A, — By+1, and unital

injective *-homomorphisms 1, : By — A,, such that the diagram

Qo Qny Qg ny

Ap, Ay, Ap,
i M2 M3
T U T 2 T »3
B B, B;
B B2 Bs

becomes an approximate intertwining. Furthermore Ji should be injective unless
Bi+1 is finite dimensional. This is sufficient since the proposition is trivial if A is an
AF-algebra.

It is easy to construct Bj, n; and ;. Assume that By, nx and i, have been con-
structed. Let € > 0 and finite sets F C A, and G C By be given. Choose H C By by
Lemma 9.1 with respect to € > 0 and G. Since A is simple we may choose #y4; such

that om (m) > 0 for h € H. Choose Bi+1, ¢k+1 and 41 by Lemma 9.4 with
respect to € > 0 and o, ., (F). Set ftx = @41 © Oy 1y, - Then

Hl/)kﬂ o ux(x) — (& T, (x)” <€ x€F

Since iy o z/b\k(/ﬁ) > 0, h € H, there exists by Lemma 9.1 a unital *-homomorphism
Bk: By — By such that

1k 0 Yi(x) — Br(x)|| <€, x€G,
and such that 3y is injective if By, is infinite dimensional. |
Lemma 9.6  Let A be a simple infinite dimensional inductive limit of a sequence
A A, A B

of finite direct sums of building blocks, interval building blocks and matrix algebras, with
unital and injective connecting maps. Then s(A,,) — oo.

Proof The lemma is well-known if A is an AF-algebra. We may therefore assume
that Ay is infinite dimensional for some k. Let L be a positive integer. Let by, b, . . .,
b;, € A be positive non-zero mutually orthogonal elements. Since A is simple and
the connecting maps are injective, there exists an integer N > k such that

arn(bj)) >0, j=1,2,...,L
Hence if m > N and p: A,, — M, is a unital x-homomorphism, we see that the

elements p o o, (b)), j = 1,2,..., L, are non-zero and mutually orthogonal. Thus
n> L. [ |
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Proposition 9.7  Let A be a simple unital infinite dimensional inductive limit of a
sequence of finite direct sums of building blocks. Then A is the inductive limit of a se-
quence of finite direct sums of building blocks and interval building blocks with unital
and injective connecting maps.

Proof By Proposition 9.5 we have that A is the inductive limit of a sequence
A 5 A, A B

where each o is unital and injective and each Ay is of the form Cy & F; for a fi-
nite (possibly trivial) direct sum of building blocks Cy and a finite dimensional C*-
algebra Fy. Set By = Ci @ (C(T) ® Fk) and let ¥: Ay — By be the canonical
x-homomorphism. It suffices to construct a strictly increasing sequence of posi-
tive integers {n}, unital x-homomorphisms y: B,, — Ay,,, and unital injective

*-homomorphisms f;: B, — By,,, such that the diagram

Qy iy Qny i Qg iy
Anl 1) ns
Py Puy Puy
H1 H2 M3
B, B, B,,
B B2 B35

becomes an approximate intertwining. This is done by induction. Set n; = 1.

Assume that n; has been constructed. Let € > 0 and a finite set G C B, be given.
It suffices to construct mg.; > #y, a unital x-homomorphism g : B, — A,,,, such
that pi 0y, and oy, ,,,, are approximately unitarily equivalent, and a unital injective
*-homomorphism fi: B,, — By,., such that

Mjet1

(27) 18k(%) = Py, o (X)|| <€, x€G.

Let F,, = M,,, ® M,,,, ® --- & M,,, and let p;, p,,..., py be the minimal non-
zero central projections in F,, C A,,. Let w;: B,, — C(T) ® M,,, be the projection,
i =1,2,...,N. Choose by Lemma 9.1 a finite set H; C C(T) ® M,,, of positive

non-zero elements with respect to € and 7;(G). Let h; be the cardinality of H;.
Since A is simple there exists a & > 0 such that

Omoo(Pi) >0, i=1,2,...,N.
By Lemma 9.6 there exists an integer #1x4; > 1 such that

O (P1) > 6, i=1,2,...,N,

s(An,,) > 6 " max(him;), i=1,2,...,N.
1
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Let gi = oy ., (pi) and note that

Mk+1
s(qiAn,, qi) > 0s(Ay,,,) > him;, i=1,2,...,N.

Hence there exists a unital *-homomorphism A;: C(T) ® M,,, = giA,,.,gi such that
)Ti(ﬁ) > 0, h € Hj. Let yi: By, — A,,,, be the x-homomorphism that agrees with
Qe iy, ON Cp, and with A; on C(T) ® M,,,. The *-homomorphism x — A;i(1 ® x)
from M, to g;iA,,, qi is by [27, Chapter 1] approximately unitarily equivalent to the
*-homomorphism induced by oy, ,,.,. Hence iy 0 1, and ay,, ,,,, are approximately
unitarily equivalent.

Let e = ¥y, ,(qi),i = 1,2,...,Nand let §: qiA,,, qi — e;B,,,, e be the unital
*-homomorphism induced by ¢,,,,. Since o Xi(h) > 0 there exists by Lemma 9.1
a unital injective *-homomorphism ¢;: C(T) ® M,,, — €;B,,,, e; such that

lpi(x) —&oN(x)|| <€, xe€m(G), i=1,2,...,N.

Let B be the *-homomorphism that agrees with 1,,,, o px on C,, and with ¢; on
C(T) ® M,,,. Note that [ is unital and injective and that (27) holds. [ |

It remains to replace interval building blocks with building blocks. This turns out
to be much more complicated than in [20, Lemma 1.5] or [27, Lemma 4.7], since our
building blocks may be unital projectionless. We will use the following lemma, which
resembles a uniqueness result for interval building blocks. The proof is inspired by
Elliott’s proof of the uniqueness lemma for interval algebras [8].

Lemma 9.8 Let A= 1(n,dy,d,,...,dy) be an interval building block. Let F C A be
a finite set and let € > 0 be given. There s a finite set H C A of positive elements of norm

1 such that if B = I(m, ey, e, ..., em) is an interval building block with exceptional
points y1, ya, ..., Ym if p,¥: A — Bare unital x-homomorphisms and if 6 > 0, such
that

Q) |@d —dm| <8, heH,

(ii)) p(h) >4, h € H,

(iii) Y(h) > 6, h € H,

(iv) f = o()(y;) and f — (f)(y;) are equivalent representations of A on M,,
j=12,...,M;

then there is a unitary W € B such that

le(f) —Wy(H)W™|| <e, fE€EF

Proof We may assume that || f|| < 1for f € F. Letx1,x3, ..., %y be the exceptional
points of A. Choose a positive integer g such that

2
P < min{|x; — x| : i # j},

=y <220~ fl < 5. Fek
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Forr=1,2,...,q, define a continuous function h,: [0, 1] — [0, 1] by

1

0 0<t <,
B ={q—(-1) =l<r<r
1 égtﬁl

Set
H={h®1L,hel,....hy 1} U{(h —h)®1,...,(hy—1 —hy) ® 1}.
Let ¢, 9 : A — B be unital x-homomorphisms that satisty (i)—(iv). By [27, Chap-

ter 1] we see that ¢ and v are approximately unitarily equivalent to *-homomor-
phisms of the form

@ (£)(0) = u(r) diag (A (£, AR (H, F(AD) - f(Mul0) ) u(e)”
W) = vie) ding (A3 (£, AR D, F () - f () ) vlo)*

for continuous functions A} < Ay < +-- < A, py < pp < o0 < pg: [0,1] —

[0, 1], integers r; and s; with 0 < r; < dﬂ,»’ 0<s < d%fori =1,2,...,N, and

unitaries u,v € C[0,1] ® M,,. By (iv) we have that f — ¢'(f)(y;) and f —
¥'(f)(y;) are equivalent representations of A on M,,, j = 1,2,...,M. It follows
thatr; =s;,i =1,2,...,N, that K = L, and that

(MG, ), A) = () (i), - 1(y))
as unordered L-tuples, j = 1,2,..., M. Hence
(28) )\k(yj):,uk(yj), j=1,2,...,M,k:1,2,...,L.

Foreveryt € [0,1],r = 2,3,...,q, we have that

# {k s () > é} n+ Z rid; < Tr(¢'(h ® 1)(1))
i:x,»Zé
< md+Te(¢'(h, @ 1)(1))
< Tr(W'(h—1 @ 1)(1)
#{k:uk(t) > %} n+ Z rid;.

. —2
x> =
= q

As [==, q] at most contains one of the exceptional points of A, we see that

q

#{k:)\k(t)zg}n<#{k:uk(t)2%}n+n.
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Thus
-2
#{ki)\k(l‘) > g} S#{k:,uk(t)z rT}

It follows that A\g(t) < pue(t) + %. Symmetry allows us to conclude that for all t €
(0,1],

3
| Ae(t) — pu(t)] < pt k=1,2,...,L

By (28) we can define a *-homomorphism 5: A — B by

B = v(t) diag(A[‘(f), AR, FOM®) s () ) W(t)*

Note that .
lv'(f) — BN < 3 fEE

Since Tr(ﬁ(f)(t)) = Tr(go(f)(t)) , f € A, t € [0,1], it follows that § and ¢ are ap-
proximately unitarily equivalent by [27, Corollary 1.5]. Hence there exists a unitary
U € Bsuch that

wm-vmmmmg,feﬂ

Choose a unitary V' € B such that

HWU%WWUWW<§,f6E
Set W =UV. Thenfor f € F,
lo(f) = Wp(HW*|| < |lo(f) — UB(HU* || + [UB(HHU* — U’ (/U
+ U (HU* = UV(HV U

< -+-+ - =€ | ]

€
3 3 3
Define a continuous function «: T — [0, 1] by

K/(eZm't) — 2t te [(1)’ %]’
2-2t te[5,1].

Define continuous functions ¢1,¢,: [0,1] — Tby ¢1(t) = €™, 1,(t) = e~ ™. Note
that k 0 1; = Koty =ido1)-

Let A = I(n,dy,d,, .. .,dy) be an interval building block with exceptional points
t1,t,. .., tn. Define a circle building block by

Al = {fe C(n @M, : f(l'l(ti))af(LZ(ti)) € My,i= 1,2,...,N}.

Define unital *-homomorphisms £4: A — AT by &4(f) = fok, f € A, and
jhr daz AT — Aby ji(g) = gou, ji(g) = gota, g € AT Then jho€y = jRogs = ida.
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Let A be a finite direct sum of building blocks and interval building blocks. It
follows from the above that there exists a finite direct sum of building blocks A"
together with unital *-homomorphisms &4: A — AT and j}, j3: AT — A such that
jhoéy=j4 o0& =id, and

(29) W =jaH=0=f=0, feAl

Theorem 9.9  Let A be a simple unital infinite dimensional inductive limit of a se-
quence of finite direct sums of circle building blocks. Then A is the inductive limit of a
sequence of finite direct sums of circle building blocks with unital and injective connecting
maps.

Proof By Proposition 9.7 we see that A is the inductive limit of a sequence
A2 A, A 2

where each A, is a finite direct sum of circle and interval building blocks and each «,
is a unital and injective *-homomorphism.

By passing to a subsequence, if necessary, we may assume that either, every A, is
a circle or an interval building block or, every A, is a finite direct sum of at least two
circle or interval building blocks.

Let us first assume that the latter is the case.

LetA, = AJBA®- - - DAY, where each AY is a circle or an interval building block.
Foreach nletn': A, — A! denote the coordinate projections,i = 1,2, ..., N,,. First
we claim that we may assume that all the maps 7"*! o «, are injective.

By Elliott’s approximate intertwining argument it suffices to show that given a
finite set G C A, and € > 0 there exists an integer m > n and a unital x-homomor-
phism ¢: A, — A,, such that |a,.(g) — ¥(g)|| < e g € G, and such that 7" o ¢
is injective, i = 1,2,...,N,,. Choose by Lemma 9.1 a finite set H C A, of positive
non-zero elements with respect to G and €. As A is simple and the connecting maps
are injective, we have that cfn;(ﬁ) > 0, h € H. Thus there exists an integer m > n
such that @(Z) > 0, h € H. Hence " 0 ay m(h) # 0,1 = 1,2,...,N,, and the
claim follows by N,, applications of Lemma 9.1.

Define a unital *-homomorphism v, : A} — A, by

n+l -1 n+l ¥ n+l -2
Pu(x) = (7r1 00 0 fu (), 00,0y (X),..., 7N oa,,o]An(x)).
Since the maps 7! o a, are injective, i = 1,2,..., Nyy1, and as N, > 2, it follows

from (29) that 1), is injective. The theorem therefore follows in this case from the
commutativity of the diagram

o a a3
Al A2 A3 .
lo /" o/, lé/
L ) s
Al A A
&a, 01 §a; 012 §a, 003
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It remains to prove the theorem in the first case. By passing to a subsequence we
may assume that each A, is an interval building block. Let € > 0, let k be a positive
integer, and let F C Ay be finite. Again by Elliott’s approximative intertwining argu-
ment, it suffices to show that there exists an integer / > k and a unital and injective
*-homomorphism : A] — A; such that

aki(x) = o ()| <€, x€F

Choose by Lemma 9.8 a finite set H C Ay of positive elements of norm 1 with
respect to F and €. Since A is simple and the connecting maps are injective there

exists a § > 0 such that a/k;o(/l;) > 20, h € H. Let Ay = I(n,dy,d,,...,dn). By
Lemma 9.6 there exists an integer [ > k such that s(4;) > 25—" and such that

&,Q(ﬁ) >26, heH.

LetA; = I(m, ey, e, ..., en). By [27, Chapter 1] oy oj}\k: A}f — Ay is approximately
unitarily equivalent to a x-homomorphism 3: A] — A; of the form

B = u) diag (AT (1o AR (D, F (@) oo (1) ) ue)",
t € [0,1],
where u € C[0, 1] ® M,, is a unitary and puy, 42, .. ., sz [0, 1] — T are continuous

functions. Choose a continuous function ui: [0,1] — T such that ] = p,; at the
exceptional points of A; and such that g/ is surjective. Define : A} — A by

e()@)
= () diag (A7 (), AR (P (D), f(2®) o f(pu®)) ) 0)".

Note that ¢ is injective, and that for h € H,

[\

n

1 0 én () — au®| = || 3(&a M) —ario ik, (Ea®) | < lp -8B < = <.

m
Finally,asAjop =Aj0 3, j=1,2,..., M, we see by Lemma 9.8 that there exists a
unitary W € A; such that

W ola(HW" —ari(f)l <€, fE€F
Set (x) = Wo(x)W*, x € A}cr. [ |
10 Construction of a Certain Map

In [22] Rordam defined the bifunctor KL to be a certain quotient of KK. Some of
our main results are more elegantly formulated in terms of KL than KK, and we will
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therefore from now on use KL instead of KK. Recall from [22] that the Kasparov
product yields a product KL(B,C) x KL(A, B) — KL(A,C). Furthermore, if K, (A)
is finitely generated then KL(A, -) = KK(A, -), and this functor is continuous by [23,
Theorem 1.14] and [23, Theorem 7.13]. Finally, approximately unitarily equivalent
*x-homomorphisms define the same element of KL [22, Proposition 5.4]. It should
be noted that KL is related to homomorphisms of K-theory with coefficients, [6].

Let A and B be unital C*-algebras. Let KL(A, B), be the set of elements k €
KK(A, B) for which k,.: Ko(A) — Ky(B) preserves the order unit. Let KL(A, B)r
be those elements k € KL(A, B), for which there exists an affine continuous map
pr: T(B) — T(A) such that

rp(w) (ke (x)) = ra(pr(w)) (x), x € Ko(A),w € T(B).

Lemma 10.1 Let C be a finite direct sum of building blocks, let ¢ > 0, and let F C
At T(C) be a finite set. Let B be the inductive limit of a sequence of finite direct sums of
building blocks

B, 25 B, 2By
with unital connecting maps. Let J: Aff T(C) — AffT(B) be a linear positive order
unit preserving map and let k € KL(C, B),. There exists a positive integer n, a linear

positive order unit preserving map M: AffT(C) — AffT(B,), and an element w €
KK(C, B,), such that

[7(f) = Buoo o M(f)l| <€, fEF
k= [Bnoo]l -w inKL(C,B).
Proof We may assume that || f|| < 1, f € F. Decompose C =C; ®C, & --- D Cy
as a finite direct sum of building blocks and let 7;: C — C; denote the projection,
i=1,2,...,N.
For every i = 1,2,...,N, identify Aff T(C;) and Cg(T). Choose open sets V1,
Vi, ..., Vi, € T such that U];’:l V; = T and such that

€ ~
xyeVi=|fx) - fl <5, fem®.
Let {h itj=12,..., k;} be a continuous partition of unity in Cg(T) subordinate
to the cover {V; : j = 1,2,...,k} and let x; € V; be an arbitrary point, j =

1,2,...,k;. Define linear positive order unit preserving maps T;: AffT(C;) — Rk
and S;: RK — AffT(C;) by

Tl(f) - (f(xl)7f(x2)a"'af(xk,'))a

ki
Si(ty, t,. .. 1) = thhj.
j=1
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Note that .
ISi o Ti(f) — fl < X f € m(F).

