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Classification of Certain Simple
C∗-Algebras with Torsion in K1

Jesper Mygind

Abstract. We show that the Elliott invariant is a classifying invariant for the class of C∗-algebras that
are simple unital infinite dimensional inductive limits of finite direct sums of building blocks of the
form

{ f ∈ C(T)⊗Mn : f (xi) ∈ Mdi
, i = 1, 2, . . . ,N},

where x1, x2, . . . , xN ∈ T, d1, d2, . . . , dN are integers dividing n, and Mdi
is embedded unitally into

Mn. Furthermore we prove existence and uniqueness theorems for ∗-homomorphisms between such
algebras and we identify the range of the invariant.

1 Introduction

During the last decade the Elliott invariant has been used with amazing success to
classify simple unital C∗-algebras (see e.g. [8], [10], [20], [27], [15], [16]). This
project is part of Elliott’s program which has the ambitious goal of a classification
result for all separable nuclear C∗-algebras by invariants of K-theoretical nature.

The goal of the present paper is to unify and generalize classification results due to
Thomsen [27] and Jiang and Su [16]. In order to achieve this we will unfortunately
have to consider the rather complicated building blocks defined in the abstract. Our
main result (see Theorem 11.7) is the following:

Theorem 1.1 The Elliott invariant is a classifying invariant for the class of unital sim-
ple infinite dimensional inductive limits of sequences of finite direct sums of building
blocks.

The main ideas of the proof are similar to those of Thomsen [27] who considers
the simpler case d1 = d2 = · · · = dN . The technical problems are greater in our
case, and in particular the possible lack of projections in our building blocks (see
Lemma 3.8) means there is no straightforward generalization of Thomsen’s proof.

Let us introduce the notation used in this paper before we describe our results in
greater detail. Recall that for a unital C∗-algebra A the Elliott invariant consists of the
ordered group K0(A) with order unit, the group K1(A), the compact convex set T(A)
of tracial states, and the restriction map rA : T(A) → SK0(A), where SK0(A) denotes
the state space of K0(A).

Let A be a unital C∗-algebra. Let Aff T(A) denote the order unit space of all contin-
uous real-valued affine functions on T(A). Let ρA : K0(A) → Aff T(A) be the group
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homomorphism

ρA(x)(ω) = rA(ω)(x), ω ∈ T(A), x ∈ K0(A).

Let U (A) denote the unitary group of A and let DU (A) denote its commutator sub-
group, i.e., the group generated by all unitaries of the form uvu∗v∗, u, v ∈ U (A). If A
is a unital inductive limit of a sequence of finite direct sums of building blocks then
there is a natural short exact sequence of abelian groups (see Section 5)

0 −→ Aff T(A)/ρA(K0(A))
λA−→ U (A)/DU (A)

πA−→ K1(A) −→ 0

that splits (unnaturally). The group U (·)/DU (·) was introduced into the classifica-
tion program by Nielsen and Thomsen [20].

Let A and B be unital C∗-algebras. An affine continuous map ϕT : T(B) → T(A)
gives rise to a linear positive order unit preserving map ϕT∗ : Aff T(A) → Aff T(B)
by setting ϕT∗( f ) = f ◦ ϕT for f ∈ Aff T(A). If furthermore ϕT∗ ◦ ρA = ρB ◦
ϕ0 for some group homomorphism ϕ0 : K0(A) → K0(B) then ϕT induces a group
homomorphism

ϕ̃T : Aff T(A)/ρA

(
K0(A)

)
−→ Aff T(B)/ρB

(
K0(B)

)
.

Let ψ : A→ B be a unital ∗-homomorphism. Let ψ∗ : T(B)→ T(A) be the affine
continuous map given byψ∗(ω) = ω◦ψ, ω ∈ T(B). Define ψ̂ : Aff T(A)→ Aff T(B)
by ψ̂ = (ψ∗)∗. Note that ψ̂( f )(ω) = f

(
ψ∗(ω)

)
. Since ψ̂ ◦ ρA = ρB ◦ ψ∗ on K0(A),

we see that ψ gives rise to a group homomorphism

ψ̃ : Aff T(A)/ρA

(
K0(A)

)
−→ Aff T(B)/ρB

(
K0(B)

)
.

Let ψ# : U (A)/DU (A)→ U (B)/DU (B) be the homomorphism induced by ψ.
Besides the Elliott invariant, two other invariants will be crucial in the proof of the

classification theorem, namely U (·)/DU (·) and Rørdam’s KL-bifunctor [22]. These
invariants are both determined by the Elliott invariant for the C∗-algebras under con-
sideration, and are therefore useless as additional isomorphism invariants. They are,
however, not determined canonically. This means that ∗-homomorphisms (or even
automorphisms) between such C∗-algebras that agree on the Elliott invariant may fail
to be approximately unitarily equivalent because they may act differently on these ad-
ditional invariants. This was demonstrated by Nielsen and Thomsen [20, Section 5]
for U (·)/DU (·) and by Dadarlat and Loring [6, pp. 375–376] for KL.

It is therefore necessary to include these invariants in the following uniqueness
theorem (see Theorem 11.5):

Theorem 1.2 Let A and B be unital inductive limits of sequences of finite direct sums
of building blocks, with A simple. Two unital ∗-homomorphisms ϕ, ψ : A → B with
ϕ∗ = ψ∗ on T(B), ϕ# = ψ# on U (A)/DU (A), and [ϕ] = [ψ] in KL(A,B) are
approximately unitarily equivalent.
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Let KL(A,B)T denote the set of elements κ ∈ KL(A,B) for which the induced
map κ∗ : K0(A)→ K0(B) preserves the order unit and for which there exists an affine
continuous map ϕT : T(B) → T(A) such that rB(ω)

(
κ∗(x)

)
= rA

(
ϕT(ω)

)
(x) for

x ∈ K0(A), ω ∈ T(B).
Let A and B be e.g. simple unital inductive limits of sequences of finite direct sums

of building blocks. It turns out, perhaps surprisingly, that there is a connection
between KL(A,B) and the torsion subgroups of U (A)/DU (A) and U (B)/DU (B),
see Section 10. If ϕ, ψ : A → B are unital ∗-homomorphisms with [ϕ] = [ψ]
in KL(A,B) and if x is an element of finite order in the group U (A)/DU (A), then
ϕ#(x) = ψ#(x) in U (B)/DU (B). More generally, an element κ ∈ KL(A,B)T gives
rise to a group homomorphism

sκ : Tor
(

U (A)/DU (A)
)
−→ Tor

(
U (B)/DU (B)

)
.

The map

KL(A,B)T −→ Hom
(

Tor
(

U (A)/DU (A)
)
,Tor

(
U (B)/DU (B)

))
,

where κ �→ sκ, is natural with respect to the Kasparov product and must be taken
into account in the existence theorem:

Theorem 1.3 Let A and B be simple unital inductive limits of sequences of finite direct
sums of building blocks, with B infinite dimensional. Let ϕT : T(B)→ T(A) be an affine
continuous map, let κ ∈ KL(A,B)T be an element such that

rB(ω)
(
κ∗(x)

)
= rA

(
ϕT(ω)

)
(x), x ∈ K0(A), ω ∈ T(B),

and let Φ : U (A)/DU (A)→ U (B)/DU (B) be a homomorphism such that the diagram

Aff T(A)/ρA

(
K0(A)

) λA−−−−→ U (A)/DU (A)
πA−−−−→ K1(A)

ϕ̃T

	 Φ

	 	 κ∗

Aff T(B)/ρB

(
K0(B)

)
−−−−→

λB

U (B)/DU (B) −−−−→
πB

K1(B)

commutes. Assume finally that

sκ(y) = Φ(y), y ∈ Tor
(

U (A)/DU (A)
)
.

There exists a unital ∗-homomorphism ψ : A → B such that ψ∗ = ϕT on T(B), such
that ψ# = Φ on U (A)/DU (A), and such that [ψ] = κ in KL(A,B).

The above theorem follows by combining the slightly more general Theorem 11.2
with Lemma 9.6, Lemma 10.3 and Theorem 9.9. It should be noted that it is possible
to prove this existence theorem (and our classification theorem) for K0(A) non-cyclic
without using the map sκ, see Corollary 11.3 (or [27]).

Let us finally describe the range of the invariant for the C∗-algebras in our class.
By combining Theorem 12.1 and Corollary 12.5 we have the following:
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Theorem 1.4 Let G be a countable simple dimension group with order unit, H a count-
able abelian group,∆ a compact metrizable Choquet simplex, and λ : ∆→ SG an affine
continuous extreme point preserving surjection. There exists a simple unital inductive
limit of a sequence of finite direct sums of building blocks A together with an isomorphism
ϕ0 : K0(A) → G of ordered groups with order unit, an isomorphism ϕ1 : K1(A) → H,
and an affine homeomorphism ϕT : ∆→ T(A) such that

rA

(
ϕT(ω)

)
(x) = λ(ω)

(
ϕ0(x)

)
, ω ∈ ∆, x ∈ K0(A)

if and only if G is non-cyclic, or G is cyclic and H can be realized as an inductive limit of
a sequence of the form

Z⊕H1 −→ Z⊕H2 −→ Z⊕H3 −→ · · ·

where each Hk is a finite abelian group.

Let A be a simple unital inductive limit of a sequence of finite direct sums of build-
ing blocks. It is easy to see that A is unital projectionless if and only if

(
K0(A),

K0(A)+, [1]
)
∼= (Z,Z+, 1). Hence our classification theorem can be applied to a

large class of simple unital projectionless C∗-algebras, including the C∗-algebra Z

constructed by Jiang and Su [16].
It would be interesting if one could extend our classification result to a class that

contains simple unital projectionless C∗-algebras with arbitrary countable abelian
K1-groups. This could probably be obtained by considering building blocks with
T replaced by a general 1-dimensional compact Hausdorff space. It would also be
interesting if one could include the class of C∗-algebras considered by Jiang and Su
in [15].

Let A be a unital C∗-algebra. If a ∈ Asa we define â ∈ Aff T(A) by â(ω) = ω(a),
ω ∈ T(A). It is well-known that a �→ â is a surjective map from Asa to Aff T(A).
Let q ′A : U (A) → U (A)/DU (A) be the canonical map. We equip the abelian group
U (A)/DU (A) with the quotient metric

DA

(
q ′A(u), q ′A(v)

)
= inf{‖uv∗ − x‖ : x ∈ DU (A)}.

Denote by d ′A the quotient metric on the group Aff T(A)/ρA

(
K0(A)

)
. This group

can be equipped with another metric which gives rise to the same topology, namely

dA( f , g) =

{
2 d ′A( f , g) ≥ 1

2 ,

|e2π id ′A( f ,g) − 1| d ′A( f , g) < 1
2 ,

see [20, Chapter 3]. Let qA : Aff T(A) → Aff T(A)/ρA

(
K0(A)

)
be the quotient map.

Let finally s(A) be the smallest positive integer n for which there exists a unital ∗-
homomorphism A→ Mn (we set s(A) =∞ if A has no non-trivial finite dimensional
representations).
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Let gcd denote the greatest common divisor and lcm the least common multiple of
a set of positive integers. Let Tr denote the (unnormalized) trace on a matrix algebra
(i.e., the number obtained by adding the diagonal entries). If

A1
α1−→ A2

α2−→ A3
α3−→ · · ·

is a sequence of C∗-algebras and ∗-homomorphisms with inductive limit A, we let
αn,m = αm−1 ◦ αm−2 ◦ · · · ◦ αn : An → Am when m > n. We set αn,n = id and let
αn,∞ : An → A denote the canonical map.
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ematics that have helped me during my studies, both mathematically and otherwise.
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Thomsen for many inspiring and helpful conversations. Special thanks to George El-
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2 Building Blocks

Let T denote the unit circle of the complex plane. We will equip T with the metric

ρ(e2πis, e2πit ) = min
k∈Z
|s− t + k|

which is easily seen to be equivalent to the usual metric on T inherited from C.
As in [20] we say that a tuple (a1, a2, . . . , aL) of elements from T is naturally num-

bered if there exist numbers s1, s2, . . . , sL ∈ [0, 1[ such that s1 ≤ s2 ≤ · · · ≤ sL and
a j = e2πis j , j = 1, 2, . . . , L.

We define a building block to be a C∗-algebra of the form

A(n, d1, d2, . . . , dN) = { f ∈ C(T)⊗Mn : f (xi) ∈ Mdi , i = 1, 2, . . . ,N},

where (x1, x2, . . . , xN ) is a naturally numbered tuple of (different) points in T, d1, d2,
. . . , dN are integers dividing n, and Mdi is embedded unitally into Mn, e.g. via the
∗-homomorphism

a �→ diag(a, a, . . . , a︸ ︷︷ ︸
n
di

times

).

The points x1, x2, . . . , xN will be called the exceptional points of A. By allowing di =
n we may always assume that N ≥ 2. It will also be convenient to always assume that
1 is not an exceptional point.

For every i = 1, 2, . . . ,N , evaluation at xi gives rise to a unital ∗-homomorphism
from A to Mdi which will be denoted by Λi , or sometimes ΛA

i . If s is a non-negative
integer we define Λs

i : A→ Msdi by

Λs
i( f ) = diag

(
Λi( f ),Λi( f ), . . . ,Λi( f )︸ ︷︷ ︸

s times

)
.

https://doi.org/10.4153/CJM-2001-046-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2001-046-2


1228 Jesper Mygind

Note that Λ
n
di
i ( f ) = f (xi) in Mn for f ∈ A and i = 1, 2, . . . ,N .

The following lemmas are left as exercises.

Lemma 2.1 Let A = A(n, d1, d2, . . . , dN) be a building block. The irreducible rep-
resentations (up to unitary equivalence) of A are Λ1,Λ2, . . . ,ΛN, together with point
evaluations at non-exceptional points.

Lemma 2.2 Let I be a closed two-sided ideal in A. There is a closed set F ⊆ T such
that

I = { f ∈ A : f (x) = 0 for all x ∈ F}.

Lemma 2.3 Let A = A(n, d1, d2, . . . , dN) be a building block and let ω ∈ T(A).
There exists a Borel probability measure µ on T such that

ω( f ) =
1

n

∫
T

Tr
(

f (x)
)

dµ(x).

It follows that CR(T) and Aff T(A) are isomorphic as order unit spaces via the map

f �→ f̂ ⊗ 1, f ∈ CR(T).

Theorem 2.4 Let A be a finite direct sum of building blocks. Then A is finitely gener-
ated and semiprojective.

Proof First note that A is a one-dimensional non-commutative CW complex, as
defined in [7]. Hence A is semiprojective by [7, Theorem 6.2.2] and finitely generated
by [7, Lemma 2.4.3].

Note that if A = A(n, d1, d2, . . . , dN) then s(A) = min(d1, d2, . . . , dN).
Building blocks will sometimes be called circle building blocks in order to distin-

guish them from interval building blocks. An interval building block is a C∗-algebra
A of the form

I(n, d1, d2, . . . , dN) = { f ∈ C[0, 1]⊗Mn : f (xi) ∈ Mdi , i = 1, 2, . . . ,N},

where 0 = x1 < x2 < · · · < xN = 1 and d1, d2, . . . , dN are integers dividing n. We
will call x1, x2, . . . , xN the exceptional points of A.

3 K-Theory

The purpose of this section is to calculate and interpret the K-theory of a building
block. We start out with the following lemma, which will be used to calculate the
K1-group.
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Lemma 3.1 Let N ≥ 2 and let a1, a2, . . . , aN be positive integers. Define a group
homomorphism ϕ : ZN → ZN to be multiplication with the N × N matrix

C =


a1 −a2

a2 −a3

a3
. . .
. . . −aN

−a1 aN

 .

For k = 1, 2, . . . ,N − 1, set

sk = lcm(a1, a2, . . . , ak)

and
rk = gcd(sk, ak+1) = gcd

(
lcm(a1, a2, . . . , ak), ak+1

)
.

Choose integers αk and βk such that

rk = αksk + βkak+1, k = 1, 2, . . . ,N − 1.

Then
coker(ϕ) ∼= Z⊕ Zr1 ⊕ Zr2 ⊕ · · · ⊕ ZrN−1 .

This isomorphism can be chosen such that for k = 1, 2, . . . ,N − 2, a generator of the
direct summand Zrk is mapped to the coset(

0, 0, . . . , 0︸ ︷︷ ︸
k−1 times

, 1,−
βkak+1

rk
, 0, 0, . . . , 0︸ ︷︷ ︸

N−k−2 times

,−
αksk

rk

)
+ im(ϕ),

such that a generator of the direct summand ZrN−1 is mapped to the coset

(0, 0, . . . , 0, 1,−1) + im(ϕ),

and such that a generator of the direct summand Z is mapped to the coset

(0, 0, . . . , 0, 1) + im(ϕ).

Proof Let I j denote the j × j identity matrix for any non-negative integer j. For
each k = 1, 2, . . . ,N − 2, define an integer matrix of size N × N by

Ak =



Ik−1

1
−αksk

rk
1

−αksk
rk

1
...

. . .
−αksk

rk
1

0 1


.
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Let Dk denote the 2× 2 matrix (
αk

ak+1
rk

−βk
sk
rk

)
,

and define for k = 1, 2, . . . ,N − 1, an integer matrix of size N × N by

Bk =

Ik−1

Dk

IN−k−1

 .

For k = 0, 1, 2, . . . ,N − 2, define yet another N × N matrix by

Xk =



r1

r2

. . .
rk

sk+1 −ak+2

sk+1 −ak+3
...

. . .
sk+1 −aN

0 0


.

Finally, let P be the N × N matrix
1
1 1
1 1 1
...

...
...

. . .
1 1 1 · · · 1

 .

Note that for k = 1, 2, . . . ,N − 2,

sk+1 = lcm(sk, ak+1) =
skak+1

rk
.

Using this, it is easily seen by induction that

AkAk−1 · · ·A1PCB1B2 · · ·Bk = Xk, k = 0, 1, 2, . . . ,N − 2.

It follows that

AN−2AN−3 · · ·A1PCB1B2 · · ·BN−2BN−1 =


r1

r2

. . .
rN−1

0

 .
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Since all the matrices on the left-hand side, except C , are invertible in MN(Z), we
obtain the desired calculation of coker(ϕ). Finally, it is easily verified that

(AN−2AN−3 · · ·A1P)−1 =



1
− β1a2

r1
1

0 − β2a3

r2
1

0 0 − β3a4

r3
1

...
...

. . .
. . .

0 0 − βN−2aN−1

rN−2
1

−α1s1
r1

−α2s2
r2

· · · · · · −αN−2sN−2

rN−2
−1 1


.

The last part of the lemma follows from this.

Let A = A(n, d1, d2, . . . , dN) be a building block with exceptional points e2πitk ,
k = 1, 2, . . . ,N , where 0 < t1 < t2 < · · · < tN < 1. Set tN+1 = t1 + 1. Define
continuous functions ωk : T→ T for k = 1, 2, . . . ,N , by

ωk(e2πit ) =

{
exp

(
2πi t−tk

tk+1−tk

)
tk ≤ t ≤ tk+1,

1 tk+1 ≤ t ≤ tk + 1.

Let U A
k be the unitary in A defined by

U A
k (z) = diag

(
ωk(z), 1, 1, . . . , 1

)
, z ∈ T.

Theorem 3.2 Let A = A(n, d1, d2, . . . , dN) be a building block. Set for k = 1, 2, . . . ,
N − 1,

sk = lcm

(
n

d1
,

n

d2
, . . . ,

n

dk

)
,

and

rk = gcd

(
sk,

n

dk+1

)
= gcd

(
lcm

(
n

d1
,

n

d2
, . . . ,

n

dk

)
,

n

dk+1

)
.

Choose integers αk and βk such that

rk = αksk + βk
n

dk+1
, k = 1, 2, . . . ,N − 1.

Then
K1(A) ∼= Z⊕ Zr1 ⊕ Zr2 ⊕ · · · ⊕ ZrN−1 .

This isomorphism can be chosen such that for k = 1, 2, . . . ,N − 1, a generator of the
direct summand Zrk is mapped to

[U A
k ]−

βkn

rkdk+1
[U A

k+1]−
αksk

rk
[U A

N ],

and such that a generator of the direct summand Z is mapped to [U A
N ].
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Proof Define a ∗-homomorphism π : A→ Md1 ⊕Md2 ⊕ · · · ⊕MdN by

π( f ) =
(
Λ1( f ),Λ2( f ), . . . ,ΛN ( f )

)
.

Via the identification SMn
∼= { f ∈ C[0, 1] ⊗ Mn : f (0) = f (1) = 0} we define a

∗-homomorphism ι : (SMn)N → A by

ι( f1, f2, . . . , fN)(e2πit ) = fk

(
t − tk

tk+1 − tk

)
, tk ≤ t ≤ tk+1.

The short exact sequence

0 −→ (SMn)N ι
−→ A

π
−→ Md1 ⊕Md2 ⊕ · · · ⊕MdN −→ 0

gives rise to a six-term exact sequence

K0

(
(SMn)N

) ι∗−−−−→ K0(A)
π∗−−−−→ K0(Md1 ⊕ · · · ⊕MdN )� 	 δ

K1(Md1 ⊕ · · · ⊕MdN ) ←−−−−
π∗

K1(A) ←−−−−
ι∗

K1

(
(SMn)N

)
where δ denotes the exponential map.

By Bott periodicity K1

(
(SMn)N

)
∼= ZN is generated by [V1], [V2], . . . , [VN ],

where

Vk(t) =
(

1, 1, . . . , 1, diag(e2πit , 1, . . . , 1)︸ ︷︷ ︸
coordinate k

, 1, 1, . . . , 1
)
, t ∈ [0, 1],

is a unitary in ˜(SMn)N . Note that ι(Vk − 1) = U A
k − 1 and hence ι∗([Vk]) = [U A

k ] in
K1(A). Since the map ι∗ : K1

(
(SMn)N

)
→ K1(A) is surjective it follows that K1(A) is

generated by [U A
1 ], [U A

2 ], . . . , [U A
N ], and that ι∗ gives rise to an isomorphism between

the cokernel of δ and K1(A).
Let {ek

i j} denote the standard matrix units in Md1⊕· · ·⊕MdN . Recall that K0(Md1⊕

· · · ⊕MdN ) ∼= ZN is generated by [e1
11], [e2

11], . . . , [eN
11]. We leave it with the reader to

check that

δ([e1
11]) = −

n

d1
[VN ] +

n

d1
[V1],

and for k = 2, 3, . . . ,N ,

δ([ek
11]) = −

n

dk
[Vk−1] +

n

dk
[Vk].

The conclusion follows from Lemma 3.1.

https://doi.org/10.4153/CJM-2001-046-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2001-046-2


Classification of Certain Simple C∗-Algebras with Torsion in K1 1233

Choose a continuous function γ : T→ R such that

Det
(

U A
N(z)

)
= z exp

(
2πiγ(z)

)
, z ∈ T.

Define a unitary vA in A by

vA(z) = U A
N(z) exp

(
−2πi

γ(z)

n

)
, z ∈ T.

Note that Det
(

vA(z)
)
= z, z ∈ T.

Lemma 3.3 Let A = A(n, d1, d2, . . . , dN) be a building block and let u ∈ A be a
unitary. If

Det
(
Λk(u)

)
= 1, k = 1, 2, . . . ,N,

Det
(

u(z)
)
= 1, z ∈ T,

then u can be connected to 1 via a continuous path of unitaries in A.

Proof Let us start with a simple and well-known observation. Let v be a unitary in
the C∗-algebra B = { f ∈ C[0, 1]⊗Mn : f (0) = f (1)} such that the winding number
of Det

(
v(·)

)
is 0. Then v can be connected to 1 via a continuous path (vt )t∈[0,1] in

U (B). If v(0) = 1 we may assume that vt (0) = 1 for every t ∈ [0, 1].
Let e2πit1 , . . . , e2πitN be the exceptional points of A, where t1 < t2 < · · · < tN are

numbers in ]0, 1[. Set t0 = tN − 1, tN+1 = t1 + 1 and let ιk : Mdk → Mn be the
inclusion, k = 1, 2, . . . ,N . Since the group of unitaries in Mdk with determinant 1
is path-connected there exists a continuous function γk : [tk−1, tk+1]→ U (Mdk ) such
that γk(tk−1) = γk(tk+1) = 1, γk(tk) = Λk(u), and Det

(
γk(·)

)
= 1. Set

wk(e2πit ) =

{
ιk
(
γk(t)

)
t ∈ [tk−1, tk+1],

1 t ∈ [tk+1, tk−1 + 1].

It follows from the above observation that wk can be connected to 1 via a continuous
path of unitaries in A. Upon replacing u with uw∗1 w∗2 · · ·w

∗
N we may thus assume that

u(e2πitk ) = 1 for k = 1, 2, . . . ,N . Set

yk(e2πit ) =

{
u(e2πit ) t ∈ [tk, tk+1],

1 t ∈ [tk+1, tk + 1].

Then u = y1 y2 · · · yN . Again by the above observation, yk can be connected to 1
within U (A) for k = 1, 2, . . . ,N .

Let A = A(n, d1, d2, . . . , dN) be a building block and set d = gcd(d1, d2, . . . , dN).
Since d divides di for every i = 1, 2, . . . ,N , there exists a unital and injective ∗-
homomorphism Md → A given by f �→ diag( f , f , . . . , f ).
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Lemma 3.4 Let p be a projection in A = A(n, d1, d2, . . . , dN). Then p is unitarily
equivalent to a projection in Md ⊆ A.

Proof Let r ∈ Z denote the rank of p and let e2πit1 , e2πit2 , . . . , e2πitN be the ex-
ceptional points of A, where 0 < t1 < t2 < · · · < tN < 1. Since n

dk
divides r

for k = 1, 2, . . . ,N , it follows that n
d also divides r. Hence there is a projection

e ∈ Md ⊆ A with the same trace as p.
For each t ∈ [0, 1] there is a unitary ut ∈ Mn such that

e = ut p(e2πit )u∗t .

We may assume that utk ∈ Mdk , k = 1, 2, . . . ,N , and that u0 = u1. By compactness

[0, 1] =
L−1⋃
j=1

[s j , s j+1],

where 0 = s1 < s2 < · · · < sL = 1, {t1, t2, . . . , tN} ⊆ {s1, s2, . . . , sL}, and

t ∈ [s j , s j+1] =⇒ ‖us j p(e2πit )u∗s j
− e‖ < 1.

Set z j(t) = v j(t)|v j (t)|−1 for t ∈ [s j , s j+1], j = 1, 2, . . . , L− 1, where

v j(t) = 1− us j p(e2πit )u∗s j
− e + 2eus j p(e2πit )u∗s j

.

Then t �→ z j(t), t ∈ [s j , s j+1], is a continuous path of unitaries in Mn, and by [19,
Lemma 6.2.1]

e = z j(t)us j p(e2πit )u∗s j
z j(t)∗, t ∈ [s j , s j+1].

As U (Mn)∩{e} ′ is path-connected there is for each k = 1, 2, . . . , L−1 a continuous
map γ j : [s j , s j+1]→ U (Mn) ∩ {e} ′ such that

γ j(s j) = 1, γ j(s j+1) = us j+1 u∗s j
z j(s j+1)∗.

Since z j(s j) = 1 for j = 1, 2, . . . , L− 1, we can define a unitary u ∈ A by

u(e2πit ) = γ j(t)z j (t)us j , t ∈ [s j , s j+1].

Then upu∗ = e.

Corollary 3.5 If p ∈ A = A(n, d1, d2, . . . , dN) is a projection of rank r �= 0 then

pAp ∼= A
(

r,
r

n
d1,

r

n
d2, . . . ,

r

n
dN

)
.

Corollary 3.6 The embedding Md ⊆ A gives rise to an isomorphism of ordered groups
with order units between K0(Md) and K0(A). In other words,(

K0(A),K0(A)+, [1]
)
∼= (Z,Z+, d).
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By Lemma 2.3 we have the following:

Corollary 3.7 If A = A(n, d1, d2, . . . , dN) then ρA

(
K0(A)

)
= Z 1

d 1̂ in Aff T(A).

Lemma 3.8 A = A(n, d1, d2, . . . , dN) is unital projectionless if and only if d = 1.

Proof As in the proof of Lemma 3.4 we see that there exists a projection p ∈ A of
rank r ≤ n if and only if n

d divides r. The conclusion follows.

