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Comparison Geometry of Manifolds
with Boundary under a Lower Weighted
Ricci Curvature Bound

Yohei Sakurai

Abstract. We study Riemannian manifolds with boundary under a lower weighted Ricci curvature
bound. We consider a curvature condition in which the weighted Ricci curvature is bounded from
below by the density function. Under the curvature condition and a suitable condition for the weighted
mean curvature for the boundary, we obtain various comparison geometric results.

1 Introduction

We study comparison geometry of manifolds with boundary under a lower weighted
Ricci curvature bound. For the lower weighted Ricci curvature bound, we consider a
curvature condition in which the lower bound is controlled by the density function.
We introduce a reasonable curvature condition for a lower weighted mean curvature
bound for the boundary. Under these curvature conditions, we investigate compari-
son geometric properties and conclude twisted rigidity theorems.

For n > 2, let (M, g) be an n-dimensional Riemannian manifold with or without
boundary, and let f: M — R be a smooth function. Let Ric, denote the Ricci cur-
vature defined by g. For N € (o0, 00|, the N-weighted Ricci curvature is defined as
follows: If N € (—o0, 00)\{n},

(L1) Ric} := Ric, + Hess f - %,

where d f and Hess f are the differential and the Hessian of f, respectively; otherwise,
if N = oo, then Ricj}’ := Ric, + Hess f; if N = n, and if f is constant, then Ric?] := Ricg;
it N = n, and if f is not constant, then Ric?’ := —o0 ([2,12]). For a smooth function
K: M — R, we mean by Ric?{ u > K for every point x € M, and every unit tangent

vector v at x, it holds that Ric?](v) > K(x).

For manifolds without boundary whose N-weighted Ricci curvatures are bounded
from below by constants, many comparison geometric results are already known in
the usual weighted case of N € [n, co] (see e.g, [12,13,15,22]). For manifolds with
boundary, the author [18] has studied such comparison geometric properties.

Recently, under a lower N-weighted Ricci curvature bound, Wylie [23], and Wylie
and Yeroshkin [24] studied comparison geometry of manifolds without boundary in
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complementary case of N € (—oo,n). Wylie [23] obtained a splitting theorem of
Cheeger-Gromoll type under the curvature condition Ric?{ u 2 0for N e (—o0,1].
Wylie and Yeroshkin [24] introduced a curvature condition

=)
Riclf,M >(n- l)Ke%

for k € R from the view point of study of weighted affine connections. Under such
condition, they proved a maximal diameter theorem of Cheng type for the distance
induced from the metric e g, and a volume comparison of Bishop-Gromov type
for the measure e~ 51/ vol,, where vol, denotes the Riemannian volume measure on
(M, g).

In this paper, we study comparison geometry of Riemannian manifolds with bound-
ary satisfying the curvature condition

—4f
(L2) Ric?{M > (n- I)Keﬁ

forx € R, N € (o0, co]. We will also consider a curvature condition for the boundary
that is compatible with (1.2). For a Riemannian manifold M with boundary, let oM
stand for its boundary. For z € 0M, we denote by u, the unit inner normal vector on
OM at z, and by H, the mean curvature of dM at z with respect to u, (more precisely,
see Subsection 2.2). The weighted mean curvature Hy , is defined as

Hf,z = H, +g( (vf)zn uz) >

where V f is the gradient of f. We introduce a curvature condition
-2
(13) Hyom > (n—1)Aewt

for A € R, where (1.3) means that Hy; > (n - I)Ae%—(f) for every z € M. Under
conditions (1.2) and (1.3) for x, A € R, N € (—o00, 1], we formulate various comparison
geometric results, and generalize the preceding studies by Kasue [9,10], and by the
author [17] when f = 0.

1.1 Setting

In this paper, we work in the following setting. For n > 2, let (M, g) be an n-
dimensional, connected complete Riemannian manifold with boundary, and let
f+ M — R be asmooth function. For x,1 € R,N € (—oo, c0] we say that a triple
(M, oM, f) has lower (x, A, N)-weighted curvature bounds if (1.2) and (1.3) hold. For
N; € (n,00],N; € (=00, n), or for Nj, N, € (=00, n) with N; < Ny, if (M, oM, f)
has lower (x, A, N;)-weighted curvature bounds, then it also has lower (x, 1, N,)-
weighted curvature bounds (see (1.1) and (1.2)). We mainly study a triple (M, oM, f)
with lower (x, A, N)-weighted curvature bounds for x, A € R, N € (—o0,1].

1.2 Splitting Theorems

For the Riemannian distance dy on M, let pspr: M — R stand for the distance
function from the boundary oM defined as pyp(x) = dy(x,90M). For z € dM,
let y.: [0,T) - M be the geodesic with y_(0) = u.. Define functions 7, 7¢: oM —
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(0,00] by

™(2)  —2f(z(a))
14 ()= suplt> 0] pa(y:() = 1) 7(2) = [ 7 da,

We also define a function sy . : [0, 7(2)] - [0, 7/(2)] by
b 2 i(yata
(1.5) sr2(t) = [ eI 4a,
0

Let s, 1 (s) be a unique solution of the Jacobi equation ¢” (s) + k¢(s) = 0 with ¢(0) =
1, ¢'(0) = —A. We also denote by 5, (s) the solution of the equation ¢"'(s) +k¢(s) =0
with ¢(0) =0, ¢’(0) =1, and note that

dnvies s 0,

N3
se(s) =45 ifx =0, Se1(5) = 50(s) = As,e(s).
sinh/|x|s .
T ifx <0,
For t € [0, 7(2)], we set
16) Fone(t) = exp (LLOL Ty g o ),

Let h denote the induced Riemannian metric on dM. For an interval I, and a con-
nected component dM,; of dM, we denote by I x_, dM, the twisted product Rie-
mannian manifold (I x dMy,dt* + F, (t)h).

One of the main results is the followmg twisted splitting theorem.

Theorem 1.1 Letk < 0and A := \/m For N € (—o0,1], assume that (M, oM, f)
has lower (x, A, N )-weighted curvature bounds. Suppose that f is bounded from above.
If 1(z9) = oo for some zo € OM, then M is isometric to [0, 00) xf,_, dM; moreover, if
N € (—o0,1), then for every z € dM, the function f o y, is constant on [0, o).

When « = 0 and A = 0, Theorem 1.1 was proved by the author in the cases where
N € [n,00] (see [18]) and N € (—o0,1] (see [19]). In the unweighted case of f =
0, Kasue [9] has proved Theorem 1.1 under the assumption that M is non-compact
and dM is compact (see also Croke and Kleiner [5]), and the author [17] has proved
Theorem 1.1 itself.

In Theorem 1.1, by applying a splitting theorem proved by Wylie [23] to the bound-
ary, we obtain a multi-splitting theorem (see Subsection 5.3). We also generalize a
splitting theorem studied by Kasue [9] (see also Croke and Kleiner [5] and Ichida [8])
(see Subsection 5.4).

1.3 Inscribed Radii

We denote by M, the simply connected n-dimensional space form with constant cur-
vature k. We say that x and A satisfy the ball-condition if there exists a closed geodesic
ball B ) in M whose boundary 9B}, ; has constant mean curvature (n —1)A. Notice
that x and A satlsfy the ball- condmon if and only if either (1) x > 0; (2) x = 0 and
A>0;0or(3)x<0and A > \/_ We denote by Cy,) the radius of B ,. We see that x
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and A satisfy the ball-condition if and only if the equation s, (s) = 0 has a positive
solution; moreover, C, ) = inf{s > 0| s, (s) = 0}.

The inscribed radius InRad M of M is defined to be the supremum of the distance
function from the boundary py, over M. Let us consider the Riemannian metric
gf = et g. We denote by p‘gfw and by InRady, M the distance function from the
boundary and the inscribed radius on M induced from g, respectively.

Let Int M be the interior of M. For x € Int M, let U, M be the unit tangent sphere at
x that can be identified with the (n—1)-dimensional standard unit sphere (S"~!, ds?_,).
Forv € UM, let y,: [0,T) — M be the geodesic with y,(0) = v. We define
Ty 1 UyM — (0, 0] by

(1.7) T (V) := sup{t> 0| px(yv(t)) = t,yv([O,t)) c IntM},

where p,: M — R is the distance function from x defined as p, () := dy(x, ). Let
Sfu+ [0) Tx(v)] g [0> 00] be defined by

b —2fGv(a))
(1.8) spy(t) = / e da,
0
For t € [0, 7,(v)] we put

f(yv(t))+f(x))
-1

1.9) Fe (1) = exp( "

sk (spv(1))-

For I > 0, we denote by [0,1] xp, S"™! the twisted product Riemannian manifold
([0,1] xS" 1, df? + F2 (t)ds?_,).
We further prove the following inscribed radius rigidity theorem.