Hence there exist linear positive order unit preserving maps
T: AffT(C) — Rk,
S: RF — AfT(C),

where k = Zflzl k;, such that

IsoT(f)~fll <3, feF

Let {ej: j =1,2,...,k} be the standard basis in RF, As {J o S(ej):j=1,2,...,k}
are positive elements with sum 1 in Aff T(B), there exist a positive integer [ and posi-
tive elements x1, x,, . . . , X¢ € Aff T(B;) such that ZI;:I xj = 1and

— € i
|00 (xj) — T 0 S(ej)|| < R j=12,...,k

Define linear positive order unit preserving maps V: R¥ — Aff T(B;) by

k k
V(thej) = thxj,
j=1 =1
and W: AffT(C) — AftT(B;) by W = V o T. Since
— €
e oV = Tos] < 5

we see that

1B oW(f) — J(f)l <€, fEFE

By continuity of KL(C, -) there exist an integer m and an element v € KL(C, B,,)
such that [B, 0] - ¥ = K. As

ﬁm,oo* o (1] = k(1] = [1] = 5moo*[1] in Ky(B)

we see that there exists an integer n > m, [ such that [(3,,,] - v € KL(C, B,),. Set
w=[Bunl -vandM = G, 0 W. [ |

Proposition 10.2  Let A be a simple unital inductive limit of a sequence of finite direct
sums of building blocks. Let B be the inductive limit of a sequence

3 3. 3.
B 2B, By B
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of finite direct sums of building blocks with unital connecting maps. Assume that there
exist a k € KL(A, B), and an affine continuous map or: T(B) — T(A) such that

r3(w) (K (%)) = ra(orWw)) (), x € Ko(A),w € T(B).
Let C be a finite direct sum of building blocks and let 1p: C — A be a unital *-
homomorphism. Lete > 0 and let F C Aft T(C) be a finite subset. There exist a positive

integer m and a linear positive order unit preserving map M: AffT(C) — AffT(B,,)
such that

1Bumoo o M(f) =1, 0 ()] <€, fEF
and an element w € KL(C, B,,), such that

[Bnool -w=r-[y] inKL(C,B),
Mo pc = pp, ows. onKy(C).
Proof We may assume that || f|| <1, f € F. DecomposeC = C; $C,P---®Cy as
a finite direct sum of building blocks. Let 11,12, ...,y € C be projections such that
[r1], [r2], ..., [rN] generate Ko(C). By factoring 1) through the C*-algebra obtained

from C by erasing those direct summands C; for which ¢ (r;) = 0, we may assume
that ¥(r;) #0,i = 1,2,..., N. There exist positive integers dy, ds, . . . , dy such that

> dilr] = (1] inK(C).

Since A is simple there exists a dg > 0 such that
D) > 8, i=1,2,...,N.
Choose § > 0 such that § < §y and 6(1 + Zf\il d;) < e.

By Lemma 10.1 there exist a positive integer / and a linear positive order unit
preserving map V: Aff T(C) — Aff T(B;) such that

1Bic o V) = pro 0 (DI <8, fEFU{A,A,.... A,
and an element v € KK(C, B;), such that
[Bioo] -v=£-[¢¥] inKL(C,B).
Since by assumption pg o k. = @r, 0 pa on Ko(A) we see that fori = 1,2,...,N,
ﬂ/l,:o 0 pB, © Vi [1i] = pp © Bioo, O Vilril = @1, 0 pa o Yulri] = o1, o Y(7) > bo.

Hence . A
[Br00 © p, 0 Vilri] = Broo o V(F)| <, i=1,2,...,N.
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Choose m > [ such that fori = 1,2,...,N,

—

B1m © pp, © Vi [1i] > 0o,
1B © pp, © valri] = Bum o V(7| < 6.

Define W: AffT(C) — AffT(B,,) by W = B, o V. Define w € KK(C, B,,). by

w = [Bim] - v.

Decompose B,, = B}' ® B} & --- ® B} as a finite direct sum of building blocks
and let 7;: By, — B7 be the projection, j = 1,2,..., L. Identify AffT(B,,) with
69?:1 Cr(T). Fixsome j = 1,2,...,L. Set W; = 7 o W. W;(7;) is a strictly positive
function in Cg(T), since § < &y. Thus for each i = 1,2,...,N, we can define
M;: AffT(A,) = @Y | AfT(C;) — Cr(T) by

7j(ps,, © w«[ri]).

N

1
M = W i 0,000, 0)—
ifis oy e IN) ?:1: j(0,-.-,0, £, 0 O)Wj(ri)

M is positive and linear, and it preserves the order unit since

1

N
Wy e 0 walri) = > 7i(ps, o waldilri]) = 1.

N
M;(1) =) Wjldin)
i=1 i=1
Let now g € Cr(T) = AffT(C)), ||g]| < 1, fori =1,2,...,N. Since
—d;i1; <(0,...,0,4,0,...,0) < di7;
in Aff T(C) we have that

|M;(,...,8,...,00) = W;(0,...,g,...,0)|

1 N ~
= HWj(Q cres gy ~70)W(W]‘(,03m ow,[r;]) — W;(m)) H
< di||7i(ps, o w«lri]) = W;(#)| < éd;.

Henceif f € AffT(C), || f|| < 1, then

N
IM(f) = Wi(HIl < D od.
i=1
Define M: AftT(C) — At T(B,,) by
M(f) = (Mi(f), My(f), ..., ML(f)).
Then N
IM(f) = W) <> ddi, feAFTC),||f] <1,

i=1
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and hence

N
1Bunoo o M(f) — 1, 0B(f)| <8+ 8d;<e, fEF

i=1

Finally, M(7;) = pp, o wslri],i = 1,2,...,N. It follows that M o pc = pg, © w, on
Ky (C). [ |

Lemma 10.3  Let A be a unital simple inductive limit of a sequence of finite direct sums
of building blocks with Ky(A) non-cyclic. Then Aff T(A)/pa(Ko(A)) is torsion free.

Proof The image of the canonical map Ky(A) — Aff SKy(A) is dense by [1, Propo-
sition 3.1], since Ky(A) is a simple countable dimension group. By definition py4 is
the composition of this map with the linear bounded map Aff SKy(A) — AffT(A)
induced by r4. It follows that p4 (KO (A)) is dense in some subspace of Aff T(A). W

Lemma 10.4  Let A be an inductive limit of a sequence of finite direct sums of building
blocks
A A S A S

with unital connecting maps. Assume that py is injective and that pA(KO(A)) is a
discrete subgroup of Aff T(A). Let n be a positive integer and let x, y be elements of the
torsion subgroup of U(A,)/DU(A,) such that aﬁ‘oo(x) = aﬁm(y). There exists an
integer k > n such that o, , (x) = azk(y). '

Proof Since oy 00, (ﬂ'An (x)) = o0, (7TAH (y)) in K (A) there is an integer I > n
such that ., (ﬂ'An (x)) = (ﬂ'An(y)) . By Proposition 5.2 we see that

Oéil(x —y) = A4y (qu ( %/Mz(@) >

for some positive integer m and an element z € Ky(A;). Since pA( KO(A)) is dis-
crete and since Ay <qA<;1pA(al7oo*(z)) >> = 0 we see that #pA(alm*(z)) =

pA(aj_yoo*(w)) for some positive integer j and an element w € Ky(A;). Since p, is
injective we may choose an integer k > I, j such that ay; (2) = ajx (mw) in Ko(A).

Note that ajﬁk(x —y) =M, (qu ( Lo (o, (2)) > > =0. [ ]

Proposition 10.5 Let A be a unital C*-algebra and let B be a unital inductive limit
of a sequence of finite direct sums of building blocks such that the torsion subgroup of
AffT(B)/ps (KO(B)) is totally disconnected. Let @, : A — B be unital x-homomor-
phisms that are homotopic and let x € U(A)/DU (A) be an element of finite order. Then
¢*(x) = " (x).
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Proof Letu € A be a unitary such that x = g/ (). Let (¢;)1ej0,1] be a homotopy
connecting ¢ to 1. We may assume that ||¢, () — @o(u)|| < 1fort € [0, 1]. Thus

@i () po(u)* = it

where t — b, is a continuous path of self-adjoint elements in B. Since Ag ( qB(Z;)) =
q5(e*™") we see that qB(E\t) has finite order in Aff T(B)/pB(KO(B)) . Thust — qB(l;\t)
is a continuous path in a totally disconnected subset of a metric space. It follows
that it is constant and hence qB(bAt) = 0 for every t € [0,1]. We conclude that
o (anw) = ¢t (ahw). m

We leave it as an open question whether the torsion subgroup of the group
AffT(B)/ps (KO(B)) always is totally disconnected.

Proposition 10.6  Let A be a finite direct sum of building blocks and let B be a unital
inductive limit of a sequence of finite direct sums of building blocks such that the torsion
subgroup of Aff T(B)/pp(Ko(B)) is totally disconnected. Let p,1): A — B be unital
x-homomorphisms such that [p] = [¢] in KL(A, B). Let x be an element of the torsion
subgroup of U(A) /DU (A). Then ¢*(x) = *(x).

Proof By [18, Corollary 15.1.3] and Theorem 2.4 there exist a positive integer m
and *-homomorphisms A, 1: A — B, such that ¢ is homotopic to (3, c © A and 9
is homotopic to 3, o © p. By increasing m we may assume that A and p are unital.
There exists an integer k > m such that [B,, ] - [A] = [Bmx] - [p] in KL(A, B). Thus

P o N (%) = fmk o pi*(x) by Proposition 5.6. Hence ¢*(x) = £}, ., o M(x) =

fn;oo o u*(x) = 9*(x) by Proposition 10.5. [ |
Lemma 10.7  Let A be a simple unital inductive limit of a sequence of finite direct

sums of building blocks such that Ky(A) is non-cyclic, and let B be a unital inductive
limit of a sequence of finite direct sums of building blocks. If there exists an element

k € KL(A, B)y then Aff T(B)/pg (KO(B)) is torsion free.
Proof By Lemma 9.2 we may assume that A is the inductive limit of a sequence

A2 Ay S A S

of finite direct sums of building blocks with unital connecting maps. Similarly B is
the inductive limit of a sequence of finite direct sums of building blocks

B 2B, 2By 2
with unital connecting maps. Let € > 0. There exists a positive integer 7 such that for

every t € R we have that d} (qAn(tT), 0) < e. To see this choose a positive integer k
such that { < e. Since Aff T(A)/p4(Ko(A)) is torsion free by Lemma 10.3, we may
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choose n such that d/gn(qAn(%T),O) <35 j=12,....,k— 1. Lett € R. We may
assume that 0 < ¢ < 1. Choose j = 0,1,2,...,ksuch that |r — %| < ﬁ < 5. Then
d (qa,(1),0) < e.

By Proposition 10.2 we get a positive integer ! and a contractive group
homomorphism S: AffT(A,,)/pAn(Ko(An)) — AffT(Bl)/pBl(KO(Bl)) such that

S(qA,l(rT)) = qBI(rT) foreveryr € R. Letx € AffT(B)/pB(Ko(B)) be an element of

order m. There is an integer k > I such that dj (x7 qs ( %pg(ﬁkm*(y)) > ) < e for

some element y € Ky(Bg). We claim that dl’;k (qu ( %ka(y)) , 0) < e. To this end we
may assume that By is a building block. Then pp, (y) = w1 for some w € (). Hence

dp, (qu(%ka(y)) ,0) =dp <,@Tk o S(qA”(%/I\) ) ,0)
<dj (qAn ( %T) ,0> < e

Thus dj(x,0) < 2e. Since € > 0 was arbitrary we conclude that x = 0. ]
Lemma 10.8  Let A be a simple inductive limit of a sequence
A 25 A, A 2

of finite direct sums of building blocks with unital connecting maps. Let y be an element
in U(A)/DU(A) of order k < co. Then there exist a positive integer m and an element
w € U(A,)/DU(A,,) of order k such that afn’oo(w) =y.

Proof By continuity of K; there exist a positive integer / and an element z in
U(A;)/DU(A)) such that o o, (WA,(Z)) = ma(y) in K;(A). Since the short exact se-
quence of Proposition 5.2 splits we may assume that kz = 0. Note that 74 ( O[Zoo (z)) =
wa(y) and hence

y =)o (2) + M (4a(f)) inU(A)/DU(A)
for some f € Aff T(A) with kqa(f) = 0 in the group Aff T(A)/pa (KO(A)) . IfKy(A)
is non-cyclic then we see that g4(f) = 0 by Lemma 10.3. Thus we may assume that
Ky(A) = Z such that pA(Ko (A)) is a discrete subgroup of Aff T(A). It follows that

f= %pA(x) for some x € Ky(A). By continuity of K, we have that x = o, (h) for
some integer m > [ and some h € Ky(A,,). Definew € U(A,,)/DU(A,,) by

w=af,(@) + A, (qAn, 0 ) .
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Then
0 o (W) = 0 o (2) + M (‘ZA(%pA(am,oo*(h)) ) ) =a] (@) + A (qa(f) = .

Since y has order k and kw = 0 it follows that w has order k as well. ]

Theorem 10.9 Let A be a unital simple inductive limit of a sequence of finite direct
sums of building blocks and let B be an inductive limit of a similar sequence

B 2B, gy 2

with unital connecting maps such that s(Bx) — oo and such that the torsion subgroup

of AffT(B)/ps (KO(B)) is totally disconnected. Let k € KL(A, B)r. Let C be a finite
direct sum of building blocks and let ¢: C — A be a unital x-homomorphism. Then
there is a unital x-homomorphism 1p: C — B such that [¢] = k - [¢] in KL(C, B).

Moreover, if Cy is another finite direct sum of building blocks, if p,: C; — A and
11: C1 — B are unital x-homomorphisms such that [11] = k - [¢,] in KL(A, B), and
ifx € U(C)/DU(C) and x; € U(C,)/DU(C),) are elements of finite order such that
©* (%) = @i (x1), then ¥* (x) = ¥ (x)).

Proof Let a finite direct sum of building blocks C and a unital *-homomorphism
p: C — Abegiven. Let pr: T(B) — T(A) be a continuous affine map such that

r3(w) (K (x)) =ra(pr(w)) (x), x € Ko(A),w € T(B).

Let p1, p2, - - ., pn be the minimal non-zero central projections in C. As in the proof
of Proposition 10.2 we see that we may assume that ¢(p;) # 0,i = 1,2,...,N.
Choose § > 0 such that $(p;) > 26. Choose an integer K by Theorem 8.5 with
respect to F = & and € = 1. By Proposition 10.2 there exist a positive integer m and
a linear positive order unit preserving map M: Aff T(C) — Aff T(B,,) such that

HﬁmOOOM(Z/)\I)_SDT*Oa(I/)\I)H<6’ i:172a"'7N7
and an element w € KL(C, B,,). such that

[Bnool -w=k-[p] inKL(C,B),
Mo pc =pp, ow, onKy(C).

Hence,@’/m_; oM(p;) > 6,i =1,2,...,N. Choose k > m such that s(By) > K§~!
and such that 3,k oM(p;) >6,i=1,2,...,N. Then pp, (B, © wilpi]) > 6 and

hence s(Bi)pp, (Bmk, © w«[pi]) > K. Furthermore 8,k o M o pc = pg, © Bk, © wx.
It follows from Theorem 8.5 that there exists a unital *-homomorphism p: C — By
such that [u] = [Bm ] -w. Set ) = By oo o p. This proves the first part of the theorem.
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To prove the second part of the theorem, let us first note that

(¥ (x)) = ¥u (mc(x) = ks 0 pu(Tc(x)) = Y1, (e, (x1)) = mp(¢i(x)).

Hence if Ky(A) is non-cyclic then ¢*(x) = 9§ (x;) by Lemma 10.7.
We may therefore assume that Ky(A) is cyclic. By Lemma 9.2 we see that A is the
inductive limit of a sequence

AL Ay S A

where each A, is a finite direct sum of building blocks and each «,, is unital. By [18,
Corollary 15.1.3] there exist a positive integer n and *-homomorphisms A: C — A,
and A;: C; — A, such that ¢ is homotopic to o, o © A and ¢, is homotopic to
000 © A1. Note that A and A; are unital. Since

aﬁ,oo ° )\#(X) = aﬁ,oo o Aﬁ‘(xl)
by Proposition 10.5, there exists by Lemma 10.4 a positive integer k such that
aﬁyk o M(x) = aﬁ’k o A (x).

By the first part of the theorem there is a unital *-homomorphism v: Ay — B such
that [y] = & - [ak,00]. Note that

(7] - lang] - [Al = &+ [anoo] - [A] = k- [] = [¢] inKL(C, B)
(Y] lanil - M) = K- [aneo] - [M] = K- [¢1] = [¢1]  inKL(Cy, B).

Hence
Vi (x) =7 oaf 0 N (x) =" o af; o N(x1) = ¢ (x1)

by Proposition 10.6. ]

Let A, Band & be as above. Let y be an element in U(A) /DU (A) of finite order. By
Lemma 10.8 there is a finite direct sum of building blocks C, an element of finite order
xin U(C)/DU(C), and a unital *-homomorphism : C — A such that ¢*(x) = .
By the first part of the theorem above there exists a unital *-homomorphism¢: C —
Bsuch that [¢] = k- [¢]. Sets(y) = 1*(x). By the second part s, (y) is independent
of the choice of ¢, 1 and x. Thus we have a well-defined map

sw: Tor(U(A)/DU(A)) — Tor(U(B)/DU(B)).

It follows easily from Lemma 10.8 that s, is a group homomorphism. Note that if
p: A — B is a unital x-homomorphism then s,)(y) = p*(y) for every y in the
torsion subgroup of U(A)/DU(A). Finally, we note that s, exists for trivial rea-
sons if Ky(A) is non-cyclic (since AffT(B)/pB(KO(B)) is torsion free in this case,
see Lemma 10.7). It is possible (as in [27]) to prove our classification theorem in the
case of non-cyclic Ky-group without using the map s, but we have chosen to con-
struct it in general in order to obtain a unified proof of the classification theorem in
the cases Kj cyclic and Ky non-cyclic.
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Lemma 10.10  Let A be a unital simple infinite dimensional inductive limit of a se-
quence of finite direct sums of building blocks and let B be an inductive limit of a similar
sequence

B 2 B, 2 By 2

with unital connecting maps such that s(By) — oo and such that the torsion subgroup

of AffT(B)/ps (KO(B)) is totally disconnected. Let k € KL(A, B), and let or: T(B) —
T(A) be a continuous affine map such that

r3(w) (k. (x)) =ra(rw)) (x), x € Ko(A),w € T(B).

There exists a group homomorphism ®: U(A)/DU(A) — U(B)/DU(B) such that
®(y) = sq(y) for y in the torsion subgroup of U(A)/DU(A) and such that the dia-
gram

0 —— AffT(A)/pa(Ko(A)) —2— U(A)/DUA) —“— K;(A) — 0

| )| I~

0 —— AffT(B)/ps(Ko(B)) — U(B)/DU(B) — Ki(B) — 0
commutes.

Proof It will be convenient to set G; = AffT(A)/pA(KO(A)) , Gy = Ky(A), and
H, = AffT(B)/ps(Ko(B)), H, = Ki(B). Note that U(A)/DU(A) = G, & G, and
U(B)/DU (B) = H, @& H, by Proposition 5.2. Hence s, can be identified with a matrix

of the form
i e
i f2)’

where f;;: Tor(G;j) — Tor(H;) is a group homomorphism, i, j = 1, 2.

Let z € Tor(Gy). If Ky(A) is cyclic then z = qA( %pA(h)) for some positive integer
m and h € Ky(A). Choose a finite direct sum of building blocks C and a unital
x-homomorphism ¢: C — A such that p.(g) = h for some g € Ky(C). Choose a
unital *-homomorphism: C — Bsuch that [¢)] = k- [¢]. Since pr,0ps = ppok.
we see that

se(M(2) = s ()\A<QA(%pA(<P*(g)) ) ) )

( ( Pc(g)))>> =¢#<AC<QC(%PC(Q>>>

/\B<q —pn w*(g)))) :A3<q3<%‘”*(p’*(‘p*(g)))>>

= s(91(2)).
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Hence fi1(z) = pr(z) and f1(z) = 0. By Lemma 10.7 this conclusion also holds
if Ko(A) is non-cyclic. Let w € Tor(G,). Choose an element y € U(A)/DU(A) of
finite order such that m4(y) = w. Choose a finite direct sum of building blocks C
and a unital x-homomorphism ¢: C — A such that p*(x) = y. Choose a unital
*x-homomorphism ¢: C — B such that [¢)] = - [¢] in KL(C, B). Since

m5(sx () = (¥ (%)) = s (mc(x) = Ky o ma(@" (%)) = ks 0 Ta(y)

we see that f,,(w) = k. (w). Finally, since H; is a divisible group there exists by [11,
Theorem 21.1] a group homomorphism A: G, — H; such that A(w) = fi,(w) for
every w € G, of finite order. Set

_ (T A
o= (5 1).
It is easy to see that the diagram commutes. ]

11  Main Results

Consider the category of abelian groups, equipped with a complete and translation
invariant metric, and contractive group homomorphisms. Inductive limits can be
constructed in this category in a way similar to the way that they are constructed in
the category of C*-algebras. Indeed, let

M3

G1A>G2£>G3—>"'

be an inductive system. Let py denote the metric on Gi. Let H be the inductive limit
in the category of groups. Define a pseudo-metric d on H by

d(:un,oo(x)a Mmoo ()/)) = k1i>n;o pk(,un,k(x)a ,um,k(y)) .

Form the quotient of H by the subgroup {x € H : d(x,0) = 0} and complete with
respect to the induced metric to obtain the inductive limit.

It is an elementary exercise to prove that U(-) /DU (-) is a continuous functor from
the category of unital C*-algebras and unital *-homomorphisms, to the category of
abelian groups equipped with a complete translation invariant metric, and contrac-
tive group homomorphisms.

Proposition 11.1  Let A be a simple inductive limit of a sequence
Ay 2 A, A s

of finite direct sums of building blocks with unital and injective connecting maps. Let B
be an inductive limit of a similar sequence

3 3.
B 2B, 2By 2y
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with unital connecting maps such that s(By) — oo and such that the torsion subgroup

ofAffT(B)/pB(Ko(B)) is totally disconnected. Let pr: T(B) — T(A) be an affine
continuous map, let k € KL(A, B), be an element such that

rp(w) (K:(x) =ra(@rw)) (x), x € Ko(A),w € T(B),

and let ®: U(A)/DU(A) — U(B)/DU (B) be a homomorphism such that the diagram

AFFT(A)/pa(Ko(A)) —2— U(A)/DUA) —2— K(A)

| | [+

AffT(B)/ps(Ko(B)) — U(B)/DU(B) — K, (B)

commutes. Assume finally that

s«(y) = ®(y), y €Tor(U(4)/DU(A)).

Let n be a positive integer and let F; C Aff T(A,) and F, C U(A,)/DU (A,) be finite
sets. There exist a positive integer m and a unital x-homomorphism 1: A, — B, such
that

[5m,oo] . [w] = kK- [an,oo] in KL(A,,,B),
1Broe 0 D) = pr, 0 Gue () <€, fER,
DB( fn,oo o ¥ (x), ® o aflm(x)) <e¢ xeb.

Proof Let A, = C; @ --- @ Cg where each C; is a building block. By Proposi-
tion 5.2 and Proposition 3.2 there are for each x € U(A,)/DU(A,) an element a,

in AffT(A,)/pa, (Ko(An)) , integers kL, k2, . .., k¥, and an element y, in the torsion
subgroup of U(A,) /DU (A,) such that

R
x =M, (a)+ Y _Kaqy (V") +y, inU(A,)/DU(A,).
i=1

Choose b, € Aff T(A,) such that g4, (by) = a,. Set F{ = F; U {b, : x € F,}. Choose
0<d< % such that § < € and such that

R
|62”i‘5—1|+(5z}€f<6, x € F.

i=1

Let py, pa, - - ., pr denote the minimal non-zero central projections in A,. Since A
is simple and the connecting maps are injective, there exists a v > 0 such that
m(ﬁ-) > v,i = 1,2,...,R. By Proposition 10.2 there exist a positive integer
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I, a linear positive order unit preserving map M: AffT(A,) — AffT(B;), and an
element w € KL(A,, B;). such that

[/Bl,oo] W =K [an,oo] in KL(A,, B),

— — 0
”51,00 o M(f) — or, Oan,oo(f)H < 27 fe F1/7
Mo ps, = pp ow, onKy(A,).

Choose an integer K by Theorem 8.5 with respect to F{ C AffT(A,,) and g. Choose
a positive integer k and unitaries u;, u,, . .., ug € By such that

D ( B oo (a,8)) , ® 0 0 e (44, (/) ) <8, i =1,2,0. R

Note that £« © Gy 0o, [V1"] = Brco, [ui] in K (B). Hence
ﬁl,oo*ow*[v?n] :ﬁk,oo*[ui]v i= 1727"'7R'

Since pp 0 Ky« = @1, © pa We see thatfori =1,2,... R,

Bl,oo(pB,(w* [Pt])) == pB(/Bl,oo* O Wy [pt]) = PT4L O pPAC Oln,oo*[Pi]

= @1, 0 Qnoo(Pi) > -
Hence there exists an integer m > k, I such that s(B,,) > K+~ and such that
ﬁl,m(PBl(w*[Pi])) >, i:1727"‘7R7
/Bl,m,,< Ow*[V;‘An] :/Bk,m*[ui] inKi(Bn), i=12,...,R

It follows that s(B,,) ps,, (B1,m, © w«[pi]) > K and that

ﬁl,m oMo PA, = Bl,m O PB, © W« = pPB,, © /Bl,m* Owsx On KO(An)

Therefore by Theorem 8.5 there exists a unital x-homomorphism ¢: A, — B, such

that
[¢] =[] -w  in KL(A,, By),
V¥ (g4, V") = a5 (Bem(w)) inU(B,)/DU(B,), i=1,2,...,R,
19 f) = Brm o M()]| < g feF.
It follows that
(30) (ool - W] = & - [l in KL(A,, B),
(31) 1Broe 0 %) = @1, 0 Gue () <8, fEF,

(32) Dy B 007 (44, () @00} (a4 1) ) <6, i=12, R
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Note that for x € F,
A5 Bnoo © D@2, 87 0 (@) = dj(as( Boe © B0)) 501, 0 (b)) )

— ~ — 1

S ||ﬁm.,oo o 1b(bx) — P14 © an,oo(bx)H < ) < E

Hence L ‘
dB(ﬂm,ooow(ax)aa;O&;\,;(ax)) < |62m§_ 1|» x € F,.

By Proposition 5.2, Ap is an isometry when Aff T(B)/ pB(Ko(B)) is equipped with
the metric dp. It follows that

DB(/\B © Bi,c0 © J(ax); Ap o pr 0 a;\_o/o(ax)) < |e27ri5 —1|, x€F.
Thus
Dg( :1,00 o)* oAy, (ay), @ o afwo 0 Ay, (ay)) < |e¥™ — 1|, x€F,.

Since s, and @ agree on the torsion subgroup of U(A)/DU(A), we see by (30) and
the definition of s,, that

fnpo © ¢#(yx) =do Oéioo()/xl

Hence for x € F,,
Dg(B},00 0¥ (x), @ 0 0 ()

< D3 (B0 09" (M, (@), @ 0 05 (M, (a)) )

R
+ > kD (B0 0¥ (0, 01) @ 0 ] (0, 07) )
i=1

R
<@ -1+ Kb <e. n
i=1

Theorem 11.2  Let A be a unital simple inductive limit of a sequence
Ay S5 Ay 2B A

of finite direct sums of building blocks. Let B be an inductive limit of a similar sequence
B 2B, 2By 2

with unital connecting maps such that s(Bx) — oo and such that the torsion subgroup
ofAffT(B)/pB(KO(B)) is totally disconnected. Let or: T(B) — T(A) be an affine
continuous map, let k € KL(A, B), be an element such that

r3(w) (k. (x)) =ra(@rw)) (x), x € Ko(A),w € T(B),
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and let ®: U(A)/DU(A) — U(B)/DU (B) be a homomorphism such that the diagram

AFET(A)/pa(Ko(A)) —— U(A)/DUA) —— Ki(A)

| | I+

AffT(B)/ps(Ko(B)) —— U(B)/DUB) —— Ki(B)

commutes. Assume finally that
se(y) = ®(y), y € Tor(U(A)/DU(A)).

There exists a unital x-homomorphism 1: A — B such that 1)* = @r on T(B), such
that* = ® on U(A)/DU (A), and such that [1)] = k in KL(A, B).

Proof We may assume that A is infinite dimensional. Hence by Theorem 9.9 we
may assume that each «, is unital and injective. Let A, = A} © A} & --- & A}
where each A! is a building block and let P, be the set of minimal non-zero central
projections in A,,. For each positive integer 1, choose a finite set G,, C A, such that G,
generates A, as a C*-algebra and such that «,(G,) C G,1. Choose by uniqueness,
Theorem 7.7, a positive integer [, with respect to G, C A, and 27". Since A is simple
and the connecting maps are injective there exists a positive integer p,, such that

() > pﬁ he HAy ).

n

Next, there exists a positive integer ¢, such that

— 2
an,oo(h)> R hEH(Anypn)UPn-

n

Finally choose d,, > 0 such that §, < é and such that

Tnoo(h) > 8,, h € H(A,, 4q,).

Choose for each n finite sets F,, C Aff T(A,) such that H(An, 2q,) € F,, such that
@n(F,) C Fyuy1, and such that (07 | @, 0 (F,) is dense in Aff T(A).

Next, choose finite sets V,, C U(A,)/DU(A,) such that qgn(vf") e V,fori =
1,2,...,Ry, such that of(V,,) C V., and such that (J;°, o (V) is dense in
U(A)/DU(A).

We will construct by induction strictly increasing sequences {rn;} and {m;} and
unital *-homomorphisms ) : A,, — By, such that

@) B © Yr—1(x) =P 0y, (X)|| <271, x € Gy, k> 2,

.. - — = — . _ On
(i) [|Bm00 © Uk(f) = @14 © Qoo (|| < min{27™, 35}, f € s
(i) Dp(B%, o0 0 ¥f(x),® 00, () <min{27%, 2} x €V,

My, 00 2 I
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(IV) [ﬁmk,oo] . [wk] =K- [ank,oo] in KL(AnkyB)

The integers ny, my, and the x-homomorphism 1)y are constructed in step k. The case
k = 1 follows immediately from Proposition 11.1.

Assume that ny, my, and ¢, have been constructed such that (i)—(iv) hold. Choose
fgy1 > ng such that

— 8
(& T T (h) > — he H(Ank; lnk)a

Mg

o~ 2
ank,nkﬂ (h) > 0 h S H(Ankapnk) ) Pm

N

A () > 8, h € H(Ay,, 4s,).

Mjet1

Choose by Proposition 11.1 a positive integer / and a unital *-homomorphism

At A, — Bysuch that
— _ . _ On, On,,
Hﬁl,ooo)‘(f)_(pT*OankH,oo(f)H < min {2 nkﬂa%y nzk] }7 feFﬂkH?
: _ On, On,
DB(ﬂffoo o M(x),® o aflhhoo(x)) < min {2 Mt %, ”2‘ ! } , x€Vyu.,

[ﬁl,oo] . [)\] =K- [Oénkﬂ,oo] in KL(Ank+17B)~
It follows that
1150 © A © @neres () = Bungoo © D)) < Sus f € Py

1
DB(ﬂ;foo o )\# o aflhnkﬂ (x)vﬂ# o rl/)z(x)) < 5nk < U] b OS Vﬂm

my,00 4q
Nk

[ﬂmk,oo] . [wk] = [51,00] : [)\] : [ank,nkﬂl in KL(Alm B)

Hence there exists an integer my,; > I such that

”/gl.mm oAo Om(f) - /gmkMku ° 'l/)k(f)” < 57’1k’ f € Fﬂk?

# # # # #
DB(ﬁZ-,mkH oA"o Xy g (), ﬂmk,mm ° Py (x)) < s XE Vi,

4q,

k

Brm ]+ IA] - Lo ] = [Bmgmpi ] - [40k] - in KL(Ag, By, )
By uniqueness, Theorem 7.7, there exists a unitary W € B,,,, such that
||ﬂmk;mk+l o Pr(x) — Wﬂl,mm oAo Qg (X)W*” <27 x€ G"k'

Set Y1 (x) = W, © A)W™, x € A,,,,. Itis easily seen that (i)—(iv) are satisfied
with k + 1 in place of k. This completes the induction step.
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By Elliott’s approximate intertwining argument, see e.g. [25, Lemma 1], there
exists a x*-homomorphism ¢: A — B such that

w(an,oo (x)) = kli>n;o ﬁmk,oo o wk O Oy, (x)y PSS An-

Clearly, v is unital. Let f € F,, w € T(B). The sequence w 0 By, 00 © ¥k © Oy,
converges to w 0 ¥ 0 &, in T(A,) as k — oco. Hence it follows that

B0 © i © G (@) = § 0 G (f)(w)  as k — oo,
On the other hand, from (ii) it follows that
Bioo © Uk © G (@) = o1, 0 Gpo()w)  ask — oo,

Hence ¢ = r, on AffT(A) and thus * = o7 on T(B). If y,z € U(A)/DU(A)
then DB(<I>(y), <I>(y)) < Da(y,z). This is clear in the case that m4(y) # 74 (z) since
then D4(y, z) = 2, and otherwise it follows since A4 and Ag are isometries and ¢,
is contractive (with respect to d4 and dg). Thus ® is continuous and by arguments
similar to those applied above we see that 1)* = ®.

Let finally n be a positive integer. Since A, is semiprojective there exists by [18,

Theorem 15.1.1] a positive integer [ > n such that ¢ o o, « is homotopic to B;;.0c ©
Y10 ay, . Hence

W] : [an,oo] = [ﬁrm,oo] ' Wz] ' [an,nl] =kK- [am,oo] . [an,nl] =K- [an,oo]

in KL(A,,, B). It follows from [22, Lemma 5.8] that [¢/] = « in KL(A, B). [ |
The following corollary generalizes a theorem of Thomsen [27, Theorem A].
Corollary 11.3  Let A be a unital simple inductive limit of a sequence
Ay Ay S A

of finite direct sums of building blocks such that Ky(A) is non-cyclic. Let B be an inductive
limit of a similar sequence

B 2B, g, 2y

with unital connecting maps such that s(By) — oo. Let wr: T(B) — T(A) be an affine
continuous map, let k € KL(A, B), be an element such that

rp(w) (ke (x)) = ra(pr(w)) (x), x € Ko(A),w € T(B),
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and let ®: U(A)/DU(A) — U(B)/DU (B) be a homomorphism such that the diagram

AFFT(A)/pa(Ko(A)) —2— U(A)/DUA) —2— K(A)

| )| I~

AffT(B)/ps(Ko(B)) —— U(B)/DU(B) —— Ki(B)

commutes. There exists a unital x-homomorphism 1): A — B such that ¥* = @ on
T(B), such that ¢* = ® on U(A)/DU(A), and such that [1)] = k in KL(A, B).

Proof By Lemma 10.7 we have that Aff T(B)/pp (KO(B)) is torsion free such that
s, 1s defined. It follows by Proposition 5.2 that s,,(y) = ®(y) for y in the torsion
subgroup of U(A)/DU (A). Apply Theorem 11.2. [ |

Corollary 11.4  Let A be a unital inductive limit of a sequence
A 25 A A S

of finite direct sums of building blocks. Let B be an inductive limit of a similar sequence
B 5B, 2By

with unital connecting maps such that s(By) — 0o and such that the torsion subgroup of

Aff T(B)/pB(KO(B)) is totally disconnected. Let or: T(B) — T(A) be an affine con-
tinuous map, let o : Ko(A) — Ko(B) be an order unit preserving group homomorphism
such that

r3(w)(po(x)) =ra(pr(w)) (x), x € Ko(A),w € T(B),

and let p,: K1(A) — Ki(B) be a group homomorphism. There exists a unital -
homomorphism 1: A — B such that ¢* = @1 on T(B), such that 1. = @o on Ko(A),
and such that 1, = p; on K1 (A).

Proof Choose an element k € KL(A, B) such that k., = ¢y on Ky(A) and such
that k., = ¢; on Kj(A). By Lemma 10.10 there exists a group homomorphism
®: U(A)/DU(A) — U(B)/DU(B) such that s,, and ® agree on the torsion subgroup
of U(A)/DU (A) and such that the diagram

AFFT(A)/pa(Ko(A)) —2— U(A)/DUA) —2— K(A)

| )| I~

AffT(B)/ps(Ko(B)) —— U(B)/DU(B) —— Ki(B)

commutes. The conclusion follows from Theorem 11.2. [ |
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Theorem 11.5 Let A and B be unital inductive limits of sequences of finite direct sums
of building blocks, with A simple. Let ¢,: A — B be unital x-homomorphisms such
that ¢* = * on T(B), ¢* = ¢* on U(A)/DU(A), and [¢] = [¢] in KL(A, B). Then
@ and v are approximately unitarily equivalent.

Proof We may assume that A is infinite dimensional, and hence by Theorem 9.9 we
see that A is the inductive limit of a sequence

A 25 A, A 2
of finite direct sums of building blocks with unital and injective connecting maps. By
Lemma 9.2 we have that B is the inductive limit of a sequence

3 3.
B 2B, 2By 2y

of finite direct sums of building blocks with unital connecting maps. Let A, = A} &
A3®- - DAy where each A7 is a building block. Let P, be the set of minimal non-zero
central projections in A,,.
Let F C A be a finite set and let € > 0. It suffices to see that there exists a unitary
U € Bsuch that
lpv) — UpU*| <&, xeF

We may assume that F C «,, o (G) for a positive integer n and a finite set G C A,

Choose by uniqueness, Theorem 7.7, a positive integer / with respect to G and 5.
Since A is simple and the connecting maps are injective there exists an integer p > [
such that

(i) > % h e H(Ay, D,

Next choose g > p such that

— 3

Ol oo (B) > 7 he H(A,, p)UP,.
Finally, choose § > 0 such that 30 < ¢,2d < #, and such that

Gnoo(h) > 38, h € H(A,,4q).

Since A, by Theorem 2.4 is semiprojective there exist by [18, Corollary 15.1.3] a
positive integer r and *-homomorphisms ¢;,%,: A, — B, such that 8, o ¢; is
homotopic to ¢ © o and B, © Y is homotopic to 1 o o, oo, and such that if

x € GUH(A,, ) UH(A,, p) U H(A,,4q) UH(A,,2q) U P, U {v}", v3", ... v}
then

[|Broc © @1(x) — p 0 oo (X)]| <9,
”/Br,oo o1(x) —to Otnpo(X)H <.
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By increasing r we may assume that ¢; and ¢, are unital. Note that

1
DB(,aﬁooocpf(q/gn(V?n)), ;foooqpf(qgn(vf"))) SW< g =12k,

Broe © P1(h) — Brow 0 1 (W)|| < 26, h € H(A,,2q),

and

(33) Broo 01 (h) > 26, h e H(A,,4q),
(34) B o tr(B) > % h e H(A D),
(35) B o tr(h) > 2 h e H(Ay p) UP,,
(36) Buoe] - 1] = [Broc] - [1]  in KL(Ay, B).

Choose an integer 1 > r such that

(37) [Brm © B1(h) = B 0 b1 ()| < 26, h € H(A,, 20,
(38) Bumothi(h) > 25, h € H(A,,4q),
— 8
(39) Brm © 1 (h) > »’ h € H(Ay, 1),
— ~ ~ 2
(40) Brm © 1 (h) > 7 h € H(Ay, p) U Py,
1) s, (80 01 (a3,00) Bl 0 Wl (ah,01) ) < g i=1oo R
(42) [/Br,m] : [wl] = [6r,m] : [801] in KL(AmBm)
By Theorem 7.7 there exists a unitary W & B,, such that
€
(43) [Brm © @1(x) = W B 0 thi ()W < 3 X€G

If we put U = .00 (W) we have that
1 0 Qoo (%) = Ut 0 oo (U™ || < |0 0 tn00 (%) = Broo © @1 ()|
+ | Bro0 © 01(x) = UBroo 0 1 (x)U™|
+{|Bro0 © %1 (%) — 1 0 oo ()|

<5+§+5<e, x € G. [ |

In view of Theorem 7.5 one might think that equality in KL in the above theorem
could be replaced by equality in Ky. This is however impossible in general, see [6,
pp- 375-376] or [27, Theorem 8.4]. But in some cases, e.g. when Ky(B) is cyclic, the
KL-condition can be relaxed:
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Theorem 11.6  Assume furthermore that pg is injective and pB(KO(B)) is a discrete
subgroup of AffT(B). If . = 1. on Ko(A), p* = * on T(B) and ©* = +* on
U(A)/DU(A), then @ and 1) are approximately unitarily equivalent.

Proof As above, but with the following changes. Instead of (36) we get by Proposi-
tion 10.5 that

oo UL (%) = Bioe 0 01 (x), x € U™,

Broo © Y1, = Broo © 01, 0onKo(Ay).
By Lemma 10.4 we may now replace (42) by

:m oi(x) = f:m opi(x), x¢€ Ut

Brm © Y1, = Brm 0 @1, onKo(A,).

Finally, (43) follows again by Theorem 7.7. ]

Theorem 11.7  Let A and B be simple unital infinite dimensional inductive limits of
sequences of finite direct sum of building blocks. Let py: Ko(A) — Ko(B) be an isomor-
phism of groups with order units, let ¢, : Ki(A) — K;(B) be an isomorphism of groups,
and let pr: T(B) — T(A) be an affine homeomorphism such that

r3(w)(po(x)) = ra(prw)) (x), x € Ko(A),w € T(B).
There exists a x-isomorphism @: A — B such that ¢, = o on Ko(A), such that
p« = @1 on Ky (A), and such that o7 = ¢* on T(B).
Proof By Theorem 9.9 we may assume that A is the inductive limit of a sequence
A 25 A, A 2
of finite direct sums of building blocks with unital and injective connecting maps.
Similarly we may assume that B is the inductive limit of a sequence

3, 3.
B, 2B, 2By s

of finite direct sums of building blocks with unital and injective connecting maps. By
Lemma 9.6 we have that s(A,,) — oo and s(B,,) — oo as n — oo.

By [23, Theorem 7.3] there exists an invertible element x € KL(A, B) such that
K« = o on Kop(A) and k. = ¢; on Kj(A). By Lemma 10.10 there exists a group
isomorphism ®: U(A)/DU(A) — U(B)/DU(B) such that the diagram

0 —— AffT(A)/pa(Ko(A)) —2— U(A)/DU(A) —“— Ki(A) — 0

| | I+

0 —— AffT(B)/ps(Ko(B)) — U(B)/DU(B) — Ki(B) — 0
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commutes and such that s, (y) = ®(y) for y in the torsion subgroup of U(A) /DU (A).

By Theorem 11.2 there exists a unital *-homomorphism A\: A — B such that
A* = @1 on T(B), such that \* = ® on U(A)/DU(A), and such that [A\] = & in
KL(A, B). Note that k! € KL(B,A)r. It is easy to see that s, is a bijection with
inverse s,—1. Hences,-1 = ®~! on Tor( U(B)/DU(B)) . Thus there exists a unital
*-homomorphism ©: B — A such that ¢)* = ! on T(A), such that ¥ = &~!
on U(B)/DU(B), and such that [¢)] = k! in KL(B,A). By Theorem 11.5 the x*-
homomorphisms ¢ o A and id, are approximately unitarily equivalent. Similarly
A o1 and idp are approximately unitarily equivalent. Hence by [21, Proposition A]
A is approximately unitarily equivalent to an isomorphism ¢: A — B. ]

12 Range of the Invariant

The purpose of this section is to determine the range of the Elliott invariant, i.e., to
answer the question which quadruples (KO (A),K (A), T(A), rA) occur as the Elliott
invariant for simple unital infinite dimensional C*-algebras that are inductive limits
of sequences of finite direct sums of building blocks. Villadsen [28] has answered this
question in the case where A is an inductive limit of a sequence of finite direct sums
of circle algebras. Using this result Thomsen has been able to determine the range
of the Elliott invariant for those C*-algebras that are inductive limits of finite direct
sums of building blocks of the form A(n, d, d, . . ., d), see below.

We start out by examining the restrictions on (Ko (A),K1(A), T(A), TA) . Let A be
a simple unital infinite dimensional inductive limit of a sequence

Al 25 A, A B

of finite direct sums of building blocks. We may by Theorem 9.9 assume that each
v, 1s unital and injective. By Corollary 3.6 each Ky(A) is isomorphic (as an ordered
group with order unit) to the Ky-group of a finite dimensional C*-algebra. Thus
Ko(A) must be a countable dimension group. This group has to be simple as A is
simple.

If Ko(A) = 7 then by passing to a subsequence, if necessary, we may assume that A
is the inductive limit of a sequence of building blocks, rather than finite direct sums
of such algebras. By Lemma 3.9 it follows that K;(A) is an inductive limit of groups
of the form 7Z & H, where H is any finite abelian group.

If Ko(A) is not cyclic our only immediate conclusion is that K;(A) is a countable
abelian group.

T(A) must be a metrizable Choquet simplex. If B is a building block then obvi-
ously rg: T(B) — SKj(B) maps extreme points to extreme points. By [28, Corol-
lary 1.6] and [28, Corollary 1.7] the same must be the case for r4. Finally, r4 is surjec-
tive by either [3, Theorem 3.3] and [12], or [13, Corollary 9.18] (or, more elementary,
because each ry4, : T(Ax) — SKo(Ax) is surjective). It follows from Theorem 12.1 and
Corollary 12.5 that these are the only restrictions.

As mentioned above, Thomsen has calculated the range of the invariant for a sub-
class of the class we are considering. By [27, Theorem 9.2] we have the following:
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Theorem 12.1 Let G be a countable simple dimension group with order unit, H a
countable abelian group, A a compact metrizable Choquet simplex, and \: A — SG
an affine continuous extreme point preserving surjection. There exists a simple unital
infinite dimensional inductive limit of a sequence of finite direct sums of building blocks
A together with an isomorphism @o: Ko(A) — G of ordered groups with order unit, an
isomorphism ;1 : K1(A) — H, and an affine homeomorphism pr: A — T(A) such
that
ra(prw)) (%) = Aw) (po(x)), w € A,x € Ko(A)

if and only if G is non-cyclic.
A can be realized as an inductive limit of a sequence of finite direct sums of circle
algebras and interval building blocks of the form I(n, d, d).

A different proof of this theorem could be based on Theorem 8.3 and [28, Theo-
rem 4.2]. Combining the above theorem with Theorem 11.7 we get the following:

Theorem 12.2  Let A be a simple unital inductive limit of a sequence of finite direct
sums of building blocks such that Ko(A) is non-cyclic. Then A is the inductive limit of a
sequence of finite direct sums of circle algebras and interval building blocks of the form
I(n,d, d).

We are left with the case of cyclic Ky-group. Note that the equation
ra(erW)) () = Mw)(po(x)), w e A,x € Ko(A)
is trivial when A is a unital C*-algebra with Ko(A) = 7.
Lemma 12.3  Let A be a simple unital inductive limit of a sequence of finite direct sums
of building blocks. Then (KO(A), Ky(A)*, [1]) & (Z,7%,1) if and only if A is unital
projectionless.

Proof This follows easily from Theorem 9.9 and Lemma 3.8. ]

Theorem 12.4  Let A be a metrizable Choquet simplex, and let H be the inductive
limit of a sequence

LoH 7o M reH 2

where each Hy is a finite abelian group. There exists an infinite dimensional simple
unital projectionless C*-algebra A that is an inductive limit of a sequence of building
blocks, with Ky (A) = H and such that T(A) is affinely homeomorphic to A.

Proof By [26, Lemma 3.8] Aff A is isomorphic to an inductive limit in the category
of order unit spaces of a sequence

Cr[0,1] — Cgl[0, 1] — Cg[0,1] — --- .
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It is easy to see that this implies that Aff A is isomorphic to an inductive limit of a
sequence of the form

O, €] &)
Cr(T) =% Cgr(T) =2 Cr(T) = --- .

Choose a dense sequence {x;}¢°, in Cr(T) and a dense sequence {z;}°, in T.

For every positive integer k we will construct a unital projectionless building block
Ag such that K (Ay) = Z@Hy, and a unital and injective x-homomorphism ay: Ay —
A+ such that the (constant) functions z +— zy, z > z5,...,2z > z are eigenvalue
functions for oy, such that o, = h; on K;(Ay) (under the identification K; (Ay) =2
7 & Hy) and such that

[ar(f) —ex(Nl <275, feFr,

under the identification Aff T(A;) = Cr(T), where
k—1 k—1
Fe={x1,%, ..., x) | O, %, o)) | @5, 2, i)
j=1 j=1

First choose by Lemma 3.9 a unital projectionless building block A; such that
Ki(A) =7 ® H,.

Assume that Aj has been constructed. We will construct Ay and a. Choose K
by Theorem 8.3 with respect to Fx C Aff T(A;), € = 27 and the integer k + 1. By
Lemma 3.9 there exists a unital projectionless building block Ay such that s(Axy;) >
K and K (Ak+1) = 7 & Hys1- By Theorem 8.3 there exists a unital x-homomorphism
ak: Ax — Ags such that the identity function on T and each of the functions z —
21,2 = 23, . .., 2 —> z; are among the eigenvalue functions for oy and such that

[ax(f) — 6Nl <27 fE€F,
O = hp on Ki(Ap).

This completes the construction.

Set A = @(Ak, ag). A is infinite dimensional since the connecting maps are
injective, and it is unital projectionless since the connecting maps are unital. By [26,
Lemma 3.4] AffT(A) = @(CR[Q 1],0;) = AffA, and hence T(A) and A are
affinely homeomorphic. Clearly K;(A) = H.

Let I C A be a closed two-sided ideal in A, I # {0}. By (the proof of) [5,
Lemma 3.1],

I= U an,oo(an,ooil(l)) .

n=1

Choose a positive integer 7 such that o, o, ' (I) # {0}. Choose f € a0~ '(I) such
that f # 0. Choose k > n such that f(z;) # 0. Then a,,;(f)(z) # 0 foreveryz € T
and [ > k. Hence by Lemma 2.2 we see that a; ' (I) = A; for every I > k. It follows
that I = A. Thus A is simple. ]
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In the above theorem, let H = 0 and A be a one-point set. Then we obtain by
Lemma 12.3 and Theorem 11.7 the C*-algebra Z constructed by Jiang and Su [16].

Corollary 12.5  Let d be a positive integer, let A be a metrizable Choquet simplex
and let H be a countable abelian group. There exists an infinite dimensional simple
unital inductive limit of a sequence of finite direct sums of building blocks A such that
(KO(A),KO(A)+, [1]) = (2,7%,d), T(A) 2 A and Ky (A) = H if and only if H is the
inductive limit of a sequence

1®&H —/7®H), —/7Z®HH; —---

where each Hy, is a finite abelian group.
The C*-algebra A is isomorphic to My(B) where B is a simple unital projectionless
C*-algebra that is an inductive limit of a sequence of building blocks.

Proof Combine Theorem 12.4, Lemma 12.3 and Theorem 11.7. |

Theorem 12.1 and Corollary 12.5 together determine the range of the Elliott in-
variant for the class of C*-algebras for which our classification theorem applies. Let
us conclude this paper by comparing our classification theorem with the classifica-
tion theorems of Thomsen [27] and Jiang and Su [16].

It follows from [27, Theorem 9.2] that a C*-algebra in our class is contained in
Thomsen’s class if and only if Kj is non-cyclic. By calculating the range of the in-
variant for the C*-algebras contained in Jiang’s and Su’s class, one can show that a
C*-algebra in our class with K non-cyclic is contained in Jiang’s and Su’s class if and
only if K is a torsion group. A C*-algebra in our class with cyclic Ky-group is con-
tained in Jiang’s and Su’s class if and only if the K;-group is an inductive limit of a
sequence of finite cyclic groups, see [16, Theorem 4.5]. Thus our classification theo-
rem can be applied to C*-algebras that cannot be realized as inductive limits of finite
direct sums of the building blocks considered in [27], or in [16], namely those that
have cyclic Ky-group and a K;-group that is not an inductive limit of a sequence of
finite cyclic groups.
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