Lemma 3.9 Let K be a positive integer and let H be a finite abelian group. There exists
a unital projectionless building block A with s(A) ≥ K such that K1(A) ∼= Z⊕H.

Proof Let

H ∼= Z
p

k1
1
⊕ Z

p
k2
2
⊕ · · · ⊕ Zpkm

m
,

where m is a positive integer, k1, . . . , km are non-negative integers, and p1, . . . , pm

are prime numbers. Let q1, q2, . . . , qm+1 ≥ K be prime numbers, mutually different
as well as different from p1, p2, . . . , pm. Define integers n and d1, d2, . . . , dm+1 by

n = pk1
1 pk2

2 · · · p
km
m q1q2 · · · qm+1,

d1 = q2q3 · · · qm+1,

di =
pk1

1 pk2
2 · · · p

km
m

pki−1

i−1

q1q2 · · · qm+1

qi
, 2 ≤ i ≤ m + 1.

Set A = A(n, d1, d2, . . . , dm+1). Then K1(A) ∼= Z ⊕ H by Theorem 3.2. A is unital
projectionless by Lemma 3.8.

4 KK-Theory

Recall a few facts about KK-theory that can be found in e.g. [2]. KK is a homo-
topy invariant bifunctor from the category of C∗-algebras to the category of abelian
groups that is contravariant in the first variable and covariant in the second. A ∗-
homomorphism ϕ : A → Mn(B) defines an element [ϕ] ∈ KK(A,B). We have an
associative map KK(B,C)×KK(A,B) → KK(A,C), the Kasparov product, that gen-
eralizes composition of ∗-homomorphisms.

The purpose of this section is to analyze the KK-theory of our building blocks.
Inspired by the work of Jiang and Su [16, Section 3], we will consider the K-homology
groups K0(A) = KK(A,C). A ∗-homomorphism ϕ : A → Mn(B) induces a group
homomorphism ϕ∗ : K0(B) → K0(A) via the Kasparov product. K0(Mn) ∼= Z is
generated by the class of the identity map on Mn.

If A and B are unital C∗-algebras we let KK(A,B)e be the set of elements κ ∈
KK(A,B) such that κ∗ : K0(A)→ K0(B) preserves the order unit.
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Lemma 4.1 Let

A = { f ∈ C[0, 1]⊗Mn : f (ti) ∈ Mdi , i = 1, 2, . . . ,N}

where N ≥ 2, 0 ≤ t1 < t2 < · · · < tN ≤ 1, and d1, d2, . . . , dN are integers dividing n.
LetΛi : A→ Mdi be the ∗-homomorphism induced by evaluation at ti , i = 1, 2, . . . ,N.
Then K0(A) is generated by [Λ1], [Λ2], . . . , [ΛN ]. Furthermore, for a1, a2, . . . , aN ∈ Z
we have that

a1[Λ1] + a2[Λ2] + · · · + aN[ΛN ] = 0

if and only if there exist b1, b2, . . . , bN ∈ Z such that
∑N

i=1 bi = 0 and

ai = bi
n

di
, i = 1, 2, . . . ,N.

Proof Choose y ∈ ]0, 1[ such that t1 < y < t2. Set

B = { f ∈ C[0, y]⊗Mn : f (t1) ∈ Md1},

C = { f ∈ C[y, 1]⊗Mn : f (ti) ∈ Mdi , i = 2, 3, . . . ,N}.

We have a pull-back diagram

A
g1

−−−−→ B

g2

	 	 f1

C −−−−→
f2

Mn

where g1, g2 are the restriction maps and f1, f2 evaluation at y. Apply the Mayer-
Vietoris sequence [2, Theorem 21.5.1] to get a six-term exact sequence

K0(Mn)
(− f ∗1 , f

∗
2 )

−−−−−→ K0(B)⊕ K0(C)
g∗1 +g∗2−−−−→ K0(A)� 	

K1(A) ←−−−−
g∗1 +g∗2

K1(B)⊕ K1(C) ←−−−−−
(− f ∗1 , f

∗
2 )

K1(Mn).

Note that K1(Mn) = 0 and K0(Mn) ∼= Z. Thus the exact sequence becomes

Z
ϕ

−−−−→ K0(B)⊕ K0(C)
ψ

−−−−→ K0(A)� 	
K1(A) ←−−−− K1(B)⊕ K1(C) ←−−−− 0.

Since f1 is homotopic to evaluation at x1 in B and f2 is homotopic to evaluation at x2

in C we see that

ϕ(k) =

(
−k

n

d1
[Λ1|B], k

n

dN
[ΛN |C ]

)
, k ∈ Z.
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B is homotopic to Md1 via Λ1|B and hence K0(B) ∼= Z is generated by [Λ1|B].
For N = 2 we have that K0(C) is generated by [Λ2|C ] and that

ψ(a1[Λ1|B], a2[Λ2|C ]) = a1[Λ1] + a2[Λ2].

Thus K0(A) is generated by [Λ1] and [Λ2] and

a1[Λ1] + a2[Λ2] = 0⇐⇒ ∃b1 ∈ Z : a1 = −b1
n

d1
, a2 = b1

n

d2
.

Proceeding by induction, assume that the lemma holds for N−1. By the induction
hypothesis K0(C) is generated by [Λ2|C ], [Λ3|C ], . . . , [ΛN |C ]. Note that

ψ
(

a1[Λ1|B], (a2[Λ2|C ] + · · · + aN [ΛN |C ])
)
=

N∑
i=1

ai[Λi],

such that A is generated by [Λ1], . . . , [ΛN ]. It also follows that

a1[Λ1] + a2[Λ2] + · · · + aN[ΛN ] = 0

if and only if there exists k ∈ Z such that

−k
n

d1
[Λ1|B] = a1[Λ1|B], k

n

dN
[ΛN |C ] = a2[Λ2|C ] + · · · + aN [ΛN |C ].

By the induction hypothesis this happens if and only if there exist k, c2, . . . , cN ∈ Z
such that

∑N
i=2 ci = 0 and

a1 = −k
n

d1
, ai = ci

n

di
, i = 2, 3, . . . ,N − 1, aN − k

n

dN
= cN

n

dN
.

The desired conclusion follows easily from these equations.

Proposition 4.2 Let A = A(n, d1, d2, . . . , dN) be a building block. Then K0(A) is
generated by [Λ1], [Λ2], . . . , [ΛN ]. Furthermore, for a1, a2, . . . , aN ∈ Z we have that

a1[Λ1] + a2[Λ2] + · · · + aN[ΛN ] = 0

if and only if there exist b1, b2, . . . , bN ∈ Z such that
∑N

i=1 bi = 0 and

ai = bi
n

di
, i = 1, 2, . . . ,N.

Proof Choose t1, t2, . . . , tN ∈ ]0, 1[ such that e2πitk , k = 1, 2, . . . ,N , are the excep-
tional points for A. Set

B = { f ∈ C[0, 1]⊗Mn : f (tk) ∈ Mdk , k = 1, 2, . . . ,N}.
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Define a ∗-homomorphism ι : A → B by ι( f )(t) = f (e2πit ). Let π : A → Mn be
evaluation at 1 ∈ T. Let α : Mn → Mn ⊕ Mn denote the map α(x) = (x, x). Let
β : B→ Mn ⊕Mn be the map β( f ) =

(
f (0), f (1)

)
. We have a pull-back diagram

A
π

−−−−→ Mn

ι

	 	α

B −−−−→
β

Mn ⊕Mn

and hence by [2, Theorem 21.5.1] a six-term exact sequence of the form

K0(Mn ⊕Mn)
(−α∗,β∗)
−−−−−→ K0(Mn)⊕ K0(B)

π∗+ι∗
−−−−→ K0(A)� 	

K1(A) ←−−−−
π∗+ι∗

K1(Mn)⊕ K1(B) ←−−−−−
(−α∗,β∗)

K1(Mn).

K0(Mn ⊕Mn) ∼= Z⊕ Z is generated by [π1] and [π2] where π1, π2 : Mn ⊕Mn → Mn

are the coordinate projections. K0(Mn) ∼= Z is generated by the class of the identity
map id on Mn. Note that

π∗([id]) =
n

d1
[ΛA

1 ],

ι∗([ΛB
i ]) = [ΛA

i ], i = 1, 2, . . . ,N,

(−α∗, β∗)(a[π1] + b[π2]) =

(
−(a + b)[id], (a + b)

n

d1
[ΛB

1 ]

)
.

As π∗ + ι∗ maps onto K0(A) (because K1(Mn) = 0) and as im(π∗) ⊆ im(ι∗), we see
that ι∗ is surjective. Assume that ι∗(x) = 0. Then (0, x) ∈ im(−α∗, β∗) and hence
x = 0 by the above. Thus ι∗ is an isomorphism and the conclusion follows from
Lemma 4.1.

Proposition 4.3 Let A = A(n, d1, d2, . . . , dN) and B = A(m, e1, e2, . . . , eM) be
building blocks and let h : K0(B) → K0(A) be a group homomorphism. For every
j = 1, 2, . . . ,M, i = 1, 2, . . . ,N, there is a uniquely determined integer h ji , with
0 ≤ h ji <

n
di

for i �= N, such that
h([ΛB

1 ])
h([ΛB

2 ])
...

h([ΛB
M])

 =


h11 h12 · · · h1N

h21 h22 · · · h2N
...

...
...

hM1 hM2 · · · hMN




[ΛA
1 ]

[ΛA
2 ]
...

[ΛA
N ]

 .

This will be called the standard form for h.
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The integers determined by h above satisfy the equations

m

e j
h ji ≡

m

eM
hMi mod

n

di
, j = 1, 2, . . . ,M, i = 1, 2, . . . ,N,

m

e j

N∑
i=1

h jidi =
m

eM

N∑
i=1

hMidi, j = 1, 2, . . . ,M.

Proof By Proposition 4.2, or simply because homotopic ∗-homomorphisms A →
Mn define the same elements in K0(A), we have that

n

dN
[ΛA

N ] =
n

di
[ΛA

i ], i = 1, 2, . . . ,N.

From this the existence follows.
To check uniqueness, assume

h11 h12 · · · h1N

h21 h22 · · · h2N
...

...
...

hM1 hM2 · · · hMN




[ΛA
1 ]

[ΛA
2 ]
...

[ΛA
N ]

 = 0

where
−

n

di
< h ji <

n

di
, i = 1, 2, . . . ,N − 1, j = 1, 2, . . . ,M.

Fix some j = 1, 2, . . . ,M. By Proposition 4.2 there exist integers b ji such that h ji =
b ji

n
di

, i = 1, 2, . . . ,N . Therefore h ji = 0 for i = 1, 2, . . . ,N .
Finally, to prove the equations above, fix again some j = 1, 2, . . . ,M. Note that

0 = h(0) = h

(
−

m

e j
[ΛB

j ] +
m

eM
[ΛB

M]

)
=

N∑
i=1

(
−

m

e j
h ji +

m

eM
hMi

)
[ΛA

i ].

Hence there exist integers b ji , i = 1, 2, . . . ,N , such that
∑N

i=1 b ji = 0 and

−
m

e j
h ji +

m

eM
hMi = b ji

n

di
.

The desired conclusion follows easily from these equations.

From now on, let A = A(n, d1, d2, . . . , dN) and B = A(m, e1, e2, . . . , eM) be build-
ing blocks. Define a group homomorphism

Γ : KK(A,B) −→ Hom
(

K0(B),K0(A)
)
⊕ K1(B)

by
Γ(κ) = (κ∗, κ∗[vA]).

We want to show that Γ is an isomorphism in certain cases.
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Proposition 4.4 Let h : K0(B) → K0(A) be a group homomorphism with standard
form 

h([ΛB
1 ])

h([ΛB
2 ])

...
h([ΛB

M])

 =


h11 h12 · · · h1N

h21 h22 · · · h2N
...

...
...

hM1 hM2 · · · hMN




[ΛA
1 ]

[ΛA
2 ]
...

[ΛA
N ]


where h jN ≥

n
dN

for j = 1, 2, . . . ,M, and
∑N

i=1 hMidi = eM. Let χ ∈ K1(B). There is
a unital ∗-homomorphism ϕ : A→ B such that Γ([ϕ]) = (h, χ).

Proof Let 1 ≤ i ≤ N . By Proposition 4.3 there is an integer si , 0 ≤ si <
n
di

, and
integers l ji , j = 1, 2, . . . ,M, such that

m

e j
h ji = l ji

n

di
+ si .(1)

Note that l ji ≥ 0 for i = 1, 2, . . . ,N − 1, and l jN ≥ 1. By Proposition 4.3 we see that
for j = 1, 2, . . . ,M,

m =
m

eM

N∑
i=1

hMidi =
m

e j

N∑
i=1

h jidi =
N∑

i=1

(l jin + sidi).

By (1) there exists a unitary V j ∈ Mm such that the matrix

V j diag
(
Λs1

1 ( f ), . . . ,ΛsN
N ( f ), f (x1), . . . , f (x1)︸ ︷︷ ︸

l j1 times

, . . . , f (xN ), . . . , f (xN )︸ ︷︷ ︸
l jN times

)
V ∗j

belongs to Me j ⊆ Mm for all f ∈ A.
Set

L =
1

n

(
m−

N∑
i=1

sidi

)
=

N∑
i=1

l ji , j = 1, 2, . . . ,M.

Let x1, x2, . . . , xN denote the exceptional points of A and let y1, y2, . . . , yM be those
of B. Choose continuous functions λ1, λ2, . . . , λL−1 : T→ T such that(
λ1(y j), λ2(y j), . . . , λL−1(y j )

)
=

(
x1, . . . , x1︸ ︷︷ ︸

l j1 times

, . . . , xN−1, . . . , xN−1︸ ︷︷ ︸
l j(N−1) times

, xN , . . . , xN︸ ︷︷ ︸
l jN−1 times

)

as ordered tuples. Choose a unitary U ∈ C(T) ⊗Mm such that U (y j) = V j . Define
a unital ∗-homomorphism ψ : A→ B by

ψ( f )(z)

= U (z) diag
(
Λs1

1 ( f ), . . . ,ΛsN
N ( f ), f

(
λ1(z)

)
, . . . , f

(
λL−1(z)

)
, f (xN )

)
U (z)∗.
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By Theorem 3.2 we have that χ =
∑M

j=1 a j[U B
j ] for some a1, a2, . . . , aM ∈ Z. Let

ψ∗[vA] =
M∑

i=1

b j[U
B
j ]

in K1(B). Define ξ : T→ T by

ξ(z) =
M∏

j=1

Det
(

U B
j (z)

) a j−b j
,(2)

and define λL : T → T by λL(z) = ξ(z)xN . Note that λL(y j) = xN , j = 1, 2, . . . ,M.
Define ϕ : A→ B by

ϕ( f )(z) = U (z) diag
(
Λs1

1 ( f ), . . . ,ΛsN
N ( f ), f

(
λ1(z)

)
, . . . , f

(
λL(z)

))
U (z)∗.

By Lemma 3.3 and (2) we see that in K1(B),

ϕ∗[vA] = ψ∗[vA] +
[

z �→ U (z) diag
(

1, 1, . . . , 1, vA
(
λL(z)

)
vA(xN )∗

)
U (z)∗

]
= ψ∗[vA] +

M∑
j=1

(a j − b j)[U B
j ] =

M∑
j=1

a j[U
B
j ].

Since ϕ( f )(y j ) = ψ( f )(y j), f ∈ A, j = 1, 2, . . . ,M, we conclude that

ϕ∗([ΛB
j ]) = [ΛB

j ◦ ϕ] = [ΛB
j ◦ ψ] =

N∑
i=1

(
si + l ji

n

di

)
e j

m
[ΛA

i ]

=

N∑
i=1

h ji[Λ
A
i ] = h([ΛB

j ]).

Lemma 4.5 Let h : K0(B) → K0(A) be a group homomorphism and assume that
there exists a homomorphism h ′ : K0(B)→ K0(A) with standard form

h ′([ΛB
1 ])

h ′([ΛB
2 ])

...
h ′([ΛB

M])

 =


h ′11 h ′12 · · · h ′1N

h ′21 h ′22 · · · h ′2N
...

...
...

h ′M1 h ′M2 · · · h ′MN




[ΛA
1 ]

[ΛA
2 ]
...

[ΛA
N ]


where h ′jN ≥

n
dN

for j = 1, 2, . . . ,M, and
∑N

i=1 h ′Midi = eM. Then there is a κ ∈

KK(A,B) such that κ∗ = h in Hom
(

K0(B),K0(A)
)

.
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Proof By Proposition 4.4 there exists an element ν ∈ KK(A,B) such that ν∗ = h ′.
Let h ∈ Hom

(
K0(B),K0(A)

)
have standard form

h([ΛB
1 ])

h([ΛB
2 ])

...
h([ΛB

M])

 =


h11 h12 · · · h1N

h21 h22 · · · h2N
...

...
...

hM1 hM2 · · · hMN




[ΛA
1 ]

[ΛA
2 ]
...

[ΛA
N ]

 .

By adding an integer-multiple of h ′ we may assume that h jN ≥ 0 for j = 1, 2, . . . ,M.
Define l ji and si , i = 1, 2, . . . ,N , as in the proof of Proposition 4.4. Let

c =
m

eM

N∑
i=1

hMidi =
m

e j

N∑
i=1

h jidi =

N∑
i=1

(l jin + sidi), j = 1, 2, . . . ,M.

Choose a positive integer d such that c ≤ dm. Choose for each j = 1, 2, . . . ,M, a
unitary V j ∈ Mdm such that the matrix

V j diag
(
Λs1

1 ( f ), . . . ,ΛsN
N ( f ), f (x1), . . . , f (x1)︸ ︷︷ ︸

l j1 times

, . . . , f (xN ), . . . , f (xN )︸ ︷︷ ︸
l jN times

, 0, . . . , 0︸ ︷︷ ︸
dm−c

)
V ∗j

belongs to Mde j ⊆ Mdm for all f ∈ A.
As in the proof of Proposition 4.4 these matrices can be connected to define a ∗-

homomorphism ϕ : A → Md(B). We leave it with the reader to check that ϕ∗ = h
on K0(B). Set κ = [ϕ].

Proposition 4.6 Assume that there exists a homomorphism h ′ : K0(B)→ K0(A) with
standard form 

h ′([ΛB
1 ])

h ′([ΛB
2 ])

...
h ′([ΛB

M])

 =


h ′11 h ′12 · · · h ′1N

h ′21 h ′22 · · · h ′2N
...

...
...

h ′M1 h ′M2 · · · h ′MN




[ΛA
1 ]

[ΛA
2 ]
...

[ΛA
N ]


where h ′jN ≥

n
dN

for j = 1, 2, . . . ,M, and
∑N

i=1 h ′Midi = eM. Then the map Γ :

KK(A,B)→ Hom
(

K0(B),K0(A)
)
⊕ K1(B) is an isomorphism.

Proof By Theorem 3.2 there exist finite abelian groups G and H such that K1(A) ∼=
Z⊕ G, K1(B) ∼= Z⊕H. By the universal coefficient theorem, [23, Theorem 1.17],

KK(A,B) ∼= Ext
(

K0(A),K1(B)
)
⊕ Ext

(
K1(A),K0(B)

)
⊕Hom

(
K0(A),K0(B)

)
⊕Hom

(
K1(A),K1(B)

)
∼= 0⊕ G⊕ Z⊕Hom(G,H)⊕ K1(B).
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By the universal coefficient theorem again, K0(A) ∼= K1(A) and K0(B) ∼= K1(B).
Hence

Hom
(

K0(B),K0(A)
)
⊕ K1(B) ∼= K1(A)⊕Hom(H,G)⊕ K1(B).

Note that Hom(G,H) ∼= Hom(H,G). Thus Hom
(

K0(B),K0(A)
)
⊕ K1(B) and

KK(A,B) are isomorphic groups. Since any surjective endomorphism of a finitely
generated abelian group is an isomorphism, it suffices to show that Γ is surjective.

Let (h, χ) ∈ Hom
(

K0(B),K0(A)
)
⊕ K1(B). By Lemma 4.5 there exists an ele-

ment κ ∈ KK(A,B) such that Γ(κ) = (h − h ′, η) for some η ∈ K1(B). Next, by
Proposition 4.4 there exists a ν ∈ KK(A,B) such that Γ(ν) = (h ′, χ − η). Thus
Γ(κ + ν) = (h, χ).

Theorem 4.7 Let A = A(n, d1, d2, . . . , dN) and B = A(m, e1, e2, . . . , eM) be building
blocks such that s(B) ≥ Nn and assume that there exists an element κ in KK(A,B)e.
Then the map Γ : KK(A,B) → Hom

(
K0(B),K0(A)

)
⊕ K1(B) is an isomorphism and

there exists a unital ∗-homomorphism ϕ : A→ B such that [ϕ] = κ.

Proof Let κ∗ : K0(B)→ K0(A) have standard form
κ∗([ΛB

1 ])
κ∗([ΛB

2 ])
...

κ∗([ΛB
M])

 =


h11 h12 · · · h1N

h21 h22 · · · h2N
...

...
...

hM1 hM2 · · · hMN




[ΛA
1 ]

[ΛA
2 ]
...

[ΛA
N ]

 .

Let · denote the Kasparov product. By assumption we have that [1A] · κ = [1B] in
KK(C,B) ∼= K0(B). Thus

[1B] · [ΛB
j ] = [1A] · κ · [ΛB

j ] = [1A] ·
( N∑

i=1

h ji[Λ
A
i ]
)

in KK(C,C) ∼= Z. Hence e j =
∑N

i=1 h jidi for j = 1, 2, . . . ,M. This implies that
h jN > n

dN
since

Nn ≤ e j =
N∑

i=1

h jidi <

N−1∑
i=1

n

di
di + h jN dN = (N − 1)n + h jN dN .

ThereforeΓ is an isomorphism by Proposition 4.6. By Proposition 4.4 there is a unital
∗-homomorphism ϕ : A→ B such that Γ([ϕ]) = Γ(κ). Thus [ϕ] = κ.

5 The Commutator Subgroup of the Unitary Group

In this section we analyze the unitary group modulo the closure of its commutator
subgroup for building blocks.
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Lemma 5.1 Let A be a unital inductive limit of a sequence of finite direct sums of
building blocks. Then the canonical maps π0

(
U (A)

)
→ K1(A) and π1

(
U (A)

)
→

K0(A) are isomorphisms.

Proof Following [24] we let kn(·) = πn+1

(
U (·)

)
for every integer n ≥ −1. By [24,

Proposition 2.6] it suffices to show that the canonical maps k−1(A)→ k−1(A⊗K) ∼=
K1(A) and k0(A)→ k0(A⊗K) ∼= K0(A) are isomorphisms, where K denotes the set
of compact operators on a separable infinite dimensional Hilbert-space. As noted in
[24] it follows from [14, Proposition 4.4] that kn is a continuous functor. Since it is
obviously additive, we may assume that A is a building block.

As in the proof of Theorem 3.2 we see that there exists finite dimensional C∗-
algebras F1 and F2 such that we have a short exact sequence of the form

0 −→ SF1 −→ A −→ F2 −→ 0.

Apply [24, Proposition 2.5] to this short exact sequence and the one obtained by
tensoring with K to obtain two long exact sequences for kn. It is well-known that the
canonical maps ki(F2) → ki(F2 ⊗K) and ki(SF1)→ ki(SF1 ⊗K) are isomorphisms
for i = −1, 0 (cf. [24, Lemma 2.3]), so the theorem follows from the five lemma in
algebra.

Let A be a unital C∗-algebra. Let πA : U (A)/DU (A) → K1(A) denote the group
homomorphism πA

(
q ′A(u)

)
= [u].

Proposition 5.2 Let A be a unital inductive limit of a sequence of finite direct sums of
building blocks. There exists a group homomorphism

λA : Aff T(A)/ρA

(
K0(A)

)
−→ U (A)/DU (A),

λA

(
qA(â)

)
= q ′A(e2πia), a ∈ Asa .

This map is an isometry when Aff T(A)/ρA

(
K0(A)

)
is equipped with the metric dA,

and it gives rise to a short exact sequence of abelian groups

0 −→ Aff T(A)/ρA

(
K0(A)

) λA−→ U (A)/DU (A)
πA−→ K1(A) −→ 0.

This sequence is natural in A and splits unnaturally.

Proof Combine Lemma 5.1 with [27, Lemma 6.4].

Proposition 5.3 Let A = A(n, d1, d2, . . . , dN) be a building block. Let u ∈ A be a
unitary. Assume that

Det
(

u(z)
)
= 1, z ∈ T,

Det
(
Λi(u)

)
= 1, i = 1, 2, . . . ,N.

Then u ∈ DU (A).
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Proof First note that [u] = 0 in K1(A) by Lemma 3.3. Hence q ′A(u) = q ′A(e2πia) by
Proposition 5.2 for some self-adjoint element a ∈ A. Since

Det
(

u(z)
)
= Det(e2πia(z)) = e2πi Tr(a(z))

it follows that Tr
(

a(z)
)
= k for some k ∈ Z and all z ∈ T. Hence â = k

n 1̂ in
Aff T(A) by Lemma 2.3. By applying λA we get that q ′A(u) = q ′A(e2πia) = q ′A(λ1),

where λ = e2πi k
n . Since Det

(
Λi(u)

)
= 1 we see that λdi = 1, i = 1, 2, . . . ,N . Thus

λd = 1 where d = gcd(d1, d2, . . . , dN). But then k
n =

l
d for some l ∈ Z. It follows

by Corollary 3.7 that k
n 1̂ ∈ ρA

(
K0(A)

)
and hence by Proposition 5.2 we get that

λ1 ∈ DU (A).

Lemma 5.4 Let A = A(n, d1, d2, . . . , dN) be a building block with exceptional points
x1, x2, . . . , xN. Let g : T → T be a continuous function and let hi ∈ T be such that

h
n
di
i = g(xi), i = 1, 2, . . . ,N. There exists a unitary u ∈ A such that

Det
(

u(z)
)
= g(z), z ∈ T,

Det
(
Λi(u)

)
= hi, i = 1, 2, . . . ,N.

Proof Choose a continuous function f : T → T such that f (xi)di = hi . Define a
unitary v ∈ A by v = f ⊗ 1. Since

f (xi)
n = h

n
di
i = g(xi),

we can define a unitary w ∈ A by

w(z) = diag
(

g(z) f (z)−n, 1, 1, . . . , 1
)
, z ∈ T.

Set u = wv.

Let A = A(n, d1, d2, . . . , dN) be a building block. By Lemma 5.4 there exist uni-
taries wA

1 ,w
A
2 , . . . ,w

A
N ∈ A such that Det

(
wA

k (z)
)
= 1, z ∈ T, k = 1, 2, . . . ,N , and

such that

Det
(
Λl(wA

k )
)
=

{
1 l �= k,

exp(2πi dl
n ) l = k.

Let A = A(n, d1, d2, . . . , dN) and B = A(m, e1, e2, . . . , eM) be building blocks. Let
ϕ : A → B be a unital ∗-homomorphism. As in [27, Chapter 1] we define sϕ( j, i)
to be the multiplicity of the representation ΛA

i in the representation ΛB
j ◦ ϕ for i =

1, 2, . . . ,N , j = 1, 2, . . . ,M.
The following theorem shows that there is a connection between KK(A,B) and

the torsion subgroups of U (A)/DU (A) and U (B)/DU (B) when A and B are building
blocks.
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Theorem 5.5 Let A = A(n, d1, d2, . . . , dN) and B = A(m, e1, e2, . . . , eM) be building
blocks and let ϕ, ψ : A→ B be unital ∗-homomorphisms. The following are equivalent.

(i) ϕ∗ = ψ∗ in Hom
(

K0(B),K0(A)
)

,
(ii) sϕ( j, i) ≡ sψ( j, i) mod n

di
, i = 1, 2, . . . ,N, j = 1, 2, . . . ,M,

(iii) ϕ#(x) = ψ#(x), x ∈ Tor
(

U (A)/DU (A)
)

,

(iv) ϕ#
(

q ′A(wA
k )
)
= ψ#

(
q ′A(wA

k )
)

, k = 1, 2, . . . ,N.

Proof For each i = 1, 2, . . . ,N , j = 1, 2, . . . ,M, let r j
i and s j

i be the integers with

0 ≤ r j
i , s

j
i <

n
di

, and r j
i ≡ sϕ( j, i) mod n

di
, s j

i ≡ sψ( j, i) mod n
di

. By Lemma 2.1

there exist a j
1, . . . , a

j
K j
, b j

1, . . . , b
j
L j
∈ T and unitaries u j , v j ∈ Me j such that

ΛB
j ◦ ϕ( f ) = u j diag

(
Λ

r j
1

1 ( f ),Λ
r j

2
2 ( f ), . . . ,Λ

r j
N

N ( f ), f (a j
1), f (a j

2), . . . , f (a j
K j

)
)

u∗j ,

(3)

ΛB
j ◦ ψ( f ) = v j diag

(
Λ

s j
1

1 ( f ),Λ
s j
2

2 ( f ), . . . ,Λ
s j
N

N ( f ), f (b j
1), f (b j

2), . . . , f (b j
L j

)
)

v∗j .(4)

Since

e j =

N∑
i=1

r j
i di + K jn =

N∑
i=1

s j
i di + L jn,

we remark that if (ii) holds then K j = L j , j = 1, 2, . . . ,M.
Note that

ϕ∗([ΛB
j ]) =

N∑
i=1

r j
i [ΛA

i ] + K j
n

dN
[ΛA

N ] =
N−1∑
i=1

r j
i [ΛA

i ] +

(
K j

n

dN
+ r j

N

)
[ΛA

N ],

ψ∗([ΛB
j ]) =

N∑
i=1

s j
i [ΛA

i ] + L j
n

dN
[ΛA

N ] =
N−1∑
i=1

s j
i [ΛA

i ] +

(
L j

n

dN
+ s j

N

)
[ΛA

N ].

By Proposition 4.3 we see that ϕ∗ = ψ∗ if and only if for every j = 1, 2, . . . ,M,

K j
n

dN
+ r j

N = L j
n

dN
+ s j

N , and r j
i = s j

i , i = 1, 2, . . . ,N − 1.

It follows that (i) holds if and only if r j
i = s j

i and K j = L j for every i, j. But this
statement is equivalent to (ii) by the remark above.

Assume (ii) holds. To prove (iii), let u ∈ A be a unitary such that qA(u) has finite
order in the group U (A)/DU (A). Then Det

(
u(·)

)
is constant. By (3), (4), and since

K j = L j , j = 1, 2, . . . ,M, it follows that

Det
(
Λ j

(
ϕ(u)

))
= Det

(
Λ j

(
ψ(u)

))
, j = 1, 2, . . . ,M.

In particular, Det
(
ϕ(u)(·)

)
equals Det

(
ψ(u)(·)

)
at the exceptional points of B. On

the other hand, Det
(
ϕ(u)(·)

)
and Det

(
ψ(u)(·)

)
are constant functions on T and
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are hence equal everywhere. We may therefore use Proposition 5.3 to conclude that
ϕ#

(
qA(u)

)
= ψ#

(
qA(u)

)
. (iii)⇒ (iv) is trivial. Assume (iv). By (3) and (4),

exp

(
2πi

dk

n
r j

k

)
= Det

(
ΛB

j ◦ ϕ(wA
k )
)
= Det

(
ΛB

j ◦ ψ(wA
k )
)
= exp

(
2πi

dk

n
s j
k

)
.

Hence r j
k = s j

k for k = 1, 2, . . . ,N , j = 1, 2, . . . ,M, and we have (ii).

Proposition 5.6 Let A and B be finite direct sums of building blocks, let ϕ, ψ : A →
B be unital ∗-homomorphisms, and let x be an element of finite order in the group
U (A)/DU (A). If [ϕ] = [ψ] in KK(A,B) then ϕ#(x) = ψ#(x).

Proof We may assume that B is a building block rather than a finite direct sum of
building blocks. Let A = A1⊕A2⊕· · ·⊕AR where each Ai is a building block, and let
ιi : Ai → A denote the inclusion. Let p1, p2, . . . , pR be the minimal non-zero central
projections in A. Since ϕ∗[pi] = ψ∗[pi] in K0(B), it follows from Lemma 3.4 that
there is a unitary u ∈ B such that uϕ(pi)u∗ = ψ(pi), i = 1, 2, . . . ,R. Hence we may
assume that ϕ(pi) = ψ(pi), i = 1, 2, . . . ,R. Set qi = ϕ(pi).

Let ϕi, ψi : Ai → qiBqi be the induced maps and let εi : qiBqi → B be the inclu-
sion, i = 1, 2, . . . ,R. If qi �= 0 then [εi] ∈ KK(qiBqi ,B) is a KK-equivalence by [23,
Theorem 7.3]. Thus

[ϕi] = [εi]
−1 · [ϕ] · [ιi] = [εi]

−1 · [ψ] · [ιi] = [ψi]

in KK(Ai , qiBqi). Let x = q ′A(u) where u ∈ A is a unitary. Let u =
∑R

i=1 ιi(ui)
where ui ∈ Ai . By Theorem 5.5 and Corollary 3.5 we see that ϕi(ui) = ψi(ui) mod
DU (qiBqi) and thus εi ◦ϕi(ui) + (1− qi) = εi ◦ψi(ui) + (1− qi) mod DU (B). Hence

ϕ(u) =
R∏

i=1

ϕ
(
ιi(ui) + (1− pi)

)
=

R∏
i=1

(
εi ◦ ϕi(ui) + (1− qi)

)
=

R∏
i=1

(
εi ◦ ψi(ui) + (1− qi)

)
=

R∏
i=1

ψ
(
ιi(ui) + (1− pi)

)
= ψ(u)

modulo DU (B).

6 Homomorphisms Between Building Blocks

In this section we improve a result of Thomsen on ∗-homomorphisms between build-
ing blocks that will be needed in the next section.

Whenever θ1, θ2, . . . , θL are real numbers such that

θ1 ≤ θ2 ≤ · · · ≤ θL ≤ θ1 + 1,
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it will be convenient for us in the following to define θn for every n ∈ Z by the formula
θpL+r = θr + p, where p ∈ Z, r = 1, 2, . . . , L. Note that for every n ∈ Z,

θn ≤ θn+1 ≤ · · · ≤ θn+L ≤ θn + 1,

and
(e2πiθ1 , e2πiθ1 , . . . , e2πiθL ) = (e2πiθn , e2πiθn+1 , . . . , e2πiθn+L )

as unordered L-tuples.

Lemma 6.1 Let a1, a2, . . . , aL ∈ T and let k be an integer. There exist real numbers
θ1, θ2, . . . , θL such that

θ1 ≤ θ2 ≤ · · · ≤ θL ≤ θ1 + 1,

such that
∑L

r=1 θr ∈ [k, k + 1[ and such that

(a1, a2, . . . , aL) = (e2πiθ1 , e2πiθ2 , . . . , e2πiθL )

as unordered L-tuples.

Proof Choose ω1, ω2, . . . , ωL ∈ [0, 1[ such that ω1 ≤ ω2 ≤ · · · ≤ ωL and such that

(a1, a2, . . . , aL) = (e2πiω1 , e2πiω2 , . . . , e2πiωL )

as unordered L-tuples. Let l be the integer such that
∑L

r=1 ωr ∈ [l, l + 1[. Set θr =
ωr+k−l.

Lemma 6.2 Assume that(
exp(2πiθ1), . . . , exp(2πiθL)

)
=

(
exp(2πiω1), . . . , exp(2πiωL)

)
as unordered L-tuples, where θ1, θ2, . . . , θL and ω1, ω2, . . . , ωL are real numbers such
that

θ1 ≤ θ2 ≤ · · · ≤ θL ≤ θ1 + 1,

ω1 ≤ ω2 ≤ · · · ≤ ωL ≤ ω1 + 1.

Then θ j = ωr+ j , j = 1, 2, . . . , L, where r =
∑L

j=1(θ j − ω j).

Proof Choose m ∈ Z such that θm < θm+1 and choose n ∈ Z such that

θm+1 = ωn+1 > ωn.

Assume that
θm+p = ωn+q + k.
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for some integers p, q with 1 ≤ p ≤ L, 1 ≤ q ≤ L, and an integer k. Then

−1 < θm+1 − θm+L ≤ θm+1 − θm+p = ωn+1 − ωn+q − k ≤ −k,

0 ≤ θm+p − θm+1 = ωn+q + k− ωn+1 < ωn+q + k− ωn ≤ 1 + k.

Hence k = 0. By assumption it follows that for every x ∈ R,

#{ j = 1, 2, . . . , L : θm+ j = x} = #{ j = 1, 2, . . . , L : ωn+ j = x}.

Thus
(θm+1, θm+2, . . . , θm+L) = (ωn+1, ωn+2, . . . , ωn+L)

as unordered L-tuples. Therefore

θm+ j = ωn+ j , j = 1, 2, . . . , L.

Hence θ j = ωn−m+ j for j = 1, 2, . . . , L. From this it follows that r = n−m.

Proposition 6.3 Let λ1, λ2, . . . , λL : [0, 1] → T be continuous functions and let k
be an integer. There exist continuous functions F1, F2, . . . , FL : [0, 1] → R such that∑L

j=1 F j(0) ∈ [k, k + 1[ and such that for each t ∈ [0, 1],

F1(t) ≤ F2(t) ≤ · · · ≤ FL(t) ≤ F1(t) + 1,

and(
λ1(t), λ2(t), . . . , λL(t)

)
=

(
exp

(
2πiF1(t)

)
, exp

(
2πiF2(t)

)
, . . . , exp

(
2πiFL(t)

))
as unordered L-tuples.

Proof Choose a positive integer n such that

|s− t| ≤
1

n
=⇒ ρ

(
λ j(s), λ j(t)

)
<

1

2L
, s, t ∈ [0, 1], j = 1, 2, . . . , L.

We will prove by induction in m that there exist continuous functions F1, . . . , FL that
satisfy the above for t ∈ [0, m

n ]. The case m = 0 follows from Lemma 6.1.
Now assume that for some m = 0, 1, . . . , n − 1 we have constructed continuous

functions F1, F2, . . . , FL : [0, m
n ] → R such that

∑L
j=1 F j(0) ∈ [k, k + 1[, and such

that for each t ∈ [0, m
n ], F1(t) ≤ F2(t) ≤ · · · ≤ FL(t) ≤ F1(t) + 1, and(

λ1(t), λ2(t), . . . , λL(t)
)
=

(
exp

(
2πiF1(t)

)
, exp

(
2πiF2(t)

)
, . . . , exp

(
2πiFL(t)

))
as unordered L-tuples. Choose αm ∈ R such that ρ

(
e2πiαm , λ j(

m
n )
)
≥ 1

2L for j =
1, 2, . . . , L. Choose continuous functions G j : [ m

n ,
m+1

n ] → ]αm, αm + 1[ such that
for each t ∈ [ m

n ,
m+1

n ],
G1(t) ≤ G2(t) ≤ · · · ≤ GL(t)
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and (
λ1(t), λ2(t), . . . , λL(t)

)
=

(
exp

(
2πiG1(t)

)
, exp

(
2πiG2(t)

)
, . . . , exp

(
2πiGL(t)

))
as unordered L-tuples. Set for j = 1, 2, . . . , L, p ∈ Z,

GpL+ j(t) = G j(t) + p, t ∈

[
m

n
,

m + 1

n

]
.

By Lemma 6.2 there exists an integer r such that for j = 1, 2, . . . , L,

F j

(m

n

)
= Gr+ j

(m

n

)
.

Define for j = 1, 2, . . . , L, a continuous function F ′j : [0, m+1
n ]→ R by

F ′j (t) =

{
F j(t) t ∈ [0, m

n ],

Gr+ j(t) t ∈ [ m
n ,

m+1
n ].

F ′1, F
′
2, . . . , F

′
L satisfy the conclusion of the lemma for t ∈ [0, m+1

n ].

Proposition 6.4 Let A = A(n, d1, d2, . . . , dN) and B = A(m, e1, e2, . . . , eM) be
building blocks and let ϕ : A → B be a unital ∗-homomorphism. There exist inte-
gers r1, r2, . . . , rN with 0 ≤ ri <

n
di

, an integer L ≥ 0, and a unitary w ∈ Mm such

that if ψ : A → B is a unital ∗-homomorphism with ϕ#
(

q ′A(ωA
k )
)
= ψ#

(
q ′A(ωA

k )
)

,
k = 1, 2, . . . ,N, and if γ : T→ R is a continuous function such that

Det
(
ψ(vA)(z)

)
= Det

(
ϕ(vA)(z)

)
exp

(
2πiγ(z)

)
, z ∈ T,

then ϕ and ψ are approximately unitarily equivalent to ∗-homomorphisms of the form

ϕ ′( f )(e2πit ) = u(t) diag
(
Λr1

1 ( f ), . . . ,ΛrN
N ( f ), f (e2πiF1(t)), . . . , f (e2πiFL(t))

)
u(t)∗,

ψ ′( f )(e2πit ) = v(t) diag
(
Λr1

1 ( f ), . . . ,ΛrN
N ( f ), f (e2πiG1(t)), . . . , f (e2πiGL(t))

)
v(t)∗,

where u, v ∈ C[0, 1]⊗Mm are unitaries with u(0) = v(0) = 1, u(1) = v(1) = w, and
F1, F2, . . . , FL : [0, 1] → R and G1,G2, . . . ,GL : [0, 1] → R are continuous functions
such that for every t ∈ [0, 1],

F1(t) ≤ F2(t) ≤ · · · ≤ FL(t) ≤ F1(t) + 1,

G1(t) ≤ G2(t) ≤ · · · ≤ GL(t) ≤ G1(t) + 1,

and such that γ(e2πit ) =
∑L

r=1

(
Gr(t)− Fr(t)

)
for every t ∈ [0, 1].
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Proof By [27, Chapter 1] it follows that ϕ is approximately unitarily equivalent to a
∗-homomorphism ϕ1 : A→ B of the form

ϕ1( f )(e2πit ) = u0(t) diag
(
Λr1

1 ( f ), . . . ,ΛrN
N ( f ), f

(
λ1(t)

)
, . . . , f

(
λL(t)

))
u0(t)∗

(5)

for t ∈ [0, 1], where r1, r2, . . . , rN are integers, 0 ≤ ri < n
di

, i = 1, 2, . . . ,N ,
λ1, λ2, . . . , λL : [0, 1] → T are continuous functions, and u0 ∈ C[0, 1] ⊗ Mm is
a unitary. Let l denote the winding number of Det

(
ϕ(vA)(·)

)
. Let y be a unitary

(Ln)× (Ln) matrix such that

y diag(a1, a2, . . . , aL)y∗ = diag(aL, a1, a2, . . . , aL−1)

for all a1, a2, . . . , aL ∈ Mm. Set

w = diag(1, 1, . . . , 1︸ ︷︷ ︸
m−Ln times

, yl).

Let now ψ : A → B be given. As above ψ is approximately unitarily equivalent to
a ∗-homomorphism ψ1 : A→ B of the form

ψ1( f )(e2πit ) = v0(t) diag
(
Λs1

1 ( f ), . . . ,ΛsN
N ( f ), f

(
µ1(t)

)
, . . . , f

(
µK(t)

))
v0(t)∗.

Note that

sϕ( j, i)
m

e j
= sϕ1 ( j, i)

m

e j
= ri + #{r = 1, 2, . . . , L : λr(y j) = xi}

n

di
,

sψ( j, i)
m

e j
= sψ1 ( j, i)

m

e j
= si + #{r = 1, 2, . . . ,K : µr(y j) = xi}

n

di
.

By Theorem 5.5 it follows that ri = si , i = 1, 2, . . . ,N . And since

m = Kn +
N∑

i=1

sidi = Ln +
N∑

i=1

ridi

we see that K = L.
By Proposition 6.3 choose continuous functions F1, F2, . . . , FL : [0, 1] → R such

that for every t ∈ [0, 1],

F1(t) ≤ F2(t) ≤ · · · ≤ FL(t) ≤ F1(t) + 1,

and such that(
λ1(t), λ2(t), . . . , λL(t)

)
= (e2πiF1(t), e2πiF2(t), . . . , e2πiFL(t))
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as unordered L-tuples for each t ∈ [0, 1]. Again by Proposition 6.3 there exist con-
tinuous functions G1,G2, . . . ,GL : [0, 1]→ R such that for every t ∈ [0, 1],

G1(t) ≤ G2(t) ≤ · · · ≤ GL(t) ≤ G1(t) + 1,

such that (
µ1(t), µ2(t), . . . , µL(t)

)
= (e2πiG1(t), e2πiG2(t), . . . , e2πiGL(t))

as unordered L-tuples for each t ∈ [0, 1], and such that∣∣∣ L∑
r=1

Gr(0)−
L∑

r=1

Fr(0) + γ(1)
∣∣∣ < 1.(6)

It follows from (5) that(
exp

(
2πiF1(0)

)
, . . . , exp

(
2πiFL(0)

))
=

(
exp

(
2πiF1(1)

)
, . . . , exp

(
2πiFL(1)

))
as unordered L-tuples. Since l =

∑L
r=1

(
Fr(1) − Fr(0)

)
we see by Lemma 6.2

that Fr(1) = Fr+l(0) for each r = 1, 2, . . . , L. Similarly, as Det
(
ϕ(vA)(·)

)
and

Det
(
ψ(vA)(·)

)
have the same winding number, Gr(1) = Gr+l(0), r = 1, 2, . . . , L.

Let t1, t2, . . . , tM ∈ ]0, 1[ be numbers such that e2πit j , j = 1, 2, . . . ,M, are the
exceptional points of B. By (5) there exist a unitary u j ∈ Mm such that

u j diag
(
Λr1

1 ( f ), . . . ,ΛrN
N ( f ), f (e2πiF1(t j )), . . . , f (e2πiFL(t j ))

)
u∗j ∈ Me j ⊆ Mm

for every f ∈ A. Choose a unitary u ∈ C[0, 1] ⊗ Mm such that u(t j) = u j , j =
1, 2, . . . ,M, u(0) = 1 and u(1) = w. Note that for every f ∈ A,

u(0) diag
(
Λr1

1 ( f ), . . . ,ΛrN
N ( f ), f (e2πiF1(0)), . . . , f (e2πiFL(0))

)
u(0)∗

= u(1) diag
(
Λr1

1 ( f ), . . . ,ΛrN
N ( f ), f (e2πiF1(1)), . . . , f (e2πiFL(1))

)
u(1)∗.

It follows that we may define a unital ∗-homomorphism ϕ ′ : A→ B by

ϕ ′( f )(e2πit ) = u(t) diag
(
Λr1

1 ( f ), . . . ,ΛrN
N ( f ), f (e2πiF1(t)), . . . , f (e2πiFL(t))

)
u(t)∗,

for f ∈ A, t ∈ [0, 1]. Then for every f ∈ A, z ∈ T,

Tr
(
ϕ( f )(z)

)
= Tr

(
ϕ1( f )(z)

)
= Tr

(
ϕ ′( f )(z)

)
.

Hence ϕ and ϕ ′ are approximately unitarily equivalent by [27, Theorem 1.4].
Similarly we see that there exists a unitary v ∈ C[0, 1] ⊗Mm such that v(0) = 1

and v(1) = w, and such that

ψ ′( f )(e2πit ) = v(t) diag
(
Λr1

1 ( f ), . . . ,ΛrN
N ( f ), f (e2πiG1(t)), . . . , f (e2πiGL(t))

)
v(t)∗

defines a ∗-homomorphism that is approximately unitarily equivalent to ψ. Finally
note that by (6) we have that γ(e2πit ) =

∑L
r=1

(
Gr(t) − Fr(t)

)
for every t ∈ [0, 1].
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7 Uniqueness

The purpose of this section is to prove a uniqueness theorem, i.e., a theorem saying
that two unital ∗-homomorphisms between (finite direct sums of) building blocks
are close in a suitable sense if they approximately agree on the invariant. Many of the
arguments here are inspired by similar arguments in [8], [10], [20], [27], and [16].

We start out with some definitions. Let k be a positive integer. A k-arc is an arc-
segment of the form

I =
{

e2πit : t ∈
[m

k
,

n

k

]}
where m and n are integers, m < n. We set

I ± ε =
{

e2πit : t ∈
[m

k
− ε,

n

k
+ ε

]}
.

Define a metric on the set of unordered L-tuples consisting of elements from T by

RL

(
(a1, a2, . . . , aL), (b1, b2, . . . , bL)

)
= min

σ∈ΣL

(
max

1≤i≤L
ρ(ai , bσ(i))

)
,

where ΣL denotes the group of permutations of the set {1, 2, . . . , L}. It follows from
Lemma 7.3 below that it suffices to take the minimum over a certain subset of ΣL.

Lemma 7.1 Let a1, a2, . . . , aL, b1, b2, . . . , bL ∈ T and let ε > 0. Assume that there is
a positive integer k such that

#{r : ar ∈ I} ≤ #{r : br ∈ I ± ε}

for all k-arcs I. Then

RL

(
(a1, a2, . . . , aL), (b1, b2, . . . , bL)

)
≤ ε +

1

k
.

Proof For j = 1, 2, . . . , L, set

X j =

{
x ∈ T : ρ(x, a j) ≤ ε +

1

k

}
and

C j = {r = 1, 2, . . . , L : br ∈ X j}.

Let S ⊆ {1, 2, . . . , L} be arbitrary. We will show that #S ≤ #
⋃

j∈S C j .
Let Y1,Y2, . . . ,Ym be the connected components of

⋃
j∈S X j . Choose for each

n = 1, 2, . . . ,m a k-arc In such that In ± ε ⊆ Yn and {a j : j ∈ S} ∩ Yn ⊆ In. Then

#{r : ar ∈ In} ≤ #{r : br ∈ In ± ε} ≤ #{r : br ∈ Yn}.

If r ∈ S then ar ∈ In for some n. Hence

#S ≤ #
{

r : ar ∈
m⋃

n=1

In

}
≤ #

{
r : br ∈

m⋃
n=1

Yn

}
= #

{
r : br ∈

⋃
j∈S

X j

}
= #

⋃
j∈S

C j .

By Hall’s marriage lemma, see e.g. [4, Theorem 2.2], the sets C j , j = 1, 2, . . . , L,
have distinct representatives. In other words, there exists a permutation σ of
{1, 2, . . . , L} such that ρ(a j , bσ( j)) ≤ ε + 1

k for j = 1, 2, . . . , L.

https://doi.org/10.4153/CJM-2001-046-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2001-046-2


1254 Jesper Mygind

Lemma 7.2 Let a1 ≤ a2 ≤ · · · ≤ aL and b1 ≤ b2 ≤ · · · ≤ bL be real numbers and
let σ be a permutation of {1, 2, . . . , L}. Then

max
1≤ j≤L

|a j − b j | ≤ max
1≤ j≤L

|a j − bσ( j)|.

Proof Let ε = max |a j − bσ( j)|. If e.g. b j < a j − ε for some j then σ must map the
set {1, 2, . . . , j} into {1, 2, . . . , j − 1}. Contradiction.

The corresponding statement for the circle is slightly more complicated. It can be
viewed as a generalization of Lemma 6.2.

Lemma 7.3 Let θ1, θ2, . . . , θL and ω1, ω2, . . . , ωL be real numbers such that

θ1 ≤ θ2 ≤ · · · ≤ θL ≤ θ1 + 1,

ω1 ≤ ω2 ≤ · · · ≤ ωL ≤ ω1 + 1.

There exists an integer p such that

max
1≤ j≤L

|θ j − ω j+p| = RL

(
(e2πiθ1 , . . . , e2πiθL ), (e2πiω1 , . . . , e2πiωL )

)
.

Proof Let ε = RL

(
(e2πiθ1 , . . . , e2πiθL ), (e2πiω1 , . . . , e2πiωL )

)
. Note that 0 ≤ ε ≤ 1

2 .
There exist y1, y2, . . . , yL ∈ R such that

(e2πiω1 , e2πiω2 , . . . , e2πiωL ) = (e2πi y1 , e2πi y2 , . . . , e2πi yL )(7)

as unordered tuples, and such that

|θ j − y j | ≤ ε, j = 1, 2, . . . , L.(8)

By Lemma 7.2 we may assume that y1 ≤ y2 ≤ · · · ≤ yL and still have that (7) and
(8) hold.

Choose an integer n, 0 ≤ n ≤ L − 1, such that y1, y2, . . . , yn < yL − 1 and
yL− 1 ≤ yn+1, yn+2, . . . , yL. Then y1 + 1, . . . , yn + 1 ∈ [yL− 1, yL] since yL ≤ y1 + 2
by (8). Choose z1, z2, . . . , zL ∈ [yL − 1, yL] such that z1 ≤ z2 ≤ · · · ≤ zL and

(z1, z2, . . . , zL) = (y1 + 1, . . . , yn + 1, yn+1, . . . , yL)

as unordered L-tuples. By (8) and Lemma 7.2 we see that max |z j − θn+ j | ≤ ε. By (7)
and Lemma 6.2 we have that z j = ω j+m for some integer m. Hence

max
j
|θ j − ω j+m−n| = max

j
|θn+ j − ω j+m| ≤ ε.

The reversed inequality is trivial.

The following lemma is fundamental in the proof of Theorem 7.5.
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Lemma 7.4 Let θ1, θ2, . . . , θL and ω1, ω2, . . . , ωL be real numbers such that

θ1 ≤ θ2 ≤ · · · ≤ θL ≤ θ1 + 1,

ω1 ≤ ω2 ≤ · · · ≤ ωL ≤ ω1 + 1,

and |
∑L

j=1(θ j − ω j)| < δ for some δ > 0. Let ε > 0 satisfy that Lε ≤ δ and

RL

(
(e2πiθ1 , e2πiθ2 , . . . , e2πiθL ), (e2πiω1 , e2πiω2 , . . . , e2πiωL )

)
≤ ε.

Assume finally that for some positive integer s,

#{ j : e2πiω j ∈ I} ≥ 2δ, j = 1, 2, . . . , L,(9)

for every s-arc I. Then

|θ j − ω j | < ε +
2

s
, j = 1, 2, . . . , L.

Proof By Lemma 7.3 there exists an integer p such that

|θ j − ω j+p| ≤ ε, j = 1, 2, . . . , L.

Note that

|p| =
∣∣∣ L∑

j=1

(ω j+p − ω j)
∣∣∣ ≤ ∣∣∣ L∑

j=1

(ω j+p − θ j)
∣∣∣ +

∣∣∣ L∑
j=1

(θ j − ω j)
∣∣∣ < Lε + δ ≤ 2δ.

Fix some j = 1, 2, . . . , L. Set

J =

{
{e2πit : ω j < t < ω j+p} if p ≥ 0

{e2πit : ω j+p < t < ω j} if p < 0.

Since #{ j : e2πiω j ∈ J} < |p| we see by (9) that J cannot contain an s-arc. Thus
|ω j − ω j+p| <

2
s . It follows that |θ j − ω j | < ε + 2

s , j = 1, 2, . . . , L.

Let A = A(n, d1, d2, . . . , dN) be a building block and p a positive integer. Let I be
a p-arc. Choose a continuous function f I

A : T → [0, 1
n ] such that ∅ �= supp f I

A ⊆ I
and such that f I

A equals 0 at all the exceptional points of A. Choose a continuous
function gI

A : T → [0, 1] such that gI
A equals 1 on I, such that supp gI

A ⊆ I ± 1
2p , and

such that supp gI
A \ I contains no exceptional points of A. Set

H(A, p) = { f I
A ⊗ 1 : I p-arc},

H̃(A, p) = {gI
A ⊗ 1 : I p-arc}.
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Theorem 7.5 Let A = A(n, d1, d2, . . . , dN) be a building block. Let ε > 0 and let
F ⊆ A be a finite set. There exists a positive integer l0 such that if l, p and q are positive
integers with l0 ≤ l ≤ p ≤ q, if B = A(m, e1, e2, . . . , eM) is a building block, if
ϕ, ψ : A→ B are unital ∗-homomorphisms, and if δ > 0, such that

(i) ψ̂(ĥ) > 8
p , h ∈ H(A, l),

(ii) ψ̂(ĥ) > 2
q , h ∈ H(A, p),

(iii) ‖ϕ̂(ĥ)− ψ̂(ĥ)‖ < δ, h ∈ H̃(A, 2q),

(iv) ψ̂(ĥ) > δ, h ∈ H(A, 4q),
(v) ϕ#

(
q ′A(ωA

k )
)
= ψ#

(
q ′A(ωA

k )
)

, k = 1, 2, . . . ,N,

(vi) DB

(
ϕ#

(
q ′A(vA)

)
, ψ#

(
q ′A(vA)

))
< 1

q ;

then there exists a unitary W ∈ B such that

‖ϕ( f )−Wψ( f )W ∗‖ < ε, f ∈ F.

Proof Choose l0 such that for x, y ∈ T,

ρ(x, y) ≤
6

l0
=⇒ ‖ f (x)− f (y)‖ <

ε

6
, f ∈ F.

Let integers q ≥ p ≥ l ≥ l0, a building block B = A(m, e1, e2, . . . , eM), and unital
∗-homomorphisms ϕ, ψ : A → B be given such that (i)–(vi) are satisfied. Choose
c > 0 such that for x, y ∈ T,

ρ(x, y) < c =⇒ ‖ϕ( f )(x)− ϕ( f )(y)‖ <
ε

6
, f ∈ F,

ρ(x, y) < c =⇒ ‖ψ( f )(x)− ψ( f )(y)‖ <
ε

6
, f ∈ F.

Let x1, x2, . . . , xN denote the exceptional points of A and let y1, y2, . . . , yM be those
of B. Let for each j = 1, 2, . . . ,M, t j ∈ ]0, 1[ be the number such that e2πit j = y j .
Let τ : T → T be a continuous function such that ρ

(
τ (z), z

)
< c for every z ∈ T,

and such that for each j = 1, 2, . . . ,M, τ is constantly equal to y j on some arc

I j = {e
2πit : t ∈ [a j , b j]},

where 0 < a j < t j < b j < 1. Define a unital ∗-homomorphism χ : B → B by
χ( f ) = f ◦ τ . Set ϕ1 = χ ◦ ϕ and ψ1 = χ ◦ ψ. Then

‖ϕ( f )− ϕ1( f )‖ <
ε

6
, f ∈ F,

‖ψ( f )− ψ1( f )‖ <
ε

6
, f ∈ F.

ϕ1 and ψ1 satisfy (i)–(vi). Let

ϕ1(vA) = cψ1(vA)e2πib,
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where c ∈ DU (B) and b ∈ B is a self-adjoint element with ‖b‖ < 1
q . Note that

Det
(
ϕ1(vA)(z)

)
= Det

(
ψ1(vA)(z)

)
exp

(
2πi Tr

(
b(z)

))
, z ∈ T,(10)

Det
(
Λ j ◦ ϕ1(vA)

)
= Det

(
Λ j ◦ ψ1(vA)

)
exp

(
2πi Tr

(
Λ j(b)

))
, j = 1, 2, . . . ,M.

(11)

Fix some j = 1, 2, . . . ,M. Let ι j : Me j → Mm denote the (unital) inclusion. By
Theorem 5.5 and (v) we have that sϕ1 ( j, i) ≡ sψ1 ( j, i) mod n

di
, i = 1, 2, . . . ,N ,

j = 1, 2, . . . ,M. Choose s j
i , 0 ≤ s j

i < n
di

, such that s j
i ≡ sϕ1 ( j, i) mod n

di
. By

Lemma 2.1 we see that for each z ∈ I j ,

ϕ1( f )(z) = ι j

(
y j

1 diag
(
Λ

s j
1

1 ( f ), . . . ,Λ
s j
N

N ( f ), f (e2πiθ j
1 ), . . . , f (e

2πiθ j
D j )

)
y j∗

1

)
,

ψ1( f )(z) = ι j

(
y j

2 diag
(
Λ

s j
1

1 ( f ), . . . ,Λ
s j
N

N ( f ), f (e2πiω j
1 ), . . . , f (e

2πiω j
D j )

)
y j∗

2

)
,

for some unitaries y j
1, y j

2 ∈ Me j and numbers θ j
1, . . . , θ

j
D j
, ω

j
1, . . . , ω

j
D j
∈ R. By

changing y j
1 and y j

2 we may by (11) and Lemma 6.1 assume that

θ
j
1 ≤ θ

j
2 ≤ · · · ≤ θ

j
D j
≤ θ j

1 + 1,

ω
j
1 ≤ ω

j
2 ≤ · · · ≤ ω

j
D j
≤ ω j

1 + 1,

and

D j∑
r=1

(θ j
r − ω

j
r ) = Tr

(
Λ j(b)

)
.(12)

Let I be a 2q-arc. By (iii),

#{r : e2πiθ j
r ∈ I}n +

∑
{i:xi∈I}

s j
i di ≤ Tr

(
Λ j ◦ ϕ1(gA

I ⊗ 1)
)

< e jδ + Tr
(
Λ j ◦ ψ1(gA

I ⊗ 1)
)

≤ e jδ + #

{
r : e2πiω j

r ∈ I ±
1

4q

}
n +

∑
{i:xi∈supp gA

I }

s j
i di

≤ #

{
r : e2πiω j

r ∈ I ±
1

2q

}
n +

∑
{i:xi∈supp gA

I }

s j
i di.

The last inequality uses (iv) and that ‖ f K
A ‖∞ ≤ 1 for some 4q-arc K. Hence

#{r : e2πiθ j
r ∈ I} ≤ #

{
r : e2πiω j

r ∈ I ±
1

2q

}
.
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Therefore by Lemma 7.1,

RD j

(
(e2πiθ j

1 , e2πiθ j
2 , . . . , e

2πiθ j
D j ), (e2πiω j

1 , e2πiω j
2 , . . . , e

2πiω j
D j )

)
≤

1

2q
+

1

2q
≤

1

q
.

By (ii), if J is a p-arc then

#{r : e2πiω j
r ∈ J} ≥ 2

e j

q
,

since ‖ f J
A‖∞ ≤

1
n . Clearly D j

q ≤
e j

q . Furthermore,

∣∣∣ D j∑
r=1

(θ j
r − ω

j
r )
∣∣∣ = ∣∣Tr

(
Λ j(b)

) ∣∣ ≤ e j‖b‖ <
e j

q
.

By Lemma 7.4 it follows that

|θ j
r − ω

j
r | ≤

1

q
+

2

p
≤

3

p
, r = 1, 2, . . . ,D j .

Let g j
r : [a j , b j] → R be the continuous function such that g j

r (a j) = g j
r (b j) = θ

j
r ,

g j
r (t j ) = ω

j
r , and such that g j

r is linear when restricted to each of the two intervals
[a j , t j] and [t j , b j]. Note that

|g j
r (t)− θ j

r | ≤
3

p
, r = 1, 2, . . . ,D j .(13)

Finally, define a ∗-homomorphism ξ j : A→ C(I j)⊗Mm by

ξ j( f )(e2πit ) = ι j

(
y j

1 diag
(
Λ

s j
1

1 ( f ), . . . ,Λ
s j
N

N ( f ), f (e2πig j
1 (t)), . . . , f (e

2πig j
D j

(t)
)
)

y j∗
1

)
,

for t ∈ [a j , b j], f ∈ A.
Define a unital ∗-homomorphism ξ : A→ B by

ξ( f )(z) =

{
ξ j( f )(z), z ∈ I j , j = 1, 2, . . . ,M,

ϕ1( f )(z), z ∈ T \
⋃M

j=1 I j .

Then by (13)

‖ϕ1( f )− ξ( f )‖ <
ε

6
, f ∈ F.

Note that f �→ Λ j ◦ ξ( f ) and f �→ Λ j ◦ ψ1( f ) are equivalent representations of
A on Me j , j = 1, 2, . . . ,M. In particular, sξ( j, i) = sψ1 ( j, i), i = 1, 2, . . . ,N ,

j = 1, 2, . . . ,M, and hence ξ#
(

q ′A(ωA
k )
)
= ψ#

1

(
q ′A(ωA

k )
)

, k = 1, 2, . . . ,N by Theo-
rem 5.5. Let η : T→ R be the continuous function

η(e2πit ) =

{
m
e j

∑D j

r=1

(
g j

r (t)− θ j
r

)
t ∈ [a j , b j], j = 1, 2, . . . ,M,

0 otherwise.

https://doi.org/10.4153/CJM-2001-046-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2001-046-2


Classification of Certain Simple C∗-Algebras with Torsion in K1 1259

For z ∈ T,

Det
(
ξ(vA)(z)

)
= Det

(
ϕ1(vA)(z)

)
exp

(
2πiη(z)

)
= Det

(
ψ1(vA)(z)

)
exp

(
2πi Tr

(
b(z)

))
exp

(
2πiη(z)

)
= Det

(
ψ1(vA)(z)

)
exp

(
2πiγ(z)

)
,

where γ : T→ R is defined by γ(z) = η(z) + Tr
(

b(z)
)

. Note that by (12)

γ(y j ) = η(y j) + Tr
(

b(y j)
)

=
m

e j

D j∑
r=1

(ω j
r − θ

j
r ) +

m

e j
Tr
(
Λ j(b)

)
= 0, j = 1, 2, . . . ,M,

and

‖γ‖∞ ≤ ‖η‖∞ +
∥∥Tr

(
b(·)

)∥∥
∞
<

m

e j

3

p
D j +

m

q
≤ 3

m

p
+

m

q
≤ 4

m

p
.

By Proposition 6.4, ϕ1, ψ1, and ξ are approximately unitarily equivalent to ϕ ′1, ψ ′1,
and ξ ′, respectively, where ϕ ′1, ψ

′
1, ξ
′ : A→ B are ∗-homomorphisms of the form

ϕ ′1( f )(e2πit ) = u(t) diag
(
Λr1

1 ( f ), . . . ,ΛrN
N ( f ), f (e2πiF1(t)), . . . , f (e2πiFL(t))

)
u(t)∗,

ψ ′1( f )(e2πit ) = v(t) diag
(
Λr1

1 ( f ), . . . ,ΛrN
N ( f ), f (e2πiG1(t)), . . . , f (e2πiGL(t))

)
v(t)∗,

ξ ′( f )(e2πit ) = w(t) diag
(
Λr1

1 ( f ), . . . ,ΛrN
N ( f ), f (e2πiH1(t)), . . . , f (e2πiHL(t))

)
w(t)∗,

for integers r1, r2, . . . , rN with 0 ≤ ri <
n
di

, i = 1, 2, . . . ,N , unitaries u, v, w in
C[0, 1] ⊗ Mm with u(0) = v(0) = w(0), u(1) = v(1) = w(1), and continuous
functions Fr,Gr,Hr : [0, 1]→ R, r = 1, 2, . . . , L, such that for t ∈ [0, 1],

F1(t) ≤ F2(t) ≤ · · · ≤ FL(t) ≤ F1(t) + 1,

G1(t) ≤ G2(t) ≤ · · · ≤ GL(t) ≤ G1(t) + 1,

H1(t) ≤ H2(t) ≤ · · · ≤ HL(t) ≤ H1(t) + 1,

and such that for each t ∈ [0, 1],

γ(e2πit ) =
L∑

r=1

(
Hr(t)− Gr(t)

)
.(14)

Hence ∣∣∣ L∑
r=1

(
Hr(t)− Gr(t)

) ∣∣∣ < 4
m

p
.(15)
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It follows from (13) that for each t ∈ [0, 1],

RL

(
(e2πiF1(t), . . . , e2πiFL(t)), (e2πiH1(t), . . . , e2πiHL(t))

)
≤

3

p
.

Let t ∈ [0, 1] and let I be a 2q-arc. Then by (iii) and (iv)

#{r : e2πiFr(t) ∈ I}n +
∑
{i:xi∈I}

ridi

≤ Tr
(
ϕ ′1(gA

I ⊗ 1)(e2πit )
)

< mδ + Tr
(
ψ ′1(gA

I ⊗ 1)(e2πit )
)

≤ mδ + #

{
r : e2πiGr(t) ∈ I ±

1

4q

}
n +

∑
{i:xi∈supp gA

I }

ridi

≤ #

{
r : e2πiGr(t) ∈ I ±

1

2q

}
n +

∑
{i:xi∈supp gA

I }

ridi.

Hence

#{r : e2πiFr(t) ∈ I} ≤ #

{
r : e2πiGr (t) ∈ I ±

1

2q

}
.

It follows from Lemma 7.1 that for each t ∈ [0, 1],

RL

(
(e2πiF1(t), . . . , e2πiFL(t)), (e2πiG1(t), . . . , e2πiGL(t))

)
≤

1

2q
+

1

2q
=

1

q
.

We conclude that

RL

(
(e2πiG1(t), . . . , e2πiGL(t)), (e2πiH1(t), . . . , e2πiHL(t))

)
≤

1

q
+

3

p
≤

4

p
.

Since f �→ ψ ′1( f )(y j ) and f �→ ξ ′( f )(y j ) are equivalent representations of A on
Mm for j = 1, 2, . . . ,M, it follows that

(e2πiG1(t j ), . . . , e2πiGL(t j )) = (e2πiH1(t j ), . . . , e2πiHL(t j ))

as unordered L-tuples. Therefore, as γ(y j) = 0, j = 1, 2, . . . ,M, we see by Lemma 6.2
and (14) that

Gr(t j ) = Hr(t j ), r = 1, 2, . . . , L, j = 1, 2, . . . ,M.

As v(0) = w(0), v(1) = w(1), we may thus define a ∗-homomorphism µ : A→ B by

µ( f )(e2πit ) = v(t) diag
(
Λr1

1 ( f ), . . . ,ΛrN
N ( f ), f (e2πiH1(t)), . . . , f (e2πiHL(t))

)
v(t)∗,
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for f ∈ A, t ∈ [0, 1]. Since

Tr
(
µ( f )(z)

)
= Tr

(
ξ ′( f )(z)

)
= Tr

(
ξ( f )(z)

)
, z ∈ T, f ∈ A,

we get from [27, Theorem 1.4] that µ and ξ are approximately unitarily equivalent.
By (i) we have that for every l-arc J,

#{r : e2πiGr(t) ∈ J} > 8
m

p
.

As L 4
p ≤ 4 m

p , we conclude from (15) and Lemma 7.4 that

|Gr(t)−Hr(t)| ≤
4

p
+

2

l
≤

6

l
.

Hence
‖µ( f )− ψ ′1( f )‖ <

ε

6
, f ∈ F.

Choose unitaries U ,V ∈ B such that

‖ξ( f )−Uµ( f )U ∗‖ <
ε

6
, f ∈ F,

‖ψ ′1( f )−Vψ1( f )V ∗‖ <
ε

6
, f ∈ F.

Set W = UV . Then for f ∈ F,

‖ϕ( f )−Wψ( f )W ∗‖

≤ ‖ϕ( f )− ϕ1( f )‖ + ‖ϕ1( f )− ξ( f )‖ + ‖ξ( f )−Uµ( f )U ∗‖

+ ‖Uµ( f )U ∗ −Uψ ′1( f )U ∗‖ + ‖Uψ ′1( f )U ∗ −UVψ1( f )V ∗U ∗‖

+ ‖Wψ1( f )W ∗ −Wψ( f )W ∗‖

<
ε

6
+
ε

6
+
ε

6
+
ε

6
+
ε

6
+
ε

6
= ε.

Lemma 7.6 Let B = A(m, e1, e2, . . . , eM) be a building block and let r ∈ B be a
non-zero projection of rank s ∈ Z. Let C = rBr and let u, v ∈ C be unitaries. Then

DC

(
q ′C (u), q ′C (v)

)
≤ 2π

m

s
DB

(
q ′B
(

u + (1− r)
)
, q ′B

(
v + (1− r)

))
.

Proof Let ε = DB

(
q ′B
(

u + (1− r)
)
, q ′B

(
v + (1− r)

))
. We may assume that ε < 1.

Let b ∈ B be a self-adjoint element such that uv∗+(1−r) = e2πib modulo DU (B) and

‖b‖ ≤ ε. Define c ∈ C by c(z) = 1
s Tr

(
b(z)

)
r. Since b̂ = ĉ we have that e2πib = e2πic

modulo DU (B). Thus

uv∗ + (1− r) = e2πic = re2πicr + (1− r) modulo DU (B).
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C is a building block by Corollary 3.5, and therefore it follows from Proposition 5.3
that uv∗ = re2πicr modulo DU (C). Thus

DC

(
q ′C (u), q ′C (v)

)
≤ ‖re2πicr − r‖ ≤ ‖e2πic − 1‖ ≤ 2π‖c‖ ≤ 2π

m

s
ε.

Let A = A1⊕A2⊕ · · ·⊕AR, where Ai = A(ni , di
1, d

i
2, . . . , d

i
Ni

) is a building block.
For each i = 1, 2, . . . ,R, we define unitaries in A by

vA
i = (1, . . . , 1, vAi , 1, . . . , 1).

wA
i,k = (1, . . . , 1,wAi

k , 1, . . . , 1), k = 1, 2, . . . ,Ni.

Set U A =
⋃R

i=1{w
A
i,k : k = 1, 2, . . . ,Ni}. If p is a positive integer, we set

H(A, p) =
R⋃

i=1

ιi
(

H(Ai , p)
)
,

H̃(A, p) =
R⋃

i=1

ιi
(

H̃(Ai , p)
)
,

where ιi : Ai → A denotes the inclusion, i = 1, 2, . . . ,R.

Theorem 7.7 Let A = A1 ⊕ A2 ⊕ · · · ⊕ AR be a finite direct sum of building blocks.
Let p1, p2, . . . , pR be the minimal non-zero central projections in A. Let ε > 0 and let
F ⊆ A be a finite set. There exists a positive integer l such that if p and q are positive
integers with l ≤ p ≤ q, if B is a finite direct sum of building blocks, if ϕ, ψ : A→ B are
unital ∗-homomorphisms, if δ > 0, if

(i) ψ̂(ĥ) > 8
p , h ∈ H(A, l),

(ii) ψ̂(ĥ) > 2
q , h ∈ H(A, p) ∪ {p1, p2, . . . , pR},

(iii) ‖ϕ̂(ĥ)− ψ̂(ĥ)‖ < δ, h ∈ H̃(A, 2q),

(iv) ψ̂(ĥ) > δ, h ∈ H(A, 4q),

(v) DB

(
ϕ#

(
q ′A(vA

i )
)
, ψ#

(
q ′A(vA

i )
))

< 1
4q2 , i = 1, 2, . . . ,R;

and if at least one of the two statements

(vi) [ϕ] = [ψ] in KK(A,B),
(vii) ϕ∗ = ψ∗ on K0(A) and ϕ#(x) = ψ#(x), x ∈ U A,

are true; then there exists a unitary W ∈ B such that

‖ϕ( f )−Wψ( f )W ∗‖ < ε, f ∈ F.
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Proof For each i = 1, 2, . . . ,R, let ιi : Ai → A be the inclusion and let πi : A → Ai

be the projection. Choose by Theorem 7.5 a positive integer li
0 with respect to the

finite set πi(F) ⊆ Ai and ε > 0. Set l = maxi li
0.

Let integers q ≥ p ≥ l, a finite direct sum of building blocks B, and unital ∗-
homomorphismsϕ, ψ : A→ B be given such that the above holds. Since (vi) implies
(vii) by Proposition 5.6, we may assume that (vii) holds. It is easy to reduce to the
case where B = A(m, e1, e2, . . . , eM) is a single building block.

Since ϕ∗[pi] = ψ∗[pi] in K0(B) for i = 1, 2, . . . ,R, there is by Lemma 3.4 a
unitary u ∈ B such that uϕ(pi)u∗ = ψ(pi) for every i = 1, 2, . . . ,R. Hence we may
assume that ϕ(pi) = ψ(pi), i = 1, 2, . . . ,R. Set qi = ψ(pi). It follows from (ii) that
qi �= 0, i = 1, 2, . . . ,R. Let ti be the (normalized) trace of qi .

Let ϕi, ψi : Ai → qiBqi be the induced maps. Note that qiBqi is a building block
by Corollary 3.5. Fix some i = 1, 2, . . . ,R.

Every tracial state on qiBqi is of the form 1
ti
ω|qi Bqi for some ω ∈ T(B). Therefore

ϕi and ψi satisfy (i)–(iv) of Theorem 7.5, with δ replaced by δ
ti

. Note that ti >
2
q by

(ii). Since

DB

(
q ′B
(
ϕi(vAi ) + (1− qi)

)
, q ′B

(
ψi(vAi ) + (1− qi)

))
<

1

4q2

by (vi), we have that

Dqi Bqi

(
ϕ#

i

(
q ′Ai

(vAi )
)
, ψ#

i

(
q ′Ai

(vAi )
))
≤ 2π

1

ti

1

4q2
< 2π

q

2

1

4q2
<

1

q

by Lemma 7.6, which is (v) of Theorem 7.5 for ϕi and ψi . Similarly we get that
ϕ#

i (wAi
k ) = ψ#

i (wAi
k ), k = 1, 2, . . . ,Ni , which is (vi) of Theorem 7.5. Hence there

exists a unitary Wi ∈ qiBqi such that

‖ϕi( f )−Wiψi( f )Wi
∗‖ < ε, f ∈ πi(F).

Set W =
∑R

i=1 Wi . Then W ∈ B is a unitary and

‖ϕ( f )−Wψ( f )W ∗‖ < ε, f ∈ F.

8 Existence

The goal of this section is to prove an existence theorem that is the counterpart of the
uniqueness theorem of the previous section.

Let A and B be building blocks and let ϕ : A→ B be a ∗-homomorphism. We say
that continuous functions λ1, λ2, . . . , λN : T → T are eigenvalue functions for ϕ if
λ1(z), λ2(z), . . . , λN(z) are eigenvalues for the matrix ϕ(ι ⊗ 1)(z) (counting multi-
plicities) for every z ∈ T, where ι : T→ C denotes the inclusion.

Theorem 8.1 Let A = A(n, d1, d2, . . . , dN) be a building block, let ε > 0, and let C
be a positive integer. There exists a positive integer K such that if
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(i) B = A(m, e1, e2, . . . , eM) is a building block with s(B) ≥ K,
(ii) κ ∈ KK(A,B)e,
(iii) λ1, λ2, . . . , λC : T→ T are continuous functions,
(iv) u ∈ B is a unitary such that κ∗[vA] = [u] in K1(B);

then there exists a unital ∗-homomorphism ϕ : A → B such that λ1, λ2, . . . , λC are
eigenvalue functions for ϕ, and such that

[ϕ] = κ in KK(A,B),

ϕ#
(

q ′A(vA)
)
= q ′B(u), in U (B)/DU (B),∥∥∥∥ ϕ̂( f )−

1

C

C∑
k=1

f ◦ λk

∥∥∥∥ < ε‖ f ‖, f ∈ Aff T(A),

when we identify Aff T(A) and Aff T(B) with CR(T) as order unit spaces.

Proof We may assume that ε < 4 and, by repeating the functions λ1, λ2, . . . , λC ,
that C > 8

ε
. Let K be a positive integer such that

K ≥
4(N + C + 2)n

ε
.

Let B, λ1, λ2, . . . , λC , κ, and u be as above. By Proposition 4.3 there are integers h ji ,
i = 1, 2, . . . ,N , j = 1, 2, . . . ,M, with 0 ≤ h ji <

n
di

for i �= N , such that
κ∗([ΛB

1 ])
κ∗([ΛB

2 ])
...

κ∗([ΛB
M])

 =


h11 h12 · · · h1N

h21 h22 · · · h2N
...

...
...

hM1 hM2 · · · hMN




[ΛA
1 ]

[ΛA
2 ]
...

[ΛA
N ]

 .

As in the proof of Theorem 4.7 we see that

N∑
i=1

h jidi = e j ,(16)

since κ∗ : K0(A) → K0(B) preserves the order unit, and h jN > n
dN

, because s(B) ≥
Nn. By Proposition 4.3 we have for i = 1, 2, . . . ,N , j = 1, 2, . . . ,M,

m

e j
h ji = l ji

n

di
+ si,(17)

where l ji and si are integers such that 0 ≤ si <
n
di

. Note that l ji ≥ 0. For j =
1, 2, . . . ,M, choose integers ho

jN , 0 ≤ ho
jN < n

dN
, and r j ≥ 0 such that

h jN = r j
n

dN
+ ho

jN ,(18)
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and note that

m

e j
ho

jN = lo
jN

n

dN
+ sN(19)

for some integers lo
jN ≥ 0, j = 1, 2, . . . ,M. Then

l jN − lo
jN =

m

e j
r j .(20)

Let for each j

r j = k j(C + 2) + u j(21)

for some integers k j ≥ 0 and 0 ≤ u j < C + 2 and set

b = min
1≤ j≤M

k j
m

e j
.

Note that for j = 1, 2, . . . ,M,

e j =

N∑
i=1

h jidi < (N − 1)n + r jn + ho
jN dN < Nn + r jn

= (N + C + 2)n +
(

r j − (C + 2)
)

n ≤
ε

4
e j +

(
r j − (C + 2)

)
n.

Hence (
1−

ε

4

)
e j <

(
r j − (C + 2)

)
n.

Therefore

nk j(C + 2)
m

e j
= n(r j − u j)

m

e j
> n

(
r j − (C + 2)

) m

e j
>

(
1−

ε

4

)
m.(22)

Since by (16)

nk j(C + 2)
m

e j
≤ nr j

m

e j
≤ h jN dN

m

e j
≤ m,

we see that

nb
8

ε
≤ nbC ≤ nb(C + 2) ≤ m.(23)

By this and (22),

m
(

1−
ε

4

)
< nb(C + 2) ≤ nbC +

ε

4
m.

Hence from (23) we conclude that

0 ≤ 1−
nbC

m
<
ε

2
.
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Let x1, x2, . . . , xN denote the exceptional points of A and let y1, y2, . . . , yM be
those of B. Set for j = 1, 2, . . . ,M,

a j =
(N−1∏

i=1

Det
(
Λi(vA)

) h ji
)

Det
(
ΛN (vA)

) ho
jN ,

then by (17) and (19)

a j

m
e j =

(N−1∏
i=1

xi
l ji

)
xN

lojN

N∏
i=1

Det
(
Λi(vA)

) si
.(24)

Set for j = 1, 2, . . . ,M,
c j = Det

(
Λ j(u)

)
and note that

c j

m
e j = Det

(
u(y j )

)
.(25)

By (22) we see that k j �= 0, j = 1, 2, . . . ,M, and hence there exists a continuous
function λC+1 : T→ T such that

(
λC+1(y j )

)−k j
= a jc

−1
j

C∏
k=1

(
λk(y j)

) k j
, j = 1, 2, . . . ,M.(26)

Let for f ∈ A and j = 1, 2, . . . ,M, D j( f ) be the m×m matrix

diag
(
Λs1

1 ( f ), . . . ,ΛsN
N ( f ), f (x1), . . . , f (x1)︸ ︷︷ ︸

l j1 times

, . . . , f (xN−1), . . . , f (xN−1)︸ ︷︷ ︸
l j(N−1) times

,

f (xN ), . . . , f (xN )︸ ︷︷ ︸
lojN times

, f
(
λ1(y j)

)
, . . . , f

(
λ1(y j )

)︸ ︷︷ ︸
k j

m
e j
−b times

, . . . ,

f
(
λC+1(y j)

)
, . . . , f

(
λC+1(y j)

)︸ ︷︷ ︸
k j

m
e j
−b times

, f (1), . . . , f (1)︸ ︷︷ ︸
(k j +u j ) m

e j
−b times

,

f
(
λ1(y j)

)
, . . . , f

(
λ1(y j)

)︸ ︷︷ ︸
b times

, . . . , f
(
λC+1(y j)

)
, . . . , f

(
λC+1(y j)

)︸ ︷︷ ︸
b times

,

f (1), . . . , f (1)︸ ︷︷ ︸
b times

)
.

Since D j( f ) is a block-diagonal matrix with m
e j

h ji blocks of the form Λi( f ), i =

1, 2, . . . ,N − 1, m
e j

ho
jN blocks of the form ΛN ( f ), k j

m
e j

blocks of the form f
(
λk(y j )

)
,
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k = 1, 2, . . . ,C + 1, and (k j + u j)
m
e j

blocks of the form f (1), there exists a unitary

W j ∈ Mm such that

W jD j( f )W ∗
j ∈ Me j ⊆ Mm

for every f ∈ A. Set L = 1
n (m−

∑N
i=1 sidi)− (C + 2)b. For each j = 1, 2, . . . ,M, we

have by (16), (17), (20), (21) that

L =
N∑

i=1

l ji − (C + 2)b =
N−1∑
i=1

l ji + lo
jN +

m

e j

(
k j(C + 2) + u j

)
− (C + 2)b.

Choose for k = 1, 2, . . . , L continuous functions µk : T → T such that for each
j = 1, 2, . . . ,M,

(
µ1(y j), µ2(y j), . . . , µL(y j)

)
=

(
x1, . . . , x1︸ ︷︷ ︸

l j1 times

, . . . , xN−1, . . . , xN−1︸ ︷︷ ︸
l j(N−1) times

, xN , . . . , xN︸ ︷︷ ︸
lojN times

,

λ1(y j), . . . , λ1(y j)︸ ︷︷ ︸
k j

m
e j
−b times

, . . . , λC+1(y j ), . . . , λC+1(y j)︸ ︷︷ ︸
k j

m
e j
−b times

, 1, 1, . . . , 1︸ ︷︷ ︸
(k j +u j )

m
e j
−b times

)

as ordered tuples.

Choose a unitary W ∈ C(T) ⊗Mm such that W (y j) = W j for j = 1, 2, . . . ,M.
Define a continuous function g : T→ T such that

g(z)
L∏

k=1

µk(z)
C+1∏
k=1

(
λk(z)

) b
N∏

i=1

Det
(
Λi(vA)

) si
= Det

(
u(z)

)
, z ∈ T.

Then by (24), (25), and (26) we have that g(y j) = 1 for j = 1, 2, . . . ,M. Define a
unital ∗-homomorphism ϕ : A→ B by

ϕ( f )(z) =W (z) diag
(
Λs1

1 ( f ), . . . ,ΛsN
N ( f ), f

(
µ1(z)

)
, . . . , f

(
µL(z)

)
,

f
(
λ1(z)

)
, . . . , f

(
λ1(z)

)︸ ︷︷ ︸
b times

, . . . ,

f
(
λC+1(z)

)
, . . . , f

(
λC+1(z)

)︸ ︷︷ ︸
b times

,

f
(

g(z)
)
, f (1), . . . , f (1)︸ ︷︷ ︸

b−1 times

)
W (z)∗.
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By the remarks following the definition of D j( f ) we see that for j = 1, 2, . . . ,M,

ϕ∗[ΛB
j ] =

N−1∑
i=1

h ji[Λ
A
i ] + ho

jN [ΛA
N ] +

(
k j(C + 1) + (k j + u j)

) n

dN
[ΛA

N ]

=
N−1∑
i=1

h ji[Λ
A
i ] +

(
ho

jN + r j
n

dN

)
[ΛA

N ] =
N∑

i=1

h ji[Λ
A
i ] = κ∗[ΛB

j ],

and hence ϕ∗ = κ∗ in Hom
(

K0(B),K0(A)
)

. Furthermore, as Det
(

vA(·)
)

is the
identity map on T, we have that for z ∈ T,

Det
(
ϕ(vA)(z)

)
=

N∏
i=1

Det
(
Λi(vA)

) si

L∏
k=1

µk(z)
(C+1∏

k=1

λk(z)b
)

g(z) = Det
(

u(z)
)
,

and by (26), for j = 1, 2, . . . ,M,

Det
(
Λ j ◦ ϕ(vA)

)
=

(N−1∏
i=1

Det
(
Λi(vA)

) h ji
)

Det
(
ΛN (vA)

) ho
jN

C+1∏
k=1

λk(y j)
k j

=
(N−1∏

i=1

Det
(
Λi(vA)

) h ji
)

Det
(
ΛN (vA)

) ho
jN a j

−1c j = Det
(
Λ j(u)

)
.

Hence q ′B
(
ϕ(vA)

)
= q ′B(u) in U (B)/DU (B) by Proposition 5.3. It follows from The-

orem 4.7 that [ϕ] = κ in KK(A,B).
Finally, for ω ∈ T(B) and f ∈ Aff T(A) ∼= CR(T),∣∣∣∣∣ϕ̂( f )(ω)−

1

C

C∑
i=1

f ◦ λk(ω)

∣∣∣∣∣
=

∣∣∣∣∣ω(ϕ( f ⊗ 1)
)
−

1

C

C∑
k=1

ω
(

( f ◦ λk)⊗ 1
) ∣∣∣∣∣

≤

∣∣∣∣ 1

m
(m−Cbn)

∣∣∣∣ ‖ f ‖ +

∥∥∥∥∥ 1

m
bn

C∑
k=1

f ◦ λk −
1

C

C∑
k=1

f ◦ λk

∥∥∥∥∥
≤

∣∣∣∣ 1

m
(m−Cbn)

∣∣∣∣ ‖ f ‖ +

∣∣∣∣ 1

m
bn−

1

C

∣∣∣∣C‖ f ‖ = 2

∣∣∣∣1− Cbn

m

∣∣∣∣ ‖ f ‖ < ε‖ f ‖.

Hence ∥∥∥∥∥ϕ̂( f )−
1

C

C∑
k=1

f ◦ λk

∥∥∥∥∥ < ε‖ f ‖.

The following result is due to Li [17, Theorem 2.1]. It generalizes a theorem of
Thomsen [26, Theorem 2.1] and it is the key stone in the proof of Theorem 8.3 below.
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Theorem 8.2 Let X be a path-connected compact metric space, let F ⊆ CR(X) be a
finite subset and let ε > 0. There exists a positive integer L such that for all integers N ≥
L, for all compact metric spaces Y , and for all positive linear order unit preserving maps
Θ : CR(X) → CR(Y ), there exist continuous functions λk : Y → X, k = 1, 2, . . . ,N,
such that ∥∥∥∥∥Θ( f )−

1

N

N∑
k=1

f ◦ λk

∥∥∥∥∥ < ε, f ∈ F.

Theorem 8.3 Let A = A(n, d1, d2, . . . , dN) be a building block, let ε > 0, let F ⊆
Aff T(A) be a finite set, and let C be a non-negative integer. There exists a positive
integer K such that if

(i) B = A(m, e1, e2, . . . , eM) is a building block with s(B) ≥ K,
(ii) κ ∈ KK(A,B)e,
(iii) λ1, λ2, . . . , λC : T→ T are continuous functions,
(iv) Θ : Aff T(A)→ Aff T(B) is a positive linear order unit preserving map,
(v) u ∈ B is a unitary such that κ∗[vA] = [u] in K1(B);

then there exists a unital ∗-homomorphism ϕ : A → B such that λ1, λ2, . . . , λC are
eigenvalue functions for ϕ and such that

[ϕ] = κ in KK(A,B),

ϕ#
(

q ′A(vA)
)
= q ′B(u) in U (B)/DU (B)

‖ϕ̂( f )−Θ( f )‖ < ε, f ∈ F.

Proof We may assume that ‖ f ‖ ≤ 1, f ∈ F. Choose by Theorem 8.2 an integer L
with respect to F ⊆ Aff T(A) ∼= CR(T) and ε

3 . We may assume that L > C and that
1− L−C

C+L < ε
3 . Then choose by Theorem 8.1 an integer K with respect to C + L and ε

3 .
Now let B, Θ, λ1, λ2, . . . , λC , κ and u be given as above. Choose continuous

functions λC+1, λC+2, . . . , λC+L : T→ T such that in Aff T(B) ∼= CR(T),∥∥∥∥∥Θ( f )−
1

L

C+L∑
k=C+1

f ◦ λk

∥∥∥∥∥ < ε

3
, f ∈ F.

By Theorem 8.1 there exists a unital ∗-homomorphism ϕ : A → B such that λ1,
λ2, . . . , λC+L are eigenvalue functions for ϕ and such that

[ϕ] = κ in KK(A,B),

ϕ#
(

q ′A(vA)
)
= q ′B(u) in U (B)/DU (B),∥∥∥∥∥ϕ̂( f )−

1

C + L

C+L∑
k=1

f ◦ λk

∥∥∥∥∥ < ε

3
‖ f ‖, f ∈ Aff T(A).
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Since for f ∈ Aff T(A),∥∥∥∥∥ 1

C + L

C+L∑
k=1

f ◦ λk −
1

L

C+L∑
k=C+1

f ◦ λk

∥∥∥∥∥
≤

∥∥∥∥∥ 1

C + L

C+L∑
k=C+1

f ◦ λk −
1

L

C+L∑
k=C+1

f ◦ λk

∥∥∥∥∥ +

∥∥∥∥∥ 1

C + L

C∑
k=1

f ◦ λk

∥∥∥∥∥
≤

∣∣∣∣ 1

C + L
−

1

L

∣∣∣∣ L‖ f ‖ +
1

C + L
C‖ f ‖ =

(
1−

L−C

C + L

)
‖ f ‖ <

ε

3
‖ f ‖,

we get that
‖ϕ̂( f )−Θ( f )‖ < ε, f ∈ F.

Lemma 8.4 Let A = A(n, d1, d2, . . . , dN) be a building block, let p ∈ A be a non-zero
projection, and let u ∈ A be a unitary. Then there exists a unitary w ∈ pAp such that

q ′A(u) = q ′A
(

w + (1− p)
)

in U (A)/DU (A).

Proof Note that pAp is a building block by Corollary 3.5. Hence by Lemma 5.4
there exists a unitary w ∈ pAp such that

Det
(

w(z)
)
= Det

(
u(z)

)
, z ∈ T,

Det
(
Λi(w)

)
= Det

(
Λi(u)

)
, i = 1, 2, . . . ,N.

Then q ′A(u) = q ′A
(

w + (1− p)
)

in U (A)/DU (A) by Theorem 5.3.

Theorem 8.5 Let A = A1 ⊕ A2 ⊕ · · · ⊕ AR be a finite direct sum of building blocks.
Let F ⊆ Aff T(A) be a finite set and let ε > 0. There exists a positive integer K such that
if

(i) B = B1⊕B2⊕· · ·⊕BS is a finite direct sum of building blocks and κ is an element
in KK(A,B)e,

(ii) for every minimal non-zero central projection p in A we have that

s(B)ρB(κ∗[p]) ≥ K in Aff T(B),

(iii) there exists a linear positive order unit preserving map Θ : Aff T(A) → Aff T(B)
such that the diagram

K0(A)
ρA−−−−→ Aff T(A)

κ∗

	 	Θ
K0(B) −−−−→

ρB

Aff T(B)

commutes,
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(iv) u1, u2, . . . , uN ∈ B are unitaries such that

κ∗[vA
i ] = [ui] in K1(A), i = 1, 2, . . . ,R;

then there exists a unital ∗-homomorphism ϕ : A→ B such that [ϕ] = κ in KK(A,B),
and such that

‖ϕ̂( f )−Θ( f )‖ < ε, f ∈ F,

ϕ#
(

q ′A(vA
i )
)
= q ′B(ui) in U (B)/DU (B), i = 1, 2, . . . ,R.

Proof Let πA
i : A → Ai be the projection and ιAi : Ai → A be the inclusion, i =

1, 2, . . . ,R. Let p1, p2, . . . , pR denote the minimal non-zero central projections in A.

Choose by Theorem 8.3 an integer Ki with respect to π̂A
i (F) ⊆ Aff T(Ai), ε > 0 and

C = 0. Set K = max1≤i≤R Ki .
Let B, κ, Θ, and u1, u2, . . . , uN be as above. We may assume that S = 1. To see

this, assume that the case S = 1 has been settled. Let πB
l : B → Bl be the projection

and let ιBl : Bl → B be the inclusion. As the diagram

K0(A)
ρA−−−−→ Aff T(A)

πB
l ∗◦κ∗

	 	 π̂B
l ◦Θ

K0(Bl) −−−−→
ρBl

Aff T(Bl)

commutes for l = 1, 2, . . . , S, and since s(Bl)ρBl (π
B
l ∗◦κ∗[pi]) ≥ K for i = 1, 2, . . . ,R,

l = 1, 2, . . . , S, we get unital ∗-homomorphisms ϕl : A→ Bl such that

[ϕl] = [πB
l ] · κ in KK(A,Bl),

‖ϕ̂l( f )− π̂B
l ◦Θ( f )‖ < ε, f ∈ F,

ϕ#
l

(
q ′A(vA

i )
)
= q ′Bl

(
πB

l (ui)
)

in U (Bl)/DU (Bl), i = 1, 2, . . . ,R.

Define ϕ : A→ B by ϕ(a) =
(
ϕ1(a), ϕ2(a), . . . , ϕS(a)

)
. Then

[ϕ] =
[ S∑

l=1

ιBl ◦ ϕl

]
=

S∑
l=1

[ιBl ] · [πB
l ] · κ = κ in KK(A,B),

‖ϕ̂( f )−Θ( f )‖ = max
l
‖π̂B

l ◦ ϕ̂( f )− π̂B
l ◦Θ( f )‖ < ε, f ∈ F,

ϕ#
(

q ′A(vA
i )
)
= q ′B(ui) in U (B)/DU (B), i = 1, 2, . . . ,R.

So assume B = A(m, e1, e2, . . . , eM). Note that by assumption κ∗[pi] > 0 in
K0(B) for i = 1, 2, . . . ,R. Let e = gcd(e1, e2, . . . , eM). Choose by Corollary 3.6
orthogonal non-zero projections qi ∈ Me ⊆ B, for i = 1, 2, . . . ,R, with sum 1 such
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that κ∗[pi] = [qi]. Let ti > 0 be the normalized trace of qi . Note that we have a well-

defined map Ji : Aff T(Ai)→ Aff T(A) such that Ji(â) = ι̂Ai (a) for every self-adjoint
element a ∈ Ai . DefineΘi : Aff T(Ai)→ Aff T(qiBqi) by

Θi( f )

(
1

ti
τ ◦ εi

)
=

1

ti
Θ
(

Ji( f )
)

(τ ), τ ∈ T(B),

where εi : qiBqi → B denotes the inclusion.
Θi is a linear positive map, and it preserves the order unit since

Θi(1)

(
1

ti
τ ◦ εi

)
=

1

ti
Θ(p̂i)(τ ) =

1

ti
ρB ◦ κ∗[pi](τ ) = 1.

By [23, Theorem 7.3] we get that [εi] ∈ KK(qiBqi ,B) is a KK-equivalence. Note that

[εi]
−1 · κ · [ιAi ] ∈ KK(Ai , qiBqi)e.

By Corollary 3.5 we have that qiBqi
∼= A(tim, tie1, tie2, . . . , tieM). Using Lemma 8.4,

choose a unitary wi ∈ qiBqi such that

q ′B
(

wi + (1− qi)
)
= q ′B(ui) in U (B)/DU (B).

Since tie j ≥ K for j = 1, 2, . . . ,M, we get by Theorem 8.3 a unital ∗-homomorphism
ϕi : Ai → qiBqi such that

[ϕi] = [εi]
−1 · κ · [ιAi ] in KK(Ai , qiBqi),

‖ϕ̂i( f )−Θi( f )‖ < ε, f ∈ π̂A
i (F),

ϕi(vAi ) = wi mod DU (qiBqi).

Now define ϕ : A→ B by

ϕ(a) =
R∑

i=1

εi ◦ ϕi ◦ π
A
i (a).

ϕ is a unital ∗-homomorphism and

[ϕ] =
R∑

i=1

[εi] · [ϕi] · [π
A
i ] =

R∑
i=1

κ · [ιAi ] · [πA
i ] = κ in KK(A,B).

For f ∈ Aff T(A), τ ∈ T(B), we have that

Θ( f )(τ ) =
R∑

i=1

Θ
(

Ji

(
π̂A

i ( f )
))

(τ ) =
R∑

i=1

tiΘi

(
π̂A

i ( f )
) (

1

ti
τ ◦ εi

)
,
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and

ϕ̂( f )(τ ) = f (τ ◦ϕ) = f

(
R∑

i=1

ti
1

ti
τ ◦ εi ◦ ϕi ◦ π

A
i

)
=

R∑
i=1

tiϕ̂i

(
π̂A

i ( f )
) (

1

ti
τ ◦ εi

)
.

It follows that
‖ϕ̂( f )−Θ( f )‖ < ε, f ∈ F.

Finally, for i = 1, 2, . . . ,R,

ϕ(vA
i ) = εi ◦ ϕi(vAi ) + (1− qi) = wi + (1− qi) = ui

modulo DU (B).

9 Injective Connecting Maps

The purpose of this section is to show that a simple unital infinite dimensional in-
ductive limit of a sequence of finite direct sums of building blocks can be realized as
an inductive limit of a sequence of finite direct sums of building blocks with unital
and injective connecting maps.

From now on, we will consider inductive limits in the category of order unit spaces
and linear positive order unit preserving maps, as introduced by Thomsen [26]. It
follows from [26, Lemma 3.3] that Aff T(·) is a continuous functor from the category
of separable unital C∗-algebras and unital ∗-homomorphisms to the category of or-
der unit spaces. We will also need Elliott’s approximative intertwining argument, see
[9, Theorem 2.1] or [25].

Lemma 9.1 Let A be a finite direct sum of building blocks, interval building blocks,
and matrix algebras. Let ε > 0 and let F ⊆ A be a finite set. There exists a finite
set of positive non-zero elements H ⊆ A such that if B is a building block or an interval
building block, andϕ : A→ B is a unital ∗-homomorphism withϕ(h) �= 0, h ∈ H, then
there exists a unital injective ∗-homomorphism ψ : A→ B such that ‖ϕ( f )−ψ( f )‖ <
ε, f ∈ F.

Proof By Corollary 3.5 (and the corresponding result for interval building blocks)
we may assume that A is a building block, an interval building block or a matrix
algebra rather than a finite direct sum of such algebras. We will carry out the proof in
the case that A = A(n, d1, d2, . . . , dN) is a circle building block. The proof in the case
that A is an interval building block is similar, and the matrix algebra case is trivial.

Choose δ > 0 such that for x, y ∈ T,

ρ(x, y) < 2δ =⇒ ‖ f (x)− f (y)‖ < ε, f ∈ F.

Let T =
⋃K

i=1 Vi where each Vi is an open arc-segment of length less than δ. Choose
for each i = 1, 2, . . . ,K, a non-zero continuous function χi : T → [0, 1] with sup-
port in Vi such that χi is zero at every exceptional point of A. Set

H = {χ1 ⊗ 1, χ2 ⊗ 1, . . . , χK ⊗ 1}.
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Let ϕ : A → B be given such that ϕ(h) �= 0, h ∈ H. By [27, Chapter 1] we may
assume that

ϕ( f )(e2πit ) = u(t) diag
(
Λs1

1 ( f ), . . . ,ΛsN
N ( f ), f

(
λ1(t)

)
, . . . , f

(
λL(t)

))
u(t)∗

if B = A(m, e1, e2, . . . , eM) is a circle building block, and

ϕ( f )(t) = u(t) diag
(
Λs1

1 ( f ), . . . ,ΛsN
N ( f ), f

(
λ1(t)

)
, . . . , f

(
λL(t)

))
u(t)∗

if B = I(m, e1, e2, . . . , eM) is an interval building block. Here u ∈ C[0, 1] ⊗ Mm

is a unitary, λ1, . . . , λL : [0, 1] → T are continuous functions, and s1, s2, . . . , sN are
non-negative integers. Since ϕ(h) �= 0, h ∈ H, it follows that the set

⋃L
k=1 λk([0, 1])

intersects non-trivially with every Vi .
If B is an interval building block, let t1, t2, . . . , tM ∈ [0, 1] be the exceptional

points of B. If B is a circle building block, let t1, t2, . . . , tM ∈ [0, 1] be numbers such
that e2πit j , j = 1, 2, . . . ,M, are the exceptional points of B.

For each k = 1, 2, . . . , L, choose a continuous function µk : [0, 1] → T such that
ρ
(
µk(t), λk(t)

)
< 2δ, t ∈ [0, 1], such that µk(t) = λk(t) for t ∈ {t1, t2, . . . , tM , 0, 1},

and such that
⋃k

i=1 µk([0, 1]) =
⋃k

i=1 Vi = T. Define ψ : A→ B by

ψ( f )(e2πit ) = u(t) diag
(
Λs1

1 ( f ), . . . ,ΛsN
N ( f ), f

(
µ1(t)

)
, . . . , f

(
µL(t)

))
u(t)∗

if B is a circle building block, and

ψ( f )(t) = u(t) diag
(
Λs1

1 ( f ), . . . ,ΛsN
N ( f ), f

(
µ1(t)

)
, . . . , f

(
µL(t)

))
u(t)∗

if B is an interval building block. Note that ψ is injective and ‖ϕ( f ) − ψ( f )‖ < ε,
f ∈ F.

Lemma 9.2 Let A be a unital C∗-algebra that is the inductive limit of a sequence

A1
α1−→ A2

α2−→ A3
α3−→ · · ·

of finite direct sums of building blocks. Then A is the inductive limit of a similar sequence,
with unital connecting maps.

Proof Note that we may assume that αn,∞(p) �= 0 for every positive integer n and
every minimal non-zero central projection p ∈ An. By Lemma 2.2 it follows that
αn,∞(q) �= 0 for every non-zero projection q ∈ An. Let 1n ∈ An denote the unit.
Since {αn,∞(1n)}∞n=1 is an approximate unit for A there exists a positive integer N
such that αk,∞(1k) = 1 for all k ≥ N . Hence αk(1k) = 1k+1, k ≥ N .

Lemma 9.3 Let X ⊆ T be a closed set and let G ⊆ X be a finite subset. Let δ > 0 be
given. There exist a closed subset R ⊆ X with finitely many connected components such
that G ⊆ R, together with a continuous surjective map g : X → R such that g(z) = z,
z ∈ G, and ρ

(
g(z), z

)
≤ δ, z ∈ X.
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Proof Let G = {e2πit j : j = 1, 2, . . . ,N} where 0 ≤ t1 < t2 < · · · < tN < 1. Set
tN+1 = t1 + 1. Set I j = {e2πit : t ∈ [t j , t j+1]}. We may assume that t j+1 − t j < δ
unless the interior of I j intersects non-trivially with X. On each I j let either g be the
identity map (if I j ⊆ X) or a continuous map onto {e2πit j , e2πit j+1} that is constant on
the set of boundary points of I j . Set R = g(X).

Lemma 9.4 Let A be a quotient of a finite direct sum of building blocks. Let F ⊆ A
be a finite set and let ε > 0. There exists a finite direct sum of building blocks, interval
building blocks and matrix algebras B, and unital ∗-homomorphisms ϕ : A → B and
ψ : B→ A such that ψ is injective and ‖ψ ◦ ϕ( f )− f ‖ < ε, f ∈ F.

Proof We may assume that A is a quotient of a building block rather than of a finite
direct sum of building blocks. Hence by Lemma 2.2

A = { f ∈ C(X)⊗Mn : f (xi) ∈ Mdi , i = 1, 2, . . . ,N}

where X ⊆ T is a closed subset and x1, x2, . . . , xN ∈ X. Choose δ > 0 such that

y, z ∈ X, ρ(y, z) ≤ δ =⇒ ‖ f (y)− f (z)‖ < ε, f ∈ F.

Choose by Lemma 9.3 a closed subset R ⊆ X with finitely many connected compo-
nents such that x1, x2, . . . , xN ∈ R, and a continuous surjective map g : X → R such
that g(xi) = xi , i = 1, 2, . . . ,N , and such that ρ

(
g(z), z

)
≤ δ, z ∈ X. Let

B = { f ∈ C(R)⊗Mn : f (xi) ∈ Mdi , i = 1, 2, . . . ,N}.

Define ψ : B → A by ψ( f ) = f ◦ g and let ϕ : A → B be restriction. Then
‖ψ ◦ ϕ( f )− f ‖ < ε, f ∈ F.

Proposition 9.5 Let A be a unital simple inductive limit of a sequence of finite direct
sums of building blocks. Then A is the inductive limit of a sequence of finite direct sums
of building blocks, interval building blocks and matrix algebras, with unital and injective
connecting maps.

Proof By Lemma 9.2 we have that A is the inductive limit of a sequence

A1
α1−→ A2

α2−→ A3
α3−→ · · ·

where each αn is unital and injective and each An is a quotient of a finite direct sum of
building blocks. We will construct a strictly increasing sequence of positive integers
{nk}, a sequence

B1
β1−→ B2

β2−→ B3
β3−→ · · ·
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of finite direct sums of building blocks, interval building blocks and matrix algebras
with unital connecting maps, unital ∗-homomorphisms µk : Ank → Bk+1, and unital
injective ∗-homomorphisms ψk : Bk → Ank such that the diagram

An1

αn1 ,n2
��

µ1

���
��

��
��

�
An2

αn2 ,n3
��

µ2

���
��

��
��

�
An3

αn3 ,n4
��

µ3

���
��

��
��

��
. . .

B1

ψ1

��

β1

�� B2

ψ2

��

β2

�� B3

ψ3

��

β3

�� . . .

becomes an approximate intertwining. Furthermore βk should be injective unless
Bk+1 is finite dimensional. This is sufficient since the proposition is trivial if A is an
AF-algebra.

It is easy to construct B1, n1 and ψ1. Assume that Bk, nk and ψk have been con-
structed. Let ε > 0 and finite sets F ⊆ Ank and G ⊆ Bk be given. Choose H ⊆ Bk by
Lemma 9.1 with respect to ε > 0 and G. Since A is simple we may choose nk+1 such

that α̂nk,nk+1 (ψ̂k(h)) > 0 for h ∈ H. Choose Bk+1, ϕk+1 and ψk+1 by Lemma 9.4 with
respect to ε > 0 and αnk,nk+1 (F). Set µk = ϕk+1 ◦ αnk,nk+1 . Then

‖ψk+1 ◦ µk(x)− αnk,nk+1 (x)‖ < ε, x ∈ F.

Since µ̂k ◦ ψ̂k(ĥ) > 0, h ∈ H, there exists by Lemma 9.1 a unital ∗-homomorphism
βk : Bk → Bk+1 such that

‖µk ◦ ψk(x)− βk(x)‖ < ε, x ∈ G,

and such that βk is injective if Bk+1 is infinite dimensional.

Lemma 9.6 Let A be a simple infinite dimensional inductive limit of a sequence

A1
α1−→ A2

α2−→ A3
α3−→ · · ·

of finite direct sums of building blocks, interval building blocks and matrix algebras, with
unital and injective connecting maps. Then s(Am)→∞.

Proof The lemma is well-known if A is an AF-algebra. We may therefore assume
that Ak is infinite dimensional for some k. Let L be a positive integer. Let b1, b2, . . . ,
bL ∈ Ak be positive non-zero mutually orthogonal elements. Since A is simple and
the connecting maps are injective, there exists an integer N ≥ k such that

α̂k,N (b̂ j) > 0, j = 1, 2, . . . , L.

Hence if m ≥ N and µ : Am → Mn is a unital ∗-homomorphism, we see that the
elements µ ◦ α1,m(b j), j = 1, 2, . . . , L, are non-zero and mutually orthogonal. Thus
n ≥ L.
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Proposition 9.7 Let A be a simple unital infinite dimensional inductive limit of a
sequence of finite direct sums of building blocks. Then A is the inductive limit of a se-
quence of finite direct sums of building blocks and interval building blocks with unital
and injective connecting maps.

Proof By Proposition 9.5 we have that A is the inductive limit of a sequence

A1
α1−→ A2

α2−→ A3
α3−→ · · ·

where each αk is unital and injective and each Ak is of the form Ck ⊕ Fk for a fi-
nite (possibly trivial) direct sum of building blocks Ck and a finite dimensional C∗-
algebra Fk. Set Bk = Ck ⊕

(
C(T) ⊗ Fk

)
and let ψk : Ak → Bk be the canonical

∗-homomorphism. It suffices to construct a strictly increasing sequence of posi-
tive integers {nk}, unital ∗-homomorphisms µk : Bnk → Ank+1 , and unital injective
∗-homomorphisms βk : Bnk → Bnk+1 such that the diagram

An1

αn1 ,n2
��

ψn1

��

An2

αn2 ,n3
��

ψn2

��

An3

αn3 ,n4
��

ψn3

��

. . .

Bn1

µ1

����������

β1

�� Bn2

µ2

����������

β2

�� Bn3

µ3

�����������

β3

�� . . .

becomes an approximate intertwining. This is done by induction. Set n1 = 1.
Assume that nk has been constructed. Let ε > 0 and a finite set G ⊆ Bnk be given.

It suffices to construct nk+1 > nk, a unital ∗-homomorphism µk : Bnk → Ank+1 such
that µk ◦ψnk and αnk,nk+1 are approximately unitarily equivalent, and a unital injective
∗-homomorphism βk : Bnk → Bnk+1 such that

‖βk(x)− ψnk+1 ◦ µk(x)‖ < ε, x ∈ G.(27)

Let Fnk = Mm1 ⊕ Mm2 ⊕ · · · ⊕ MmN and let p1, p2, . . . , pN be the minimal non-
zero central projections in Fnk ⊆ Ank . Let πi : Bnk → C(T) ⊗Mmi be the projection,
i = 1, 2, . . . ,N . Choose by Lemma 9.1 a finite set Hi ⊆ C(T) ⊗ Mmi of positive
non-zero elements with respect to ε and πi(G). Let hi be the cardinality of Hi .

Since A is simple there exists a δ > 0 such that

α̂nk,∞(p̂i) > δ, i = 1, 2, . . . ,N.

By Lemma 9.6 there exists an integer nk+1 > nk such that

α̂nk,nk+1 (p̂i) > δ, i = 1, 2, . . . ,N,

s(Ank+1 ) > δ−1 max
i

(himi), i = 1, 2, . . . ,N.
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Let qi = αnk,nk+1 (pi) and note that

s(qiAnk+1 qi) > δs(Ank+1 ) > himi , i = 1, 2, . . . ,N.

Hence there exists a unital ∗-homomorphism λi : C(T)⊗Mmi → qiAnk+1 qi such that

λ̂i(ĥ) > 0, h ∈ Hi . Let µk : Bnk → Ank+1 be the ∗-homomorphism that agrees with
αnk,nk+1 on Cnk and with λi on C(T) ⊗Mmi . The ∗-homomorphism x �→ λi(1 ⊗ x)
from Mmi to qiAnk+1 qi is by [27, Chapter 1] approximately unitarily equivalent to the
∗-homomorphism induced by αnk,nk+1 . Hence µk ◦ψnk and αnk,nk+1 are approximately
unitarily equivalent.

Let ei = ψnk+1 (qi), i = 1, 2, . . . ,N and let ξi : qiAnk+1 qi → eiBnk+1 ei be the unital

∗-homomorphism induced by ψnk+1 . Since ξ̂i ◦ λ̂i(ĥ) > 0 there exists by Lemma 9.1
a unital injective ∗-homomorphism ϕi : C(T)⊗Mmi → eiBnk+1 ei such that

‖ϕi(x)− ξi ◦ λi(x)‖ < ε, x ∈ πi(G), i = 1, 2, . . . ,N.

Let βk be the ∗-homomorphism that agrees with ψnk+1 ◦ µk on Cnk and with ϕi on
C(T)⊗Mmi . Note that βk is unital and injective and that (27) holds.

It remains to replace interval building blocks with building blocks. This turns out
to be much more complicated than in [20, Lemma 1.5] or [27, Lemma 4.7], since our
building blocks may be unital projectionless. We will use the following lemma, which
resembles a uniqueness result for interval building blocks. The proof is inspired by
Elliott’s proof of the uniqueness lemma for interval algebras [8].

Lemma 9.8 Let A = I(n, d1, d2, . . . , dN) be an interval building block. Let F ⊆ A be
a finite set and let ε > 0 be given. There is a finite set H ⊆ A of positive elements of norm
1 such that if B = I(m, e1, e2, . . . , eM) is an interval building block with exceptional
points y1, y2, . . . , yM, if ϕ, ψ : A→ B are unital ∗-homomorphisms and if δ > 0, such
that

(i) ‖ϕ̂(ĥ)− ψ̂(ĥ)‖ < δ, h ∈ H,

(ii) ϕ̂(ĥ) > δ, h ∈ H,
(iii) ψ̂(ĥ) > δ, h ∈ H,
(iv) f �→ ϕ( f )(y j ) and f �→ ψ( f )(y j ) are equivalent representations of A on Mm,

j = 1, 2, . . . ,M;

then there is a unitary W ∈ B such that

‖ϕ( f )−Wψ( f )W ∗‖ < ε, f ∈ F.

Proof We may assume that ‖ f ‖ ≤ 1 for f ∈ F. Let x1, x2, . . . , xN be the exceptional
points of A. Choose a positive integer q such that

2

q
< min{|xi − x j | : i �= j},

|x − y| ≤
3

q
⇒ ‖ f (x)− f (y)‖ <

ε

3
, f ∈ F.
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For r = 1, 2, . . . , q, define a continuous function hr : [0, 1]→ [0, 1] by

hr(t) =


0 0 ≤ t ≤ r−1

q ,

qt − (r − 1) r−1
q ≤ t ≤ r

q ,

1 r
q ≤ t ≤ 1.

Set

H = {h1 ⊗ 1, h2 ⊗ 1, . . . , hq ⊗ 1} ∪ {(h1 − h2)⊗ 1, . . . , (hq−1 − hq)⊗ 1}.

Let ϕ, ψ : A→ B be unital ∗-homomorphisms that satisfy (i)–(iv). By [27, Chap-
ter 1] we see that ϕ and ψ are approximately unitarily equivalent to ∗-homomor-
phisms of the form

ϕ ′( f )(t) = u(t) diag
(
Λr1

1 ( f ), . . . ,ΛrN
N ( f ), f

(
λ1(t)

)
, . . . , f

(
λL(t)

))
u(t)∗

ψ ′( f )(t) = v(t) diag
(
Λs1

1 ( f ), . . . ,ΛsN
N ( f ), f

(
µ1(t)

)
, . . . , f

(
µK (t)

))
v(t)∗

for continuous functions λ1 ≤ λ2 ≤ · · · ≤ λL, µ1 ≤ µ2 ≤ · · · ≤ µK : [0, 1] →
[0, 1], integers ri and si with 0 ≤ ri <

n
di

, 0 ≤ si <
n
di

for i = 1, 2, . . . ,N , and
unitaries u, v ∈ C[0, 1] ⊗ Mm. By (iv) we have that f �→ ϕ ′( f )(y j ) and f �→
ψ ′( f )(y j) are equivalent representations of A on Mm, j = 1, 2, . . . ,M. It follows
that ri = si , i = 1, 2, . . . ,N , that K = L, and that(

λ1(y j), λ2(y j), . . . , λL(y j)
)
=

(
µ1(y j), µ2(y j), . . . , µL(y j)

)
as unordered L-tuples, j = 1, 2, . . . ,M. Hence

λk(y j) = µk(y j), j = 1, 2, . . . ,M, k = 1, 2, . . . , L.(28)

For every t ∈ [0, 1], r = 2, 3, . . . , q, we have that

#

{
k : λk(t) ≥

r

q

}
n +

∑
i:xi≥ r

q

ridi ≤ Tr
(
ϕ ′(hr ⊗ 1)(t)

)
< mδ + Tr

(
ψ ′(hr ⊗ 1)(t)

)
< Tr

(
ψ ′(hr−1 ⊗ 1)(t)

)
≤ #

{
k : µk(t) ≥

r − 2

q

}
n +

∑
i:xi≥

r−2
q

ridi.

As [ r−2
q , r

q ] at most contains one of the exceptional points of A, we see that

#

{
k : λk(t) ≥

r

q

}
n < #

{
k : µk(t) ≥

r − 2

q

}
n + n.
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Thus

#

{
k : λk(t) ≥

r

q

}
≤ #

{
k : µk(t) ≥

r − 2

q

}
.

It follows that λk(t) ≤ µk(t) + 3
q . Symmetry allows us to conclude that for all t ∈

[0, 1],

|λk(t)− µk(t)| ≤
3

q
, k = 1, 2, . . . , L.

By (28) we can define a ∗-homomorphism β : A→ B by

β( f )(t) = v(t) diag
(
Λr1

1 ( f ), . . . ,ΛrN
N ( f ), f

(
λ1(t)

)
, . . . , f

(
λL(t)

))
v(t)∗

Note that
‖ψ ′( f )− β( f )‖ <

ε

3
, f ∈ F.

Since Tr
(
β( f )(t)

)
= Tr

(
ϕ( f )(t)

)
, f ∈ A, t ∈ [0, 1], it follows that β and ϕ are ap-

proximately unitarily equivalent by [27, Corollary 1.5]. Hence there exists a unitary
U ∈ B such that

‖ϕ( f )−Uβ( f )U ∗‖ <
ε

3
, f ∈ F.

Choose a unitary V ∈ B such that

‖ψ ′( f )−Vψ( f )V ∗‖ <
ε

3
, f ∈ F.

Set W = UV . Then for f ∈ F,

‖ϕ( f )−Wψ( f )W ∗‖ ≤ ‖ϕ( f )−Uβ( f )U ∗‖ + ‖Uβ( f )U ∗ −Uψ ′( f )U ∗‖

+ ‖Uψ ′( f )U ∗ −UVψ( f )V ∗U ∗‖

<
ε

3
+
ε

3
+
ε

3
= ε.

Define a continuous function κ : T→ [0, 1] by

κ(e2πit ) =

{
2t t ∈ [0, 1

2 ],

2− 2t t ∈ [ 1
2 , 1].

Define continuous functions ι1, ι2 : [0, 1] → T by ι1(t) = eπit , ι2(t) = e−πit . Note
that κ ◦ ι1 = κ ◦ ι2 = id[0,1].

Let A = I(n, d1, d2, . . . , dN) be an interval building block with exceptional points
t1, t2, . . . , tN . Define a circle building block by

AT =
{

f ∈ C(T)⊗Mn : f
(
ι1(ti)

)
, f

(
ι2(ti)

)
∈ Mdi , i = 1, 2, . . . ,N

}
.

Define unital ∗-homomorphisms ξA : A → AT by ξA( f ) = f ◦ κ, f ∈ A, and
j1
A, j2

A : AT → A by j1
A(g) = g◦ι1, j2

A(g) = g◦ι2, g ∈ AT. Then j1
A◦ξA = j2

A◦ξA = idA.
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Let A be a finite direct sum of building blocks and interval building blocks. It
follows from the above that there exists a finite direct sum of building blocks AT

together with unital ∗-homomorphisms ξA : A → AT and j1
A, j2

A : AT → A such that
j1
A ◦ ξA = j2

A ◦ ξA = idA and

j1
A( f ) = j2

A( f ) = 0 =⇒ f = 0, f ∈ AT.(29)

Theorem 9.9 Let A be a simple unital infinite dimensional inductive limit of a se-
quence of finite direct sums of circle building blocks. Then A is the inductive limit of a
sequence of finite direct sums of circle building blocks with unital and injective connecting
maps.

Proof By Proposition 9.7 we see that A is the inductive limit of a sequence

A1
α1−→ A2

α2−→ A3
α3−→ · · ·

where each An is a finite direct sum of circle and interval building blocks and each αn

is a unital and injective ∗-homomorphism.
By passing to a subsequence, if necessary, we may assume that either, every An is

a circle or an interval building block or, every An is a finite direct sum of at least two
circle or interval building blocks.

Let us first assume that the latter is the case.
Let An = An

1⊕An
2⊕· · ·⊕An

Nn
where each An

i is a circle or an interval building block.
For each n let πn

i : An → An
i denote the coordinate projections, i = 1, 2, . . . ,Nn. First

we claim that we may assume that all the maps πn+1
i ◦ αn are injective.

By Elliott’s approximate intertwining argument it suffices to show that given a
finite set G ⊆ An and ε > 0 there exists an integer m > n and a unital ∗-homomor-
phism ψ : An → Am such that ‖αn,m(g) − ψ(g)‖ < ε, g ∈ G, and such that πm

i ◦ ψ
is injective, i = 1, 2, . . . ,Nm. Choose by Lemma 9.1 a finite set H ⊆ An of positive
non-zero elements with respect to G and ε. As A is simple and the connecting maps

are injective, we have that α̂n,∞(ĥ) > 0, h ∈ H. Thus there exists an integer m > n

such that α̂n,m(ĥ) > 0, h ∈ H. Hence πm
i ◦ αn,m(h) �= 0, i = 1, 2, . . . ,Nm, and the

claim follows by Nm applications of Lemma 9.1.
Define a unital ∗-homomorphism ψn : AT

n → An+1 by

ψn(x) =
(
πn+1

1 ◦ αn ◦ j1
An

(x), πn+1
2 ◦ αn ◦ j2

An
(x), . . . , πn+1

Nn+1
◦ αn ◦ j2

An
(x)

)
.

Since the maps πn+1
i ◦ αn are injective, i = 1, 2, . . . ,Nn+1, and as Nn+1 ≥ 2, it follows

from (29) that ψn is injective. The theorem therefore follows in this case from the
commutativity of the diagram

A1

α1
��

ξA1

��

A2

α2
��

ξA2

��

A3

α3
��

ξA3

��

. . .

AT
1

ψ1

���������

ξA2◦ψ1

�� AT
2

ψ2

���������

ξA3◦ψ2

�� AT
3

ψ3

�����������

ξA4◦ψ3

�� . . .
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It remains to prove the theorem in the first case. By passing to a subsequence we
may assume that each An is an interval building block. Let ε > 0, let k be a positive
integer, and let F ⊆ Ak be finite. Again by Elliott’s approximative intertwining argu-
ment, it suffices to show that there exists an integer l > k and a unital and injective
∗-homomorphism ψ : AT

k → Al such that

‖αk,l(x)− ψ ◦ ξAk (x)‖ < ε, x ∈ F.

Choose by Lemma 9.8 a finite set H ⊆ Ak of positive elements of norm 1 with
respect to F and ε. Since A is simple and the connecting maps are injective there

exists a δ > 0 such that α̂k,∞(ĥ) > 2δ, h ∈ H. Let Ak = I(n, d1, d2, . . . , dN). By
Lemma 9.6 there exists an integer l > k such that s(Al) >

2n
δ

and such that

α̂k,l(ĥ) > 2δ, h ∈ H.

Let Al = I(m, e1, e2, . . . , eM). By [27, Chapter 1] αk,l ◦ j1
Ak

: AT
k → Al is approximately

unitarily equivalent to a ∗-homomorphism β : AT
k → Al of the form

β( f )(t) = u(t) diag
(
Λr1

1 ( f ), . . . ,ΛrN
N ( f ), f

(
µ1(t)

)
, . . . , f

(
µL(t)

))
u(t)∗,

t ∈ [0, 1],

where u ∈ C[0, 1]⊗Mm is a unitary and µ1, µ2, . . . , µL : [0, 1]→ T are continuous
functions. Choose a continuous function µ ′1 : [0, 1] → T such that µ ′1 = µ1 at the
exceptional points of Al and such that µ ′1 is surjective. Define ϕ : AT

k → Al by

ϕ( f )(t)

= u(t) diag
(
Λr1

1 ( f ), . . . ,ΛrN
N ( f ), f

(
µ ′1(t)

)
, f

(
µ2(t)

)
, . . . , f

(
µL(t)

))
u(t)∗.

Note that ϕ is injective, and that for h ∈ H,

‖ϕ̂ ◦ ξ̂Ak (ĥ)− α̂k,l(ĥ)‖ =
∥∥ ϕ̂( ξ̂Ak (ĥ)

)
− α̂k,l ◦ ĵ1

Ak

(
ξ̂Ak (ĥ)

)∥∥ ≤ ‖ϕ̂− β̂‖ ≤ 2n

m
< δ.

Finally, as Λ j ◦ ϕ = Λ j ◦ β, j = 1, 2, . . . ,M, we see by Lemma 9.8 that there exists a
unitary W ∈ Al such that

‖Wϕ ◦ ξAk ( f )W ∗ − αk,l( f )‖ < ε, f ∈ F.

Set ψ(x) =Wϕ(x)W ∗, x ∈ AT
k .

10 Construction of a Certain Map

In [22] Rørdam defined the bifunctor KL to be a certain quotient of KK. Some of
our main results are more elegantly formulated in terms of KL than KK, and we will
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therefore from now on use KL instead of KK. Recall from [22] that the Kasparov
product yields a product KL(B,C) × KL(A,B) → KL(A,C). Furthermore, if K∗(A)
is finitely generated then KL(A, ·) ∼= KK(A, ·), and this functor is continuous by [23,
Theorem 1.14] and [23, Theorem 7.13]. Finally, approximately unitarily equivalent
∗-homomorphisms define the same element of KL [22, Proposition 5.4]. It should
be noted that KL is related to homomorphisms of K-theory with coefficients, [6].

Let A and B be unital C∗-algebras. Let KL(A,B)e be the set of elements κ ∈
KK(A,B) for which κ∗ : K0(A) → K0(B) preserves the order unit. Let KL(A,B)T

be those elements κ ∈ KL(A,B)e for which there exists an affine continuous map
ϕT : T(B)→ T(A) such that

rB(ω)
(
κ∗(x)

)
= rA

(
ϕT(ω)

)
(x), x ∈ K0(A), ω ∈ T(B).

Lemma 10.1 Let C be a finite direct sum of building blocks, let ε > 0, and let F ⊆
Aff T(C) be a finite set. Let B be the inductive limit of a sequence of finite direct sums of
building blocks

B1
β1−→ B2

β2−→ B3
β3−→ · · ·

with unital connecting maps. Let J : Aff T(C) → Aff T(B) be a linear positive order
unit preserving map and let κ ∈ KL(C,B)e. There exists a positive integer n, a linear
positive order unit preserving map M : Aff T(C) → Aff T(Bn), and an element ω ∈
KK(C,Bn)e such that

‖ J( f )− β̂n,∞ ◦M( f )‖ < ε, f ∈ F,

κ = [βn,∞] · ω in KL(C,B).

Proof We may assume that ‖ f ‖ ≤ 1, f ∈ F. Decompose C = C1 ⊕C2 ⊕ · · · ⊕CN

as a finite direct sum of building blocks and let πi : C → Ci denote the projection,
i = 1, 2, . . . ,N .

For every i = 1, 2, . . . ,N , identify Aff T(Ci) and CR(T). Choose open sets V1,

V2, . . . ,Vki ⊆ T such that
⋃ki

j=1 V j = T and such that

x, y ∈ V j =⇒ | f (x)− f (y)| <
ε

2
, f ∈ π̂i(F).

Let {h j : j = 1, 2, . . . , ki} be a continuous partition of unity in CR(T) subordinate
to the cover {V j : j = 1, 2, . . . , ki} and let x j ∈ V j be an arbitrary point, j =
1, 2, . . . , ki . Define linear positive order unit preserving maps Ti : Aff T(Ci) → Rki

and Si : Rki → Aff T(Ci) by

Ti( f ) =
(

f (x1), f (x2), . . . , f (xki )
)
,

Si(t1, t2, . . . , tki ) =
ki∑

j=1

t jh j .
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Note that
‖Si ◦ Ti( f )− f ‖ <

ε

2
, f ∈ π̂i(F).

Hence there exist linear positive order unit preserving maps

T : Aff T(C) −→ Rk,

S : Rk −→ Aff T(C),

where k =
∑N

i=1 ki , such that

‖S ◦ T( f )− f ‖ <
ε

2
, f ∈ F.

Let {e j : j = 1, 2, . . . , k} be the standard basis in Rk. As { J ◦ S(e j) : j = 1, 2, . . . , k}
are positive elements with sum 1 in Aff T(B), there exist a positive integer l and posi-

tive elements x1, x2, . . . , xk ∈ Aff T(Bl) such that
∑k

j=1 x j = 1 and

‖β̂l,∞(x j)− J ◦ S(e j )‖ <
ε

2k
, j = 1, 2, . . . , k.

Define linear positive order unit preserving maps V : Rk → Aff T(Bl) by

V
( k∑

j=1

t j e j

)
=

k∑
j=1

t jx j ,

and W : Aff T(C)→ Aff T(Bl) by W = V ◦ T. Since

‖β̂l,∞ ◦V − J ◦ S‖ <
ε

2

we see that
‖β̂l,∞ ◦W ( f )− J( f )‖ < ε, f ∈ F.

By continuity of KL(C, ·) there exist an integer m and an element ν ∈ KL(C,Bm)
such that [βm,∞] · ν = κ. As

βm,∞∗ ◦ ν∗[1] = κ∗[1] = [1] = βm,∞∗[1] in K0(B)

we see that there exists an integer n ≥ m, l such that [βm,n] · ν ∈ KL(C,Bn)e. Set

ω = [βm,n] · ν and M = β̂l,n ◦W .

Proposition 10.2 Let A be a simple unital inductive limit of a sequence of finite direct
sums of building blocks. Let B be the inductive limit of a sequence

B1
β1−→ B2

β2−→ B3
β3−→ · · ·
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of finite direct sums of building blocks with unital connecting maps. Assume that there
exist a κ ∈ KL(A,B)e and an affine continuous map ϕT : T(B)→ T(A) such that

rB(ω)
(
κ∗(x)

)
= rA

(
ϕT(ω)

)
(x), x ∈ K0(A), ω ∈ T(B).

Let C be a finite direct sum of building blocks and let ψ : C → A be a unital ∗-
homomorphism. Let ε > 0 and let F ⊆ Aff T(C) be a finite subset. There exist a positive
integer m and a linear positive order unit preserving map M : Aff T(C) → Aff T(Bm)
such that

‖β̂m,∞ ◦M( f )− ϕT∗ ◦ ψ̂( f )‖ < ε, f ∈ F,

and an element ω ∈ KL(C,Bm)e such that

[βm,∞] · ω = κ · [ψ] in KL(C,B),

M ◦ ρC = ρBm ◦ ω∗ on K0(C).

Proof We may assume that ‖ f ‖ ≤ 1, f ∈ F. Decompose C = C1⊕C2⊕· · ·⊕CN as
a finite direct sum of building blocks. Let r1, r2, . . . , rN ∈ C be projections such that
[r1], [r2], . . . , [rN ] generate K0(C). By factoring ψ through the C∗-algebra obtained
from C by erasing those direct summands Ci for which ψ(ri) = 0, we may assume
that ψ(ri) �= 0, i = 1, 2, . . . ,N . There exist positive integers d1, d2, . . . , dN such that

N∑
i=1

di[ri] = [1] in K0(C).

Since A is simple there exists a δ0 > 0 such that

ψ̂(r̂i) > δ0, i = 1, 2, . . . ,N.

Choose δ > 0 such that δ < δ0 and δ(1 +
∑N

i=1 di) < ε.
By Lemma 10.1 there exist a positive integer l and a linear positive order unit

preserving map V : Aff T(C)→ Aff T(Bl) such that

‖β̂l,∞ ◦V ( f )− ϕT∗ ◦ ψ̂( f )‖ < δ, f ∈ F ∪ {r̂1, r̂2, . . . , r̂N},

and an element ν ∈ KK(C,Bl)e such that

[βl,∞] · ν = κ · [ψ] in KL(C,B).

Since by assumption ρB ◦ κ∗ = ϕT∗ ◦ ρA on K0(A) we see that for i = 1, 2, . . . ,N ,

β̂l,∞ ◦ ρBl ◦ ν∗[ri] = ρB ◦ βl,∞∗ ◦ ν∗[ri] = ϕT∗ ◦ ρA ◦ ψ∗[ri] = ϕT∗ ◦ ψ̂(r̂i) > δ0.

Hence
‖β̂l,∞ ◦ ρBl ◦ ν∗[ri]− β̂l,∞ ◦V (r̂i)‖ < δ, i = 1, 2, . . . ,N.
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Choose m > l such that for i = 1, 2, . . . ,N ,

β̂l,m ◦ ρBl ◦ ν∗[ri] > δ0,

‖β̂l,m ◦ ρBl ◦ ν∗[ri]− β̂l,m ◦V (r̂i)‖ < δ.

Define W : Aff T(C) → Aff T(Bm) by W = β̂l,m ◦ V . Define ω ∈ KK(C,Bm)e by
ω = [βl,m] · ν.

Decompose Bm = Bm
1 ⊕ Bm

2 ⊕ · · · ⊕ Bm
L as a finite direct sum of building blocks

and let π j : Bm → Bm
j be the projection, j = 1, 2, . . . , L. Identify Aff T(Bm) with⊕L

j=1 CR(T). Fix some j = 1, 2, . . . , L. Set W j = π̂ j ◦W . W j(r̂i) is a strictly positive
function in CR(T), since δ < δ0. Thus for each i = 1, 2, . . . ,N , we can define
M j : Aff T(An) ∼=

⊕N
i=1 Aff T(Ci)→ CR(T) by

M j( f1, f2, . . . , fN ) =
N∑

i=1

W j(0, . . . , 0, fi, 0, . . . , 0)
1

W j(r̂i)
π̂ j(ρBm ◦ ω∗[ri]).

M j is positive and linear, and it preserves the order unit since

M j(1) =
N∑

i=1

W j(di r̂i)
1

W j(r̂i)
π̂ j(ρBm ◦ ω∗[ri]) =

N∑
i=1

π̂ j

(
ρBm ◦ ω∗(di[ri])

)
= 1.

Let now g ∈ CR(T) ∼= Aff T(Ci), ‖g‖ ≤ 1, for i = 1, 2, . . . ,N . Since

−di r̂i ≤ (0, . . . , 0, g, 0, . . . , 0) ≤ di r̂i

in Aff T(C) we have that

‖M j(0, . . . , g, . . . , 0)−W j(0, . . . , g, . . . , 0)‖

=

∥∥∥∥W j(0, . . . , g, . . . , 0)
1

W j(r̂i)

(
π̂ j(ρBm ◦ ω∗[ri])−W j(r̂i)

)∥∥∥∥
≤ di‖π̂ j(ρBm ◦ ω∗[ri])−W j(r̂i)‖ < δdi.

Hence if f ∈ Aff T(C), ‖ f ‖ ≤ 1, then

‖M j( f )−W j( f )‖ <
N∑

i=1

δdi.

Define M : Aff T(C)→ Aff T(Bm) by

M( f ) =
(

M1( f ),M2( f ), . . . ,ML( f )
)
.

Then

‖M( f )−W ( f )‖ <
N∑

i=1

δdi, f ∈ Aff T(C), ‖ f ‖ ≤ 1,
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and hence

‖β̂m,∞ ◦M( f )− ϕT∗ ◦ ψ̂( f )‖ < δ +
N∑

i=1

δdi < ε, f ∈ F.

Finally, M(r̂i) = ρBm ◦ ω∗[ri], i = 1, 2, . . . ,N . It follows that M ◦ ρC = ρBm ◦ ω∗ on
K0(C).

Lemma 10.3 Let A be a unital simple inductive limit of a sequence of finite direct sums

of building blocks with K0(A) non-cyclic. Then Aff T(A)/ρA

(
K0(A)

)
is torsion free.

Proof The image of the canonical map K0(A) → Aff SK0(A) is dense by [1, Propo-
sition 3.1], since K0(A) is a simple countable dimension group. By definition ρA is
the composition of this map with the linear bounded map Aff SK0(A) → Aff T(A)
induced by rA. It follows that ρA

(
K0(A)

)
is dense in some subspace of Aff T(A).

Lemma 10.4 Let A be an inductive limit of a sequence of finite direct sums of building
blocks

A1
α1−→ A2

α2−→ A3
α3−→ · · ·

with unital connecting maps. Assume that ρA is injective and that ρA

(
K0(A)

)
is a

discrete subgroup of Aff T(A). Let n be a positive integer and let x, y be elements of the
torsion subgroup of U (An)/DU (An) such that α#

n,∞(x) = α#
n,∞(y). There exists an

integer k ≥ n such that α#
n,k(x) = α#

n,k(y).

Proof Since αn,∞∗

(
πAn (x)

)
= αn,∞∗

(
πAn (y)

)
in K1(A) there is an integer l ≥ n

such that αn,l∗

(
πAn (x)

)
= αn,l∗

(
πAn (y)

)
. By Proposition 5.2 we see that

α#
n,l(x − y) = λAl

(
qAl

( 1

m
ρAl (z)

))
for some positive integer m and an element z ∈ K0(Al). Since ρA

(
K0(A)

)
is dis-

crete and since λA

(
qA

(
1
mρA

(
αl,∞∗(z)

)))
= 0 we see that 1

mρA

(
αl,∞∗(z)

)
=

ρA

(
α j,∞∗(w)

)
for some positive integer j and an element w ∈ K0(A j). Since ρA is

injective we may choose an integer k ≥ l, j such that αl,k∗(z) = α j,k∗
(mw) in K0(A).

Note that α#
n,k(x − y) = λAk

(
qAk

(
1
mρAk

(
αk,l∗(z)

)))
= 0.

Proposition 10.5 Let A be a unital C∗-algebra and let B be a unital inductive limit
of a sequence of finite direct sums of building blocks such that the torsion subgroup of

Aff T(B)/ρB

(
K0(B)

)
is totally disconnected. Let ϕ, ψ : A → B be unital ∗-homomor-

phisms that are homotopic and let x ∈ U (A)/DU (A) be an element of finite order. Then
ϕ#(x) = ψ#(x).
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Proof Let u ∈ A be a unitary such that x = q ′A(u). Let (ϕt )t∈[0,1] be a homotopy
connecting ϕ to ψ. We may assume that ‖ϕt (u)− ϕ0(u)‖ < 1 for t ∈ [0, 1]. Thus

ϕt (u)ϕ0(u)∗ = e2πibt

where t �→ bt is a continuous path of self-adjoint elements in B. Since λB

(
qB(b̂t )

)
=

q ′B(e2πibt ) we see that qB(b̂t ) has finite order in Aff T(B)/ρB

(
K0(B)

)
. Thus t �→ qB(b̂t )

is a continuous path in a totally disconnected subset of a metric space. It follows

that it is constant and hence qB(b̂t ) = 0 for every t ∈ [0, 1]. We conclude that
ϕ#

0

(
q ′A(u)

)
= ϕ#

1

(
q ′A(u)

)
.

We leave it as an open question whether the torsion subgroup of the group

Aff T(B)/ρB

(
K0(B)

)
always is totally disconnected.

Proposition 10.6 Let A be a finite direct sum of building blocks and let B be a unital
inductive limit of a sequence of finite direct sums of building blocks such that the torsion

subgroup of Aff T(B)/ρB

(
K0(B)

)
is totally disconnected. Let ϕ, ψ : A → B be unital

∗-homomorphisms such that [ϕ] = [ψ] in KL(A,B). Let x be an element of the torsion
subgroup of U (A)/DU (A). Then ϕ#(x) = ψ#(x).

Proof By [18, Corollary 15.1.3] and Theorem 2.4 there exist a positive integer m
and ∗-homomorphisms λ, µ : A → Bm such that ϕ is homotopic to βm,∞ ◦ λ and ψ
is homotopic to βm,∞ ◦ µ. By increasing m we may assume that λ and µ are unital.
There exists an integer k ≥ m such that [βm,k] · [λ] = [βm,k] · [µ] in KL(A,Bk). Thus
β#

m,k ◦ λ
#(x) = β#

m,k ◦ µ
#(x) by Proposition 5.6. Hence ϕ#(x) = β#

m,∞ ◦ λ
#(x) =

β#
m,∞ ◦ µ

#(x) = ψ#(x) by Proposition 10.5.

Lemma 10.7 Let A be a simple unital inductive limit of a sequence of finite direct
sums of building blocks such that K0(A) is non-cyclic, and let B be a unital inductive
limit of a sequence of finite direct sums of building blocks. If there exists an element

κ ∈ KL(A,B)T then Aff T(B)/ρB

(
K0(B)

)
is torsion free.

Proof By Lemma 9.2 we may assume that A is the inductive limit of a sequence

A1
α1−→ A2

α2−→ A3
α3−→ · · ·

of finite direct sums of building blocks with unital connecting maps. Similarly B is
the inductive limit of a sequence of finite direct sums of building blocks

B1
β1−→ B2

β2−→ B3
β3−→ · · ·

with unital connecting maps. Let ε > 0. There exists a positive integer n such that for
every t ∈ R we have that d ′An

(
qAn (t 1̂), 0

)
< ε. To see this choose a positive integer k

such that 1
k < ε. Since Aff T(A)/ρA

(
K0(A)

)
is torsion free by Lemma 10.3, we may
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choose n such that d ′An

(
qAn ( j

k 1̂), 0
)
< ε

2 , j = 1, 2, . . . , k − 1. Let t ∈ R. We may

assume that 0 < t < 1. Choose j = 0, 1, 2, . . . , k such that |t − j
k | ≤

1
2k <

ε
2 . Then

d ′An

(
qAn (t 1̂), 0

)
< ε.

By Proposition 10.2 we get a positive integer l and a contractive group

homomorphism S : Aff T(An)/ρAn

(
K0(An)

)
→ Aff T(Bl)/ρBl

(
K0(Bl)

)
such that

S
(

qAn (r1̂)
)
= qBl (r1̂) for every r ∈ R. Let x ∈ Aff T(B)/ρB

(
K0(B)

)
be an element of

order m. There is an integer k ≥ l such that d ′B

(
x, qB

(
1
mρB

(
βk,∞∗(y)

)))
< ε for

some element y ∈ K0(Bk). We claim that d ′Bk

(
qBk

(
1
mρBk (y)

)
, 0
)
< ε. To this end we

may assume that Bk is a building block. Then ρBk (y) = w1̂ for some w ∈ Q . Hence

d ′Bk

(
qBk

( 1

m
ρBk (y)

)
, 0

)
= d ′Bk

(
β̃l,k ◦ S

(
qAn

( w

m
1̂
))

, 0

)

≤ d ′An

(
qAn

( w

m
1̂
)
, 0

)
< ε.

Thus d ′B(x, 0) < 2ε. Since ε > 0 was arbitrary we conclude that x = 0.

Lemma 10.8 Let A be a simple inductive limit of a sequence

A1
α1−→ A2

α2−→ A3
α3−→ · · ·

of finite direct sums of building blocks with unital connecting maps. Let y be an element
in U (A)/DU (A) of order k <∞. Then there exist a positive integer m and an element
w ∈ U (Am)/DU (Am) of order k such that α#

m,∞(w) = y.

Proof By continuity of K1 there exist a positive integer l and an element z in
U (Al)/DU (Al) such that αl,∞∗

(
πAl (z)

)
= πA(y) in K1(A). Since the short exact se-

quence of Proposition 5.2 splits we may assume that kz = 0. Note that πA

(
α#

l,∞(z)
)
=

πA(y) and hence

y = α#
l,∞(z) + λA

(
qA( f )

)
in U (A)/DU (A)

for some f ∈ Aff T(A) with kqA( f ) = 0 in the group Aff T(A)/ρA

(
K0(A)

)
. If K0(A)

is non-cyclic then we see that qA( f ) = 0 by Lemma 10.3. Thus we may assume that
K0(A) ∼= Z such that ρA

(
K0(A)

)
is a discrete subgroup of Aff T(A). It follows that

f = 1
kρA(x) for some x ∈ K0(A). By continuity of K0 we have that x = αm,∞∗(h) for

some integer m ≥ l and some h ∈ K0(Am). Define w ∈ U (Am)/DU (Am) by

w = α#
l,m(z) + λAm

(
qAm

( 1

k
ρAm (h)

))
.
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Then

α#
m,∞(w) = α#

l,∞(z) + λA

(
qA

( 1

k
ρA

(
αm,∞∗(h)

)))
= α#

l,∞(z) + λA

(
qA( f )

)
= y.

Since y has order k and kw = 0 it follows that w has order k as well.

Theorem 10.9 Let A be a unital simple inductive limit of a sequence of finite direct
sums of building blocks and let B be an inductive limit of a similar sequence

B1
β1−→ B2

β2−→ B3
β3−→ · · ·

with unital connecting maps such that s(Bk) → ∞ and such that the torsion subgroup

of Aff T(B)/ρB

(
K0(B)

)
is totally disconnected. Let κ ∈ KL(A,B)T . Let C be a finite

direct sum of building blocks and let ϕ : C → A be a unital ∗-homomorphism. Then
there is a unital ∗-homomorphism ψ : C → B such that [ψ] = κ · [ϕ] in KL(C,B).

Moreover, if C1 is another finite direct sum of building blocks, if ϕ1 : C1 → A and
ψ1 : C1 → B are unital ∗-homomorphisms such that [ψ1] = κ · [ϕ1] in KL(A,B), and
if x ∈ U (C)/DU (C) and x1 ∈ U (C1)/DU (C1) are elements of finite order such that
ϕ#(x) = ϕ#

1(x1), then ψ#(x) = ψ#
1(x1).

Proof Let a finite direct sum of building blocks C and a unital ∗-homomorphism
ϕ : C → A be given. Let ϕT : T(B)→ T(A) be a continuous affine map such that

rB(ω)
(
κ∗(x)

)
= rA

(
ϕT(ω)

)
(x), x ∈ K0(A), ω ∈ T(B).

Let p1, p2, . . . , pN be the minimal non-zero central projections in C . As in the proof
of Proposition 10.2 we see that we may assume that ϕ(pi) �= 0, i = 1, 2, . . . ,N .
Choose δ > 0 such that ϕ̂(p̂i) > 2δ. Choose an integer K by Theorem 8.5 with
respect to F = ∅ and ε = 1. By Proposition 10.2 there exist a positive integer m and
a linear positive order unit preserving map M : Aff T(C)→ Aff T(Bm) such that

‖β̂m,∞ ◦M(p̂i)− ϕT∗ ◦ ϕ̂(p̂i)‖ < δ, i = 1, 2, . . . ,N,

and an element ω ∈ KL(C,Bm)e such that

[βm,∞] · ω = κ · [ϕ] in KL(C,B),

M ◦ ρC = ρBm ◦ ω∗ on K0(C).

Hence β̂m,∞ ◦M(p̂i) > δ, i = 1, 2, . . . ,N . Choose k ≥ m such that s(Bk) ≥ Kδ−1

and such that β̂m,k ◦M(p̂i) > δ, i = 1, 2, . . . ,N . Then ρBk (βm,k∗ ◦ ω∗[pi]) > δ and

hence s(Bk)ρBk (βm,k∗ ◦ ω∗[pi]) ≥ K. Furthermore β̂m,k ◦M ◦ ρC = ρBk ◦ βm,k∗ ◦ ω∗.
It follows from Theorem 8.5 that there exists a unital ∗-homomorphism µ : C → Bk

such that [µ] = [βm,k] ·ω. Set ψ = βk,∞◦µ. This proves the first part of the theorem.

https://doi.org/10.4153/CJM-2001-046-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2001-046-2


Classification of Certain Simple C∗-Algebras with Torsion in K1 1291

To prove the second part of the theorem, let us first note that

πB

(
ψ#(x)

)
= ψ∗

(
πC (x)

)
= κ∗ ◦ ϕ∗

(
πC (x)

)
= ψ1∗

(
πC1 (x1)

)
= πB

(
ψ#

1(x1)
)
.

Hence if K0(A) is non-cyclic then ψ#(x) = ψ#
1(x1) by Lemma 10.7.

We may therefore assume that K0(A) is cyclic. By Lemma 9.2 we see that A is the
inductive limit of a sequence

A1
α1−→ A2

α2−→ A3
α3−→ · · ·

where each An is a finite direct sum of building blocks and each αn is unital. By [18,
Corollary 15.1.3] there exist a positive integer n and ∗-homomorphisms λ : C → An

and λ1 : C1 → An such that ϕ is homotopic to αn,∞ ◦ λ and ϕ1 is homotopic to
αn,∞ ◦ λ1. Note that λ and λ1 are unital. Since

α#
n,∞ ◦ λ

#(x) = α#
n,∞ ◦ λ

#
1(x1)

by Proposition 10.5, there exists by Lemma 10.4 a positive integer k such that

α#
n,k ◦ λ

#(x) = α#
n,k ◦ λ

#
1(x1).

By the first part of the theorem there is a unital ∗-homomorphism γ : Ak → B such
that [γ] = κ · [αk,∞]. Note that

[γ] · [αn,k] · [λ] = κ · [αn,∞] · [λ] = κ · [ϕ] = [ψ] in KL(C,B)

[γ] · [αn,k] · [λ1] = κ · [αn,∞] · [λ1] = κ · [ϕ1] = [ψ1] in KL(C1,B).

Hence
ψ#(x) = γ# ◦ α#

n,k ◦ λ
#(x) = γ# ◦ α#

n,k ◦ λ
#
1(x1) = ψ#

1(x1)

by Proposition 10.6.

Let A, B and κ be as above. Let y be an element in U (A)/DU (A) of finite order. By
Lemma 10.8 there is a finite direct sum of building blocks C , an element of finite order
x in U (C)/DU (C), and a unital ∗-homomorphism ϕ : C → A such that ϕ#(x) = y.
By the first part of the theorem above there exists a unital ∗-homomorphismψ : C →
B such that [ψ] = κ ·[ϕ]. Set sκ(y) = ψ#(x). By the second part sκ(y) is independent
of the choice of ϕ, ψ and x. Thus we have a well-defined map

sκ : Tor
(

U (A)/DU (A)
)
−→ Tor

(
U (B)/DU (B)

)
.

It follows easily from Lemma 10.8 that sκ is a group homomorphism. Note that if
µ : A → B is a unital ∗-homomorphism then s[µ](y) = µ#(y) for every y in the
torsion subgroup of U (A)/DU (A). Finally, we note that sκ exists for trivial rea-

sons if K0(A) is non-cyclic (since Aff T(B)/ρB

(
K0(B)

)
is torsion free in this case,

see Lemma 10.7). It is possible (as in [27]) to prove our classification theorem in the
case of non-cyclic K0-group without using the map sκ, but we have chosen to con-
struct it in general in order to obtain a unified proof of the classification theorem in
the cases K0 cyclic and K0 non-cyclic.
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Lemma 10.10 Let A be a unital simple infinite dimensional inductive limit of a se-
quence of finite direct sums of building blocks and let B be an inductive limit of a similar
sequence

B1
β1−→ B2

β2−→ B3
β3−→ · · ·

with unital connecting maps such that s(Bk) → ∞ and such that the torsion subgroup

of Aff T(B)/ρB

(
K0(B)

)
is totally disconnected. Let κ ∈ KL(A,B)e and let ϕT : T(B)→

T(A) be a continuous affine map such that

rB(ω)
(
κ∗(x)

)
= rA

(
ϕT(ω)

)
(x), x ∈ K0(A), ω ∈ T(B).

There exists a group homomorphism Φ : U (A)/DU (A) → U (B)/DU (B) such that
Φ(y) = sκ(y) for y in the torsion subgroup of U (A)/DU (A) and such that the dia-
gram

0 −−−−→ Aff T(A)/ρA

(
K0(A)

) λA−−−−→ U (A)/DU (A)
πA−−−−→ K1(A) −−−−→ 0

ϕ̃T

	 Φ

	 	κ∗

0 −−−−→ Aff T(B)/ρB

(
K0(B)

)
−−−−→

λB

U (B)/DU (B) −−−−→
πB

K1(B) −−−−→ 0

commutes.

Proof It will be convenient to set G1 = Aff T(A)/ρA

(
K0(A)

)
, G2 = K1(A), and

H1 = Aff T(B)/ρB

(
K0(B)

)
, H2 = K1(B). Note that U (A)/DU (A) ∼= G1 ⊕ G2 and

U (B)/DU (B) ∼= H1⊕H2 by Proposition 5.2. Hence sκ can be identified with a matrix
of the form (

f11 f12

f21 f22

)
,

where fi j : Tor(G j)→ Tor(Hi) is a group homomorphism, i, j = 1, 2.
Let z ∈ Tor(G1). If K0(A) is cyclic then z = qA

(
1
mρA(h)

)
for some positive integer

m and h ∈ K0(A). Choose a finite direct sum of building blocks C and a unital
∗-homomorphism ϕ : C → A such that ϕ∗(g) = h for some g ∈ K0(C). Choose a
unital ∗-homomorphismψ : C → B such that [ψ] = κ·[ϕ]. SinceϕT∗◦ρA = ρB◦κ∗
we see that

sκ
(
λA(z)

)
= sκ

(
λA

(
qA

( 1

m
ρA

(
ϕ∗(g)

))))

= sκ

(
ϕ#

(
λC

(
qC

( 1

m
ρC (g)

))))
= ψ#

(
λC

(
qC

( 1

m
ρC (g)

)))

= λB

(
qB

( 1

m
ρB

(
ψ∗(g)

)))
= λB

(
qB

(
1

m
ϕT∗

(
ρA

(
ϕ∗(g)

))))
= λB

(
ϕ̃T(z)

)
.
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Hence f11(z) = ϕ̃T(z) and f21(z) = 0. By Lemma 10.7 this conclusion also holds
if K0(A) is non-cyclic. Let w ∈ Tor(G2). Choose an element y ∈ U (A)/DU (A) of
finite order such that πA(y) = w. Choose a finite direct sum of building blocks C
and a unital ∗-homomorphism ϕ : C → A such that ϕ#(x) = y. Choose a unital
∗-homomorphism ψ : C → B such that [ψ] = κ · [ϕ] in KL(C,B). Since

πB

(
sκ(y)

)
= πB

(
ψ#(x)

)
= ψ∗

(
πC (x)

)
= κ∗ ◦ πA

(
ϕ#(x)

)
= κ∗ ◦ πA(y)

we see that f22(w) = κ∗(w). Finally, since H1 is a divisible group there exists by [11,
Theorem 21.1] a group homomorphism λ : G2 → H1 such that λ(w) = f12(w) for
every w ∈ G2 of finite order. Set

Φ =

(
ϕ̃T λ
0 κ∗

)
.

It is easy to see that the diagram commutes.

11 Main Results

Consider the category of abelian groups, equipped with a complete and translation
invariant metric, and contractive group homomorphisms. Inductive limits can be
constructed in this category in a way similar to the way that they are constructed in
the category of C∗-algebras. Indeed, let

G1
µ1−→ G2

µ2−→ G3
µ3−→ · · ·

be an inductive system. Let ρk denote the metric on Gk. Let H be the inductive limit
in the category of groups. Define a pseudo-metric d on H by

d
(
µn,∞(x), µm,∞(y)

)
= lim

k→∞
ρk

(
µn,k(x), µm,k(y)

)
.

Form the quotient of H by the subgroup {x ∈ H : d(x, 0) = 0} and complete with
respect to the induced metric to obtain the inductive limit.

It is an elementary exercise to prove that U (·)/DU (·) is a continuous functor from
the category of unital C∗-algebras and unital ∗-homomorphisms, to the category of
abelian groups equipped with a complete translation invariant metric, and contrac-
tive group homomorphisms.

Proposition 11.1 Let A be a simple inductive limit of a sequence

A1
α1−→ A2

α2−→ A3
α3−→ · · ·

of finite direct sums of building blocks with unital and injective connecting maps. Let B
be an inductive limit of a similar sequence

B1
β1−→ B2

β2−→ B3
β3−→ · · ·
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with unital connecting maps such that s(Bk) → ∞ and such that the torsion subgroup

of Aff T(B)/ρB

(
K0(B)

)
is totally disconnected. Let ϕT : T(B) → T(A) be an affine

continuous map, let κ ∈ KL(A,B)e be an element such that

rB(ω)
(
κ∗(x)

)
= rA

(
ϕT(ω)

)
(x), x ∈ K0(A), ω ∈ T(B),

and let Φ : U (A)/DU (A)→ U (B)/DU (B) be a homomorphism such that the diagram

Aff T(A)/ρA

(
K0(A)

) λA−−−−→ U (A)/DU (A)
πA−−−−→ K1(A)

ϕ̃T

	 Φ

	 	κ∗

Aff T(B)/ρB

(
K0(B)

)
−−−−→

λB

U (B)/DU (B) −−−−→
πB

K1(B)

commutes. Assume finally that

sκ(y) = Φ(y), y ∈ Tor
(

U (A)/DU (A)
)
.

Let n be a positive integer and let F1 ⊆ Aff T(An) and F2 ⊆ U (An)/DU (An) be finite
sets. There exist a positive integer m and a unital ∗-homomorphism ψ : An → Bm such
that

[βm,∞] · [ψ] = κ · [αn,∞] in KL(An,B),

‖β̂m,∞ ◦ ψ̂( f )− ϕT∗ ◦ α̂n,∞( f )‖ < ε, f ∈ F1,

DB

(
β#

m,∞ ◦ ψ
#(x),Φ ◦ α#

n,∞(x)
)
< ε, x ∈ F2.

Proof Let An = C1 ⊕ · · · ⊕ CR where each Ci is a building block. By Proposi-
tion 5.2 and Proposition 3.2 there are for each x ∈ U (An)/DU (An) an element ax

in Aff T(An)/ρAn

(
K0(An)

)
, integers k1

x, k
2
x, . . . , k

R
x , and an element yx in the torsion

subgroup of U (An)/DU (An) such that

x = λAn (ax) +
R∑

i=1

ki
xq ′An

(vAn
i ) + yx in U (An)/DU (An).

Choose bx ∈ Aff T(An) such that qAn (bx) = ax. Set F ′1 = F1 ∪ {bx : x ∈ F2}. Choose
0 < δ < 1

2 such that δ < ε and such that

|e2πiδ − 1| + δ
R∑

i=1

kx
i < ε, x ∈ F2.

Let p1, p2, . . . , pR denote the minimal non-zero central projections in An. Since A
is simple and the connecting maps are injective, there exists a γ > 0 such that
α̂n,∞(p̂i) > γ, i = 1, 2, . . . ,R. By Proposition 10.2 there exist a positive integer
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l, a linear positive order unit preserving map M : Aff T(An) → Aff T(Bl), and an
element ω ∈ KL(An,Bl)e such that

[βl,∞] · ω = κ · [αn,∞] in KL(An,B),

‖β̂l,∞ ◦M( f )− ϕT∗ ◦ α̂n,∞( f )‖ <
δ

2
, f ∈ F ′1,

M ◦ ρAn = ρBl ◦ ω∗ on K0(An).

Choose an integer K by Theorem 8.5 with respect to F ′1 ⊆ Aff T(An) and δ
2 . Choose

a positive integer k and unitaries u1, u2, . . . , uR ∈ Bk such that

DB

(
β#

k,∞

(
q ′Bk

(ui)
)
,Φ ◦ α#

n,∞

(
q ′An

(vAn
i )

))
< δ, i = 1, 2, . . . ,R.

Note that κ∗ ◦ αn,∞∗[vAn
i ] = βk,∞∗[ui] in K1(B). Hence

βl,∞∗ ◦ ω∗[vAn
i ] = βk,∞∗[ui], i = 1, 2, . . . ,R.

Since ρB ◦ κ∗ = ϕT∗ ◦ ρA we see that for i = 1, 2, . . . ,R,

β̂l,∞

(
ρBl (ω∗[pi])

)
= ρB(βl,∞∗ ◦ ω∗[pi]) = ϕT∗ ◦ ρA ◦ αn,∞∗[pi]

= ϕT∗ ◦ α̂n,∞(p̂i) > γ.

Hence there exists an integer m ≥ k, l such that s(Bm) ≥ Kγ−1 and such that

β̂l,m

(
ρBl (ω∗[pi])

)
> γ, i = 1, 2, . . . ,R,

βl,m∗ ◦ ω∗[vAn
i ] = βk,m∗[ui] in K1(Bm), i = 1, 2, . . . ,R.

It follows that s(Bm)ρBm (βl,m∗ ◦ ω∗[pi]) ≥ K and that

β̂l,m ◦M ◦ ρAn = β̂l,m ◦ ρBl ◦ ω∗ = ρBm ◦ βl,m∗ ◦ ω∗ on K0(An).

Therefore by Theorem 8.5 there exists a unital ∗-homomorphism ψ : An → Bm such
that

[ψ] = [βl,m] · ω in KL(An,Bm),

ψ#
(

q ′An
(vAn

i )
)
= q ′Bm

(
βk,m(ui)

)
in U (Bm)/DU (Bm), i = 1, 2, . . . ,R,

‖ψ̂( f )− β̂l,m ◦M( f )‖ <
δ

2
, f ∈ F ′1.

It follows that

[βm,∞] · [ψ] = κ · [αn,∞] in KL(An,B),(30)

‖β̂m,∞ ◦ ψ̂( f )− ϕT∗ ◦ α̂n,∞( f )‖ < δ, f ∈ F ′1,(31)

DB

(
β#

m,∞ ◦ ψ
#
(

q ′An
(vAn

i )
)
,Φ ◦ α#

n,∞

(
q ′An

(vAn
i )

))
< δ, i = 1, 2, . . . ,R.(32)
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Note that for x ∈ F2,

d ′B
(
β̃m,∞ ◦ ψ̃(ax), ϕ̃T ◦ α̃n,∞(ax)

)
= d ′B

(
qB

(
β̂m,∞ ◦ ψ̂(bx)

)
, qB

(
ϕT∗ ◦ α̂n,∞(bx)

))
≤ ‖β̂m,∞ ◦ ψ̂(bx)− ϕT∗ ◦ α̂n,∞(bx)‖ < δ <

1

2
.

Hence
dB

(
β̃m,∞ ◦ ψ̃(ax), ϕ̃T ◦ α̃n,∞(ax)

)
< |e2πiδ − 1|, x ∈ F2.

By Proposition 5.2, λB is an isometry when Aff T(B)/ρB

(
K0(B)

)
is equipped with

the metric dB. It follows that

DB

(
λB ◦ β̃m,∞ ◦ ψ̃(ax), λB ◦ ϕ̃T ◦ α̃n,∞(ax)

)
< |e2πiδ − 1|, x ∈ F2.

Thus

DB

(
β#

m,∞ ◦ ψ
# ◦ λAn (ax),Φ ◦ α#

n,∞ ◦ λAn (ax)
)
< |e2πiδ − 1|, x ∈ F2.

Since sκ and Φ agree on the torsion subgroup of U (A)/DU (A), we see by (30) and
the definition of sκ that

β#
m,∞ ◦ ψ

#(yx) = Φ ◦ α#
n,∞(yx).

Hence for x ∈ F2,

DB

(
β#

m,∞ ◦ ψ
#(x),Φ ◦ α#

n,∞(x)
)

≤ DB

(
β#

m,∞ ◦ ψ
#
(
λAn (ax)

)
,Φ ◦ α#

n,∞

(
λAn (ax)

))
+

R∑
i=1

ki
xDB

(
β#

m,∞ ◦ ψ
#
(

q ′An
(vAn

i )
)
,Φ ◦ α#

n,∞

(
q ′An

(vAn
i )

))

< |e2πiδ − 1| +
R∑

i=1

ki
xδ < ε.

Theorem 11.2 Let A be a unital simple inductive limit of a sequence

A1
α1−→ A2

α2−→ A3
α3−→ · · ·

of finite direct sums of building blocks. Let B be an inductive limit of a similar sequence

B1
β1−→ B2

β2−→ B3
β3−→ · · ·

with unital connecting maps such that s(Bk) → ∞ and such that the torsion subgroup

of Aff T(B)/ρB

(
K0(B)

)
is totally disconnected. Let ϕT : T(B) → T(A) be an affine

continuous map, let κ ∈ KL(A,B)e be an element such that

rB(ω)
(
κ∗(x)

)
= rA

(
ϕT(ω)

)
(x), x ∈ K0(A), ω ∈ T(B),
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and let Φ : U (A)/DU (A)→ U (B)/DU (B) be a homomorphism such that the diagram

Aff T(A)/ρA

(
K0(A)

) λA−−−−→ U (A)/DU (A)
πA−−−−→ K1(A)

ϕ̃T

	 Φ

	 	 κ∗

Aff T(B)/ρB

(
K0(B)

)
−−−−→

λB

U (B)/DU (B) −−−−→
πB

K1(B)

commutes. Assume finally that

sκ(y) = Φ(y), y ∈ Tor
(

U (A)/DU (A)
)
.

There exists a unital ∗-homomorphism ψ : A → B such that ψ∗ = ϕT on T(B), such
that ψ# = Φ on U (A)/DU (A), and such that [ψ] = κ in KL(A,B).

Proof We may assume that A is infinite dimensional. Hence by Theorem 9.9 we
may assume that each αn is unital and injective. Let An = An

1 ⊕ An
2 ⊕ · · · ⊕ An

Rn

where each An
i is a building block and let Pn be the set of minimal non-zero central

projections in An. For each positive integer n, choose a finite set Gn ⊆ An such that Gn

generates An as a C∗-algebra and such that αn(Gn) ⊆ Gn+1. Choose by uniqueness,
Theorem 7.7, a positive integer ln with respect to Gn ⊆ An and 2−n. Since A is simple
and the connecting maps are injective there exists a positive integer pn such that

α̂n,∞(ĥ) >
8

pn
, h ∈ H(An, ln).

Next, there exists a positive integer qn such that

α̂n,∞(ĥ) >
2

qn
, h ∈ H(An, pn) ∪ Pn.

Finally choose δn > 0 such that δn <
1

4q2 and such that

α̂n,∞(ĥ) > δn, h ∈ H(An, 4qn).

Choose for each n finite sets Fn ⊆ Aff T(An) such that H̃(An, 2qn) ⊆ Fn, such that
α̂n(Fn) ⊆ Fn+1, and such that

⋃∞
n=1 α̂n,∞(Fn) is dense in Aff T(A).

Next, choose finite sets Vn ⊆ U (An)/DU (An) such that q ′An
(vAn

i ) ∈ Vn for i =
1, 2, . . . ,Rn, such that α#

n(Vn) ⊆ Vn+1, and such that
⋃∞

n=1 α
#
n,∞(Vn) is dense in

U (A)/DU (A).
We will construct by induction strictly increasing sequences {nk} and {mk} and

unital ∗-homomorphisms ψk : Ank → Bmk such that

(i) ‖βmk−1,mk ◦ ψk−1(x)− ψk ◦ αnk−1,nk (x)‖ < 2−nk−1 , x ∈ Gnk−1 , k ≥ 2,

(ii) ‖β̂mk,∞ ◦ ψ̂k( f )− ϕT∗ ◦ α̂nk,∞( f )‖ < min{2−nk ,
δnk
2 }, f ∈ Fnk ,

(iii) DB

(
β#

mk,∞ ◦ ψ
#
k (x),Φ ◦ α#

nk,∞(x)
)
< min{2−nk ,

δnk
2 }, x ∈ Vnk ,
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(iv) [βmk,∞] · [ψk] = κ · [αnk,∞] in KL(Ank ,B).

The integers nk, mk, and the ∗-homomorphismψk are constructed in step k. The case
k = 1 follows immediately from Proposition 11.1.

Assume that nk, mk, and ψk have been constructed such that (i)–(iv) hold. Choose
nk+1 > nk such that

α̂nk,nk+1 (ĥ) >
8

pnk

, h ∈ H(Ank , lnk ),

α̂nk,nk+1 (ĥ) >
2

qnk

, h ∈ H(Ank , pnk ) ∪ Pn,

α̂nk,nk+1 (ĥ) > δnk , h ∈ H(Ank , 4qnk ).

Choose by Proposition 11.1 a positive integer l and a unital ∗-homomorphism
λ : Ank+1 → Bl such that

‖β̂l,∞ ◦ λ̂( f )− ϕT∗ ◦ α̂nk+1,∞( f )‖ < min

{
2−nk+1 ,

δnk

2
,
δnk+1

2

}
, f ∈ Fnk+1 ,

DB

(
β#

l,∞ ◦ λ
#(x),Φ ◦ α#

nk+1,∞(x)
)
< min

{
2−nk+1 ,

δnk

2
,
δnk+1

2

}
, x ∈ Vnk+1 ,

[βl,∞] · [λ] = κ · [αnk+1,∞] in KL(Ank+1 ,B).

It follows that

‖β̂l,∞ ◦ λ̂ ◦ α̂nk,nk+1 ( f )− β̂mk,∞ ◦ ψ̂k( f )‖ < δnk , f ∈ Fnk ,

DB

(
β#

l,∞ ◦ λ
# ◦ α#

nk,nk+1
(x), β#

mk,∞ ◦ ψ
#
k (x)

)
< δnk <

1

4qnk

, x ∈ Vnk ,

[βmk,∞] · [ψk] = [βl,∞] · [λ] · [αnk,nk+1 ] in KL(Ak,B).

Hence there exists an integer mk+1 ≥ l such that

‖β̂l,mk+1 ◦ λ̂ ◦ α̂nk,nk+1 ( f )− β̂mk,mk+1 ◦ ψ̂k( f )‖ < δnk , f ∈ Fnk ,

DB

(
β#

l,mk+1
◦ λ# ◦ α#

nk,nk+1
(x), β#

mk,mk+1
◦ ψ#

k (x)
)
<

1

4qnk

, x ∈ Vnk ,

[βl,mk+1 ] · [λ] · [αnk,nk+1 ] = [βmk,mk+1 ] · [ψk] in KL(Ak,Bmk+1 ).

By uniqueness, Theorem 7.7, there exists a unitary W ∈ Bmk+1 such that

‖βmk,mk+1 ◦ ψk(x)−Wβl,mk+1 ◦ λ ◦ αnk,nk+1 (x)W ∗‖ < 2−nk , x ∈ Gnk .

Set ψk+1(x) =Wβl,mk+1 ◦ λ(x)W ∗, x ∈ Ank+1 . It is easily seen that (i)–(iv) are satisfied
with k + 1 in place of k. This completes the induction step.
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By Elliott’s approximate intertwining argument, see e.g. [25, Lemma 1], there
exists a ∗-homomorphism ψ : A→ B such that

ψ
(
αn,∞(x)

)
= lim

k→∞
βmk,∞ ◦ ψk ◦ αn,nk (x), x ∈ An.

Clearly, ψ is unital. Let f ∈ Fn, ω ∈ T(B). The sequence ω ◦ βmk,∞ ◦ ψk ◦ αn,nk

converges to ω ◦ ψ ◦ αn,∞ in T(An) as k→∞. Hence it follows that

β̂mk,∞ ◦ ψ̂k ◦ α̂n,nk ( f )(ω)→ ψ̂ ◦ α̂n,∞( f )(ω) as k→∞.

On the other hand, from (ii) it follows that

β̂mk,∞ ◦ ψ̂k ◦ α̂n,nk ( f )(ω)→ ϕT∗ ◦ α̂n,∞( f )(ω) as k→∞.

Hence ψ̂ = ϕT∗ on Aff T(A) and thus ψ∗ = ϕT on T(B). If y, z ∈ U (A)/DU (A)
then DB

(
Φ(y),Φ(y)

)
≤ DA(y, z). This is clear in the case that πA(y) �= πA(z) since

then DA(y, z) = 2, and otherwise it follows since λA and λB are isometries and ϕT∗

is contractive (with respect to dA and dB). Thus Φ is continuous and by arguments
similar to those applied above we see that ψ# = Φ.

Let finally n be a positive integer. Since An is semiprojective there exists by [18,
Theorem 15.1.1] a positive integer l ≥ n such that ψ ◦ αn,∞ is homotopic to βml,∞ ◦
ψl ◦ αn,nl . Hence

[ψ] · [αn,∞] = [βml ,∞] · [ψl] · [αn,nl ] = κ · [αnl,∞] · [αn,nl ] = κ · [αn,∞]

in KL(An,B). It follows from [22, Lemma 5.8] that [ψ] = κ in KL(A,B).

The following corollary generalizes a theorem of Thomsen [27, Theorem A].

Corollary 11.3 Let A be a unital simple inductive limit of a sequence

A1
α1−→ A2

α2−→ A3
α3−→ · · ·

of finite direct sums of building blocks such that K0(A) is non-cyclic. Let B be an inductive
limit of a similar sequence

B1
β1−→ B2

β2−→ B3
β3−→ · · ·

with unital connecting maps such that s(Bk)→∞. Let ϕT : T(B)→ T(A) be an affine
continuous map, let κ ∈ KL(A,B)e be an element such that

rB(ω)
(
κ∗(x)

)
= rA

(
ϕT(ω)

)
(x), x ∈ K0(A), ω ∈ T(B),
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and let Φ : U (A)/DU (A)→ U (B)/DU (B) be a homomorphism such that the diagram

Aff T(A)/ρA

(
K0(A)

) λA−−−−→ U (A)/DU (A)
πA−−−−→ K1(A)

ϕ̃T

	 Φ

	 	κ∗

Aff T(B)/ρB

(
K0(B)

)
−−−−→

λB

U (B)/DU (B) −−−−→
πB

K1(B)

commutes. There exists a unital ∗-homomorphism ψ : A → B such that ψ∗ = ϕT on
T(B), such that ψ# = Φ on U (A)/DU (A), and such that [ψ] = κ in KL(A,B).

Proof By Lemma 10.7 we have that Aff T(B)/ρB

(
K0(B)

)
is torsion free such that

sκ is defined. It follows by Proposition 5.2 that sκ(y) = Φ(y) for y in the torsion
subgroup of U (A)/DU (A). Apply Theorem 11.2.

Corollary 11.4 Let A be a unital inductive limit of a sequence

A1
α1−→ A2

α2−→ A3
α3−→ · · ·

of finite direct sums of building blocks. Let B be an inductive limit of a similar sequence

B1
β1−→ B2

β2−→ B3
β3−→ · · ·

with unital connecting maps such that s(Bk)→∞ and such that the torsion subgroup of

Aff T(B)/ρB

(
K0(B)

)
is totally disconnected. Let ϕT : T(B) → T(A) be an affine con-

tinuous map, letϕ0 : K0(A)→ K0(B) be an order unit preserving group homomorphism
such that

rB(ω)
(
ϕ0(x)

)
= rA

(
ϕT(ω)

)
(x), x ∈ K0(A), ω ∈ T(B),

and let ϕ1 : K1(A) → K1(B) be a group homomorphism. There exists a unital ∗-
homomorphism ψ : A → B such that ψ∗ = ϕT on T(B), such that ψ∗ = ϕ0 on K0(A),
and such that ψ∗ = ϕ1 on K1(A).

Proof Choose an element κ ∈ KL(A,B) such that κ∗ = ϕ0 on K0(A) and such
that κ∗ = ϕ1 on K1(A). By Lemma 10.10 there exists a group homomorphism
Φ : U (A)/DU (A)→ U (B)/DU (B) such that sκ andΦ agree on the torsion subgroup
of U (A)/DU (A) and such that the diagram

Aff T(A)/ρA

(
K0(A)

) λA−−−−→ U (A)/DU (A)
πA−−−−→ K1(A)

ϕ̃T

	 Φ

	 	κ∗

Aff T(B)/ρB

(
K0(B)

)
−−−−→

λB

U (B)/DU (B) −−−−→
πB

K1(B)

commutes. The conclusion follows from Theorem 11.2.
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Theorem 11.5 Let A and B be unital inductive limits of sequences of finite direct sums
of building blocks, with A simple. Let ϕ, ψ : A → B be unital ∗-homomorphisms such
that ϕ∗ = ψ∗ on T(B), ϕ# = ψ# on U (A)/DU (A), and [ϕ] = [ψ] in KL(A,B). Then
ϕ and ψ are approximately unitarily equivalent.

Proof We may assume that A is infinite dimensional, and hence by Theorem 9.9 we
see that A is the inductive limit of a sequence

A1
α1−→ A2

α2−→ A3
α3−→ · · ·

of finite direct sums of building blocks with unital and injective connecting maps. By
Lemma 9.2 we have that B is the inductive limit of a sequence

B1
β1−→ B2

β2−→ B3
β3−→ · · ·

of finite direct sums of building blocks with unital connecting maps. Let An = An
1 ⊕

An
2⊕· · ·⊕An

Rn
where each An

i is a building block. Let Pn be the set of minimal non-zero
central projections in An.

Let F ⊆ A be a finite set and let ε > 0. It suffices to see that there exists a unitary
U ∈ B such that

‖ϕ(x)−Uψ(x)U∗‖ < ε, x ∈ F.

We may assume that F ⊆ αn,∞(G) for a positive integer n and a finite set G ⊆ An.
Choose by uniqueness, Theorem 7.7, a positive integer l with respect to G and ε

3 .
Since A is simple and the connecting maps are injective there exists an integer p ≥ l
such that

α̂n,∞(ĥ) >
9

p
, h ∈ H(An, l).

Next choose q ≥ p such that

α̂n,∞(ĥ) >
3

q
, h ∈ H(An, p) ∪ Pn.

Finally, choose δ > 0 such that 3δ < ε, 2δ < 1
4q2 , and such that

α̂n,∞(ĥ) > 3δ, h ∈ H(An, 4q).

Since An by Theorem 2.4 is semiprojective there exist by [18, Corollary 15.1.3] a
positive integer r and ∗-homomorphisms ϕ1, ψ1 : An → Br such that βr,∞ ◦ ϕ1 is
homotopic to ϕ ◦ αn,∞ and βr,∞ ◦ ψ1 is homotopic to ψ ◦ αn,∞, and such that if

x ∈ G ∪H(An, l) ∪H(An, p) ∪ H(An, 4q) ∪ H̃(An, 2q) ∪ Pn ∪ {v
An
1 , v

An
2 , . . . , v

An
Rn
}

then

‖βr,∞ ◦ ϕ1(x)− ϕ ◦ αn,∞(x)‖ < δ,

‖βr,∞ ◦ ψ1(x)− ψ ◦ αn,∞(x)‖ < δ.
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By increasing r we may assume that ϕ1 and ψ1 are unital. Note that

DB

(
β#

r,∞ ◦ ϕ
#
1

(
q ′An

(vAn
i )

)
, β#

r,∞ ◦ ψ
#
1

(
q ′An

(vAn
i )

))
< 2δ <

1

4q2
, i = 1, 2, . . . ,Rn,

‖β̂r,∞ ◦ ϕ̂1(ĥ)− β̂r,∞ ◦ ψ̂1(ĥ)‖ < 2δ, h ∈ H̃(An, 2q),

and

β̂r,∞ ◦ ψ̂1(ĥ) > 2δ, h ∈ H(An, 4q),(33)

β̂r,∞ ◦ ψ̂1(ĥ) >
8

p
, h ∈ H(An, l),(34)

β̂r,∞ ◦ ψ̂1(ĥ) >
2

q
, h ∈ H(An, p) ∪ Pn,(35)

[βr,∞] · [ψ1] = [βr,∞] · [ϕ1] in KL(An,B).(36)

Choose an integer m ≥ r such that

‖β̂r,m ◦ ϕ̂1(ĥ)− β̂r,m ◦ ψ̂1(ĥ)‖ < 2δ, h ∈ H̃(An, 2q),(37)

β̂r,m ◦ ψ̂1(ĥ) > 2δ, h ∈ H(An, 4q),(38)

β̂r,m ◦ ψ̂1(ĥ) >
8

p
, h ∈ H(An, l),(39)

β̂r,m ◦ ψ̂1(ĥ) >
2

q
, h ∈ H(An, p) ∪ Pn,(40)

DBm

(
β#

r,m ◦ ϕ
#
1

(
q ′An

(vAn
i )

)
, β#

r,m ◦ ψ
#
1

(
q ′An

(vAn
i )

))
<

1

4q2
, i = 1, . . . ,Rn,(41)

[βr,m] · [ψ1] = [βr,m] · [ϕ1] in KL(An,Bm).(42)

By Theorem 7.7 there exists a unitary W ∈ Bm such that

‖βr,m ◦ ϕ1(x)−Wβr,m ◦ ψ1(x)W ∗‖ <
ε

3
, x ∈ G.(43)

If we put U = βm,∞(W ) we have that

‖ϕ ◦ αn,∞(x)−Uψ ◦ αn,∞(x)U ∗‖ ≤ ‖ϕ ◦ αn,∞(x)− βr,∞ ◦ ϕ1(x)‖

+ ‖βr,∞ ◦ ϕ1(x)−Uβr,∞ ◦ ψ1(x)U ∗‖

+ ‖βr,∞ ◦ ψ1(x)− ψ ◦ αn,∞(x)‖

< δ +
ε

3
+ δ < ε, x ∈ G.

In view of Theorem 7.5 one might think that equality in KL in the above theorem
could be replaced by equality in K0. This is however impossible in general, see [6,
pp. 375–376] or [27, Theorem 8.4]. But in some cases, e.g. when K0(B) is cyclic, the
KL-condition can be relaxed:
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Theorem 11.6 Assume furthermore that ρB is injective and ρB

(
K0(B)

)
is a discrete

subgroup of Aff T(B). If ϕ∗ = ψ∗ on K0(A), ϕ∗ = ψ∗ on T(B) and ϕ# = ψ# on
U (A)/DU (A), then ϕ and ψ are approximately unitarily equivalent.

Proof As above, but with the following changes. Instead of (36) we get by Proposi-
tion 10.5 that

β#
r,∞ ◦ ψ

#
1(x) = β#

r,∞ ◦ ϕ
#
1(x), x ∈ U An ,

βr,∞ ◦ ψ1∗ = βr,∞ ◦ ϕ1∗ on K0(An).

By Lemma 10.4 we may now replace (42) by

β#
r,m ◦ ψ

#
1(x) = β#

r,m ◦ ϕ
#
1(x), x ∈ U An ,

βr,m ◦ ψ1∗ = βr,m ◦ ϕ1∗ on K0(An).

Finally, (43) follows again by Theorem 7.7.

Theorem 11.7 Let A and B be simple unital infinite dimensional inductive limits of
sequences of finite direct sum of building blocks. Let ϕ0 : K0(A)→ K0(B) be an isomor-
phism of groups with order units, let ϕ1 : K1(A)→ K1(B) be an isomorphism of groups,
and let ϕT : T(B)→ T(A) be an affine homeomorphism such that

rB(ω)
(
ϕ0(x)

)
= rA

(
ϕT(ω)

)
(x), x ∈ K0(A), ω ∈ T(B).

There exists a ∗-isomorphism ϕ : A → B such that ϕ∗ = ϕ0 on K0(A), such that
ϕ∗ = ϕ1 on K1(A), and such that ϕT = ϕ

∗ on T(B).

Proof By Theorem 9.9 we may assume that A is the inductive limit of a sequence

A1
α1−→ A2

α2−→ A3
α3−→ · · ·

of finite direct sums of building blocks with unital and injective connecting maps.
Similarly we may assume that B is the inductive limit of a sequence

B1
β1−→ B2

β2−→ B3
β3−→ · · ·

of finite direct sums of building blocks with unital and injective connecting maps. By
Lemma 9.6 we have that s(An)→∞ and s(Bn)→∞ as n→∞.

By [23, Theorem 7.3] there exists an invertible element κ ∈ KL(A,B) such that
κ∗ = ϕ0 on K0(A) and κ∗ = ϕ1 on K1(A). By Lemma 10.10 there exists a group
isomorphismΦ : U (A)/DU (A)→ U (B)/DU (B) such that the diagram

0 −−−−→ Aff T(A)/ρA

(
K0(A)

) λA−−−−→ U (A)/DU (A)
πA−−−−→ K1(A) −−−−→ 0

ϕ̃T

	 Φ

	 	 κ∗

0 −−−−→ Aff T(B)/ρB

(
K0(B)

)
−−−−→

λB

U (B)/DU (B) −−−−→
πB

K1(B) −−−−→ 0
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commutes and such that sκ(y) = Φ(y) for y in the torsion subgroup of U (A)/DU (A).
By Theorem 11.2 there exists a unital ∗-homomorphism λ : A → B such that

λ∗ = ϕT on T(B), such that λ# = Φ on U (A)/DU (A), and such that [λ] = κ in
KL(A,B). Note that κ−1 ∈ KL(B,A)T . It is easy to see that sκ is a bijection with
inverse sκ−1 . Hence sκ−1 = Φ−1 on Tor

(
U (B)/DU (B)

)
. Thus there exists a unital

∗-homomorphism ψ : B → A such that ψ∗ = ϕT
−1 on T(A), such that ψ# = Φ−1

on U (B)/DU (B), and such that [ψ] = κ−1 in KL(B,A). By Theorem 11.5 the ∗-
homomorphisms ψ ◦ λ and idA are approximately unitarily equivalent. Similarly
λ ◦ ψ and idB are approximately unitarily equivalent. Hence by [21, Proposition A]
λ is approximately unitarily equivalent to an isomorphism ϕ : A→ B.

12 Range of the Invariant

The purpose of this section is to determine the range of the Elliott invariant, i.e., to
answer the question which quadruples

(
K0(A),K1(A),T(A), rA

)
occur as the Elliott

invariant for simple unital infinite dimensional C∗-algebras that are inductive limits
of sequences of finite direct sums of building blocks. Villadsen [28] has answered this
question in the case where A is an inductive limit of a sequence of finite direct sums
of circle algebras. Using this result Thomsen has been able to determine the range
of the Elliott invariant for those C∗-algebras that are inductive limits of finite direct
sums of building blocks of the form A(n, d, d, . . . , d), see below.

We start out by examining the restrictions on
(

K0(A),K1(A),T(A), rA

)
. Let A be

a simple unital infinite dimensional inductive limit of a sequence

A1
α1−→ A2

α2−→ A3
α3−→ · · ·

of finite direct sums of building blocks. We may by Theorem 9.9 assume that each
αn is unital and injective. By Corollary 3.6 each K0(Ak) is isomorphic (as an ordered
group with order unit) to the K0-group of a finite dimensional C∗-algebra. Thus
K0(A) must be a countable dimension group. This group has to be simple as A is
simple.

If K0(A) ∼= Z then by passing to a subsequence, if necessary, we may assume that A
is the inductive limit of a sequence of building blocks, rather than finite direct sums
of such algebras. By Lemma 3.9 it follows that K1(A) is an inductive limit of groups
of the form Z⊕H, where H is any finite abelian group.

If K0(A) is not cyclic our only immediate conclusion is that K1(A) is a countable
abelian group.

T(A) must be a metrizable Choquet simplex. If B is a building block then obvi-
ously rB : T(B) → SK0(B) maps extreme points to extreme points. By [28, Corol-
lary 1.6] and [28, Corollary 1.7] the same must be the case for rA. Finally, rA is surjec-
tive by either [3, Theorem 3.3] and [12], or [13, Corollary 9.18] (or, more elementary,
because each rAk : T(Ak)→ SK0(Ak) is surjective). It follows from Theorem 12.1 and
Corollary 12.5 that these are the only restrictions.

As mentioned above, Thomsen has calculated the range of the invariant for a sub-
class of the class we are considering. By [27, Theorem 9.2] we have the following:
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Theorem 12.1 Let G be a countable simple dimension group with order unit, H a
countable abelian group, ∆ a compact metrizable Choquet simplex, and λ : ∆ → SG
an affine continuous extreme point preserving surjection. There exists a simple unital
infinite dimensional inductive limit of a sequence of finite direct sums of building blocks
A together with an isomorphism ϕ0 : K0(A) → G of ordered groups with order unit, an
isomorphism ϕ1 : K1(A) → H, and an affine homeomorphism ϕT : ∆ → T(A) such
that

rA

(
ϕT(ω)

)
(x) = λ(ω)

(
ϕ0(x)

)
, ω ∈ ∆, x ∈ K0(A)

if and only if G is non-cyclic.
A can be realized as an inductive limit of a sequence of finite direct sums of circle

algebras and interval building blocks of the form I(n, d, d).

A different proof of this theorem could be based on Theorem 8.3 and [28, Theo-
rem 4.2]. Combining the above theorem with Theorem 11.7 we get the following:

Theorem 12.2 Let A be a simple unital inductive limit of a sequence of finite direct
sums of building blocks such that K0(A) is non-cyclic. Then A is the inductive limit of a
sequence of finite direct sums of circle algebras and interval building blocks of the form
I(n, d, d).

We are left with the case of cyclic K0-group. Note that the equation

rA

(
ϕT(ω)

)
(x) = λ(ω)

(
ϕ0(x)

)
, ω ∈ ∆, x ∈ K0(A)

is trivial when A is a unital C∗-algebra with K0(A) ∼= Z.

Lemma 12.3 Let A be a simple unital inductive limit of a sequence of finite direct sums
of building blocks. Then

(
K0(A),K0(A)+, [1]

)
∼= (Z,Z+, 1) if and only if A is unital

projectionless.

Proof This follows easily from Theorem 9.9 and Lemma 3.8.

Theorem 12.4 Let ∆ be a metrizable Choquet simplex, and let H be the inductive
limit of a sequence

Z⊕H1
h1−→ Z⊕H2

h2−→ Z⊕H3
h3−→ · · ·

where each Hk is a finite abelian group. There exists an infinite dimensional simple
unital projectionless C∗-algebra A that is an inductive limit of a sequence of building
blocks, with K1(A) ∼= H and such that T(A) is affinely homeomorphic to∆.

Proof By [26, Lemma 3.8] Aff∆ is isomorphic to an inductive limit in the category
of order unit spaces of a sequence

CR[0, 1] −→ CR[0, 1] −→ CR[0, 1] −→ · · · .
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It is easy to see that this implies that Aff∆ is isomorphic to an inductive limit of a
sequence of the form

CR(T)
Θ1−→ CR(T)

Θ2−→ CR(T)
Θ3−→ · · · .

Choose a dense sequence {xk}∞k=1 in CR(T) and a dense sequence {zk}∞k=1 in T.
For every positive integer k we will construct a unital projectionless building block

Ak such that K1(Ak) ∼= Z⊕Hk, and a unital and injective ∗-homomorphismαk : Ak →
Ak+1 such that the (constant) functions z �→ z1, z �→ z2, . . . , z �→ zk are eigenvalue
functions for αk, such that αk∗ = hk on K1(Ak) (under the identification K1(Ak) ∼=
Z⊕Hk) and such that

‖α̂k( f )−Θk( f )‖ < 2−k, f ∈ Fk,

under the identification Aff T(Ak) ∼= CR(T), where

Fk = {x1, x2, . . . , xk}
k−1⋃
j=1

Θ j,k({x1, x2, . . . , xk})
k−1⋃
j=1

α̂ j,k({x1, x2, . . . , xk}).

First choose by Lemma 3.9 a unital projectionless building block A1 such that
K1(A1) ∼= Z⊕H1.

Assume that Ak has been constructed. We will construct Ak+1 and αk. Choose K
by Theorem 8.3 with respect to Fk ⊆ Aff T(Ak), ε = 2−k and the integer k + 1. By
Lemma 3.9 there exists a unital projectionless building block Ak+1 such that s(Ak+1) ≥
K and K1(Ak+1) ∼= Z⊕Hk+1. By Theorem 8.3 there exists a unital ∗-homomorphism
αk : Ak → Ak+1 such that the identity function on T and each of the functions z �→
z1, z �→ z2, . . . , z �→ zk are among the eigenvalue functions for αk and such that

‖α̂k( f )−Θk( f )‖ < 2−k, f ∈ Fk,

αk∗ = hk on K1(Ak).

This completes the construction.
Set A = lim−→(Ak, αk). A is infinite dimensional since the connecting maps are

injective, and it is unital projectionless since the connecting maps are unital. By [26,
Lemma 3.4] Aff T(A) ∼= lim−→(CR[0, 1],Θk) ∼= Aff∆, and hence T(A) and ∆ are
affinely homeomorphic. Clearly K1(A) ∼= H.

Let I ⊆ A be a closed two-sided ideal in A, I �= {0}. By (the proof of) [5,
Lemma 3.1],

I =
∞⋃

n=1

αn,∞

(
αn,∞

−1(I)
)
.

Choose a positive integer n such that αn,∞
−1(I) �= {0}. Choose f ∈ αn,∞

−1(I) such
that f �= 0. Choose k > n such that f (zk) �= 0. Then αn,l( f )(z) �= 0 for every z ∈ T
and l > k. Hence by Lemma 2.2 we see that αl,∞

−1(I) = Al for every l > k. It follows
that I = A. Thus A is simple.
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In the above theorem, let H = 0 and ∆ be a one-point set. Then we obtain by
Lemma 12.3 and Theorem 11.7 the C∗-algebra Z constructed by Jiang and Su [16].

Corollary 12.5 Let d be a positive integer, let ∆ be a metrizable Choquet simplex
and let H be a countable abelian group. There exists an infinite dimensional simple
unital inductive limit of a sequence of finite direct sums of building blocks A such that(

K0(A),K0(A)+, [1]
)
∼= (Z,Z+, d), T(A) ∼= ∆ and K1(A) ∼= H if and only if H is the

inductive limit of a sequence

Z⊕H1 −→ Z⊕H2 −→ Z⊕H3 −→ · · ·

where each Hk is a finite abelian group.
The C∗-algebra A is isomorphic to Md(B) where B is a simple unital projectionless

C∗-algebra that is an inductive limit of a sequence of building blocks.

Proof Combine Theorem 12.4, Lemma 12.3 and Theorem 11.7.

Theorem 12.1 and Corollary 12.5 together determine the range of the Elliott in-
variant for the class of C∗-algebras for which our classification theorem applies. Let
us conclude this paper by comparing our classification theorem with the classifica-
tion theorems of Thomsen [27] and Jiang and Su [16].

It follows from [27, Theorem 9.2] that a C∗-algebra in our class is contained in
Thomsen’s class if and only if K0 is non-cyclic. By calculating the range of the in-
variant for the C∗-algebras contained in Jiang’s and Su’s class, one can show that a
C∗-algebra in our class with K0 non-cyclic is contained in Jiang’s and Su’s class if and
only if K1 is a torsion group. A C∗-algebra in our class with cyclic K0-group is con-
tained in Jiang’s and Su’s class if and only if the K1-group is an inductive limit of a
sequence of finite cyclic groups, see [16, Theorem 4.5]. Thus our classification theo-
rem can be applied to C∗-algebras that cannot be realized as inductive limits of finite
direct sums of the building blocks considered in [27], or in [16], namely those that
have cyclic K0-group and a K1-group that is not an inductive limit of a sequence of
finite cyclic groups.
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