Theorem 1.2 Let us assume that x and A satisfy the ball-condition. For N € (—o0,1],
assume that (M, 0M, f) has lower (x, A, N)-weighted curvature bounds. Then we have

(1.10) InRadg, M < Cy ).

pr‘gﬁw(xo) = Cy,) for some xog € M, then M is isometric to [0,1] xg, S"™! for some
I > 0; moreover, if N € (—o0,1), then f is constant; in particular, M is isometric to a
closed ball in a space form.

Kasue [9] proved Theorem 1.2 in the case of f = 0.
We will also obtain an inscribed radius rigidity theorem for InRad M in the case
where f is bounded from above (see Theorem 6.4).

1.4 Volume Growths

We set EK) 1 = Cy2 if x and A satisfy the ball-condition; otherwise, EK) ) =00, We
define functions 5, 3, 8,,1: [0,00) - Rby

_ - sea(s) ifs<Cyys _ f’,n_l
(1.11) 5ea(s) = {0 53T, S (r) = ; 5, (a)da.

For a smooth function ¢: M — R, we define my := e~% vol, . For x € M, we say
that z € OM is a foot point on OM of x if dp(x,z) = papm(x). Every point in M has at
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least one foot point on dM. Let us define a function p3p,s: M — R by

pam (%) _2f(y.(a))
e n—1 a)

(1.12) pom,f(x) = irzlf’[0

where the infimum is taken over all foot points z € M of x. For r > 0,

(113) B/ (M) = {x e M| pam,f(x) <r}, InRady M := sup pou, (x).
xeM

We prove absolute volume comparisons of Heintze-Karcher type [7] and relative
volume comparisons (see Subsections 7.2 and 7.3).
One of the relative volume comparison theorems is the following.

Theorem 1.3  For N € (—o0,1], assume that (M, OM, f) has lower (x, A, N )-weighted
curvature bounds. Let 0M be compact. Then for all r, R > 0 with r < R, we have

ma s (BR(OM)) s, (R)

114 < .
(1) m%f(B{(aM)) Sk ()

We provide a rigidity theorem concerning the equality case of Theorem 1.3 (see
Theorem 7.11). We also present a volume growth rigidity theorem in the case where f
is bounded from above (see Theorem 7.13).

1.5 Eigenvalues

For p € [1,00) and a smooth function ¢: M — R, let Wol’p(M, my) stand for the
(1, p)-Sobolev space with compact support defined as the completion of C5° (M) with
respect to the standard (1, p)-Sobolev norm. The (¢, p)-Laplacian is defined as

Appi=—etdiv(e?|v-|P7?v )

as a distribution on Wol’p (M, mg), where || - || is the standard norm, and div is the
divergence with respect to g. A real number v is said to bea (¢, p)-Dirichlet eigenvalue
on M if there exists v € WOI’P(M, my)\{0} such that Ag ,y = v|y|?"?y holds in the
distribution sense. For y € Wy (M, mg)\{0}, the Rayleigh quotient is defined as

_ JulvylPdm,

Reo¥) = Sy lvlpdmy

We study
vg,p(M) = iry}f Ry,p(¥),

where the infimum is taken over all y € W,"* (M, mg)\{0}. If M is compact and if
p € (1,00), then vy ,(M) is equal to the infimum of the set of all (¢, p)-Dirichlet
eigenvalues on M.
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Let p € (1,00). For D € (0, Cy,2]\{o0}, let v, .1, p be the positive minimum real
number v such that there exists a non-zero function ¢: [0, D] - R satisfying

5;,1(5) / -2 7
5M(S)(Isv ()IP29'(5))

+v]p(s)[Pp(s) = 0,9(0) =0,¢'(D) = 0.

L15) (o' (s)IP29'(s)) "+ (n-1)

Let us recall the notion of the model spaces introduced by Kasue [10]. We say that
x and A satisfy the model-condition if the equation s, , (s) = 0 has a positive solution.
Note that « and A satisfy the model-condition if and only if either (1) x > 0 and A < 0;
(2)x =0and A = 0; or (3) xk < 0 and A € (0, \/_) Let x and A satisfy the ball-
condition or the model-condition, and let M be compact. For an interval I and for a
connected component dM; of oM, we denote by I x, ; dM; the warped product (I x
OM,,ds* +s; , (s)h). When « and A satisfy the model-condition, we define D, (M)
as follows. If x = 0 and A = 0, then D, ;(M) := InRad M; otherwise, D, , (M) :=
inf{s > 0 | s, ,(s) = 0}. We say that M is a (k, A)-equational model space if M is
isometric to either (1) the closed geodesic ball By ) for x and A satisfying the ball-
condition; (2) the warped product [0,2D, (M )] .1 OM for k and A satisfying the
model-condition, and for some connected component dM; of dM; or (3) the quotient
space ([0,2D, 1 (M)] x,,2 OM)/G, for k and A satisfying the model-condition, and
for some involutive isometry o of dM without fixed points, where G, denotes the
isometry group on [0, 2D, ) (M)] x,.» 9M whose elements consist of identity and the
involute isometry @ defined by 6 (s, z) := (2D, 2 (M) — 5, 0(2)).

We say that f is 0 M-radial if there exists a smooth function ¢ : [0, c0) — R such
that f = ¢ 0 pyp on M.

We establish the following theorem for the smallest eigenvalue v ¢ .

Theorem 1.4 Let p € (1,00). For N € (—o0,1], let us assume that (M, oM, f)
has lower (x, A, N)-weighted curvature bounds. Let M be compact and let f be M-
radial. Suppose additionally that there exists & € R such that f < (n-1) on M. For
D € (0,Cy,2]\{o0}, suppose InRad s M < D, where InRad ¢ M is defined as (1.13). Then

(1.16) v%{f)P(M) 2 Vp ce—49 1e=20, D2 -

If the equality in (1.16) holds, then M is a (xe~*°, e ~2)-equational model space and
f=(n-1)8 on M.

In the case where f = 0 and § = 0, Kasue [10] proved Theorem 1.4 for p = 2, and
the author [18] proved it for any p € (1, o).

We also formulate a rigidity theorem for the smallest eigenvalue vy , in the case
where f is not necessarily 0 M-radial (see Theorem 8.8). Furthermore, we obtain a
spectrum rigidity theorem for complete (not necessarily compact) manifolds with
boundary (see Theorem 8.12).
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1.6 Organization

In Section 2, we prepare some notation and recall the basic facts for Riemannian man-
ifolds with boundary. We also recall the works by Wylie and Yeroshkin [24] (see Sub-
section 2.6).

In Sections 3 and 4, to prove our main theorems, we study Laplacian comparisons
for the distance function from the boundary. In Section 3, we show a pointwise Lapla-
cian comparison result (see Subsection 3.1) and a rigidity result in the equality case
(see Subsection 3.2). In Section 4, we prove global Laplacian comparison inequalities
in the distribution sense in the case where f is bounded from above (see Subsection
4.1) and where f is dM-radial (see Subsection 4.2).

In Section 5, we prove splitting theorems. In Section 6, we examine inscribed ra-
dius rigidity theorems. In Section 7, we show volume comparison theorems. In Sec-
tion 8, we study eigenvalue rigidity theorems.

2 Preliminaries

We refer to [16] for the basics of Riemannian manifolds with boundary (see also [17,
Section 2] and [18,19]).

2.1 Riemannian Manifolds with Boundary

Let M be a connected Riemannian manifold with boundary. For » > 0 and A c M,
we denote by B, (A) the closed r-neighborhood of A. For A, Ay ¢ M, letdy (A, Az)
denote the distance between them. For an interval I, we say thata curve y: I - M is
a minimal geodesic if for all t;, t, € I we have dp(y(#1),y(t2)) = |t1 — t2|- If the metric
space (M, dyr) is complete, then the Hopf-Rinow theorem for length spaces (see e.g.,
Theorem 2.5.23 in [3]) tells us that it is a proper geodesic space.

For i = 1,2, let (M;, g;) be connected Riemannian manifolds with boundary. For
each i, the boundary 0M; carries the induced metric h;. We say that a homeomor-
phism ®@: M; — M, is a Riemannian isometry with boundary if ® satisfies the follow-
ing conditions:

(1) Dlmen,: Int My — Int M, is smooth, and (@|inear, ) (£2) = g1
(2) Olop, : M) — OM, is smooth, and (D|yar, ) (h2) = hy.

There exists a Riemannian isometry with boundary from M; to M, if and only if
(Mi,dp,) and (M,, dyy, ) are isometric to each other.

2.2 Jacobi Fields

Let (M, g) be a connected Riemannian manifold with boundary. For x € Int M, let
T:M and U, M be the tangent space and the unit tangent sphere at x, respectively.
For z € 0M and the tangent space T,0M at z on oM, let T} dM be its orthogonal
complement in the tangent space at z on M.

For vector fields v;, v, on dM, the second fundamental form S(vy,v;) is defined
as the normal component of V$ v, with respect to dM, where V¢ is the Levi-Civita
connection induced from g. For u € T; oM, the shape operator A,,: T,0M — T,0M
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is defined as
g(Auviv2) = g(S(vi,v2),u).
For the unit inner normal vector u, on dM at z, the mean curvature H, of oM at z

is defined as the trace of A, . We say that a Jacobi field Y along the geodesic y, is a
OM-Jacobi field if Y satisfies

Y(0) e T,oM, Y'(0)+A, Y(0)e T, oM.

We say that y, (o) is a conjugate point of M along y, if there exists a non-zero o M-
Jacobi field Y along y, such that Y (#y) = 0.

2.3 Cut Locus for the Boundary

We recall the basic properties of the cut locus for the boundary. We refer to [17] for
the proofs.

Let (M, g) be a connected complete Riemannian manifold with boundary. For
x € Int M, let z € OM be a foot point on OM of x (i.e., dp(x,2z) = pap(x)). In this
case, there exists a unique minimal geodesic y: [0,1] - M from z to x such that
¥ = Yzl[o,1> Where I = pap(x). In particular, y'(0) = u, and y|g, lies in Int M.

Let 7: 0M — (0, 0] be the function defined as (1.4)). The supremum of 7 over
0M is equal to the inscribed radius InRad M. The function 7 is continuous on oM.
The continuity of 7 tells us that if dM is compact, then InRad M < oo if and only if M
is compact.

The cut locus for the boundary is defined as

CutoM := {yz(‘r(z)) | z€0M,1(z) < o0 }.

From the continuity of T we see that Cut dM is a null set of M. For x € Int M\ Cut 9 M,
its foot point on dM is uniquely determined.
We know the following lemma from [17].

Lemma 2.1 If there exists a connected component 0Mgy of OM such that T = oo on
0My, then OM is connected and Cut oM = &.

The function pyy is smooth on Int M\ Cut 0M. For each x € Int M\ Cut oM, we
have Vpyu(x) = y'(1), where y: [0,1] = M is the minimal geodesic from the foot
point on oM of x to x.

For Q c M, we denote by Q its closure, and by 9Q its boundary. For a domain Q
in M such that 0Q) is a smooth hypersurface in M, we denote by volyq the canonical
Riemannian volume measure on 0Q.

We recall the following fact to avoid the cut locus for the boundary (see [18, Lemma
2.6]).

Lemma 2.2 Let Q c M be a domain such that 0Q) is a smooth hypersurface in M.
Then there exists a sequence {Q;} of closed subsets of Q such that for every i, the set
0Q); is a smooth hypersurface in M, except for a null set in (dQ, volyq ), satisfying the
following properties:

(i) forall iy, iy with iy < i, we have Q;, ¢ Q,;
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(ii) Q\CutoM =U; Q;;

(iii) foreveryi, and for almost every x € 0Q; N dQ in (0Q, volyq ), there exists a unique
unit outer normal vector for Q; at x that coincides with the unit outer normal vector
on Q) for Q) at x;

(iv) for every i, on 0Q;\0Q, there exists a unique unit outer normal vector field u; for
Q; such that g(u;, Vpam) 2 0.

Moreover, if O = M, then for every i, the set 9Q; is a smooth hypersurface in M and

satisfies Q); N 0M = oM.

2.4 Busemann Functions and Asymptotes

Let M be a connected complete Riemannian manifold with boundary. A minimal
geodesic y: [0,00) - M is said to be a ray. For aray y: [0, 00) — M, the Busemann
Sfunction b, : M — R is defined as

by(x) = tlirg(t—dM(x,y(t))).

We have the following lemma (see [17, Lemma 6.1]).

Lemma 2.3  Suppose that for some z € OM, we have 1(z) = oo. Take x € Int M. If
by.(x) = pam(x), then x ¢ Cut oM. Moreover, for the unique foot point z, on M of
x, we have 7(z,) = 0.

Let y: [0,00) — M be aray. For x € M, we say that a ray y,: [0,00) - M is
an asymptote for y from x if there exists a sequence {t;} with t; — oo such that the
following holds: For each i, there exists a minimal geodesic y;: [0,1;] - M from x
to y(t;) such that for every ¢ > 0 we have y;(t) — y.(t) as i - oo. Since M is proper,
for each x € M there exists at least one asymptote for y from x.

For asymptotes, we see the following lemma (see [17, Lemma 6.2]).

Lemma 2.4  Suppose that for some z € OM, we have 1(z) = co. For 1 > 0, put
x := y,(1). Then there exists € > 0 such that for all y € B.(x), all asymptotes for the ray
y, from y lie in Int M.

2.5 Weighted Manifolds with Boundary

Let (M, g) be a connected complete Riemannian manifold with boundary, and let
f: M — R be a smooth function. The weighted Laplacian Ay is defined by

Ap=A+g(Vf, V),
where A is the Laplacian defined as the minus of the trace of the Hessian. Note that

A coincides with the (f,2)-Laplacian A ,.
The following formula of Bochner type is well known (see e.g., [21]).

Proposition 2.5  For every smooth function v on M, we have

1 oo
—5A7IVYI® = RieF (Vy) + | Hessy[* - g (VA 7y, Ty),

where | Hess y|| is the Hilbert-Schmidt norm of Hess y.
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For z € OM, the value A rp;(y.(t)) tendsto Hy ; as t — 0. For t € (0, 7(z)), and
for the volume element (¢, z) of the t-level surface of pyyr at y.(t), we put
(2.1 0s(t,z) := e -0t 2).
Forall f € (0, 7(z)), it holds that
B 0%(t,z)
Qf(t, Z) ’
We further define a function §f : [0,00) x 9M — R by
— 0(t, if t ,
B,(t2) = { (t,z) ift<1(z)

0 ift > 7(z).

(2.2) Aspam(y:(t)) =

The following lemma was shown in [18].

Lemma 2.6 If OM is compact, then for all r > 0,

my(B,(aM)) = faMfOrEf(t,z)dtdvolh,

where voly, is the Riemannian volume measure on 0M induced from h.

Let y: M — R be a continuous function, and let U be a domain contained in
Int M. For x € U and for a function ¥ defined on an open neighborhood of x, we say
that ¥ is a support function of v at x if we have ¥(x) = y(x) and ¥ < y. We say that
y is f-subharmonic on U if for every x € U, and for every € > 0, there exists a smooth
support function yy . of ¥ at x such that A fy, (x) <e.

We recall the following maximal principle (see e.g., [4]).

Lemma 2.7 ([4]) Let U be a domain contained in Int M. If an f-subharmonic func-
tion on U takes the maximal value at a point in U, then it must be constant on U.

2.6 Laplacian Comparisons from a Single Point

We recall the works done by Wylie and Yeroshkin [24]. Let M be an n-dimensional,
connected complete Riemannian manifold with boundary, and let f: M — R bea
smooth function. For the diameter C, of the space form M}, we define a function
H: (0,Cy) > Rby

5,(5)

s(s)

Wylie and Yeroshkin [24] proved a Laplacian comparison inequality for the dis-

tance function from a single point (see [24, Theorem 4.4]). In our setting, the in-
equality holds in the following form.

(2.3) H.(s):=—(n-1)

Lemma 2.8 ([24]) Letx € IntM andv € U,M. For N € (—o0,1], assume that
Ricj}{M >(n- I)Ke%{. Then for all t € (0, 7, (v)),

(2.4) INTRCROIE Hk(sf,v(t))e—’zfiiv1(">,
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where 1, and sz, are defined as (1.7) and as (1.8), respectively.

As a corollary of the Laplacian comparison inequality, Wylie and Yeroshkin have
shown another Laplacian comparison inequality in the case where f is bounded (see
[24, Corollary 4.11]). In our setting, by using the same method for the proof, we see
the following lemma.

Lemma 2.9 ([24]) Letx € IntM andv € UyM. For N € (-o0,1], assume that
Ric?{M >(n- 1)K€%. Suppose additionally that there is § € R such that f < (n-1)8
on M. Then for all t € (0, 7, (v)), we have

(2.5) Appe(yo(£)) 2 Hy(e 2 )e ™,

Proof From f < (n—1)8, we deduce that 57, (t) > e 2t for every t € (0, 7,(v)).
We see H!, > 0 on (0, C,), and hence (2.4) implies

=2f(yv (1)) _
(2.6) Aspe(yu(£)) 2 H(sg0(1))e ™ m1 > Ho(e P t)e

This proves (2.5). [ |

“2f (v (D)
n-1 |

Wylie and Yeroshkin proved a rigidity result in the equality case of the Laplacian
comparison inequality (see [24, Lemma 4.13]). From the argument discussed in their
proof, one can derive the following lemma.

Lemma 2.10 ([24]) Under the same setting as Lemma 2.8, assume that for some t, €
(0, 74(v)), the equality in (2.4) holds. Choose an orthonormal basis {e, ; }'_, of T, M
with e, , = v. Let {Y,; }/7 be the Jacobi fields along y, with Y, ;(0) = 0, Y, ;(0) =
e,,;. Then for all i we have Y, ; = F ,E, ; on [0, to ], where Fy , is defined as (1.9), and
{E, ;}1=} are the parallel vector fields with E, ;(0) = e, ;; moreover, if N € (—o0,1),
then f oy, is constant on [0, ty].

Remark 2.11 Under the same setting as Lemma 2.9, assume that for some t, €
(0, 7, (v)), the equality in (2.5) holds. Then the equalities in (2.6) hold. In particular,
the equality in (2.4) holds (see Lemma 2.10), and s 7, (fo) = e 2%ty, and hence foypy =
(n=1)8on [0, fo].

3 Laplacian Comparisons

Hereafter, let (M, g) be an n-dimensional, connected complete Riemannian manifold
with boundary, and let f: M — R be smooth.

3.1 Basic Laplacian Comparisons

For the distance function from a single point, Wylie and Yeroshkin have shown an
inequality of Riccati type (see [24, Lemma 4.1]). Using the same method as for the
proof for the distance function from the boundary, we have the following lemma.
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Lemma 3.1 Letz € oM and N € (—o0,1]. Then for all t € (0, 7(2)),

G ((e71Aspan) (7:2(1))) 2

2f 2
Y0:() ((eﬁAfPaM)(Vz(t))) “2/(p2(0)
e 1,

n-1

Ricy (y(t))e

Proof Put f, := foy,and hy. = (Arpam) © y.. Applying Proposition 2.5 to the
distance function pjy, we have

0 =RicF (y2(t)) + | Hess pane|*(y: (1)) — §(VA pant> Vpaur) (y:(1))

- (Rief (e + 200
By the Cauchy-Schwarz 1nequahty,

(Bpon (r=(0))" _ (hya()) - f1(0)"

+ | Hess pa* (y=(1)) = . (1).

3.2 H 2(y,(1)) > =
(32) | Hess pon2(y:(1) & —
Inequality (3.2) yields
N O RO O
(3.3) 0 > Ricy (y;(1)) + Nog T — s (1)
, 1-N)f/(6)?  h}.(0)
— R N A t ( z
2hy (1) (1)
_(7’1_1 + (1))
The last term in the right-hand side of (3.3) satisfies
2hs () fI(L) 200 20:0)
f7_+hf’z(t):e M (e hya(6)

We put F,(t) := Lo hy . (t). From N € (—o0,1], it follows that

) t)2 fz(t) 20:0)
3.4 0> Ricl (y(1)) + U= TS ’
( ) = 1Cf (yz( )) (T’l 1)(1’1 N) n-1 —e€ z( )
> Ric) (y,(1)) + fz_l —e AR,
This implies that
hi (1)
2702 (0)
EL(1) 2 e (Ricf (y2(1) + —5)
202(0) F;(t) =21G:)
- Ric) (7 (1) 82« B0 22,
We arrive at the desired inequality (3.1). ]

Remark 3.2 We assume that the equality in (3.1) holds for some #, € (0, 7(z)).
Then the equality in the Cauchy-Schwarz inequality in (3.2) holds; in particular, there
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exists a constant ¢ such that Hess pyp = c¢g on the orthogonal complement of Vpj
at y,(ty). Moreover, the equalities in (3.4) hold; in particular, (1- N) f/(t)* = 0.

Recall that 77 and s , are defined as (1.4) and (1.5), respectively. We denote by
trz: [0,7¢(2)] = [0, 7(z)] the inverse function of s¢ .
We define a function H, ; : [0,C, ;) - R by

5,1(5)
(3.5) Hea(s) = —(n-1)21"2
/1( ) ( )5’(,/1(5)
Foralls € [0, C, ), we see that
H2, (s
(3.6) H.,(s) = (n-1)x+ #(1)
n—

We prove the following pointwise Laplacian comparison inequality.

Lemma 3.3 Letz € OM. For N € (—o0,1], let us assume that

RIC?](Y;(t)) > (I’l _ I)Kew

forallt e (0,7(2)), and Hy . > (n - 1)Aeiznf—(12). Then for all

se (O, min{Tf(z),EK,,\}) ,

we have
“2f(r2(t,, ()
(3.7) Agpam(7z(tr,e(s))) 2 Hea(s)e ™ =
In particular, for all t € (0, 7(z)) with sf.(t) € (0, min{Tf(Z)aEx,)L});
—2/ (32 (1))
(3.8) AfPBM(yz(t)) ZHK,A(Sf,z(t))e e

Proof We define a function F,: (0,7(z)) - Rby

F; = (e“%AfPBM) °Yz»

and a function F, : (0, 77(z)) - Rby F,:=F,o tf,.. By Lemma 3.1 and the curvature
assumption, for all s € (0, 7¢(z)),

(3.9) F/(s) = Fz(tf,z(s))e L
4f(yz(t5 ,(5))) F2 t s
> RicY (YL (tra(s))e w1 + Eo(tr=(5))
n-1
2
>(n-1)x+ &
n-1

The identity (3.6) implies that for all s € (0, min{7/(z), Cx}),
F\Zz(s) - Hi,A(S)
n-1 '
Let us define a function G, ), (0, min{7/(z),Cy1}) -~ Rby
GK,A,Z = si,)\( ﬁz - HK,)L) .

(3.10) El(s)-H,(s) >
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From (3.10) we deduce
(3.11) GI’C,/‘,Z = 25K,A5;,/\( F‘Z - HK,A) +5i’/\( Fé - H;,A)
_ F2-H?
> 25,150 ) (E: — Hy,) ) 4501 — _1“
2
L 2
= K—l( 2 HK,,\) >0

@
Since G, .. (s) converges to a non-negative value e%Hf,Z —-(n-1)Aass — 0, the
function G, . is non-negative. We conclude that F, > H,.; holds on (0, min{7(z),
Cy.1}), and hence (3.7). [

Remark 3.4 Weassume that the equality in (3.7) holds for some s € (0, min{7/(z),
Ci.2})- Then we have G, 3 .(s9) = 0. From G/ , _ > 0 it follows that G, ; , = 0 on

KAz =

[0, s ]; in particular, the equality in (3.7) holds on [0, so ]. Since the equalities in (3.9),
(3.10), (3.11) hold, the equality in (3.1) holds on [0, ¢ .(s9)] (see Remark 3.2).

From Lemma 3.3 we derive the following estimate for 7.

Lemma 3.5 Letz € OM. Let k and A satisfy the ball-condition. For N € (—o0,1],
we assume that RicN(y;(t)) > (n-1)ke = forallt € (0,7(z)), and Hy, >

(n—1)Ae w1 2 Then we have

(3.12) Tf(Z) < Cy2-
Moreover, if there is 6 € R such that f oy, < (n—1)8 on (0, 7(2)), then
(313) T(Z) < Cxe*‘l",le*”‘

Proof The proofis by contradiction. Suppose 77(z) > Cy, 1. Then we see that 7(z) >
trz(Ci,1). By (3.8), for every t € (0, t5.(Cy 1))

20:0)
Appam(y=(t)) 2 Hep(sp.2())e

in particular, A pap(y-(t)) = oo ast — t.(Cy,2). This contradicts the smooth-
ness of pypr0y, on (0, 7(z)). Equation (3.12) follows. If foy, < (n-1)J, then we have
e1(z) < 14(2z). By e¥Cey = Cypu)02, we arrive at the desired
inequality (3.13). ]

Remark 3.6 Lemma 3.5 enables us to restate the conclusion of Lemma 3.3 as follows:
For all s € (0, 74(2)), we have (3.7). In particular, for all £ € (0, 7(z) ), we have (3.8).

3.2 Equality Cases

Recall the following (see e.g., [14, Theorem 2]).

Lemma 3.7  Let p be a smooth function defined on a domain in M such that |Vp| = 1.
Let X be a parallel vector field along an integral curve of Vp that is orthogonal to Vp.
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Then we have
g(R(X,Vp)Vp, X) = ¢(Vy,Av, X, X) - g(Ay,Av, X, X),

where R is the curvature tensor induced from g, and Ay, is the shape operator of the level
set of p toward Vp. In particular, if there exists a function ¢ defined on the domain of
the integral curve such that Ay, X = —¢X, then g(R(X, Vp)Vp, X) = —(¢'+¢*) | X|*.

For the equality case of (3.7) in Lemma 3.3, we have the following lemma.

Lemma 3.8  Under the same setting as Lemma 3.3, assume that for some sq € (0, 7¢(z)),
the equality in (3.7) holds. Choose an orthonormal basis {e.;}"-' of T,OM, and let
{Y..i}15! be the OM-Jacobi fields along y, with Y, ;(0) = e;;, Y. ;(0) = —A,_e.,;. Then
for all i, we have Y, ; = Fy 1 .E. i on [0,tf.(s0)], where Fy ) . is defined as (1.6), and
{E..;}1-} are the parallel vector fields with E, ;(0) = e, ;; moreover, if N € (—o0,1),
then f oy, is constant on [0, ts . (so)].

Proof Puttj := tf,z(so). Since the equality in (3.7) holds at s, the equality in (3.1)
also holds on [0, # ] (see Remark 3.2). There exists a function ¢ on the set y,((0, t))
such that at each point on y,((0,#)), we have Hess pop = ¢g on the orthogonal
complement of Vpj, (see Remark 3.4). Define ¢, := ¢ o y,. For each i, it holds that

g(AVpaMEz,i) Ez,i) = —Hess PQM(Ez,b Ez,i) ==z
in particular, Ay,,, E;; = —¢;E; ;. From Lemma 3.7 we deduce
(3.14) R(Ez,i» Vpam)Vpam = —(95 + 92)Ezi = =F/F, Eo s,
where &, : [0, t] — R is a function defined by

F.(t) := exp( fotq)z(a)da).

Set f, == foy.and hy ;. := (Agpan) © .. By the equality assumption, e hf. =
H,)osf,on[0,t] (see Remarks 3.2 and 3.4). Furthermore, Hess pyy = ¢g leads to
Apom © Yz = —(n —1)¢,. Therefore,

¢(t) = %l(fz(t) - fote_zfﬁyfl(“)) (HK,)L OSf,Z) (a)da),

n

for every t € [0, to]. It follows that F, = F,; , on [0, ty]. In view of (3.14), we obtain
Yz,i = FK,/\,ZEZ,i on [0, t()]

We have (1- N)(f/)? = 0 on [0, ] (see Remarks 3.2 and 3.4). If N € (-o0,1),
then f] = 0 on [0, t,]; in particular, f, is constant. ]

For the equality case of (3.8), Lemma 3.8 implies the following lemma.

Lemma 3.9  Under the same setting as in Lemma 3.3, assume that for some
to € (0,7(z)) the equality in (3.8) holds. Choose an orthonormal basis {e,; }'=! of
T,0M, and let { Y ;}!~]' be the dM-Jacobi fields along y, with Y, ;(0) = e.;, Y ;(0) =
—Ay.e,,;. Thenforalliwehave Y, ; = F, ) .E.; on [0, ty], where {E, ; }'-] are the par-
allel vector fields with E, ; (0) = e,,;; moreover, if N € (—o0,1), then f oy, is constant.
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4 Global Laplacian Comparisons

We start by introducing some conditions. Let us recall that « and A satisfy the ball-
condition if and only if either (1) x > 0; (2) k =0and A > 0; 0or 3) k <O and A > \/m
We say that x and A satisfy the convex-ball-condition if they satisfy the ball-condition
and 1 > 0.

Furthermore, we say that x and A satisfy the monotone-condition if H, > 0 and
H, , >0on [0,C,.1), where H, , is defined as (3.5). We see that x and A satisfy the
monotone-condition if and only if either (1) x and A satisfy the convex-ball-condition;
or(2)k <0and A = \/m For « and A satisfying the monotone-condition, if x = 0
and A = 0, then H,. ) = 0 on [0, 00); otherwise, H,, > 0 on (0, C,.,).

We also say that x and A satisfy the weakly-monotone-condition if H, , > 0 on
[0, C,.1). Notice that ¥ and A satisfy the weakly-monotone-condition if and only if
either (1) x > 0; or (2) ¥ < 0 and |A| > \/|x|. In particular, if x and A satisfy the
ball-condition, then they also satisfy the weakly-monotone-condition. For x and A
satisfying the weakly-monotone-condition, if ¥ < 0 and [A| = \/m, then H, ) = (n -
1)1 on [0, co); otherwise, H, ; >0 on [0, Cy 2).

4.1 Bounded Cases
If f is bounded from above, then we have the following lemma.

Lemma 4.1 Letz € OM. Let k and A satisfy the weakly-monotone-condition. For
N € (-o00,1], let us assume that

—41(z(0)
Ricy (y;(t)) > (n —1)xe A

forallt € (0,7(z)), and Hy , > (n — l)le%—(f). Suppose additionally that there exists
8 € Rsuchthat foy, < (n-1)8 on (0,7(2)). Then forall t € (0, 7(z)) we have

_ =2(2(0)
(4.) Arpar(y=(t)) > Hep(e 2 t)e ™
Moreover, if k and A satisfy the monotone-condition, then
(4.2) Arpar(y=(t)) > Hep(e 22t)e .

Proof By foy, < (n-1)3,itholds thatss () > e *°tand e =T > 72 for all

t € (0,7(z)). Inequality (3.8) and H_, > 0 tell us that

—2f(yz(1)) _
(4.3) Agpam(y=(1)) > Hea(spe(£))e™ =1 > Hep(e > t)e

forallt € (0,7(z)), and hence (4.1) holds. Moreover, if k and A satisfy the monotone-
condition, then (4.1) and H,. ) > 0 lead to

“2f(yz(1)
n—1

_ 21022 (1) _ _
(4.4) Arpam(yz(t)) 2 Hyea(e By~ w1 > Hea(et)e ™,

This proves (4.2). [
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Remark 4.2  Assume that for some f € (0, 7(z)), the equality in (4.1) holds. Then
the equalities in (4.3) hold, and the equality in (3.8) also holds (see Lemma 3.9). More-
over, if either (1) k > 0; or (2) x < 0 and |A| > \/Jx], then H, >00n[0,Cy,),and
hence sy, (t) = e *°to; in particular, f o y, = (n —1)8 on [0, £o].

Remark 4.3  Assume that for some ¢, € (0, 7(z)), the equality in (4.2) holds. Then
the equalities in (4.4) hold, and the equality in (4.1) holds (see Remark 4.2). Moreover,

if either (1) x and A satisfy the convex-befl%l-(co)r)ldition; or 2) x < 0and A = /||,
_ —2f(yz (¢

then H,; >0 on (0,Cy.,),and hence e — 1 = e 2%; in particular, (f 0 y.)(fo) =

(n-1)4.

Lemma 4.1 implies the following lemma.

Lemma 4.4 Letz e oM and p € (1, 00). Let x and A satisfy the monotone-condition.
For N € (—c0,1], we assume that

Ricy (y; (1)) > (n —1)xe =
forallt e (0,7(z)), and Hy , > (n - I)Ae#—(f). Suppose additionally that there exists
8 € Rsuch that f oy, < (n—1)8 on (0,7(z)). We define paprs = e 2 paur. Let
¢: [0, 00) — R be a monotone increasing smooth function. Then for all t € (0, 7(2)),

45) Agp(@opame) (yz(1) >
_ e—2p6{ ( (((Pl)p—l)l _ HK,)L((P,)P_I) 0P6M,5} ()/Z(l’))

Proof Set ® := ¢ 0 py.4, and define ;5(t) := p(e™2°t). We see @ = @5 0 papr. By
(4.2), for every t € (0, 7(2)),

46)  App®(y:(1) = =((95)") (1) + Apapam (y=(£)) (95)7 7 (1)
> ~((95)") (1) + Hea (e )e™ (9P (1).
Since (95)?71(t) = e 2(P7D0 ()P (e72%¢) and
((ep)P™) (1) = e (()*) (1),
the right-hand side of (4.6) is equal to that of (4.5). ]

Remark 4.5 The equality case of Lemma 4.4 results in that of (4.2) (see Remark
4.3).

We now prove the following global Laplacian comparison inequality.

Proposition 4.6  Let p € (1,00). Let k and A satisfy the monotone-condition. For
N € (—o0,1], assume that the triple (M, 0M, f) has lower (k, A, N )-weighted curvature
bounds. We suppose additionally that there exists § € R such that f < (n -1)6 on M.
We define pop,s = e’mpaM. Let ¢: [0,00) — R be a monotone increasing smooth
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function. Then we have

Af,p(‘P o PBM,6) 2 —e_ZPé( (((P’)p_l), - HK,A(GDI)p_l) O PoM,s

in the following distribution sense on M: For every non-negative function y € C3° (M),
we have

@7) [ 19(p° parss) 1" 2(Vy. T (90 parss)) di >
e [y {((@)) = Heal9)"™) © porss pdmy.

Proof By Lemma 2.2, there exists a sequence {Q;} of closed subsets of M such that
for every i, the set 0(); is a smooth hypersurface in M, and satisfying the following: (1)
for all iy, i, with ij < i, we have Q;, ¢ Q;,; (2) M\ CutoM = U; Q;; (3) 0Q; N oM =
oM for all i; (4) for each i, on dQ;\dM, there exists a unique unit outer normal vector
field u; for Q; with g(u;, Vpan) > 0.

For the canonical volume measure vol; on 0Q;\0M, put my ; := e~/ vol;. Set  :=
¢ © pam,s- By integration by parts, we see

[, 1901 2g(vy, v@)dm; =
fﬂ Ay O+ [a oo | T8 T @)y

From (4.5) and g(u;, Vpam,s) > 0, it follows that the right-hand side of the above
equality is at least

0 [y ()7 = Hea(@')™) o passs | dimy.
Letting i — oo, we obtain (4.7). [ |

Remark 4.7 In Proposition 4.6, assume that the equality in (4.7) holds. In this case,
the equality in (4.5) also holds on supp y\(dM U Cut 0M), where supp y denotes the
support of y. The equality case of Proposition 4.6 results in that of (4.5) (see Remark
4.5).

Remark 4.8 The argument in the proof of Proposition 4.6 also tells us the follow-
ing (see also Remark 4.7). Under the same setting as Proposition 4.6, if M is com-
pact, then the inequality (4.7) holds for every non-negative function y € C'(M) with
W|om = 0. Moreover, if the equality in (4.7) holds for some v, then the equality in (4.5)
holds on supp ¥\ (0M U Cut M) (see Remark 4.5).

4.2 Radial Cases

Suppose that f is dM-radial. Then there exists a smooth function ¢¢: [0,00) - R
such that f = ¢ o pyp on M. Define a function s¢: [0, 0] — [0, 0o] by

t 20
(4.8) s(t) = f e~ da.
0
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For every z € M, we see sy, = sg on [0, 7(z) ], where s . is defined as (1.5). Further-
more, Poar,f = Sf © Pam> Where pypy ¢ is defined as (1.12).
If f is dM-radial, then we have the following comparison inequality.

Lemma 4.9 Letze dM and p € (1,00). For N € (o0, 1], suppose that

—4f(yz(1))
Ricy (y; (1)) > (n —1)xe =

forallt € (0,7(z)), and Hy, > (n - I)Ae = . Suppose that f is OM-radial. Let
¢: [0,00) > R be a monotone increasing smoothfunctzon Then for all t € (0,1(2)),

(4.9) A%f’p((POPQM,f)(Yz(t))Z
e = {((( )P 1) _ x,A((P,)p_l) OPBM,f} ()/Z(l'))

Proof Set @ := ¢ opyy, . For the function sy defined as (4.8), if we put ¢ := g o5y,
then we have ® = ¢ o p;). For each t € (0, 7(z)), the left-hand side of (4.9) can be
written as

( 1)

(@) (1) + (Appant (r=(1)) = ZZ=29(D)) (97 (0).

By using (3.8), s7.(t) = s7(t),and e = s¢(t), we have

Beswar (r:(0) 2 =((9)7) () + Heals (D)D) ()

222Dy o)

Notice that (¢7)P7'(t) = (¢")?7'(s,(£))(s})?7'(¢) and

r\p-1\' np-1\' ’ 2(p-1) , I\ p—
()P0 = (0 G50 @ - 22D (o9 ),
These equalities tell us that the left-hand side of (4.9) is at least
~GPP@(((9)P7) (55(8) = Hea(s5(0) (97 (54(1)))
Since pyu, s = sy © pawm, this is equal to the right-hand side of (4.9). [ |

We further yield the following global comparison inequality.
Proposition 4.10 Let p € (1,00). For N € (—o0,1], assume that (M, dM, f) has

lower (x, A, N)-weighted curvature bounds. Suppose that f is oM-radial. Let
¢: [0,00) — R be a monotone increasing smooth function. Then we have

B (90 porep) 2 —e 0 (((9)77) = Hea(9)) © pone s
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in the following distribution sense on M: For every non-negative function y € C5° (M),
we have

(4.10) fM IV(@opars) 1P26(Vys V(@ o parss) ) dimwaczs >

- fM { (((9)P™) = Hea(9')*™) © pors s f dmws .

Proof The proof is similar to that of Proposition 4.6. Similarly, we first take a se-
quence {Q;} of closed subsets of M in Lemma 2.2. Let u; be the unit outer normal
vector on 9Q;\dM for Q;. We define f := (n+1-2p)(n—1)""f. For the canonical
volume vol; on 0Q;\0M, we put mp; = e~ Tvol;. We set @ := ¢ © pau, - By inte-
gration by parts (with respect to mf) and by Lemma 4.9 and g(u;, Vpau, ) > 0, we
get

fQ [vo[r2g(Vy, VO)dms>

f we
Q;
=2pf

Using et m = maa ¢, we complete the proof by letting i — oo. ]

—2pf
T

@) = Hoa(9)?™) © por s | dmz.

Remark 4.11 The argument in the proof of Proposition 4.10 also leads us to the
following. Under the same setting as Proposition 4.10, if M is compact, then inequality
(4.10) holds for every non-negative y € C'(M) with y|55 = 0.

5 Splitting Theorems
5.1 Main Splitting Theorems

Proof of Theorem 1.1 Letx < 0 and A := \/m For N € (—o00,1], assume that
(M, oM, ) has lower (k,A, N)-weighted curvature bounds. Suppose that f is
bounded from above. Let zp € oM satisfy 7(z9) = oo. Recall that our goal is to
show that M is isometric to [0, 00) xf,_, dM; moreover, if N € (-0, 1), then f oy, is
constant for every z € oM.

Let 0M, be the connected component of 0M with zo € dM,. We define a closed
subset Q) of dM, by

Q:={zedMy|1(z) = o0}.

We show that Q is open in M. Fix z; € Q. Take I > 0, and put xy := y,,(1).
There exists an open neighborhood U of x( contained in Int M\ Cut dM. Taking U
smaller, we can assume that for each x € U the unique foot point on 0M of x belongs
to dMy. By Lemma 2.4, there exists € > 0 such that for all x € B.(xp), all asymptotes
for y,, from x lie in Int M. We can assume that U c B,(xp). Fix x; € U, and take an
asymptote yy, : [0,00) — M for y,, from x,. For ¢ > 0, define a function b, ,: M —
R by

by.,.1(x) = by, (x1) + £ = dp(x, yx,(1))-

https://doi.org/10.4153/50008414X1800007X Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X1800007X

Comparison Geometry of Manifolds with Boundary 263

We see that b, : — poy is a support function of b, — py at x;. Since yy, lie in Int M,
for every t > 0 the function b, ,; is smooth on a neighborhood of x;. From Lemma

2.9 we deduce
—2supf —2f(x)

Afbyzl,t(xl)S_HK(e n-1 t)e n—1

where H, is defined as (2.3). Note that H,(s) tends to —(n — 1)y/|«| as s — oo. Fur-
thermore, pyy is smooth on U, and by (3.8) we have

—2f
Bpau > (n=1)y/fle

on U. Hence b, — pau is f-subharmonic on U. Now, b,, — pyu takes the maximal
value 0 at x;. Lemma 2.7 implies b, = psy on U. By Lemma 2.3, the set (2 is open
in 8M0

The connectedness of M, leads to O = dMy. By Lemma 2.1, oM is connected
and Cut oM = &. The equality in (3.8) holds on Int M. For each z € dM, choose an
orthonormal basis {e,,; } 77 of T,0M. Let {Y,,; }"-]! be the 9M-Jacobi fields along y,
with Y, ;(0) = e;;, Y, ;(0) = -A, e; ;. By Lemma 3.9, forall i wesee Y, ; = Fy ) . E. ;
on [0, 00), where {E, ;}"! are the parallel vector fields with E, ;(0) = e, ;. More-
over, if N € (—00,1), then f o y, is constant on [0, o). We define a diffeomorphism
®: [0,00) x OM — M by O(¢,z) := y,(¢). The rigidity of Jacobi fields implies that @
is a Riemannian isometry with boundary from [0, c0) xp_, M to M. We complete
the proof of Theorem L.1. ]

Remark 5.1 The author [19] has concluded that under the same setting as Theorem
L1, if ¥ = 0, then M is isometric to a warped product (see [19, Corollary 1.4]). The
author does not know whether the same conclusion holds when « < 0.

5.2 Weighted Ricci Curvature on the Boundary
We next recall the following formula (see e.g., [19, Lemma 5.5]).

Lemma 5.2 Let z € OM, and take a unit vector v in T,0M. Choose an orthonormal
basis {e,; } ! of T,0M with e,; = v. Then

(5.1 Ric?’l;}q(v) :Ricy(v) +g((Vf)zu)g(S(v,v),uz)

n-1
= Kg(uz,v) + trace Ag(ypy — 2. [S(vsez) |2
i1

forallN € (=00, 00] (when N = oo, we interpret N —1 in the left hand side as oo ), where
K, (uz,v) denotes the sectional curvature of the 2-plane at z spanned by u, and v.

Remark 5.3 In [19], the author has presented (5.1) only for N € (—o0, 00) (see
[19, Lemma 5.5]). The calculation in the proof also tells us that it can be formulated

for N = oo asin Lemma 5.2.

Using Lemma 5.2, we show the following lemma.
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Lemma 5.4 Take z € OM, and take a unit vector v in T,0M. If M is isometric to
[0, 00) x,, OM, then for all N € (-0, o], we have

Rlcfl 1(v) = RICf (v) + (n - 1)A2e e e

“2/() Hessf(uz, u;)

_’\g((vf)z’uz)e " T>

where when N = oo, we interpret N — 1 in the left hand side as cc.

Proof We choose an orthonormalbasis {e. ; }7-' of T,0M withe,; = v. Let { Y, ; } 7=}
denote the dM-Jacobi fields along y, with Y, ;(0) = ez, and Y} ;(0) = —A, e, ;. By
the rigidity assumption, Y, ; = F, 1 .E. ;, where {E, ; } /- are the parallel vector fields
with E, ;(0) = e, ;. Therefore, for all i it holds that

1

(5.2) Ay.ezi=-Y,(0)= —( W - )Le%f(z)) e

From (5.2), we deduce that S(v, e, ;) = 0, for all i # 1, and we also deduce

(5.3) S(v,v) = _( W B /\{fﬁﬁ ) "
()

(5.4) trace Ag(y,y) =

The sectional curvature K, (u;,v) is equal to —g(Y,'(0),v), and hence

(5.5) Kg(uz,v) = _ Hess f(uz uz) ( g((Vf)z,uz)) +re
n-1 n-1
Lemma 5.2 together with (5.3), (5.4), (5.5) yields the desired result. [ |

5.3 Multi-splitting

On a connected complete Riemannian manifold M, (without boundary), a minimal
geodesic y: R — M is said to be a line. Wylie [23] has proved the following splitting
theorem of Cheeger-Gromoll type (see [23, Theorem 1.2 and Corollary 1.3]).

Theorem 5.5 ([23]) Let My be a connected complete Riemannian manifold, and let
fo: My = R be a smooth function bounded from above. For N € (—o0,1], suppose
RICf M, 2 0. If My contains a line, then there exists a Riemannian manifold My such
that My, is isometric to a warped product space over R x Mo; moreover, if N € (—c0,1),

then M is isometric to the standard product R x M.

From Theorem 5.5 we derive the following corollary of Theorem 1.1.

Corollary 5.6 Letx <0and A := \/m For N € (—o0,1), assume that (M, oM, f)
has lower (x, A, N')-weighted curvature bounds. Suppose that f is bounded from above.
If for some zy € OM we have 1(z() = oo, then there exist an integer k € {0,...,n —1}
and an (n —1- k)-dimensional Riemannian manifold oM containing no line such that
OM is isometric to R¥ x OM; in particular, M is isometric to [0, 00) X, (Rk X 87(4)
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Proof Due to Theorem 1.1, M is isometric to [0,00) xp,_, oM, and for each z €
oM, the function f o y, is constant on [0, c0). In particular, g((Vf),,u,) = 0 and
Hess f(u,,u,) = 0. By Lemma 5.4 andby x < 0 and A = \/m, for every unit vector v
in T,0M, we have

/() /()
Ric%;;(v) = Ric?](v) +(n-1)A%e e
/()
> Ric}‘](v) +(n-1)A%e &
/() /()
> (n-1)xe EE (n-1)A%e =0,

It follows that Ric%;‘i, oy 2 0. Now, N —1is smaller than 1, and f l]aar is bounded
from above. Therefore, by applying Theorem 5.5 to dM inductively, we complete the

proof. ]
5.4 Variants of Splitting Theorems

We study generalizations of rigidity results of Kasue [9], Croke and Kleiner [5], and
Ichida [8] for manifolds with boundary whose boundaries are disconnected.
Wrylie [23] proved the following (see [23, Theorem 5.1]).

Theorem 5.7 ([23]) For N € (—o0,1], assume that (M, 0M, f) has lower (0,0, N)-
weighted curvature bounds. Let OM be disconnected, and let {OM;};-1,,,... denote the
connected components of OM. Let oM, be compact, and put D := inf,5; .
dy(0My, 0M;). Then M is isometric to [0, D] xp,, M, and Ric}‘](yg(t)) = 0 for
allz € oM, and t € [0, D].

For ¥ > 0 and A < 0, put Dy ) := inf{s > 0|5, , (s) = 0}. By using Theorem 5.7, we
obtain the following splitting.

Theorem 5.8 Letk > 0. For N € (-o0,1], assume that (M,0M, f) has lower
(x, A, N)-weighted curvature bounds. Let OM be disconnected, and let {0M;}i1,, ..
denote the connected components of oM.  Let OM; be compact, and put
D :=inf;_, 3,  dy(0Mi, OM;). Suppose additionally that there exists § € R such that
f<(n—-1)8 on M. Then

A<0, D<2e¥D,,.

Moreover, if D = 2¢*° D, ), then M is isometric to [0, D] xg,, 9M,, and f = (n —1)38
on M.

Proof If we have A > 0, then Theorem 5.7 tells us that M is isometric to [0, D] x,
oM, and Ric?’(y;(t)) = 0 for all z € dM;,t € [0, D]. This contradicts ¥ > 0, and
hence A < 0.

Let us prove that if D > 2¢%°D, ), then M is isometric to the twisted product
[0,2¢*°Dy 3] xp,, 9M;, and f = (n —1)& on M. Suppose D > 2¢*°D, ;. There exists
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a connected component dM, of OM such that dp(dM;,0M;) = D (cf. [9, Lemma
1.6]). For each i = 1,2, let pap,: M — R be the function defined by pyp, (x) :=
dum(x,0M;). Set

Q:={xeIntM | par, (x) + pan,(x) = D}.

We show that Q is open in Int M. Fix x € Q. For each i = 1, 2, we take a foot point
Zy,i € OM; on OM; of x such that dj(x, zx,;) = pam, (x). From the triangle inequality,
we derive dp(2x,1,2x,2) = D. The minimal geodesic y: [0, D] - M from z,, to z, »
is orthogonal to 0M at z, ; and at z, ,. Furthermore, y|(0, p) lies in Int M and passes
through x. There exists an open neighborhood U of x such that p;y, is smooth on
U. In view of (4.1), for all y € U, we see

A (paMl +PaM2)()/)
“2f(»)

(n— )e n—1

(5.6)

5(1) + (PaMz )

K,A(PaMl,a(y) + P3M2,5(y)) = Asca(par,s(¥) + pams,s(y))
s (Pam6(¥))5en (Pars.s(¥))

>

where pau, 5 = e‘z‘spaMi. Since x > 0, the function 5;,,\/5&)& is monotone decreasing
on (0, Cy 1), and satisfies 5, ) (2Dx,1)/$x,1(2Dx,1) = A. By D > 2e°D, ; and the
triangle inequality, pyar,,6+Pam,,6 = 2Dy, ) on U. Inequality (5.6) tells us that —(pyp, +
pam,) is f-subharmonic on U. By Lemma 2.7, Q) is open in Int M.

The connectedness of Int M implies that Int M = Q. The equality in (4.1) holds
For each z € dM;, choose an orthonormal basis {e,, ,} ! of T,0M. Let {Y,,;}"}
be the dM-Jacobi fields along y, with Y, ;(0) = e;;, Y, ;(0) = —A,_ e; ;. Forall i,
we see that Y, ; = F, ) .E,; on [0, D], where {E,;}"-/ are the parallel vector fields
with E, ;(0) = e,,;. Moreover, f oy, = (n—1)d on [0 D] (see Remark 4.2). We see
D =2¢?°D, ;. By the rigidity of Jacobi fields, a map ®: [0, D] x 9M; - M defined
by ®(t,z) := y,(t) is a desired Riemannian isometry with boundary. [

6 Inscribed Radii

We denote by L., s’ p‘g > and InRad, - M the length, the Riemannian distance, the
distance function from the boundary and the inscribed radius on M induced from
the Riemannian metric gri=en = g.

6.1 Inscribed Radius Comparisons

We first show the following lemma.

Lemma 6.1 Let x and A satisfy the ball-condition. For N € (—o0,1], assume that
(M, oM, f) haslower (, A, N )-weighted curvature bounds. Then we have InRadg, M <
Cin-
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Proof Take x € M, and a foot point z, on M of x. Then we have

SO
P () < Ly (e = [ e B da s 1y(20) < sup 74(2),
zedM
where [ := pyp(x). Lemma 3.5 implies the desired inequality. ]

From Lemma 3.5and InRad M = sup,,,, 7(z), we also derive the following lemma.

Lemma 6.2 Let x and A satisfy the ball-condition. For N € (—o0,1], assume that
(M, oM, f) has lower (x, A, N )-weighted curvature bounds. Suppose additionally that
there is § € R such that f < (n—1)6 on M. Then we have InRad M < C, 5.2

6.2 Inscribed Radius Rigidity

Proof of Theorem 1.2 Let x and A satisfy the ball-condition. For N € (-o0,1], as-
sume that (M, oM, f) has lower (x, A, N)-weighted curvature bounds. According to
Lemma 6.1, we have (1.10). Now, let xo € M satisfy pgg,[(xo) = Cy,)- Recall that our
goal is to prove that M is isometric to [0, 1] xp_ S™! for some [ > 0; moreover, if
N € (—o0,1), then f is constant. In particular, M is isometric to a closed ball in a
space form. Note that x( will become the center of M.

Put ] := pyp(xo) and

Q= {x € Int M\{xo} | Par(x) + pxy (x) = l}.

We show that Q is open in Int M\ {x, }. Fix x € Q and take a foot point z, on 0M of
x. Note that z, is also a foot point on oM of x,. Let y: [0,1] — M be the minimal
geodesic from z, to xo. Then y|(o ) passes through x. There exists an open neigh-
borhood U of x such that the distance functions p,, and pyys are smooth on U, and
for every y € U there exists a unique minimal geodesic in M from x, to y that lies in
Int M. By Lemma 2.8 and (3.8), for each y € U, we have

@ B < e (o) + (o))

_ 56 (81, (Pan () + 510, (P (7))
51 (1.2, (Pan (7)) (1.0, (o (1))
where z, is a unique foot point on dM of y, and v, is the initial velocity vector of the

unique minimal geodesic from xo to y. Let us define p5/ := d5/ (-, xo). The triangle
inequality for d’/ leads us to

(62) 55z, (Pam () + 57,0, (Px (1)) = L, (2,10 paM(y) )+ Lgf(yvyl[o,pmm])

> p3(3) + P8 (y) 2 pihs(x0) = Cen.

By (6.1) and (6.2), we have Af(pan + px,)(y) 2 0. Lemma 2.7 tells us that U c Q,
and () is open.

Since Int M\{xo } is connected, we have Q = Int M\{x, }, and hence pyps + px, = !
on M. This implies that M = B;(x,). For each v € U, M, we have 7,,(v) = [, and
yy is orthogonal to 0M at I. The equality in (2.4) holds on Int M\{x,}. Choose an
orthonormal basis {e, ; }", of To, M with e, , = v. Let {Y, ;}"-! be the Jacobi fields
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along y, with Y, ;(0) = 0Ox,, Y, ;(0) = e, ;. By Lemma 2.10, for all i we have Y, ; =
FyvE,,; on [0,1], where {E, ;}"-] are the parallel vector fields with E, ;(0) = e, ;;
moreover, if N € (—o00,1), then f oy, is constant on [0, ]. Since the equalities in
(6.2) hold, we have sf,, (1) = Cy 1 and Fy,,(I) > 0; in particular, we have no conjugate
point of x, along y,. Thus, a map ®: [0,!] x U,,M — M defined by ®(t,v) := y,(¢)
is a Riemannian isometry with boundary from [0, /] x, "™ to M.

Assume that N € (—oo,1). Then f = (n—1)J for some constant § € R; in particular,
Fe (1) = ez‘ssk(e_wt): Se1s(t) and | = €2C, ) = Cyp16 3,25. Hence [0,1] xp,
S"7! can be written as BZ6,45,A6,25. This completes the proof of Theorem 1.2. [

Remark 6.3 From the argument discussed in the proof of [24, Proposition 4.15],
one can also conclude the following: Under the same setting as in Theorem 1.2, if
p3! (x0) = Cy for some xo € M, then we have Vf = g(Vf, Vps,)Vpx, on M; in
particular, M is a warped product.

If f is bounded from above, then we obtain the following theorem.

Theorem 6.4  Let us assume that x and A satisfy the ball-condition. For N € (—o0,1],
assume that (M, 0M, f) has lower (x, A, N)-weighted curvature bounds. Suppose ad-
ditionally that there exists § € R such that f < (n —1)8 on M. Then we have

(63) InRad M < Cxe"“s,le’z"'

If pam(x0) = Cye1s 125 for some xo € M, then M is isometric to Bl _,; | .5, and
f=(n-1)8 on M.

Proof Inequality (6.3) follows from Lemma 6.2. Let x satisfy papr(x0) = Cyo-10.3 26
which will become the center of M. Put

l::paM(xO) and Q::{XGIntM\{X0}|PaM(x)+PXo(x):l}'

We prove that Q) is open in Int M\{x, }. For a fixed point x € (), there exists an open
neighborhood U of x such that p,, and psar are smooth on U, and for every y € U
there exists a unique minimal geodesic in M from x; to y that lies in Int M. Let us
define pypr.5 := e P papand py, 5 := e 22p,,. By Lemma 2.9 and (4.1), for each y € U,
A + s !
AP EPI) R )+ E s ()
(n — 1)@T S0 Sy
_ Sk (Pant,o (¥) + Prys(¥))
51 (Pan,6 (1))8x(Pro,6(¥)) ~
Lemma 2.7 implies that U c Q. Hence, Q is open.

From the connectedness of Int M\{xo}, we deduce that Q = Int M\{x,}, and
hence pyp + px, = | on M. This implies M = B;(x,). For each v € U, M, we have
7, (v) = I, and y, is orthogonal to dM at I. The equality in (2.4) holds on Int M\{x, }.
Choose an orthonormal basis {e, ; } 7, of Ty, M with e, , = v. Let {Y, ; }7-! be the Ja-
cobi fields along y, with Y, ;(0) = 0,, Y ;(0) = e,,;. Forall i, we have Y, ; = Fy ,E, ;
on [0, ], where F, , is defined as (1.9), and {E, ; } *-}! are the parallel vector fields with
E,.i(0) = e,,;; moreover, foy, = (n—1)5 on [0, ] (see Remark 2.11 and Lemma 2.10).
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We see Fy,, = 6,4 on [0,1]. Therefore, a map ®: [0,1] x Uy, M - M defined by
D(t,v) := y,(t) gives a desired Riemannian isometry with boundary. ]

7 Volume Growths

7.1 Volume Elements

We first recall that 7 is defined as (1.4). For z € M and s € (0, 77(z)), we define

(71) 0(s,2) = 04(ts.(s), 2),
where 0 (¢, z) is defined as (71), and ¢/ ; is the inverse function of the function s .
defined as (1.5).

We show the following volume element comparison inequality.

Lemma 7.1 Letz € dM. For N € (—o0,1], let us assume that
~4£(r2(0)
Ricy (y; (1)) > (n —1)xe A

forallt € (0,7(z)), and Hy . > (n — l)/le e . Then for all s\, s, € [0,7¢(z)) with
s1< 8,

9f(sz,z) (Sz)
Of(sl,z) (51)
In particular, for all s € [0, 7¢(z2)),

(72) gf(s,z) < e*f(z)s,’:j(s).
Proof By (2.2) and (3.7), for all s € (0, 7¢(z)), we see

d gf(s,z) of
Elog o 1(s) =—(em1Arpanm) (7:(tr,2(s))) + Hea(s) <0,

where H, ) is defined as (3.5). This implies the lemma. [ |

Remark 7.2 Assume that for some s € (0, 7¢(z)) the equality in (72) holds. