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Comparison Geometry of Manifolds
with Boundary under a Lower Weighted
Ricci Curvature Bound

Yohei Sakurai

Abstract. We study Riemannian manifolds with boundary under a lower weighted Ricci curvature
bound. We consider a curvature condition in which the weighted Ricci curvature is bounded from
below by the density function. Under the curvature condition and a suitable condition for theweighted
mean curvature for the boundary, we obtain various comparison geometric results.

1 Introduction

We study comparison geometry ofmanifolds with boundary under a lower weighted
Ricci curvature bound. For the lower weighted Ricci curvature bound, we consider a
curvature condition in which the lower bound is controlled by the density function.
We introduce a reasonable curvature condition for a lower weightedmean curvature
bound for the boundary. Under these curvature conditions, we investigate compari-
son geometric properties and conclude twisted rigidity theorems.
For n ≥ 2, let (M , g) be an n-dimensional Riemannian manifold with or without

boundary, and let f ∶ M → R be a smooth function. Let Ricg denote the Ricci cur-
vature deûned by g. For N ∈ (−∞,∞], the N-weighted Ricci curvature is deûned as
follows: If N ∈ (−∞,∞)/{n},

(1.1) RicNf ∶= Ricg +Hess f − d f ⊗ d f
N − n

,

where d f andHess f are the diòerential and theHessian of f , respectively; otherwise,
if N =∞, then RicN

f
∶= Ricg +Hess f ; if N = n, and if f is constant, then RicN

f
∶= Ricg ;

if N = n, and if f is not constant, then RicN
f
∶= −∞ ([2, 12]). For a smooth function

K ∶ M → R, we mean by RicN
f ,M ≥ K for every point x ∈ M, and every unit tangent

vector v at x, it holds that RicN
f
(v) ≥ K(x).

Formanifoldswithout boundary whose N-weightedRicci curvatures are bounded
from below by constants, many comparison geometric results are already known in
the usual weighted case of N ∈ [n,∞] (see e.g., [12, 13, 15, 22]). For manifolds with
boundary, the author [18] has studied such comparison geometric properties.

Recently, under a lower N-weighted Ricci curvature bound,Wylie [23], andWylie
and Yeroshkin [24] studied comparison geometry ofmanifolds without boundary in
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complementary case of N ∈ (−∞, n). Wylie [23] obtained a splitting theorem of
Cheeger–Gromoll type under the curvature condition RicN

f ,M ≥ 0 for N ∈ (−∞, 1].
Wylie and Yeroshkin [24] introduced a curvature condition

Ric1f ,M ≥ (n − 1)κe
−4 f
n−1

for κ ∈ R from the view point of study of weighted aõne connections. Under such
condition, they proved a maximal diameter theorem of Cheng type for the distance
induced from the metric e

−4 f
n−1 g, and a volume comparison of Bishop–Gromov type

for themeasure e− n+1
n−1 f volg , where volg denotes the Riemannian volumemeasure on

(M , g).
In thispaper,we study comparison geometryofRiemannianmanifoldswithbound-

ary satisfying the curvature condition

(1.2) RicNf ,M ≥ (n − 1)κe
−4 f
n−1

for κ ∈ R,N ∈ (−∞,∞]. Wewill also consider a curvature condition for the boundary
that is compatible with (1.2). For a Riemannian manifold M with boundary, let ∂M
stand for its boundary. For z ∈ ∂M, we denote by uz the unit inner normal vector on
∂M at z, and by Hz themean curvature of ∂M at z with respect to uz (more precisely,
see Subsection 2.2). he weightedmean curvature H f ,z is deûned as

H f ,z ∶= Hz + g((∇ f )z , uz) ,

where ∇ f is the gradient of f . We introduce a curvature condition

(1.3) H f ,∂M ≥ (n − 1)λe
−2 f
n−1

for λ ∈ R, where (1.3) means that H f ,z ≥ (n − 1)λe
−2 f (z)

n−1 for every z ∈ ∂M. Under
conditions (1.2) and (1.3) for κ, λ ∈ R,N ∈ (−∞, 1], we formulate various comparison
geometric results, and generalize the preceding studies by Kasue [9, 10], and by the
author [17] when f = 0.

1.1 Setting

In this paper, we work in the following setting. For n ≥ 2, let (M , g) be an n-
dimensional, connected complete Riemannian manifold with boundary, and let
f ∶ M → R be a smooth function. For κ, λ ∈ R,N ∈ (−∞,∞] we say that a triple
(M , ∂M , f ) has lower (κ, λ,N)-weighted curvature bounds if (1.2) and (1.3) hold. For
N1 ∈ (n,∞],N2 ∈ (−∞, n), or for N1 ,N2 ∈ (−∞, n) with N1 ≤ N2, if (M , ∂M , f )
has lower (κ, λ,N1)-weighted curvature bounds, then it also has lower (κ, λ,N2)-
weighted curvature bounds (see (1.1) and (1.2)). Wemainly study a triple (M , ∂M , f )
with lower (κ, λ,N)-weighted curvature bounds for κ, λ ∈ R,N ∈ (−∞, 1].

1.2 Splitting Theorems

For the Riemannian distance dM on M, let ρ∂M ∶ M → R stand for the distance
function from the boundary ∂M deûned as ρ∂M(x) ∶= dM(x , ∂M). For z ∈ ∂M,
let γz ∶ [0, T) → M be the geodesic with γ′z(0) = uz . Deûne functions τ, τ f ∶ ∂M →
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(0,∞] by

(1.4) τ(z) ∶= sup{t > 0 ∣ ρ∂M(γz(t)) = t}, τ f (z) ∶= ∫
τ(z)

0
e
−2 f (γz(a))

n−1 da.

We also deûne a function s f ,z ∶ [0, τ(z)]→ [0, τ f (z)] by

(1.5) s f ,z(t) ∶= ∫
t

0
e
−2 f (γz(a))

n−1 da.

Let sκ ,λ(s) be a unique solution of the Jacobi equation φ′′(s)+κφ(s) = 0 with φ(0) =
1, φ′(0) = −λ. We also denote by sκ(s) the solution of the equation φ′′(s)+κφ(s) = 0
with φ(0) = 0, φ′(0) = 1, and note that

sκ(s) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

sin
√

κs
√

κ
if κ > 0,

s if κ = 0,
sinh

√
∣κ∣s

√
∣κ∣

if κ < 0,
sκ ,λ(s) = s′κ(s) − λsκ(s).

For t ∈ [0, τ(z)], we set

(1.6) Fκ ,λ ,z(t) ∶= exp ( f (γz(t)) − f (z)
n − 1

)sκ ,λ(s f ,z(t)).

Let h denote the induced Riemannian metric on ∂M. For an interval I, and a con-
nected component ∂M1 of ∂M, we denote by I ×Fκ ,λ ∂M1 the twisted product Rie-
mannian manifold (I × ∂M1 , dt2 + F2

κ ,λ ,z(t)h).
One of themain results is the following twisted splitting theorem.

heorem 1.1 Let κ ≤ 0 and λ ∶=
√

∣κ∣. For N ∈ (−∞, 1], assume that (M , ∂M , f )
has lower (κ, λ,N)-weighted curvature bounds. Suppose that f is bounded from above.
If τ(z0) = ∞ for some z0 ∈ ∂M, then M is isometric to [0,∞) ×Fκ ,λ ∂M; moreover, if

N ∈ (−∞, 1), then for every z ∈ ∂M, the function f ○ γz is constant on [0,∞).

When κ = 0 and λ = 0, heorem 1.1 was proved by the author in the cases where
N ∈ [n,∞] (see [18]) and N ∈ (−∞, 1] (see [19]). In the unweighted case of f =
0, Kasue [9] has proved heorem 1.1 under the assumption that M is non-compact
and ∂M is compact (see also Croke and Kleiner [5]), and the author [17] has proved
heorem 1.1 itself.

Inheorem 1.1, by applying a splitting theoremproved byWylie [23] to the bound-
ary, we obtain a multi-splitting theorem (see Subsection 5.3). We also generalize a
splitting theorem studied byKasue [9] (see alsoCroke andKleiner [5] and Ichida [8])
(see Subsection 5.4).

1.3 Inscribed Radii

We denote byMn
κ the simply connected n-dimensional space formwith constant cur-

vature κ. We say that κ and λ satisfy the ball-condition if there exists a closed geodesic
ball Bn

κ ,λ in Mn
κ whose boundary ∂Bn

κ ,λ has constant mean curvature (n− 1)λ. Notice
that κ and λ satisfy the ball-condition if and only if either (1) κ > 0; (2) κ = 0 and
λ > 0; or (3) κ < 0 and λ >

√
∣κ∣. We denote by Cκ ,λ the radius of Bn

κ ,λ . We see that κ
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and λ satisfy the ball-condition if and only if the equation sκ ,λ(s) = 0 has a positive
solution; moreover, Cκ ,λ = inf{s > 0 ∣ sκ ,λ(s) = 0}.

he inscribed radius InRadM of M is deûned to be the supremum of the distance
function from the boundary ρ∂M over M. Let us consider the Riemannian metric
g f ∶= e

−4 f
n−1 g. We denote by ρ

g f
∂M

and by InRadg f M the distance function from the
boundary and the inscribed radius on M induced from g f , respectively.

Let IntM be the interior ofM. For x ∈ IntM, letUxM be the unit tangent sphere at
x that canbe identiûedwith the (n−1)-dimensional standardunit sphere (Sn−1 , ds2n−1).
For v ∈ UxM, let γv ∶ [0, T) → M be the geodesic with γ′v(0) = v. We deûne
τx ∶ UxM → (0,∞] by

(1.7) τx(v) ∶= sup{ t > 0 ∣ ρx(γv(t)) = t, γv([0, t)) ⊂ IntM} ,

where ρx ∶ M → R is the distance function from x deûned as ρx(y) ∶= dM(x , y). Let
s f ,v ∶ [0, τx(v)]→ [0,∞] be deûned by

(1.8) s f ,v(t) ∶= ∫
t

0
e
−2 f (γv (a))

n−1 da.

For t ∈ [0, τx(v)] we put

(1.9) Fκ ,v(t) ∶= exp ( f (γv(t)) + f (x)
n − 1

)sκ(s f ,v(t)).

For l > 0, we denote by [0, l] ×Fκ Sn−1 the twisted product Riemannian manifold
([0, l] × Sn−1 , dt2 + F2

κ ,v(t)ds2n−1) .
We further prove the following inscribed radius rigidity theorem.

heorem 1.2 Let us assume that κ and λ satisfy the ball-condition. For N ∈ (−∞, 1],
assume that (M , ∂M , f ) has lower (κ, λ,N)-weighted curvature bounds. henwe have

(1.10) InRadg f M ≤ Cκ ,λ .

If ρ
g f
∂M

(x0) = Cκ ,λ for some x0 ∈ M, then M is isometric to [0, l] ×Fκ Sn−1 for some

l > 0; moreover, if N ∈ (−∞, 1), then f is constant; in particular, M is isometric to a

closed ball in a space form.

Kasue [9] provedheorem 1.2 in the case of f = 0.
We will also obtain an inscribed radius rigidity theorem for InRadM in the case

where f is bounded from above (seeheorem 6.4).

1.4 Volume Growths

We set Cκ ,λ ∶= Cκ ,λ if κ and λ satisfy the ball-condition; otherwise, Cκ ,λ ∶=∞. We
deûne functions sκ ,λ , Sκ ,λ ∶ [0,∞)→ R by

(1.11) sκ ,λ(s) ∶=
⎧⎪⎪⎨⎪⎪⎩

sκ ,λ(s) if s < Cκ ,λ ,
0 if s ≥ Cκ ,λ ,

Sκ ,λ(r) ∶= ∫
r

0
sn−1
κ ,λ (a)da.

For a smooth function ϕ ∶ M → R, we deûne mϕ ∶= e−ϕ volg . For x ∈ M, we say
that z ∈ ∂M is a foot point on ∂M of x if dM(x , z) = ρ∂M(x). Every point in M has at
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least one foot point on ∂M. Let us deûne a function ρ∂M , f ∶ M → R by

(1.12) ρ∂M , f (x) ∶= inf
z
∫

ρ∂M(x)

0
e
−2 f (γz(a))

n−1 da,

where the inûmum is taken over all foot points z ∈ ∂M of x. For r > 0,

(1.13) B
f

r (∂M) ∶= {x ∈ M ∣ ρ∂M , f (x) ≤ r}, InRad f M ∶= sup
x∈M

ρ∂M , f (x).

We prove absolute volume comparisons of Heintze–Karcher type [7] and relative
volume comparisons (see Subsections 7.2 and 7.3).

One of the relative volume comparison theorems is the following.

heorem 1.3 ForN ∈ (−∞, 1], assume that (M , ∂M , f )has lower (κ, λ,N)-weighted
curvature bounds. Let ∂M be compact. hen for all r, R > 0 with r ≤ R, we have

(1.14)
m n+1

n−1 f
(B f

R
(∂M))

m n+1
n−1 f

(B fr (∂M))
≤ Sκ ,λ(R)

Sκ ,λ(r)
.

We provide a rigidity theorem concerning the equality case of heorem 1.3 (see
heorem 7.11). We also present a volume growth rigidity theorem in the case where f
is bounded from above (seeheorem 7.13).

1.5 Eigenvalues

For p ∈ [1,∞) and a smooth function ϕ ∶ M → R, let W 1,p
0 (M ,mϕ) stand for the

(1, p)-Sobolev space with compact support deûned as the completion of C∞0 (M) with
respect to the standard (1, p)-Sobolev norm. he (ϕ, p)-Laplacian is deûned as

∆ϕ ,p ∶= −eϕ div ( e−ϕ∥∇ ⋅ ∥p−2∇ ⋅ )

as a distribution on W
1,p
0 (M ,mϕ), where ∥ ⋅ ∥ is the standard norm, and div is the

divergencewith respect to g. A real number ν is said to be a (ϕ, p)-Dirichlet eigenvalue

on M if there exists ψ ∈ W 1,p
0 (M ,mϕ)/{0} such that ∆ϕ ,pψ = ν∣ψ∣p−2ψ holds in the

distribution sense. For ψ ∈W 1,p
0 (M ,mϕ)/{0}, the Rayleigh quotient is deûned as

Rϕ ,p(ψ) ∶= ∫M
∥∇ψ∥pdmϕ

∫M ∣ψ∣pdmϕ

.

We study

νϕ ,p(M) ∶= inf
ψ

Rϕ ,p(ψ),

where the inûmum is taken over all ψ ∈ W
1,p
0 (M ,mϕ)/{0}. If M is compact and if

p ∈ (1,∞), then νϕ ,p(M) is equal to the inûmum of the set of all (ϕ, p)-Dirichlet
eigenvalues on M.
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Let p ∈ (1,∞). For D ∈ (0,Cκ ,λ]/{∞}, let νp ,κ ,λ ,D be the positive minimum real
number ν such that there exists a non-zero function φ ∶ [0,D]→ R satisfying

(1.15) ( ∣φ′(s)∣p−2
φ
′(s)) ′ + (n − 1)

s′
κ ,λ(s)
sκ ,λ(s)

( ∣φ′(s)∣p−2
φ
′(s))

+ ν∣φ(s)∣p−2
φ(s) = 0, φ(0) = 0, φ′(D) = 0.

Let us recall the notion of themodel spaces introduced by Kasue [10]. We say that
κ and λ satisfy themodel-condition if the equation s′

κ ,λ(s) = 0 has a positive solution.
Note that κ and λ satisfy themodel-condition if and only if either (1) κ > 0 and λ < 0;
(2) κ = 0 and λ = 0; or (3) κ < 0 and λ ∈ (0,

√
∣κ∣). Let κ and λ satisfy the ball-

condition or themodel-condition, and let M be compact. For an interval I and for a
connected component ∂M1 of ∂M, we denote by I ×κ ,λ ∂M1 the warped product (I ×
∂M1 , ds2 +s2

κ ,λ(s)h). When κ and λ satisfy themodel-condition, we deûne Dκ ,λ(M)
as follows. If κ = 0 and λ = 0, then Dκ ,λ(M) ∶= InRadM; otherwise, Dκ ,λ(M) ∶=
inf{s > 0 ∣ s′

κ ,λ(s) = 0}. We say that M is a (κ, λ)-equational model space if M is
isometric to either (1) the closed geodesic ball Bn

κ ,λ for κ and λ satisfying the ball-
condition; (2) the warped product [0, 2Dκ ,λ(M)] ×κ ,λ ∂M1 for κ and λ satisfying the
model-condition, and for some connected component ∂M1 of ∂M; or (3) the quotient
space ([0, 2Dκ ,λ(M)] ×κ ,λ ∂M)/Gσ for κ and λ satisfying themodel-condition, and
for some involutive isometry σ of ∂M without ûxed points, where Gσ denotes the
isometry group on [0, 2Dκ ,λ(M)]×κ ,λ ∂M whose elements consist of identity and the
involute isometry σ̂ deûned by σ̂(s, z) ∶= (2Dκ ,λ(M) − s, σ(z)).

We say that f is ∂M-radial if there exists a smooth function ϕ f ∶ [0,∞)→ R such
that f = ϕ f ○ ρ∂M on M.

We establish the following theorem for the smallest eigenvalue ν n+1
n−1 f ,p

.

heorem 1.4 Let p ∈ (1,∞). For N ∈ (−∞, 1], let us assume that (M , ∂M , f )
has lower (κ, λ,N)-weighted curvature bounds. Let M be compact and let f be ∂M-

radial. Suppose additionally that there exists δ ∈ R such that f ≤ (n − 1)δ on M. For

D ∈ (0,Cκ ,λ]/{∞}, suppose InRad f M ≤ D,where InRad f M is deûned as (1.13). hen

(1.16) ν n+1
n−1 f ,p

(M) ≥ νp ,κe−4δ ,λe−2δ ,De2δ .

If the equality in (1.16) holds, then M is a (κe−4δ , λe−2δ)-equational model space and

f = (n − 1)δ on M.

In the case where f = 0 and δ = 0, Kasue [10] proved heorem 1.4 for p = 2, and
the author [18] proved it for any p ∈ (1,∞).

We also formulate a rigidity theorem for the smallest eigenvalue ν f ,p in the case
where f is not necessarily ∂M-radial (see heorem 8.8). Furthermore, we obtain a
spectrum rigidity theorem for complete (not necessarily compact) manifolds with
boundary (seeheorem 8.12).
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1.6 Organization

In Section 2,we prepare some notation and recall the basic facts for Riemannianman-
ifolds with boundary. We also recall the works byWylie and Yeroshkin [24] (see Sub-
section 2.6).

In Sections 3 and 4, to prove our main theorems, we study Laplacian comparisons
for the distance function from the boundary. In Section 3,we show a pointwise Lapla-
cian comparison result (see Subsection 3.1) and a rigidity result in the equality case
(see Subsection 3.2). In Section 4, we prove global Laplacian comparison inequalities
in the distribution sense in the case where f is bounded from above (see Subsection
4.1) and where f is ∂M-radial (see Subsection 4.2).

In Section 5, we prove splitting theorems. In Section 6, we examine inscribed ra-
dius rigidity theorems. In Section 7, we show volume comparison theorems. In Sec-
tion 8, we study eigenvalue rigidity theorems.

2 Preliminaries

We refer to [16] for the basics of Riemannian manifolds with boundary (see also [17,
Section 2] and [18, 19]).

2.1 Riemannian Manifolds with Boundary

Let M be a connected Riemannian manifold with boundary. For r > 0 and A ⊂ M,
we denote by Br(A) the closed r-neighborhood of A. For A1 ,A2 ⊂ M, let dM(A1 ,A2)
denote the distance between them. For an interval I, we say that a curve γ ∶ I → M is
aminimal geodesic if for all t1 , t2 ∈ I we have dM(γ(t1), γ(t2)) = ∣t1 − t2∣. If themetric
space (M , dM) is complete, then theHopf–Rinow theorem for length spaces (see e.g.,
heorem 2.5.23 in [3]) tells us that it is a proper geodesic space.
For i = 1, 2, let (M i , g i) be connected Riemannian manifolds with boundary. For

each i, the boundary ∂M i carries the induced metric h i . We say that a homeomor-
phism Φ ∶ M1 → M2 is a Riemannian isometry with boundary ifΦ satisûes the follow-
ing conditions:

(1) Φ∣Int M1 ∶ IntM1 → IntM2 is smooth, and (Φ∣Int M1)∗(g2) = g1;
(2) Φ∣∂M1 ∶ ∂M1 → ∂M2 is smooth, and (Φ∣∂M1)∗(h2) = h1.

here exists a Riemannian isometry with boundary from M1 to M2 if and only if
(M1 , dM1) and (M2 , dM2) are isometric to each other.

2.2 Jacobi Fields

Let (M , g) be a connected Riemannian manifold with boundary. For x ∈ IntM, let
TxM and UxM be the tangent space and the unit tangent sphere at x, respectively.
For z ∈ ∂M and the tangent space Tz∂M at z on ∂M, let T⊥z ∂M be its orthogonal
complement in the tangent space at z on M.
For vector ûelds v1 , v2 on ∂M, the second fundamental form S(v1 , v2) is deûned

as the normal component of ∇g

v1v2 with respect to ∂M, where ∇g is the Levi–Civita
connection induced from g. For u ∈ T⊥z ∂M, the shape operator Au ∶ Tz∂M → Tz∂M
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is deûned as
g(Auv1 , v2) ∶= g(S(v1 , v2), u) .

For the unit inner normal vector uz on ∂M at z, the mean curvature Hz of ∂M at z
is deûned as the trace of Auz . We say that a Jacobi ûeld Y along the geodesic γz is a
∂M-Jacobi ûeld if Y satisûes

Y(0) ∈ Tz∂M , Y
′(0) + AuzY(0) ∈ T

⊥
z ∂M .

We say that γz(t0) is a conjugate point of ∂M along γz if there exists a non-zero ∂M-
Jacobi ûeld Y along γz such that Y(t0) = 0.

2.3 Cut Locus for the Boundary

We recall the basic properties of the cut locus for the boundary. We refer to [17] for
the proofs.

Let (M , g) be a connected complete Riemannian manifold with boundary. For
x ∈ IntM, let z ∈ ∂M be a foot point on ∂M of x (i.e., dM(x , z) = ρ∂M(x)). In this
case, there exists a unique minimal geodesic γ ∶ [0, l] → M from z to x such that
γ = γz ∣[0, l], where l = ρ∂M(x). In particular, γ′(0) = uz and γ∣(0, l] lies in IntM.

Let τ ∶ ∂M → (0,∞] be the function deûned as (1.4)). he supremum of τ over
∂M is equal to the inscribed radius InRadM. he function τ is continuous on ∂M.
he continuity of τ tells us that if ∂M is compact, then InRadM <∞ if and only ifM
is compact.

he cut locus for the boundary is deûned as

Cut ∂M ∶= {γz(τ(z)) ∣ z ∈ ∂M , τ(z) <∞} .

From the continuity of τ we see thatCut ∂M is a null set ofM. For x ∈ IntM/Cut ∂M,
its foot point on ∂M is uniquely determined.

We know the following lemma from [17].

Lemma 2.1 If there exists a connected component ∂M0 of ∂M such that τ = ∞ on

∂M0, then ∂M is connected and Cut ∂M = ∅.

he function ρ∂M is smooth on IntM/Cut ∂M. For each x ∈ IntM/Cut ∂M, we
have ∇ρ∂M(x) = γ′(l), where γ ∶ [0, l] → M is the minimal geodesic from the foot
point on ∂M of x to x.
For Ω ⊂ M, we denote by Ω its closure, and by ∂Ω its boundary. For a domain Ω

in M such that ∂Ω is a smooth hypersurface in M, we denote by vol∂Ω the canonical
Riemannian volumemeasure on ∂Ω.

We recall the following fact to avoid the cut locus for the boundary (see [18, Lemma
2.6]).

Lemma 2.2 Let Ω ⊂ M be a domain such that ∂Ω is a smooth hypersurface in M.

hen there exists a sequence {Ω i} of closed subsets of Ω such that for every i, the set

∂Ω i is a smooth hypersurface in M, except for a null set in (∂Ω, vol∂Ω), satisfying the

following properties:

(i) for all i1 , i2 with i1 < i2, we have Ω i1 ⊂ Ω i2 ;
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(ii) Ω/Cut ∂M = ⋃i Ω i ;

(iii) for every i, and for almost every x ∈ ∂Ω i ∩ ∂Ω in (∂Ω, vol∂Ω), there exists aunique
unit outer normal vector for Ω i at x that coincides with the unit outer normal vector

on ∂Ω for Ω at x;

(iv) for every i, on ∂Ω i/∂Ω, there exists a unique unit outer normal vector ûeld u i for

Ω i such that g(u i ,∇ρ∂M) ≥ 0.
Moreover, if Ω = M, then for every i, the set ∂Ω i is a smooth hypersurface in M and

satisûes ∂Ω i ∩ ∂M = ∂M.

2.4 Busemann Functions and Asymptotes

Let M be a connected complete Riemannian manifold with boundary. A minimal
geodesic γ ∶ [0,∞) → M is said to be a ray. For a ray γ ∶ [0,∞) → M, the Busemann
function bγ ∶ M → R is deûned as

bγ(x) ∶= lim
t→∞

( t − dM(x , γ(t))) .

We have the following lemma (see [17, Lemma 6.1]).

Lemma 2.3 Suppose that for some z ∈ ∂M, we have τ(z) = ∞. Take x ∈ IntM. If

bγz(x) = ρ∂M(x), then x ∉ Cut ∂M. Moreover, for the unique foot point zx on ∂M of

x, we have τ(zx) =∞.

Let γ ∶ [0,∞) → M be a ray. For x ∈ M, we say that a ray γx ∶ [0,∞) → M is
an asymptote for γ from x if there exists a sequence {t i} with t i → ∞ such that the
following holds: For each i, there exists a minimal geodesic γ i ∶ [0, l i] → M from x

to γ(t i) such that for every t ≥ 0 we have γ i(t)→ γx(t) as i →∞. SinceM is proper,
for each x ∈ M there exists at least one asymptote for γ from x.
For asymptotes, we see the following lemma (see [17, Lemma 6.2]).

Lemma 2.4 Suppose that for some z ∈ ∂M, we have τ(z) = ∞. For l > 0, put
x ∶= γz(l). hen there exists є > 0 such that for all y ∈ Bє(x), all asymptotes for the ray

γz from y lie in IntM.

2.5 Weighted Manifolds with Boundary

Let (M , g) be a connected complete Riemannian manifold with boundary, and let
f ∶ M → R be a smooth function. he weighted Laplacian ∆ f is deûned by

∆ f ∶= ∆ + g(∇ f ,∇⋅),
where ∆ is the Laplacian deûned as the minus of the trace of the Hessian. Note that
∆ f coincides with the ( f , 2)-Laplacian ∆ f ,2.

he following formula of Bochner type is well known (see e.g., [21]).

Proposition 2.5 For every smooth function ψ on M, we have

− 1
2
∆ f ∥∇ψ∥2 = Ric∞f (∇ψ) + ∥Hessψ∥2 − g(∇∆ fψ,∇ψ),

where ∥Hessψ∥ is the Hilbert-Schmidt norm ofHessψ.
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For z ∈ ∂M, the value ∆ f ρ∂M(γz(t)) tends to H f ,z as t → 0. For t ∈ (0, τ(z)), and
for the volume element θ(t, z) of the t-level surface of ρ∂M at γz(t), we put

(2.1) θ f (t, z) ∶= e− f (γz(t))θ(t, z).
For all t ∈ (0, τ(z)), it holds that

(2.2) ∆ f ρ∂M(γz(t)) = −
θ′
f
(t, z)

θ f (t, z)
.

We further deûne a function θ f ∶ [0,∞) × ∂M → R by

θ f (t, z) ∶=
⎧⎪⎪⎨⎪⎪⎩

θ f (t, z) if t < τ(z),
0 if t ≥ τ(z).

he following lemma was shown in [18].

Lemma 2.6 If ∂M is compact, then for all r > 0,

m f (Br(∂M)) = ∫
∂M
∫

r

0
θ f (t, z)dtd volh ,

where volh is the Riemannian volumemeasure on ∂M induced from h.

Let ψ ∶ M → R be a continuous function, and let U be a domain contained in
IntM. For x ∈ U and for a function ψ̂ deûned on an open neighborhood of x, we say
that ψ̂ is a support function of ψ at x if we have ψ̂(x) = ψ(x) and ψ̂ ≤ ψ. We say that
ψ is f -subharmonic on U if for every x ∈ U , and for every є > 0, there exists a smooth
support function ψx ,є of ψ at x such that ∆ fψx ,є(x) ≤ є.

We recall the following maximal principle (see e.g., [4]).

Lemma 2.7 ([4]) Let U be a domain contained in IntM. If an f -subharmonic func-

tion on U takes themaximal value at a point in U , then it must be constant on U .

2.6 Laplacian Comparisons from a Single Point

We recall the works done by Wylie and Yeroshkin [24]. Let M be an n-dimensional,
connected complete Riemannian manifold with boundary, and let f ∶ M → R be a
smooth function. For the diameter Cκ of the space form Mn

κ , we deûne a function
Hκ ∶ (0,Cκ)→ R by

(2.3) Hκ(s) ∶= −(n − 1)s
′
κ(s)
sκ(s)

.

Wylie and Yeroshkin [24] proved a Laplacian comparison inequality for the dis-
tance function from a single point (see [24, heorem 4.4]). In our setting, the in-
equality holds in the following form.

Lemma 2.8 ([24]) Let x ∈ IntM and v ∈ UxM. For N ∈ (−∞, 1], assume that

RicN
f ,M ≥ (n − 1)κe

−4 f
n−1 . hen for all t ∈ (0, τx(v)),

(2.4) ∆ f ρx(γv(t)) ≥ Hκ(s f ,v(t))e
−2 f (γv (t))

n−1 ,

252

https://doi.org/10.4153/S0008414X1800007X Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X1800007X


Comparison Geometry ofManifolds with Boundary

where τx and s f ,v are deûned as (1.7) and as (1.8), respectively.

As a corollary of the Laplacian comparison inequality,Wylie and Yeroshkin have
shown another Laplacian comparison inequality in the case where f is bounded (see
[24, Corollary 4.11]). In our setting, by using the same method for the proof, we see
the following lemma.

Lemma 2.9 ([24]) Let x ∈ IntM and v ∈ UxM. For N ∈ (−∞, 1], assume that

RicN
f ,M ≥ (n − 1)κe

−4 f
n−1 . Suppose additionally that there is δ ∈ R such that f ≤ (n − 1)δ

on M. hen for all t ∈ (0, τx(v)), we have

(2.5) ∆ f ρx(γv(t)) ≥ Hκ(e−2δ
t)e

−2 f (γv (t))
n−1 .

Proof From f ≤ (n − 1)δ, we deduce that s f ,v(t) ≥ e−2δ t for every t ∈ (0, τx(v)).
We see H′

κ > 0 on (0,Cκ), and hence (2.4) implies

(2.6) ∆ f ρx(γv(t)) ≥ Hκ(s f ,v(t))e
−2 f (γv (t))

n−1 ≥ Hκ(e−2δ
t)e

−2 f (γv (t))
n−1 .

his proves (2.5). ∎

Wylie and Yeroshkin proved a rigidity result in the equality case of the Laplacian
comparison inequality (see [24, Lemma 4.13]). From the argument discussed in their
proof, one can derive the following lemma.

Lemma 2.10 ([24]) Under the same setting as Lemma 2.8, assume that for some t0 ∈
(0, τx(v)), the equality in (2.4) holds. Choose an orthonormal basis {ev , i}n

i=1 of TxM

with ev ,n = v. Let {Yv , i}n−1
i=1 be the Jacobi ûelds along γv with Yv , i(0) = 0x ,Y ′

v , i(0) =
ev , i . hen for all i we have Yv , i = Fκ ,vEv , i on [0, t0], where Fκ ,v is deûned as (1.9), and
{Ev , i}n−1

i=1 are the parallel vector ûelds with Ev , i(0) = ev , i ; moreover, if N ∈ (−∞, 1),
then f ○ γv is constant on [0, t0].

Remark 2.11 Under the same setting as Lemma 2.9, assume that for some t0 ∈
(0, τx(v)), the equality in (2.5) holds. hen the equalities in (2.6) hold. In particular,
the equality in (2.4) holds (see Lemma 2.10), and s f ,v(t0) = e−2δ t0, and hence f ○γv =
(n − 1)δ on [0, t0].

3 Laplacian Comparisons

Herea�er, let (M , g) be an n-dimensional, connected completeRiemannianmanifold
with boundary, and let f ∶ M → R be smooth.

3.1 Basic Laplacian Comparisons

For the distance function from a single point, Wylie and Yeroshkin have shown an
inequality of Riccati type (see [24, Lemma 4.1]). Using the same method as for the
proof for the distance function from the boundary, we have the following lemma.
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Lemma 3.1 Let z ∈ ∂M and N ∈ (−∞, 1]. hen for all t ∈ (0, τ(z)),

(3.1) ((e
2 f
n−1 ∆ f ρ∂M)(γz(t)))

′ ≥

RicNf (γ′z(t))e
2 f (γz(t))

n−1 +
((e

2 f
n−1 ∆ f ρ∂M)(γz(t)))

2

n − 1
e
−2 f (γz(t))

n−1 .

Proof Put fz ∶= f ○ γz and h f ,z ∶= (∆ f ρ∂M) ○ γz . Applying Proposition 2.5 to the
distance function ρ∂M , we have

0 = Ric∞f (γ′z(t)) + ∥Hess ρ∂M∥2(γz(t)) − g(∇∆ f ρ∂M ,∇ρ∂M)(γz(t))

= ( RicNf (γ′z(t)) +
f ′z(t)2

N − n
) + ∥Hess ρ∂M∥2(γz(t)) − h

′
f ,z(t).

By the Cauchy–Schwarz inequality,

(3.2) ∥Hess ρ∂M∥2(γz(t)) ≥
(∆ρ∂M(γz(t)))

2

n − 1
=

(h f ,z(t) − f ′z(t))
2

n − 1
.

Inequality (3.2) yields

0 ≥ RicNf (γ′z(t)) +
f ′z(t)2

N − n
+

(h f ,z(t) − f ′z(t))2

n − 1
− h

′
f ,z(t)(3.3)

= RicNf (γ′z(t)) +
(1 − N) f ′z(t)2

(n − 1)(n − N) +
h2
f ,z(t)
n − 1

− (
2h f ,z(t) f ′z(t)

n − 1
+ h

′
f ,z(t)) .

he last term in the right-hand side of (3.3) satisûes

2h f ,z(t) f ′z(t)
n − 1

+ h
′
f ,z(t) = e

−2 f (γz(t))
n−1 (e

2 f (γz(t))
n−1 h f ,z(t))

′ .

We put Fz(t) ∶= e
2 f (γz(t))

n−1 h f ,z(t). From N ∈ (−∞, 1], it follows that

0 ≥ RicNf (γ′z(t)) +
(1 − N) f ′z(t)2

(n − 1)(n − N) +
h2
f ,z(t)
n − 1

− e
−2 f (γz(t))

n−1 F
′
z(t)(3.4)

≥ RicNf (γ′z(t)) +
h2
f ,z(t)
n − 1

− e
−2 f (γz(t))

n−1 F
′
z(t).

his implies that

F
′
z(t) ≥ e

2 f (γz(t))
n−1 (RicNf (γ′z(t)) +

h2
f ,z(t)
n − 1

)

= RicNf (γ′z(t))e
2 f (γz(t))

n−1 + F
2
z (t)
n − 1

e
−2 f (γz(t))

n−1 .

We arrive at the desired inequality (3.1). ∎

Remark 3.2 We assume that the equality in (3.1) holds for some t0 ∈ (0, τ(z)).
hen the equality in the Cauchy–Schwarz inequality in (3.2) holds; in particular, there
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exists a constant c such that Hess ρ∂M = cg on the orthogonal complement of ∇ρ∂M

at γz(t0). Moreover, the equalities in (3.4) hold; in particular, (1 − N) f ′z(t0)2 = 0.

Recall that τ f and s f ,z are deûned as (1.4) and (1.5), respectively. We denote by
t f ,z ∶ [0, τ f (z)]→ [0, τ(z)] the inverse function of s f ,z .

We deûne a function Hκ ,λ ∶ [0,Cκ ,λ)→ R by

(3.5) Hκ ,λ(s) ∶= −(n − 1)
s′
κ ,λ(s)
sκ ,λ(s)

.

For all s ∈ [0,Cκ ,λ), we see that

(3.6) H
′
κ ,λ(s) = (n − 1)κ +

H2
κ ,λ(s)
n − 1

.

We prove the following pointwise Laplacian comparison inequality.

Lemma 3.3 Let z ∈ ∂M. For N ∈ (−∞, 1], let us assume that

RicNf (γ′z(t)) ≥ (n − 1)κe
−4 f (γz(t))

n−1

for all t ∈ (0, τ(z)), and H f ,z ≥ (n − 1)λe
−2 f (z)

n−1 . hen for all

s ∈ (0,min{τ f (z),Cκ ,λ}) ,
we have

(3.7) ∆ f ρ∂M(γz(t f ,z(s))) ≥ Hκ ,λ(s)e
−2 f (γz(t f ,z(s)))

n−1 .

In particular, for all t ∈ (0, τ(z)) with s f ,z(t) ∈ (0,min{τ f (z),Cκ ,λ}),

(3.8) ∆ f ρ∂M(γz(t)) ≥ Hκ ,λ(s f ,z(t))e
−2 f (γz(t))

n−1 .

Proof We deûne a function Fz ∶ (0, τ(z))→ R by

Fz ∶= ( e
2 f
n−1 ∆ f ρ∂M)○γz ,

and a function F̂z ∶ (0, τ f (z))→ R by F̂z ∶= Fz ○ t f ,z . By Lemma 3.1 and the curvature
assumption, for all s ∈ (0, τ f (z)),

F̂
′
z(s) = F′z(t f ,z(s))e

2 f (γz(t f ,z(s)))
n−1(3.9)

≥ RicNf (γ′z(t f ,z(s)))e
4 f (γz(t f ,z(s)))

n−1 +
F2
z (t f ,z(s))
n − 1

≥ (n − 1)κ + F̂
2
z (s)
n − 1

.

he identity (3.6) implies that for all s ∈ (0,min{τ f (z),Cκ ,λ}),

(3.10) F̂
′
z(s) −H

′
κ ,λ(s) ≥

F̂2
z (s) −H2

κ ,λ(s)
n − 1

.

Let us deûne a function Gκ ,λ ,z ∶ (0,min{τ f (z),Cκ ,λ})→ R by

Gκ ,λ ,z ∶= s2
κ ,λ( F̂z −Hκ ,λ) .
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From (3.10) we deduce

G
′
κ ,λ ,z = 2sκ ,λs′κ ,λ( F̂z −Hκ ,λ)+s2

κ ,λ( F̂′z −H
′
κ ,λ)(3.11)

≥ 2sκ ,λs′κ ,λ( F̂z −Hκ ,λ)+s2
κ ,λ
F̂2
z −H2

κ ,λ

n − 1

=
s2
κ ,λ

n − 1
( F̂z −Hκ ,λ)

2≥ 0.

Since Gκ ,λ ,z(s) converges to a non-negative value e
2 f (z)
n−1 H f ,z − (n − 1)λ as s → 0, the

function Gκ ,λ ,z is non-negative. We conclude that F̂z ≥ Hκ ,λ holds on (0,min{τ f (z),
Cκ ,λ}), and hence (3.7). ∎

Remark 3.4 We assume that the equality in (3.7) holds for some s0 ∈ (0,min{τ f (z),
Cκ ,λ}). hen we have Gκ ,λ ,z(s0) = 0. From G′

κ ,λ ,z ≥ 0 it follows that Gκ ,λ ,z = 0 on
[0, s0]; in particular, the equality in (3.7) holds on [0, s0]. Since the equalities in (3.9),
(3.10), (3.11) hold, the equality in (3.1) holds on [0, t f ,z(s0)] (see Remark 3.2).

From Lemma 3.3 we derive the following estimate for τ f .

Lemma 3.5 Let z ∈ ∂M. Let κ and λ satisfy the ball-condition. For N ∈ (−∞, 1],
we assume that RicN

f
(γ′z(t)) ≥ (n − 1)κe

−4 f (γz(t))
n−1 for all t ∈ (0, τ(z)), and H f ,z ≥

(n − 1)λe
−2 f (z)

n−1 . hen we have

(3.12) τ f (z) ≤ Cκ ,λ .

Moreover, if there is δ ∈ R such that f ○ γz ≤ (n − 1)δ on (0, τ(z)), then

(3.13) τ(z) ≤ Cκe−4δ ,λe−2δ .

Proof he proof is by contradiction. Suppose τ f (z) > Cκ ,λ . henwe see that τ(z) >
t f ,z(Cκ ,λ). By (3.8), for every t ∈ (0, t f ,z(Cκ ,λ))

∆ f ρ∂M(γz(t)) ≥ Hκ ,λ(s f ,z(t))e
−2 f (γz(t))

n−1 ;

in particular, ∆ f ρ∂M(γz(t)) → ∞ as t → t f ,z(Cκ ,λ). his contradicts the smooth-
ness of ρ∂M ○γz on (0, τ(z)). Equation (3.12) follows. If f ○γz ≤ (n−1)δ, thenwe have
e−2δτ(z) ≤ τ f (z). By e2δCκ ,λ = Cκe−4δ ,λe−2δ , we arrive at the desired
inequality (3.13). ∎

Remark 3.6 Lemma 3.5 enables us to restate the conclusion ofLemma 3.3 as follows:
For all s ∈ (0, τ f (z)), we have (3.7). In particular, for all t ∈ (0, τ(z)), we have (3.8).

3.2 Equality Cases

Recall the following (see e.g., [14,heorem 2]).

Lemma 3.7 Let ρ be a smooth function deûned on a domain in M such that ∥∇ρ∥ = 1.
Let X be a parallel vector ûeld along an integral curve of ∇ρ that is orthogonal to ∇ρ.
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hen we have

g(R(X ,∇ρ)∇ρ, X) = g(∇∇ρA∇ρX , X) − g(A∇ρA∇ρX , X),
whereR is the curvature tensor induced from g, and A∇ρ is the shape operator of the level

set of ρ toward ∇ρ. In particular, if there exists a function φ deûned on the domain of

the integral curve such that A∇ρX = −φX, then g(R(X ,∇ρ)∇ρ, X) = −(φ′+φ2)∥X∥2.

For the equality case of (3.7) in Lemma 3.3, we have the following lemma.

Lemma 3.8 Under the same setting asLemma 3.3, assume that for some s0 ∈ (0, τ f (z)),
the equality in (3.7) holds. Choose an orthonormal basis {ez , i}n−1

i=1 of Tz∂M, and let

{Yz , i}n−1
i=1 be the ∂M-Jacobi ûelds along γz with Yz , i(0) = ez , i ,Y ′

z , i(0) = −Auz ez , i . hen

for all i, we have Yz , i = Fκ ,λ ,zEz , i on [0, t f ,z(s0)], where Fκ ,λ ,z is deûned as (1.6), and
{Ez , i}n−1

i=1 are the parallel vector ûelds with Ez , i(0) = ez , i ; moreover, if N ∈ (−∞, 1),
then f ○ γz is constant on [0, t f ,z(s0)].

Proof Put t0 ∶= t f ,z(s0). Since the equality in (3.7) holds at s0, the equality in (3.1)
also holds on [0, t0] (see Remark 3.2). here exists a function φ on the set γz((0, t0))
such that at each point on γz((0, t0)), we have Hess ρ∂M = φg on the orthogonal
complement of ∇ρ∂M (see Remark 3.4). Deûne φz ∶= φ ○ γz . For each i, it holds that

g(A∇ρ∂MEz , i , Ez , i) = −Hess ρ∂M(Ez , i , Ez , i) = −φz ;

in particular, A∇ρ∂MEz , i = −φzEz , i . From Lemma 3.7 we deduce

(3.14) R(Ez , i ,∇ρ∂M)∇ρ∂M = −(φ′z + φ
2
z)Ez , i = −F′′z F−1

z Ez , i ,

where Fz ∶ [0, t0]→ R is a function deûned by

Fz(t) ∶= exp ( ∫
t

0
φz(a)da) .

Set fz ∶= f ○ γz and h f ,z ∶= (∆ f ρ∂M) ○ γz . By the equality assumption, e
2 fz
n−1 h f ,z =

Hκ ,λ ○ s f ,z on [0, t0] (see Remarks 3.2 and 3.4). Furthermore,Hess ρ∂M = φg leads to
∆ρ∂M ○ γz = −(n − 1)φz . herefore,

φz(t) =
1

n − 1
( fz(t) − ∫

t

0
e
−2 f (γz(a))

n−1 (Hκ ,λ ○ s f ,z)(a)da)
′

for every t ∈ [0, t0]. It follows that Fz = Fκ ,λ ,z on [0, t0]. In view of (3.14), we obtain
Yz , i = Fκ ,λ ,zEz , i on [0, t0].

We have (1 − N)( f ′z)2 = 0 on [0, t0] (see Remarks 3.2 and 3.4). If N ∈ (−∞, 1),
then f ′z = 0 on [0, t0]; in particular, fz is constant. ∎

For the equality case of (3.8), Lemma 3.8 implies the following lemma.

Lemma 3.9 Under the same setting as in Lemma 3.3, assume that for some

t0 ∈ (0, τ(z)) the equality in (3.8) holds. Choose an orthonormal basis {ez , i}n−1
i=1 of

Tz∂M, and let {Yz , i}n−1
i=1 be the ∂M-Jacobi ûelds along γz with Yz , i(0) = ez , i ,Y ′

z , i(0) =
−Auz ez , i . hen for all i we have Yz , i = Fκ ,λ ,zEz , i on [0, t0],where {Ez , i}n−1

i=1 are the par-

allel vector ûelds with Ez , i(0) = ez , i ; moreover, if N ∈ (−∞, 1), then f ○ γz is constant.
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4 Global Laplacian Comparisons

We start by introducing some conditions. Let us recall that κ and λ satisfy the ball-
condition if and only if either (1) κ > 0; (2) κ = 0 and λ > 0; or (3) κ < 0 and λ >

√
∣κ∣.

We say that κ and λ satisfy the convex-ball-condition if they satisfy the ball-condition
and λ ≥ 0.
Furthermore, we say that κ and λ satisfy the monotone-condition if Hκ ,λ ≥ 0 and

H′
κ ,λ ≥ 0 on [0,Cκ ,λ), where Hκ ,λ is deûned as (3.5). We see that κ and λ satisfy the

monotone-condition if and only if either (1) κ and λ satisfy the convex-ball-condition;
or (2) κ ≤ 0 and λ =

√
∣κ∣. For κ and λ satisfying the monotone-condition, if κ = 0

and λ = 0, then Hκ ,λ = 0 on [0,∞); otherwise, Hκ ,λ > 0 on (0,Cκ ,λ).
We also say that κ and λ satisfy the weakly-monotone-condition if H′

κ ,λ ≥ 0 on
[0,Cκ ,λ). Notice that κ and λ satisfy the weakly-monotone-condition if and only if
either (1) κ ≥ 0; or (2) κ < 0 and ∣λ∣ ≥

√
∣κ∣. In particular, if κ and λ satisfy the

ball-condition, then they also satisfy the weakly-monotone-condition. For κ and λ

satisfying the weakly-monotone-condition, if κ ≤ 0 and ∣λ∣ =
√

∣κ∣, then Hκ ,λ = (n −
1)λ on [0,∞); otherwise, H′

κ ,λ > 0 on [0,Cκ ,λ).

4.1 Bounded Cases

If f is bounded from above, then we have the following lemma.

Lemma 4.1 Let z ∈ ∂M. Let κ and λ satisfy the weakly-monotone-condition. For

N ∈ (−∞, 1], let us assume that

RicNf (γ′z(t)) ≥ (n − 1)κe
−4 f (γz(t))

n−1

for all t ∈ (0, τ(z)), and H f ,z ≥ (n − 1)λe
−2 f (z)

n−1 . Suppose additionally that there exists

δ ∈ R such that f ○ γz ≤ (n − 1)δ on (0, τ(z)). hen for all t ∈ (0, τ(z)) we have

(4.1) ∆ f ρ∂M(γz(t)) ≥ Hκ ,λ(e−2δ
t)e

−2 f (γz(t))
n−1 .

Moreover, if κ and λ satisfy themonotone-condition, then

(4.2) ∆ f ρ∂M(γz(t)) ≥ Hκ ,λ(e−2δ
t)e−2δ .

Proof By f ○ γz ≤ (n − 1)δ, it holds that s f ,z(t) ≥ e−2δ t and e
−2 f (γz(t))

n−1 ≥ e−2δ for all
t ∈ (0, τ(z)). Inequality (3.8) and H′

κ ,λ ≥ 0 tell us that

(4.3) ∆ f ρ∂M(γz(t)) ≥ Hκ ,λ(s f ,z(t))e
−2 f (γz(t))

n−1 ≥ Hκ ,λ(e−2δ
t)e

−2 f (γz(t))
n−1

for all t ∈ (0, τ(z)), and hence (4.1) holds. Moreover, if κ and λ satisfy themonotone-
condition, then (4.1) and Hκ ,λ ≥ 0 lead to

(4.4) ∆ f ρ∂M(γz(t)) ≥ Hκ ,λ(e−2δ
t)e

−2 f (γz(t))
n−1 ≥ Hκ ,λ(e−2δ

t)e−2δ .

his proves (4.2). ∎
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Remark 4.2 Assume that for some t0 ∈ (0, τ(z)), the equality in (4.1) holds. hen
the equalities in (4.3) hold, and the equality in (3.8) also holds (see Lemma 3.9). More-
over, if either (1) κ > 0; or (2) κ ≤ 0 and ∣λ∣ >

√
∣κ∣, then H′

κ ,λ > 0 on [0,Cκ ,λ), and
hence s f ,z(t0) = e−2δ t0; in particular, f ○ γz = (n − 1)δ on [0, t0].

Remark 4.3 Assume that for some t0 ∈ (0, τ(z)), the equality in (4.2) holds. hen
the equalities in (4.4) hold, and the equality in (4.1) holds (seeRemark 4.2). Moreover,
if either (1) κ and λ satisfy the convex-ball-condition; or (2) κ < 0 and λ =

√
∣κ∣,

then Hκ ,λ > 0 on (0,Cκ ,λ), and hence e
−2 f (γz(t0))

n−1 = e−2δ ; in particular, ( f ○ γz)(t0) =
(n − 1)δ.

Lemma 4.1 implies the following lemma.

Lemma 4.4 Let z ∈ ∂M and p ∈ (1,∞). Let κ and λ satisfy themonotone-condition.

For N ∈ (−∞, 1], we assume that

RicNf (γ′z(t)) ≥ (n − 1)κe
−4 f (γz(t))

n−1

for all t ∈ (0, τ(z)), and H f ,z ≥ (n − 1)λe
−2 f (z)

n−1 . Suppose additionally that there exists

δ ∈ R such that f ○ γz ≤ (n − 1)δ on (0, τ(z)). We deûne ρ∂M ,δ ∶= e−2δρ∂M . Let

φ ∶ [0,∞)→ R be amonotone increasing smooth function. hen for all t ∈ (0, τ(z)),

(4.5) ∆ f ,p(φ ○ ρ∂M ,δ)(γz(t)) ≥

− e−2pδ{(((φ′)p−1)′ −Hκ ,λ(φ′)p−1) ○ ρ∂M ,δ}(γz(t)).

Proof Set Φ ∶= φ ○ ρ∂M ,δ , and deûne φδ(t) ∶= φ(e−2δ t). We see Φ = φδ ○ ρ∂M . By
(4.2), for every t ∈ (0, τ(z)),

∆ f ,pΦ(γz(t)) = −((φ′δ)p−1) ′(t) + ∆ f ,2ρ∂M(γz(t))(φ′δ)p−1(t)(4.6)

≥ −((φ′δ)p−1) ′(t) +Hκ ,λ(e−2δ
t)e−2δ(φ′δ)p−1(t).

Since (φ′
δ
)p−1(t) = e−2(p−1)δ(φ′)p−1(e−2δ t) and

((φ′δ)p−1) ′(t) = e−2pδ((φ′)p−1) ′(e−2δ
t),

the right-hand side of (4.6) is equal to that of (4.5). ∎

Remark 4.5 he equality case of Lemma 4.4 results in that of (4.2) (see Remark
4.3).

We now prove the following global Laplacian comparison inequality.

Proposition 4.6 Let p ∈ (1,∞). Let κ and λ satisfy the monotone-condition. For

N ∈ (−∞, 1], assume that the triple (M , ∂M , f ) has lower (κ, λ,N)-weighted curvature
bounds. We suppose additionally that there exists δ ∈ R such that f ≤ (n − 1)δ on M.

We deûne ρ∂M ,δ ∶= e−2δρ∂M . Let φ ∶ [0,∞) → R be a monotone increasing smooth
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function. hen we have

∆ f ,p(φ ○ ρ∂M ,δ) ≥ −e−2pδ(((φ′)p−1)′ −Hκ ,λ(φ′)p−1) ○ ρ∂M ,δ

in the following distribution sense on M: For every non-negative function ψ ∈ C∞0 (M),
we have

(4.7) ∫
M

∥∇(φ ○ ρ∂M ,δ)∥p−2
g(∇ψ,∇(φ ○ ρ∂M ,δ))dm f ≥

− e−2pδ ∫
M

ψ{(((φ′)p−1)′ −Hκ ,λ(φ′)p−1) ○ ρ∂M ,δ}dm f .

Proof By Lemma 2.2, there exists a sequence {Ω i} of closed subsets ofM such that
for every i, the set ∂Ω i is a smooth hypersurface in M, and satisfying the following: (1)
for all i1 , i2 with i1 < i2, we have Ω i1 ⊂ Ω i2 ; (2) M/Cut ∂M = ⋃i Ω i ; (3) ∂Ω i ∩ ∂M =
∂M for all i; (4) for each i, on ∂Ω i/∂M, there exists a unique unit outer normal vector
ûeld u i for Ω i with g(u i ,∇ρ∂M) ≥ 0.
For the canonical volumemeasure voli on ∂Ω i/∂M, put m f , i ∶= e− f voli . Set Φ ∶=

φ ○ ρ∂M ,δ . By integration by parts, we see

∫
Ω i

∥∇Φ∥p−2
g(∇ψ,∇Φ)dm f =

∫
Ω i

ψ∆ f ,pΦdm f + ∫
∂Ω i/∂M

∥∇Φ∥p−2
ψg(u i ,∇Φ)dm f , i .

From (4.5) and g(u i ,∇ρ∂M ,δ) ≥ 0, it follows that the right-hand side of the above
equality is at least

−e−2pδ ∫
Ω i

ψ{(((φ′)p−1)′ −Hκ ,λ(φ′)p−1) ○ ρ∂M ,δ}dm f .

Letting i →∞, we obtain (4.7). ∎

Remark 4.7 In Proposition 4.6, assume that the equality in (4.7) holds. In this case,
the equality in (4.5) also holds on suppψ/(∂M ∪Cut ∂M), where suppψ denotes the
support of ψ. he equality case of Proposition 4.6 results in that of (4.5) (see Remark
4.5).

Remark 4.8 he argument in the proof of Proposition 4.6 also tells us the follow-
ing (see also Remark 4.7). Under the same setting as Proposition 4.6, if M is com-
pact, then the inequality (4.7) holds for every non-negative function ψ ∈ C1(M) with
ψ∣∂M = 0. Moreover, if the equality in (4.7) holds for someψ, then the equality in (4.5)
holds on suppψ/(∂M ∪Cut ∂M) (see Remark 4.5).

4.2 Radial Cases

Suppose that f is ∂M-radial. hen there exists a smooth function ϕ f ∶ [0,∞) → R
such that f = ϕ f ○ ρ∂M on M. Deûne a function s f ∶ [0,∞]→ [0,∞] by

(4.8) s f (t) ∶= ∫
t

0
e

−2ϕ f (a)
n−1 da.
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For every z ∈ ∂M, we see s f ,z = s f on [0, τ(z)], where s f ,z is deûned as (1.5). Further-
more, ρ∂M , f = s f ○ ρ∂M , where ρ∂M , f is deûned as (1.12).

If f is ∂M-radial, then we have the following comparison inequality.

Lemma 4.9 Let z ∈ ∂M and p ∈ (1,∞). For N ∈ (−∞, 1], suppose that

RicNf (γ′z(t)) ≥ (n − 1)κe
−4 f (γz(t))

n−1

for all t ∈ (0, τ(z)), and H f ,z ≥ (n − 1)λe
−2 f (z)

n−1 . Suppose that f is ∂M-radial. Let

φ ∶ [0,∞)→ R be amonotone increasing smooth function. hen for all t ∈ (0, τ(z)),

(4.9) ∆ n+1−2p
n−N f ,p(φ ○ ρ∂M , f )(γz(t)) ≥

− e
−2p f
n−1 {(((φ′)p−1)′ −Hκ ,λ(φ′)p−1) ○ ρ∂M , f }(γz(t)).

Proof Set Φ ∶= φ ○ ρ∂M , f . For the function s f deûned as (4.8), if we put φ f ∶= φ ○ s f ,
then we have Φ = φ f ○ ρ∂M . For each t ∈ (0, τ(z)), the le�-hand side of (4.9) can be
written as

−((φ′f )p−1) ′(t) + (∆ f ρ∂M(γz(t)) −
2(p − 1)
n − 1

ϕ
′
f (t))(φ′f )p−1(t).

By using (3.8), s f ,z(t) = s f (t), and e
−2 f (γz(t))

n−1 = s′
f
(t), we have

∆ n+1−2p
n−1 f ,pΦ(γz(t)) ≥ −((φ′f )p−1) ′(t) +Hκ ,λ(s f (t))s′f (t)(φ′f )p−1(t)

− 2(p − 1)
n − 1

ϕ
′
f (t)(φ′f )p−1(t).

Notice that (φ′
f
)p−1(t) = (φ′)p−1(s f (t))(s′f )p−1(t) and

((φ′f )p−1) ′(t) = ((φ′)p−1) ′(s f (t))(s′f )p(t) − 2(p − 1)
n − 1

ϕ
′
f (t)(φ′f )p−1(t).

hese equalities tell us that the le�-hand side of (4.9) is at least

−(s′f )p(t)(((φ′)p−1) ′(s f (t)) −Hκ ,λ(s f (t))(φ′)p−1(s f (t))) .

Since ρ∂M , f = s f ○ ρ∂M , this is equal to the right-hand side of (4.9). ∎

We further yield the following global comparison inequality.

Proposition 4.10 Let p ∈ (1,∞). For N ∈ (−∞, 1], assume that (M , ∂M , f ) has

lower (κ, λ,N)-weighted curvature bounds. Suppose that f is ∂M-radial. Let

φ ∶ [0,∞)→ R be amonotone increasing smooth function. hen we have

∆ n+1−2p
n−1 f ,p(φ ○ ρ∂M , f ) ≥ −e

−2p f
n−1 (((φ′)p−1) ′ −Hκ ,λ(φ′)p−1) ○ ρ∂M , f

261

https://doi.org/10.4153/S0008414X1800007X Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X1800007X


Y. Sakurai

in the following distribution sense on M: For every non-negative function ψ ∈ C∞0 (M),
we have

(4.10) ∫
M

∥∇(φ ○ ρ∂M , f )∥p−2
g(∇ψ,∇(φ ○ ρ∂M , f ))dm n+1−2p

n−1 f
≥

− ∫
M

ψ{(((φ′)p−1)′ −Hκ ,λ(φ′)p−1) ○ ρ∂M , f }dm n+1
n−1 f

.

Proof he proof is similar to that of Proposition 4.6. Similarly, we ûrst take a se-
quence {Ω i} of closed subsets of M in Lemma 2.2. Let u i be the unit outer normal
vector on ∂Ω i/∂M for Ω i . We deûne f̂ ∶= (n + 1 − 2p)(n − 1)−1 f . For the canonical
volume voli on ∂Ω i/∂M, we put m

f̂ , i ∶= e− f̂ voli . We set Φ ∶= φ ○ ρ∂M , f . By inte-
gration by parts (with respect to m

f̂
) and by Lemma 4.9 and g(u i ,∇ρ∂M , f ) ≥ 0, we

get

∫
Ω i

∥∇Φ∥p−2
g(∇ψ,∇Φ)dm

f̂
≥

− ∫
Ω i

ψe
−2p f
n−1 {(((φ′)p−1)′ −Hκ ,λ(φ′)p−1) ○ ρ∂M , f }dm f̂

.

Using e
−2p f
n−1 m

f̂
= m n+1

n−1 f
, we complete the proof by letting i →∞. ∎

Remark 4.11 he argument in the proof of Proposition 4.10 also leads us to the
following. Under the same setting asProposition 4.10, ifM is compact, then inequality
(4.10) holds for every non-negative ψ ∈ C1(M) with ψ∣∂M = 0.

5 Splitting Theorems

5.1 Main Splitting Theorems

Proof of Theorem 1.1 Let κ ≤ 0 and λ ∶=
√

∣κ∣. For N ∈ (−∞, 1], assume that
(M , ∂M , f ) has lower (κ, λ,N)-weighted curvature bounds. Suppose that f is
bounded from above. Let z0 ∈ ∂M satisfy τ(z0) = ∞. Recall that our goal is to
show that M is isometric to [0,∞) ×Fκ ,λ ∂M; moreover, if N ∈ (−∞, 1), then f ○ γz is
constant for every z ∈ ∂M.

Let ∂M0 be the connected component of ∂M with z0 ∈ ∂M0. We deûne a closed
subset Ω of ∂M0 by

Ω ∶= {z ∈ ∂M0 ∣ τ(z) =∞}.
We show that Ω is open in ∂M0. Fix z1 ∈ Ω. Take l > 0, and put x0 ∶= γz1(l).

here exists an open neighborhood U of x0 contained in IntM/Cut ∂M. Taking U

smaller, we can assume that for each x ∈ U the unique foot point on ∂M of x belongs
to ∂M0. By Lemma 2.4, there exists є > 0 such that for all x ∈ Bє(x0), all asymptotes
for γz1 from x lie in IntM. We can assume that U ⊂ Bє(x0). Fix x1 ∈ U , and take an
asymptote γx1 ∶ [0,∞) → M for γz1 from x1. For t > 0, deûne a function bγz1 ,t ∶ M →
R by

bγz1 ,t(x) ∶= bγz1 (x1) + t − dM(x , γx1(t)).
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We see that bγz1 ,t − ρ∂M is a support function of bγz1 − ρ∂M at x1. Since γx1 lie in IntM,
for every t > 0 the function bγz1 ,t is smooth on a neighborhood of x1. From Lemma
2.9 we deduce

∆ f bγz1 ,t(x1) ≤ −Hκ( e
−2 sup f

n−1 t) e
−2 f (x1)

n−1 ,

where Hκ is deûned as (2.3). Note that Hκ(s) tends to −(n − 1)
√

∣κ∣ as s → ∞. Fur-
thermore, ρ∂M is smooth on U , and by (3.8) we have

∆ f ρ∂M ≥ (n − 1)
√

∣κ∣e
−2 f
n−1

on U . Hence bγz1 − ρ∂M is f -subharmonic on U . Now, bγz1 − ρ∂M takes themaximal
value 0 at x1. Lemma 2.7 implies bγz1 = ρ∂M on U . By Lemma 2.3, the set Ω is open
in ∂M0.

he connectedness of ∂M0 leads to Ω = ∂M0. By Lemma 2.1, ∂M is connected
and Cut ∂M = ∅. he equality in (3.8) holds on IntM. For each z ∈ ∂M, choose an
orthonormal basis {ez , i}n−1

i=1 of Tz∂M. Let {Yz , i}n−1
i=1 be the ∂M-Jacobi ûelds along γz

with Yz , i(0) = ez , i ,Y ′
z , i(0) = −Auz ez , i . By Lemma 3.9, for all i we see Yz , i = Fκ ,λ ,zEz , i

on [0,∞), where {Ez , i}n−1
i=1 are the parallel vector ûelds with Ez , i(0) = ez , i . More-

over, if N ∈ (−∞, 1), then f ○ γz is constant on [0,∞). We deûne a diòeomorphism
Φ ∶ [0,∞)× ∂M → M byΦ(t, z) ∶= γz(t). he rigidity of Jacobi ûelds implies that Φ
is a Riemannian isometry with boundary from [0,∞) ×Fκ ,λ ∂M to M. We complete
the proof ofheorem 1.1. ∎

Remark 5.1 he author [19] has concluded that under the same setting as heorem
1.1, if κ = 0, then M is isometric to a warped product (see [19, Corollary 1.4]). he
author does not know whether the same conclusion holds when κ < 0.

5.2 Weighted Ricci Curvature on the Boundary

We next recall the following formula (see e.g., [19, Lemma 5.5]).

Lemma 5.2 Let z ∈ ∂M, and take a unit vector v in Tz∂M. Choose an orthonormal

basis {ez , i}n−1
i=1 of Tz∂M with ez ,1 = v. hen

RicN−1
f ∣∂M

(v) =RicNf (v) + g((∇ f )z , uz)g(S(v , v), uz)(5.1)

− Kg(uz , v) + traceAS(v ,v) −
n−1

∑
i=1

∥S(v , ez , i)∥2

for all N ∈ (−∞,∞] (when N =∞,we interpret N−1 in the le� hand side as∞),where

Kg(uz , v) denotes the sectional curvature of the 2-plane at z spanned by uz and v.

Remark 5.3 In [19], the author has presented (5.1) only for N ∈ (−∞,∞) (see
[19, Lemma 5.5]). he calculation in the proof also tells us that it can be formulated
for N =∞ as in Lemma 5.2.

Using Lemma 5.2, we show the following lemma.
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Lemma 5.4 Take z ∈ ∂M, and take a unit vector v in Tz∂M. If M is isometric to

[0,∞) ×Fκ ,λ ∂M, then for all N ∈ (−∞,∞], we have

RicN−1
f ∣∂M

(v) = RicNf (v) + (n − 1)λ2
e
−4 f (z)

n−1 − κe
−4 f (z)

n−1

− λg((∇ f )z , uz)e
−2 f (z)

n−1 + Hess f (uz , uz)
n − 1

,

where when N =∞, we interpret N − 1 in the le� hand side as∞.

Proof We choose anorthonormalbasis {ez , i}n−1
i=1 ofTz∂Mwith ez ,1 = v. Let {Yz , i}n−1

i=1
denote the ∂M-Jacobi ûelds along γz with Yz , i(0) = ez , i and Y ′

z , i(0) = −Auz ez , i . By
the rigidity assumption, Yz , i = Fκ ,λ ,zEz , i ,where {Ez , i}n−1

i=1 are the parallel vector ûelds
with Ez , i(0) = ez , i . herefore, for all i it holds that

(5.2) Auz ez , i = −Y ′
z , i(0) = −(

g((∇ f )z , uz)
n − 1

− λe
−2 f (z)

n−1 ) ez , i .

From (5.2), we deduce that S(v , ez , i) = 0z for all i ≠ 1, and we also deduce

S(v , v) = −( g((∇ f )z , uz)
n − 1

− λe
−2 f (z)

n−1 )uz ,(5.3)

traceAS(v ,v) = (n − 1)( g((∇ f )z , uz)
n − 1

− λe
−2 f (z)

n−1 )
2
.(5.4)

he sectional curvature Kg(uz , v) is equal to −g(Y ′′
z ,1(0), v), and hence

(5.5) Kg(uz , v) = −
Hess f (uz , uz)

n − 1
− ( g((∇ f )z , uz)

n − 1
)

2
+ κe

−4 f (z)
n−1 .

Lemma 5.2 together with (5.3), (5.4), (5.5) yields the desired result. ∎

5.3 Multi-splitting

On a connected complete Riemannian manifold M0 (without boundary), aminimal
geodesic γ ∶ R→ M0 is said to be a line. Wylie [23] has proved the following splitting
theorem of Cheeger–Gromoll type (see [23,heorem 1.2 and Corollary 1.3]).

heorem 5.5 ([23]) Let M0 be a connected complete Riemannian manifold, and let

f0 ∶ M0 → R be a smooth function bounded from above. For N ∈ (−∞, 1], suppose
RicN

f0 ,M0
≥ 0. If M0 contains a line, then there exists a Riemannian manifold M̃0 such

that M0 is isometric to a warped product space overR× M̃0; moreover, if N ∈ (−∞, 1),
then M0 is isometric to the standard product R × M̃0.

From heorem 5.5 we derive the following corollary ofheorem 1.1.

Corollary 5.6 Let κ ≤ 0 and λ ∶=
√

∣κ∣. For N ∈ (−∞, 1), assume that (M , ∂M , f )
has lower (κ, λ,N)-weighted curvature bounds. Suppose that f is bounded from above.
If for some z0 ∈ ∂M we have τ(z0) = ∞, then there exist an integer k ∈ {0, . . . , n − 1}
and an (n − 1− k)-dimensional Riemannian manifold ∂̃M containing no line such that

∂M is isometric to Rk × ∂̃M; in particular,M is isometric to [0,∞) ×Fκ ,λ (Rk × ∂̃M) .
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Proof Due to heorem 1.1, M is isometric to [0,∞) ×Fκ ,λ ∂M, and for each z ∈
∂M, the function f ○ γz is constant on [0,∞). In particular, g((∇ f )z , uz) = 0 and
Hess f (uz , uz) = 0. By Lemma 5.4 and by κ ≤ 0 and λ =

√
∣κ∣, for every unit vector v

in Tz∂M, we have

RicN−1
f ∣∂M

(v) = RicNf (v) + (n − 1)λ2
e
−4 f (z)

n−1 − κe
−4 f (z)

n−1

≥ RicNf (v) + (n − 1)λ2
e
−4 f (z)

n−1

≥ (n − 1)κe
−4 f (z)

n−1 + (n − 1)λ2
e
−4 f (z)

n−1 = 0.

It follows that RicN−1
f ∣∂M ,∂M ≥ 0. Now, N − 1 is smaller than 1, and f ∣∂M is bounded

from above. herefore, by applying heorem 5.5 to ∂M inductively, we complete the
proof. ∎

5.4 Variants of Splitting Theorems

We study generalizations of rigidity results of Kasue [9], Croke and Kleiner [5], and
Ichida [8] for manifolds with boundary whose boundaries are disconnected.

Wylie [23] proved the following (see [23,heorem 5.1]).

heorem 5.7 ([23]) For N ∈ (−∞, 1], assume that (M , ∂M , f ) has lower (0, 0,N)-
weighted curvature bounds. Let ∂M be disconnected, and let {∂M i}i=1,2, . . . denote the

connected components of ∂M. Let ∂M1 be compact, and put D ∶= inf i=2,3, . . .
dM(∂M1 , ∂M i). hen M is isometric to [0,D] ×F0,0 ∂M1, and RicN

f
(γ′z(t)) = 0 for

all z ∈ ∂M1 and t ∈ [0,D].

For κ > 0 and λ < 0, put Dκ ,λ ∶= inf{s > 0∣s′
κ ,λ(s) = 0}. By using heorem 5.7, we

obtain the following splitting.

heorem 5.8 Let κ > 0. For N ∈ (−∞, 1], assume that (M , ∂M , f ) has lower

(κ, λ,N)-weighted curvature bounds. Let ∂M be disconnected, and let {∂M i}i=1,2, . . .
denote the connected components of ∂M. Let ∂M1 be compact, and put

D ∶= inf i=2,3, . . . dM(∂M1 , ∂M i). Suppose additionally that there exists δ ∈ R such that

f ≤ (n − 1)δ on M. hen

λ < 0, D ≤ 2e2δDκ ,λ .

Moreover, if D = 2e2δDκ ,λ , then M is isometric to [0,D] ×Fκ ,λ ∂M1, and f = (n − 1)δ
on M.

Proof If we have λ ≥ 0, then heorem 5.7 tells us that M is isometric to [0,D] ×F0,0
∂M1, and RicN

f
(γ′z(t)) = 0 for all z ∈ ∂M1 , t ∈ [0,D]. his contradicts κ > 0, and

hence λ < 0.
Let us prove that if D ≥ 2e2δDκ ,λ , then M is isometric to the twisted product

[0, 2e2δDκ ,λ] ×Fκ ,λ ∂M1, and f = (n − 1)δ on M. Suppose D ≥ 2e2δDκ ,λ . here exists
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a connected component ∂M2 of ∂M such that dM(∂M1 , ∂M2) = D (cf. [9, Lemma
1.6]). For each i = 1, 2, let ρ∂M i ∶ M → R be the function deûned by ρ∂M i (x) ∶=
dM(x , ∂M i). Set

Ω ∶= {x ∈ IntM ∣ ρ∂M1(x) + ρ∂M2(x) = D}.

We show that Ω is open in IntM. Fix x ∈ Ω. For each i = 1, 2, we take a foot point
zx , i ∈ ∂M i on ∂M i of x such that dM(x , zx , i) = ρ∂M i (x). From the triangle inequality,
we derive dM(zx ,1 , zx ,2) = D. heminimal geodesic γ ∶ [0,D] → M from zx ,1 to zx ,2
is orthogonal to ∂M at zx ,1 and at zx ,2. Furthermore, γ∣(0,D) lies in IntM and passes
through x. here exists an open neighborhood U of x such that ρ∂M i is smooth on
U . In view of (4.1), for all y ∈ U , we see

−
∆ f (ρ∂M1 + ρ∂M2)(y)

(n − 1)e
−2 f (y)

n−1

(5.6)

≤
s′
κ ,λ

sκ ,λ
(ρ∂M1 ,δ(y)) +

s′
κ ,λ

sκ ,λ
(ρ∂M2 ,δ(y))

=
s′
κ ,λ(ρ∂M1 ,δ(y) + ρ∂M2 ,δ(y)) − λsκ ,λ(ρ∂M1 ,δ(y) + ρ∂M2 ,δ(y))

sκ ,λ(ρ∂M1 ,δ(y))sκ ,λ(ρ∂M2 ,δ(y))
,

where ρ∂M i ,δ ∶= e−2δρ∂M i . Since κ > 0, the function s′
κ ,λ/sκ ,λ is monotone decreasing

on (0,Cκ ,λ), and satisûes s′
κ ,λ(2Dκ ,λ)/sκ ,λ(2Dκ ,λ) = λ. By D ≥ 2e2δDκ ,λ and the

triangle inequality, ρ∂M1 ,δ+ρ∂M2 ,δ ≥ 2Dκ ,λ onU . Inequality (5.6) tells us that−(ρ∂M1+
ρ∂M2) is f -subharmonic on U . By Lemma 2.7, Ω is open in IntM.

he connectedness of IntM implies that IntM = Ω. he equality in (4.1) holds.
For each z ∈ ∂M1, choose an orthonormal basis {ez , i}n−1

i=1 of Tz∂M. Let {Yz , i}n−1
i=1

be the ∂M-Jacobi ûelds along γz with Yz , i(0) = ez , i ,Y ′
z , i(0) = −Auz ez , i . For all i,

we see that Yz , i = Fκ ,λ ,zEz , i on [0,D], where {Ez , i}n−1
i=1 are the parallel vector ûelds

with Ez , i(0) = ez , i . Moreover, f ○ γz = (n − 1)δ on [0,D] (see Remark 4.2). We see
D = 2e2δDκ ,λ . By the rigidity of Jacobi ûelds, a map Φ ∶ [0,D] × ∂M1 → M deûned
by Φ(t, z) ∶= γz(t) is a desired Riemannian isometry with boundary. ∎

6 Inscribed Radii

We denote by Lg f , d
g f
M
, ρg f

∂M
, and InRadg f M the length, the Riemannian distance, the

distance function from the boundary and the inscribed radius on M induced from
the Riemannian metric g f ∶= e

−4 f
n−1 g.

6.1 Inscribed Radius Comparisons

We ûrst show the following lemma.

Lemma 6.1 Let κ and λ satisfy the ball-condition. For N ∈ (−∞, 1], assume that

(M , ∂M , f )has lower (κ, λ,N)-weighted curvature bounds. henwehave InRadg f M ≤
Cκ ,λ .

266

https://doi.org/10.4153/S0008414X1800007X Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X1800007X


Comparison Geometry ofManifolds with Boundary

Proof Take x ∈ M, and a foot point zx on ∂M of x. hen we have

ρ
g f
∂M

(x) ≤ Lg f (γzx ∣[0, l]) = ∫
l

0
e
−2 f (γzx (a))

n−1 da ≤ τ f (zx) ≤ sup
z∈∂M

τ f (z),

where l ∶= ρ∂M(x). Lemma 3.5 implies the desired inequality. ∎

FromLemma 3.5 and InRadM = sup
z∈∂M τ(z),we alsoderive the following lemma.

Lemma 6.2 Let κ and λ satisfy the ball-condition. For N ∈ (−∞, 1], assume that

(M , ∂M , f ) has lower (κ, λ,N)-weighted curvature bounds. Suppose additionally that

there is δ ∈ R such that f ≤ (n − 1)δ on M. hen we have InRadM ≤ C
κe−4δ ,λe−2δ .

6.2 Inscribed Radius Rigidity

Proof of Theorem 1.2 Let κ and λ satisfy the ball-condition. For N ∈ (−∞, 1], as-
sume that (M , ∂M , f ) has lower (κ, λ,N)-weighted curvature bounds. According to
Lemma 6.1, we have (1.10). Now, let x0 ∈ M satisfy ρ

g f
∂M

(x0) = Cκ ,λ . Recall that our
goal is to prove that M is isometric to [0, l] ×Fκ Sn−1 for some l > 0; moreover, if
N ∈ (−∞, 1), then f is constant. In particular, M is isometric to a closed ball in a
space form. Note that x0 will become the center of M.

Put l ∶= ρ∂M(x0) and
Ω ∶= {x ∈ IntM/{x0} ∣ ρ∂M(x) + ρx0(x) = l} .

We show that Ω is open in IntM/{x0}. Fix x ∈ Ω and take a foot point zx on ∂M of
x. Note that zx is also a foot point on ∂M of x0. Let γ ∶ [0, l] → M be the minimal
geodesic from zx to x0. hen γ∣(0, l) passes through x. here exists an open neigh-
borhood U of x such that the distance functions ρx0 and ρ∂M are smooth on U , and
for every y ∈ U there exists a uniqueminimal geodesic in M from x0 to y that lies in
IntM. By Lemma 2.8 and (3.8), for each y ∈ U , we have

−
∆ f (ρ∂M + ρx0)(y)

(n − 1)e
−2 f (y)

n−1

≤
s′
κ ,λ

sκ ,λ
( s f ,z y(ρ∂M(y))) + s′κ

sκ
( s f ,v y(ρx0(y)))(6.1)

=
sκ ,λ(s f ,z y(ρ∂M(y)) + s f ,v y(ρx0(y)))
sκ ,λ(s f ,z y(ρ∂M(y)))sκ(s f ,v y(ρx0(y)))

,

where zy is a unique foot point on ∂M of y, and vy is the initial velocity vector of the
unique minimal geodesic from x0 to y. Let us deûne ρ

g f
x0 ∶= d

g f
M
(⋅, x0). he triangle

inequality for d g f
M

leads us to
s f ,z y(ρ∂M(y)) + s f ,v y(ρx0(y)) = Lg f (γz y ∣[0,ρ∂M(y)]) + Lg f (γv y ∣[0,ρx0 (y)]

)(6.2)

≥ ρ
g f
∂M

(y) + ρ
g f
x0 (y) ≥ ρ

g f
∂M

(x0) = Cκ ,λ .

By (6.1) and (6.2), we have ∆ f (ρ∂M + ρx0)(y) ≥ 0. Lemma 2.7 tells us that U ⊂ Ω,
and Ω is open.

Since IntM/{x0} is connected, we have Ω = IntM/{x0}, and hence ρ∂M + ρx0 = l

on M. his implies that M = B l(x0). For each v ∈ Ux0M, we have τx0(v) = l , and
γv is orthogonal to ∂M at l . he equality in (2.4) holds on IntM/{x0}. Choose an
orthonormal basis {ev , i}n

i=1 of Tx0M with ev ,n = v. Let {Yv , i}n−1
i=1 be the Jacobi ûelds
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along γv with Yv , i(0) = 0x0 ,Y ′
v , i(0) = ev , i . By Lemma 2.10, for all i we have Yv , i =

Fκ ,vEv , i on [0, l], where {Ev , i}n−1
i=1 are the parallel vector ûelds with Ev , i(0) = ev , i ;

moreover, if N ∈ (−∞, 1), then f ○ γv is constant on [0, l]. Since the equalities in
(6.2) hold,we have s f ,v(l) = Cκ ,λ and Fκ ,v(l) > 0; in particular,we have no conjugate
point of x0 along γv . hus, amap Φ ∶ [0, l]×Ux0M → M deûned byΦ(t, v) ∶= γv(t)
is a Riemannian isometry with boundary from [0, l] ×Fκ Sn−1 to M.
Assume that N ∈ (−∞, 1). hen f = (n−1)δ for some constant δ ∈ R; in particular,

Fκ ,v(t) = e2δsκ( e−2δ t)= sκe−4δ(t) and l = e2δCκ ,λ = Cκe−4δ ,λe−2δ . Hence [0, l] ×Fκ

Sn−1 can be written as Bn

κe−4δ ,λe−2δ . his completes the proof ofheorem 1.2. ∎

Remark 6.3 From the argument discussed in the proof of [24, Proposition 4.15],
one can also conclude the following: Under the same setting as in heorem 1.2, if
ρ

g f
∂M

(x0) = Cκ ,λ for some x0 ∈ M, then we have ∇ f = g(∇ f ,∇ρx0)∇ρx0 on M; in
particular, M is a warped product.

If f is bounded from above, then we obtain the following theorem.

heorem 6.4 Let us assume that κ and λ satisfy the ball-condition. For N ∈ (−∞, 1],
assume that (M , ∂M , f ) has lower (κ, λ,N)-weighted curvature bounds. Suppose ad-
ditionally that there exists δ ∈ R such that f ≤ (n − 1)δ on M. hen we have

(6.3) InRadM ≤ Cκe−4δ ,λe−2δ .

If ρ∂M(x0) = Cκe−4δ ,λe−2δ for some x0 ∈ M, then M is isometric to Bn

κe−4δ ,λe−2δ , and

f = (n − 1)δ on M.

Proof Inequality (6.3) follows fromLemma 6.2. Let x0 satisfy ρ∂M(x0) = Cκe−4δ ,λe−2δ ,
which will become the center of M. Put

l ∶= ρ∂M(x0) and Ω ∶= {x ∈ IntM/{x0} ∣ ρ∂M(x) + ρx0(x) = l} .

We prove that Ω is open in IntM/{x0}. For a ûxed point x ∈ Ω, there exists an open
neighborhood U of x such that ρx0 and ρ∂M are smooth on U , and for every y ∈ U

there exists a unique minimal geodesic in M from x0 to y that lies in IntM. Let us
deûne ρ∂M ,δ ∶= e−2δρ∂M and ρx0 ,δ ∶= e−2δρx0 . By Lemma 2.9 and (4.1), for each y ∈ U ,

−
∆ f (ρ∂M + ρx0)(y)

(n − 1)e
−2 f (y)

n−1

≤
s′
κ ,λ

sκ ,λ
(ρ∂M ,δ(y)) +

s′κ
sκ

(ρx0 ,δ(y))

= sκ ,λ(ρ∂M ,δ(y) + ρx0 ,δ(y))
sκ ,λ(ρ∂M ,δ(y))sκ(ρx0 ,δ(y))

≤ 0.

Lemma 2.7 implies that U ⊂ Ω. Hence, Ω is open.
From the connectedness of IntM/{x0}, we deduce that Ω = IntM/{x0}, and

hence ρ∂M + ρx0 = l on M. his implies M = B l(x0). For each v ∈ Ux0M, we have
τx0(v) = l , and γv is orthogonal to ∂M at l . he equality in (2.4) holds on IntM/{x0}.
Choose an orthonormal basis {ev , i}n

i=1 of Tx0M with ev ,n = v. Let {Yv , i}n−1
i=1 be the Ja-

cobi ûelds along γv with Yv , i(0) = 0x0 ,Y ′
v , i(0) = ev , i . For all i, we have Yv , i = Fκ ,vEv , i

on [0, l],where Fκ ,v is deûned as (1.9), and {Ev , i}n−1
i=1 are the parallel vector ûeldswith

Ev , i(0) = ev , i ; moreover, f ○γv = (n−1)δ on [0, l] (seeRemark 2.11 and Lemma 2.10).
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We see Fκ ,v = sκe−4δ on [0, l]. herefore, a map Φ ∶ [0, l] × Ux0M → M deûned by
Φ(t, v) ∶= γv(t) gives a desired Riemannian isometry with boundary. ∎

7 Volume Growths

7.1 Volume Elements

We ûrst recall that τ f is deûned as (1.4). For z ∈ ∂M and s ∈ (0, τ f (z)), we deûne

(7.1) θ̂ f (s, z) ∶= θ f (t f ,z(s), z),

where θ f (t, z) is deûned as (7.1), and t f ,z is the inverse function of the function s f ,z
deûned as (1.5).

We show the following volume element comparison inequality.

Lemma 7.1 Let z ∈ ∂M. For N ∈ (−∞, 1], let us assume that

RicNf (γ′z(t)) ≥ (n − 1)κe
−4 f (γz(t))

n−1

for all t ∈ (0, τ(z)), and H f ,z ≥ (n − 1)λe
−2 f (z)

n−1 . hen for all s1 , s2 ∈ [0, τ f (z)) with

s1 ≤ s2,

θ̂ f (s2 , z)
θ̂ f (s1 , z)

≤
sn−1
κ ,λ (s2)
sn−1
κ ,λ (s1)

.

In particular, for all s ∈ [0, τ f (z)),

(7.2) θ̂ f (s, z) ≤ e− f (z)sn−1
κ ,λ (s).

Proof By (2.2) and (3.7), for all s ∈ (0, τ f (z)), we see

d

ds
log

θ̂ f (s, z)
sn−1
κ ,λ (s)

= −( e
2 f
n−1 ∆ f ρ∂M)(γz(t f ,z(s))) +Hκ ,λ(s) ≤ 0,

where Hκ ,λ is deûned as (3.5). his implies the lemma. ∎

Remark 7.2 Assume that for some s0 ∈ (0, τ f (z)) the equality in (7.2) holds. hen
the equality in (7.2) holds on [0, s0]; in particular, the equality in (3.7) holds on [0, s0]
(see Lemma 3.8).

If f is bounded from above, then we have the following lemma.

Lemma 7.3 Let z ∈ ∂M. Let κ and λ satisfy the monotone-condition. For N ∈
(−∞, 1], assume that RicN

f
(γ′z(t)) ≥ (n− 1)κe

−4 f (γz(t))
n−1 for all t ∈ (0, τ(z)), andH f ,z ≥

(n−1)λe
−2 f (z)

n−1 . We suppose additionally that there exists δ ∈ R such that f ○γz ≤ (n−1)δ
on (0, τ(z)). hen for all t1 , t2 ∈ [0, τ(z)) with t1 ≤ t2, we have

θ f (t2 , z)
θ f (t1 , z)

≤
sn−1
κe−4δ ,λe−2δ(t2)
sn−1
κe−4δ ,λe−2δ(t1)

.
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In particular, for all t ∈ [0, τ(z)), we have
(7.3) θ f (t, z) ≤ e− f (z)sn−1

κe−4δ ,λe−2δ(t).

Proof From (2.2) and (4.2) we deduce
d

dt
log

θ f (t, z)
sn−1
κ ,λ (e−2δ t) = −∆ f ρ∂M(γz(t)) +Hκ ,λ(e−2δ

t)e−2δ ≤ 0.

Since sκe−4δ ,λe−2δ(t) = sκ ,λ(e−2δ t), we obtain the desired inequality. ∎

Remark 7.4 Assume that for some t0 ∈ (0, τ(z)), the equality in (7.3) holds. hen
the equality in (7.3) holds on [0, t0]; in particular, the equality in (4.2) holds on [0, t0]
(see Remark 4.3).

7.2 Absolute Comparisons

We deûne θ̌ f ∶ [0,∞) × ∂M → R by

(7.4) θ̌ f (s, z) ∶=
⎧⎪⎪⎨⎪⎪⎩

θ̂ f (s, z) if s < τ f (z),
0 if s ≥ τ f (z).

To prove our volume comparison theorems, we need the following lemma.

Lemma 7.5 Let ∂M be compact. hen for all r > 0,

m n+1
n−1 f

(B fr (∂M)) = ∫
∂M
∫

r

0
θ̌ f (s, z)dsd volh ,

where B
f

r (∂M) is deûned as (1.13), and volh is the Riemannian volumemeasure on ∂M

determined by the inducedmetric h.

Proof We give an outline of the proof. For r > 0, we set

U
f

r ∶= { z ∈ ∂M ∣ τ f (z) ≤ r} , Û
f

r ∶= ⋃
z∈U

f
r

{γz(t) ∣ t ∈ [0, τ(z))} ,

V
f

r ∶= { z ∈ ∂M ∣ τ f (z) > r} , V̂
f

r ∶= ⋃
z∈V

f
r

{γz(t) ∣ t ∈ [0, t f ,z(r)]} .

For all z ∈ ∂M and t ∈ [0, τ(z)), we see ρ∂M , f (γz(t)) = s f ,z(t). Hence, by a straight-
forward argument, one can verify B fr (∂M)/Cut ∂M = Û

f

r ⊔V̂ f

r . In virtue of the coarea
formula and the Fubini theorem,

m n+1
n−1 f

( Û f

r ) = ∫
U
f
r
∫

τ(z)

0
e
−(n+1) f (γz(t))

n−1 θ(t, z)dtd volh

= ∫
U
f
r
∫

r

0
θ̌ f (s, z)dsd volh ,

m n+1
n−1 f

( V̂ f

r ) = ∫
V
f
r
∫

t f ,z(r)

0
e
−(n+1) f (γz(t))

n−1 θ(t, z)dtd volh

= ∫
V
f
r
∫

r

0
θ̌ f (s, z)dsd volh .
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Since Cut ∂M is a null set, we conclude the lemma. ∎

We set m f ,∂M ∶= e− f volh .
We prove the following absolute volume comparison inequality.

Lemma 7.6 For N ∈ (−∞, 1], assume that (M , ∂M , f ) has lower (κ, λ,N)-weighted
curvature bounds. Let ∂M be compact. hen for all r > 0 we have

(7.5) m n+1
n−1 f

(B fr (∂M)) ≤ Sκ ,λ(r)m f ,∂M(∂M).

Proof By Lemma 7.1, θ̌ f (s, z) ≤ e− f (z)sn−1
κ ,λ (s) for all s ≥ 0, where sκ ,λ is deûned as

(1.11). Integrate both sides over [0, r] with respect to s, and over ∂M with respect to
z. Lemma 7.5 implies the lemma. ∎

One can also prove the following by replacing the role of Lemmas 7.1 and 7.5 with
Lemmas 7.3 and 2.6 in the proof of Lemma 7.6.

Lemma 7.7 Let κ and λ satisfy the monotone-condition. For N ∈ (−∞, 1], assume
that (M , ∂M , f ) has lower (κ, λ,N)-weighted curvature bounds. Let ∂M be compact.

Suppose additionally that there is δ ∈ R such that f ≤ (n − 1)δ on M. hen for all r > 0
we have

m f (Br(∂M)) ≤ Sκe−4δ ,λe−2δ(r)m f ,∂M(∂M).

7.3 Relative Comparisons

Proof of Theorem 1.3 ForN ∈ (−∞, 1], assume that (M , ∂M , f )has lower (κ, λ,N)-
weighted curvature bounds. Let ∂M be compact. Let us prove the desired inequality
(1.14).
By Lemma 7.1, for all s1 , s2 ≥ 0 with s1 ≤ s2,

θ̌ f (s2 , z) sn−1
κ ,λ (s1) ≤ θ̌ f (s1 , z) sn−1

κ ,λ (s2).
We integrate the both sides over [0, r] with respect to s1, and over [r, R] with respect
to s2. It follows that

∫
R

r
θ̌ f (s2 , z)ds2

∫
r

0 θ̌ f (s1 , z)ds1
≤ Sκ ,λ(R) − Sκ ,λ(r)

Sκ ,λ(r)
.

Lemma 7.5 implies that

m n+1
n−1 f

(B f
R
(∂M))

m n+1
n−1 f

(B fr (∂M))
≤ 1 + Sκ ,λ(R) − Sκ ,λ(r)

Sκ ,λ(r)
= Sκ ,λ(R)

Sκ ,λ(r)
,

and hence (1.14). We complete the proof ofheorem 1.3. ∎

Remark 7.8 Suppose that there exists R ∈ (0,Cκ ,λ]/{∞} such that for every r ∈
(0, R] the equality in (1.14) holds. hen we see τ f ≥ R on ∂M (cf. [19, Lemma 4.3]).

We can also prove the following volume comparison by using Lemmas 7.3 and 2.6
instead of Lemmas 7.1 and 7.5 in the proof ofheorem 1.3.
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heorem 7.9 Let κ and λ satisfy the monotone-condition. For N ∈ (−∞, 1], assume
that (M , ∂M , f ) has lower (κ, λ,N)-weighted curvature bounds. Let ∂M be compact.

Suppose additionally that there is δ ∈ R such that f ≤ (n − 1)δ on M. hen for all

r, R > 0 with r ≤ R,

(7.6)
m f (BR(∂M))
m f (Br(∂M)) ≤ Sκe−4δ ,λe−2δ(R)

Sκe−4δ ,λe−2δ(r)
.

Remark 7.10 Assume that there exists R ∈ (0,Cκe−4δ ,λe−2δ ]/{∞} such that for every
r ∈ (0, R] the equality in (7.6) holds. hen one can verify that τ ≥ R on ∂M (cf. [19,
Lemma 4.3]).

7.4 Volume Growth Rigidity

Now, let us prove the following theorem.

heorem 7.11 Suppose that κ and λ do not satisfy the ball-condition. ForN ∈ (−∞, 1],
assume that (M , ∂M , f ) has lower (κ, λ,N)-weighted curvature bounds. Let ∂M be

compact. If we have

(7.7) lim inf
r→∞

m n+1
n−1 f

(B fr (∂M))
Sκ ,λ(r)

≥ m f ,∂M(∂M),

then M is isometric to [0,∞)×Fκ ,λ ∂M;moreover, ifN ∈ (−∞, 1), then for every z ∈ ∂M,

the function f ○ γz is constant.

Proof Lemma 7.6 and heorem 1.3 imply that for every R > 0 and for every r ∈
(0, R], the equality in (1.14) holds. hen τ f =∞ on ∂M (seeRemark 7.8). In particular,
we have τ =∞ on ∂M.
Fix z ∈ ∂M. For all s ≥ 0, we see θ̌ f (s, z) = e− f (z)sn−1

κ ,λ (s). Choose an orthonor-
mal basis {ez , i}n−1

i=1 of Tz∂M, and let {Yz , i}n−1
i=1 be the ∂M-Jacobi ûelds along γz with

Yz , i(0) = ez , i ,Y ′
z , i(0) = −Auz ez , i . For all i, we have Yz , i = Fκ ,λ ,zEz , i , where {Ez , i}n−1

i=1
are the parallel vector ûelds Ez , i(0) = ez , i . Moreover, if N ∈ (−∞, 1), then f ○ γz is
constant (seeRemark 7.2). By the rigidity of Jacobi ûelds, amapΦ ∶ [0,∞)×∂M → M

deûned by Φ(t, z) = γz(t) gives a desired isometry. ∎

Remark 7.12 If κ and λ satisfy the ball-condition, then the author does not know
whether a similar result to heorem 7.11 holds. In this case, under the same setting as
in heorem 7.11, Lemma 3.5 implies τ f = Cκ ,λ on ∂M (see Remark 7.8). Since τ(z)
can be either ûnite or inûnite for each z ∈ ∂M, it seems to be diõcult to conclude any
rigidity results.

Next, we prove the following volume growth rigidity theorem.

heorem 7.13 Let κ and λ satisfy themonotone-condition. For N ∈ (−∞, 1], assume
that (M , ∂M , f ) has lower (κ, λ,N)-weighted curvature bounds. Let ∂M be compact.
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Suppose additionally that there exists δ ∈ R such that f ≤ (n − 1)δ on M. If

lim inf
r→∞

m f (Br(∂M))
Sκe−4δ ,λe−2δ(r)

≥ m f ,∂M(∂M),

then the following hold.

(i) If κ and λ satisfy the convex-ball-condition, then M is isometric to Bn

κe−4δ ,λe−2δ ,

and f = (n − 1)δ on M.

(ii) If κ ≤ 0 and λ =
√

∣κ∣, then M is isometric to [0,∞) ×Fκ ,λ ∂M; moreover, the

following hold:

(a) if κ = 0 andN ∈ (−∞, 1), then for every z ∈ ∂M the function f ○γz is constant
on [0,∞);

(b) if κ < 0, then f = (n − 1)δ on M.

Proof In view of Lemma 7.7 andheorem 7.9,we see the following. If κ and λ satisfy
the convex-ball-condition, then for R = Cκe−4δ ,λe−2δ , and for every r ∈ (0, R] the
equality in (7.6) holds; in particular, τ = Cκe−4δ ,λe−2δ on ∂M (see Remark 7.10). If κ ≤ 0
and λ =

√
∣κ∣, then for every R > 0 and for every r ∈ (0, R] the equality in (7.6) holds;

in particular, τ =∞ (see Remark 7.10). Hence, τ = Cκe−4δ ,λe−2δ on ∂M.
If κ and λ satisfy the convex-ball-condition, then due to heorem 6.4, M is iso-

metric to Bn

κe−4δ ,λe−2δ , and f = (n − 1)δ.
If κ ≤ 0 and λ =

√
∣κ∣, then Cut ∂M = ∅. heorem 1.1 tells us that M is isometric

to [0,∞) ×Fκ ,λ ∂M; moreover, if N ∈ (−∞, 1), then for every z ∈ ∂M the function
f ○ γz is constant. In the case of κ < 0, for all t ≥ 0, z ∈ ∂M we see θ f (t, z) =
e− f (z)sn−1

κe−4δ ,λe−2δ(t); in particular, f = (n − 1)δ (see Remark 7.4). We complete the
proof. ∎

8 Eigenvalues

8.1 Lower Bounds

We recall the following inequality of Picone type (see [1,heorem 1.1] and [18, Lemma
7.1]).

Lemma 8.1 ([1, 18]) Let p ∈ (1,∞). Let ϕ > 0 and ψ ≥ 0 be two C1-functions on a

domain U ⊂ M. hen we have

(8.1) ∥∇ψ∥p ≥ ∥∇ϕ∥p−2
g(∇(ψp

ϕ
1−p),∇ϕ) .

If the equality in (8.1) holds on U , then ψ = cϕ for some c ≠ 0 on U .

We prove the inequality (1.16) in heorem 1.4.

Lemma 8.2 Let p ∈ (1,∞). For N ∈ (−∞, 1], assume that (M , ∂M , f ) has lower

(κ, λ,N)-weighted curvature bounds. Let M be compact, and let f be ∂M-radial. Sup-

pose additionally that there is δ ∈ R such that f ≤ (n−1)δ onM. ForD ∈ (0,Cκ ,λ]/{∞},
suppose InRad f M ≤ D, where InRad f M is deûned as (1.13). hen we have (1.16).
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Proof First, we notice νp ,κe−4δ ,λe−2δ ,De2δ = e−2pδνp ,κ ,λ ,D . Let φ̂ be a non-zero func-
tion satisfying (1.15) for ν = νp ,κ ,λ ,D . Wemay assume φ̂∣(0,D] > 0. he equation (1.15)
can be written in the form

( ∣φ′(s)∣p−2
φ
′(s)sn−1

κ ,λ (s))
′ + ν∣φ(s)∣p−2

φ(s)sn−1
κ ,λ (s) = 0,

φ(0) = 0, φ
′(D) = 0.

Hence, we see that φ̂′∣[0,D) > 0. Put Φ ∶= φ̂ ○ ρ∂M , f , and ûx a non-negative, non-zero
function ψ ∈ C∞0 (M). From Lemma 8.1, we deduce that

(8.2) ∥∇ψ∥p ≥ ∥∇Φ∥p−2
g(∇(ψpΦ1−p),∇Φ)

on IntM/Cut ∂M. Here we put

f̂ ∶= (n + 1)(n − 1)−1
f and f̌ ∶= (n + 1 − 2p)(n − 1)−1

f .

By f ≤ (n − 1)δ and (8.2),

e
2pδ ∫

M

∥∇ψ∥p
dm

f̂
≥ ∫

M

e
2p f
n−1 ∥∇ψ∥p

dm
f̂
= ∫

M

∥∇ψ∥p
dm

f̌
(8.3)

≥ ∫
M

∥∇Φ∥p−2
g(∇(ψpΦ1−p),∇Φ)dm

f̌
.

Further, (8.3) and (4.10) tell us that e2pδ ∫M ∥∇ψ∥pdm
f̂
is at least

−∫
M

ψ
pΦ1−p{(((φ̂′)p−1)′ −Hκ ,λ(φ̂′)p−1) ○ ρ∂M , f }dm f̂

that is equal to νp ,κ ,λ ,D ∫M ψpdm
f̂
by the deûnition of Hκ ,λ (see (1.15) and (3.5)).

herefore, R
f̂ ,p(ψ) ≥ e−2pδνp ,κ ,λ ,D . his implies (1.16). ∎

Remark 8.3 From the argument in the proof of Lemma 8.2, one can also verify the
following. Under the same setting as in Lemma 8.2, we have R

f̂ ,p(ψ) ≥
νp ,κe−4δ ,λe−2δ ,De2δ for every non-negative, non-zero ψ ∈ C1(M) with ψ∣∂M = 0 (cf. Re-
mark 4.11). Moreover, if the equality holds for some ψ, then the equalities in (8.3)
hold, and hence f = (n− 1)δ on the setwhere∇ψ ≠ 0, and ψ = cΦ for some c ≠ 0 (see
Lemma 8.1); in particular, we can conclude ∇ψ ≠ 0 on M/Cut ∂M, and f = (n − 1)δ
on M.

We next prove the following comparison inequality.

Lemma 8.4 Let p ∈ (1,∞). Let κ and λ satisfy the convex-ball-condition. For

N ∈ (−∞, 1], let us assume that (M , ∂M , f ) has lower (κ, λ,N)-weighted curvature
bounds. Let M be compact. Suppose additionally that there exists δ ∈ R such that

f ≤ (n − 1)δ on M. hen we have

ν f ,p(M) ≥ ν0,p(Bn

κe−4δ ,λe−2δ).

Proof We ûrst note that ν0,p(Bn

κe−4δ ,λe−2δ) = e
−2pδνp ,κ ,λ ,Cκ ,λ . Let φ̂ ∶ [0,Cκ ,λ] → R

be a non-zero function satisfying (1.15) for ν = νp ,κ ,λ ,Cκ ,λ , and let φ̂∣(0,Cκ ,λ] > 0. We see
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that φ̂′∣[0,Cκ ,λ) > 0. Deûne functions ρ∂M ,δ ∶= e−2δρ∂M and Φ ∶= φ̂ ○ ρ∂M ,δ . We ûx a
non-negative, non-zero function ψ ∈ C∞0 (M). hen Lemma 8.1 leads us to

(8.4) ∥∇ψ∥p ≥ ∥∇Φ∥p−2
g(∇(ψpΦ1−p),∇Φ)

on IntM/Cut ∂M. Notice that κ and λ satisfy the model-condition. From (8.4) and
(4.7), it follows that

e
2pδ ∫

M

∥∇ψ∥p
dm f

≥ e2pδ ∫
M

∥∇Φ∥p−2
g(∇(ψpΦ1−p),∇Φ)dm f

≥ −∫
M

ψ
pΦ1−p{(((φ̂′)p−1)′ −Hκ ,λ(φ̂′)p−1) ○ ρ∂M ,δ}dm f .

he right-hand side is equal to νp ,κ ,λ ,Cκ ,λ ∫M ψpdm f . herefore, we obtain R f ,p(ψ) ≥
e−2pδνp ,κ ,λ ,Cκ ,λ . his proves the lemma. ∎

Remark 8.5 From the argument in the proof of Lemma 8.4, we can also conclude
the following. Under the same setting as Lemma 8.4, we have R f ,p(ψ) ≥
ν0,p(Bn

κe−4δ ,λe−2δ) for every non-negative, non-zero ψ ∈ C1(M) with ψ∣∂M = 0 (cf. Re-
mark 4.8). Moreover, if the equality holds for some ψ, then the equalities in (8.4) and
(4.7) hold (see Lemma 8.1 and Remark 4.8); in particular, ψ = cΦ for some c ≠ 0 on
M.

8.2 Equality Cases

We recall the following fact for eigenfunctions of the weighted p-Laplacian (see e.g.,
[20]).

Proposition 8.6 ([20]) Let p ∈ (1,∞). Let ϕ ∶ M → R be a smooth function. Let

M be compact. hen there exists a non-negative, non-zero function ψ ∈ W 1,p
0 (M ,mϕ)

such that Rϕ ,p(ψ) = νϕ ,p(M). Moreover, ψ ∈ C1,α(M) for some α ∈ (0, 1).

By using Proposition 8.6, we proveheorem 1.4.

Proof of Theorem 1.4 Let p ∈ (1,∞). For N ∈ (−∞, 1], assume that (M , ∂M , f )
has lower (κ, λ,N)-weighted curvature bounds. Let M be compact, and let f be ∂M-
radial. Suppose additionally that there is δ ∈ R such that f ≤ (n − 1)δ on M. For
D ∈ (0,Cκ ,λ]/{∞}, suppose InRad f M ≤ D. Lemma 8.2 yields (1.16). Now, we as-
sume that the equality in (1.16) holds. Recall that our goal is to show that M is a
(κe−4δ , λe−2δ)-equational model space, and f = (n − 1)δ on M.
By applying Proposition 8.6 to (n+ 1)(n− 1)−1 f , there exists a non-negative, non-

zero ψ ∈W 1,p
0 (M ,m n+1

n−1 f
) ∩ C1,α(M) with

R n+1
n−1 f ,p

(ψ) = νp ,κe−4δ ,λe−2δ ,De2δ .

hen f = (n − 1)δ on M (see Remark 8.3). heorem 1.4 is already known when f is
constant (see [18,heorem 1.6]). hus, we complete the proof ofheorem 1.4. ∎
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Remark 8.7 Kasue [10]obtained an explicit lowerbound for µ2,κ ,λ ,D (see [10,Lemma
1.3]). Due to the estimate, under the same setting as in heorem 1.4 with p = 2, we
have an explicit bound for ν n+1

n−1 f ,2
(M).

We also formulate the following eigenvalue rigidity theorem.

heorem 8.8 Let p ∈ (1,∞). Let κ and λ satisfy the convex-ball-condition. For

N ∈ (−∞, 1], let us assume that (M , ∂M , f ) has lower (κ, λ,N)-weighted curvature
bounds. Let M be compact. Suppose additionally that there is δ ∈ R such that f ≤
(n − 1)δ on M. hen

(8.5) ν f ,p(M) ≥ ν0,p(Bn

κe−4δ ,λe−2δ).

If the equality in (8.5) holds, then M is isometric to Bn

κe−4δ ,λe−2δ , and f = (n− 1)δ on M.

Proof By Lemma 8.4, we have (8.5). Assume that the equality holds. Applying
Proposition 8.6 to f , we have a non-negative, non-zero ψ ∈W 1,p

0 (M ,m f )∩C1,α(M)
with R f ,p(ψ) = ν0,p(Bn

κe−4δ ,λe−2δ). Let φ̂ be a non-zero function satisfying (1.15) for
ν = νp ,κ ,λ ,Cκ ,λ , and let φ̂∣(0,Cκ ,λ] > 0. Deûne ρ∂M ,δ ∶= e−2δρ∂M and Φ ∶= φ̂ ○ ρ∂M ,δ
(cf. Lemma 6.2). hen Φ = cψ for some c ≠ 0; in particular, suppψ = M and
Φ ∈ C1,α(M). he equality in (4.7) also holds (see Remark 8.5).

Since suppψ = M, the equality in (4.5) holds on IntM/Cut ∂M (see Remark 4.8).
Fix z ∈ ∂M. Choose an orthonormal basis {ez , i}n−1

i=1 of Tz∂M. Let {Yz , i}n−1
i=1 be

the ∂M-Jacobi ûelds along γz with Yz , i(0) = ez , i ,Y ′
z , i(0) = −Auz ez , i . For all i, we

see Yz , i = Fκ ,λ ,zEz , i on [0, τ(z)], where {Ez , i}n−1
i=1 are the parallel vector ûelds with

Ez , i(0) = ez , i . Moreover, f ○ γz = (n − 1)δ on [0, τ(z)].
By heorem 6.4, it suõces to show that InRadM = Cκe−4δ ,λe−2δ . Let us suppose

that InRadM < Cκe−4δ ,λe−2δ . Take x0 ∈ M with ρ∂M(x0) = InRadM. Note that
x0 ∈ Cut ∂M. By ρ∂M(x0) < Cκe−4δ ,λe−2δ , and by the rigidity of the Jacobi ûelds, x0 is
not the ûrst conjugate point along γz0 , where z0 is a foot point of x0. Hence ρ∂M ,δ is
not diòerentiable at x0. From Φ ∈ C1,α(M), we deduce that φ̂′(ρ∂M ,δ(x0)) = 0. his
contradicts φ̂′∣[0,Cκ ,λ) > 0. hus, we complete the proof ofheorem 8.8. ∎

8.3 Spectrum Rigidity

Let Ω be a relatively compact domain in M such that its boundary is a smooth hy-
persurface in M with ∂Ω ∩ ∂M = ∅. For the canonical measure vol∂Ω on ∂Ω, put
m f ,∂Ω ∶= e− f vol∂Ω .

Let us prove the following area estimate.

Lemma 8.9 Let κ and λ satisfy the monotone-condition. For N ∈ (−∞, 1], assume
that (M , ∂M , f ) has lower (κ, λ,N)-weighted curvature bounds. Suppose additionally
that there exists δ ∈ R such that f ≤ (n − 1)δ on M. Deûne ρ∂M ,δ ∶= e−2δρ∂M . Let

Ω be a relatively compact domain in M such that ∂Ω is a smooth hypersurface in M

satisfying ∂Ω ∩ ∂M = ∅. Set

Dδ ,1(Ω) ∶= inf
x∈Ω

ρ∂M ,δ(x) and Dδ ,2(Ω) ∶= sup
x∈Ω

ρ∂M ,δ(x).
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hen we have

m f (Ω) ≤ e2δ sup
s∈(Dδ ,1(Ω),Dδ ,2(Ω))

∫
Dδ ,2(Ω)

s
sn−1
κ ,λ (a)da

sn−1
κ ,λ (s)

m f ,∂Ω(∂Ω).

Proof Deûne a function φ̂ ∶ [Dδ ,1(Ω),Dδ ,2(Ω)]→ R by

φ̂(s) ∶= ∫
s

Dδ ,1(Ω)

∫
Dδ ,2(Ω)

a
sn−1
κ ,λ (b)db

sn−1
κ ,λ (a)

da.

Put Φ ∶= φ̂ ○ ρ∂M ,δ . By Lemma 4.4, on Ω/Cut ∂M, we have

(8.6) ∆ fΦ ≥ −e−4δ(φ̂′′ −Hκ ,λ φ̂
′) ○ ρ∂M ,δ = e−4δ .

By Lemma 2.2, there exists a sequence {Ω i} of compact subsets of the closure Ω
such that for every i, the boundary ∂Ω i is a smooth hypersurface in M except for a
null set in (∂Ω,m f ,∂Ω), and satisfying the following: (1) for all i1 , i2 with i1 < i2, we
have Ω i1 ⊂ Ω i2 ; (2) Ω/Cut ∂M = ⋃i Ω i : (3) for every i, and for almost every point
x ∈ ∂Ω i ∩ ∂Ω in (∂Ω,m f ,∂Ω), there exists a unique unit outer normal vector for Ω i

at x that coincides with the unit outer normal vector u∂Ω on ∂Ω for Ω; (4) for every
i, on ∂Ω i/∂Ω, there exists a unique unit outer normal vector ûeld u i for Ω i such that
g(u i ,∇ρ∂M) ≥ 0.
For the canonical measure voli on ∂Ω i/∂Ω, put m f , i ∶= e− f voli . By integrating

the both sides of (8.6) on Ω i , and by integration by parts,

e
−4δ

m f (Ω i) ≤ ∫
Ω i
∆ fΦdm f

= −∫
∂Ω i/∂Ω

g(u i ,∇Φ)dm f , i − ∫
∂Ω i∩∂Ω

g(u∂Ω ,∇Φ)dm f ,∂Ω .

he Cauchy–Schwarz inequality and g(u i ,∇Φ) ≥ 0 tell us that

e
−4δ

m f (Ω i) ≤ −∫
∂Ω i∩∂Ω

g(u∂Ω ,∇Φ)dm f ,∂Ω

≤ ∫
∂Ω i∩∂Ω

(φ̂′ ○ ρ∂M ,δ)∣g(u∂Ω ,∇ρ∂M ,δ)∣dm f ,∂Ω

≤ e−2δ sup
s∈(Dδ ,1(Ω),Dδ ,2(Ω))

φ̂
′(s)m f ,∂Ω(∂Ω).

By letting i →∞, we complete the proof. ∎

Kasue [11] has proved Lemma 8.9 when f = 0 and δ = 0.
For α > 0, the ( f , α)-Dirichlet isoperimetric constant is deûned as

DIα(M ,m f ) ∶= inf
Ω

m f ,∂Ω(∂Ω)
(m f (Ω))1/α ,

where the inûmum is taken over all relatively compact domains Ω in M such that ∂Ω
are smooth hypersurfaces in M satisfying ∂Ω∩ ∂M = ∅. he ( f , α)-Dirichlet Sobolev

constant is deûned as

DSα(M ,m f ) ∶= inf
ϕ∈W 1,1

0 (M ,m f )/{0}

∫M ∥∇ϕ∥dm f

(∫M ∣ϕ∣αdm f )1/α .

277

https://doi.org/10.4153/S0008414X1800007X Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X1800007X


Y. Sakurai

Let us recall the following relation between the constants.

Proposition 8.10 ([6]) For all α > 0, DIα(M ,m f ) = DSα(M ,m f ).

For D ∈ (0,Cκ ,λ], we put

(8.7) C(κ, λ,D) ∶= sup
s∈[0,D)

∫
D

s
sn−1
κ ,λ (a)da

sn−1
κ ,λ (s)

.

Notice that C(κ, λ,∞) is ûnite if and only if κ < 0 and λ =
√

∣κ∣; in this case, we
have C(κ, λ,D) = ((n − 1)λ)−1(1 − e−(n−1)λD).
From Lemma 8.9 we derive the following lemma.

Lemma 8.11 Let p ∈ (1,∞). Let κ and λ satisfy the monotone-condition. For

N ∈ (−∞, 1], assume that the triple (M , ∂M , f ) has lower (κ, λ,N)-weighted curva-
ture bounds. Suppose additionally that there exists δ ∈ R such that f ≤ (n − 1)δ on M.

For D ∈ (0,Cκ ,λ], suppose InRadM ≤ e2δD. hen we have

ν f ,p(M) ≥ ( pe
2δ
C(κ, λ,D))−p .

Proof Let Ω be a relatively compact domain in M such that ∂Ω is a smooth hyper-
surface in M with ∂Ω ∩ ∂M = ∅. Set Cδ ∶= e2δC(κ, λ,D). Lemma 8.9 implies that
m f (Ω) ≤ Cδm f ,∂Ω(∂Ω). By Proposition 8.10, we obtain DS1(M ,m f ) ≥ C−1

δ
. For all

ϕ ∈W 1,1
0 (M ,m f ), we have

(8.8) ∫
M

∣ϕ∣dm f ≤ Cδ ∫
M

∥∇ϕ∥dm f .

Let ψ be a non-zero function in W
1,p
0 (M ,m f ). Put q ∶= p(1 − p)−1. In (8.8), by

replacing ϕ with ∣ψ∣p , and by theHölder inequality, we see

∫
M

∣ψ∣pdm f ≤ pCδ ∫
M

∣ψ∣p−1∥∇ψ∥dm f

≤ pCδ( ∫
M

∣ψ∣pdm f )
1/q

(∫
M

∥∇ψ∥p
dm f )

1/p
.

Considering the Rayleigh quotient R f ,p(ψ), we complete the proof. ∎

Finally, we prove the following spectrum rigidity theorem.

heorem 8.12 Let p ∈ (1,∞). Let κ < 0 and λ ∶=
√

∣κ∣. For N ∈ (−∞, 1], assume
that (M , ∂M , f ) has lower (κ, λ,N)-weighted curvature bounds. Let ∂M be compact.

Suppose additionally that there exists δ ∈ R such that f ≤ (n − 1)δ on M. hen

(8.9) ν f ,p(M) ≥ e−2pδ( (n − 1)λ
p

)
p

.

If the equality in (8.9) holds, then M is isometric to [0,∞) ×Fκ ,λ ∂M; moreover, if N ∈
(−∞, 1), then f ○ γz is constant for every z ∈ ∂M.
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Proof For D > 0,we see that C(κ, λ,D) = ((n−1)λ)−1(1− e−(n−1)λD). Note that the
right-hand side is monotone increasing as D → ∞. Put Dδ ∶= e−2δ InRadM. From
Lemma 8.11, we conclude

ν f ,p(M) ≥ e−2pδ( pC(κ, λ,Dδ))
−p ≥ e−2pδ( (n − 1)λ

p
)

p

.

Assume that the equality holds in (8.9). hen the monotonicity of C(κ, λ,D)
with respect to D implies Dδ = ∞; in particular, we have InRadM = ∞. Since
∂M is compact, τ(z0) = ∞ for some z0 ∈ ∂M. heorem 1.1 completes the proof of
heorem 8.12. ∎
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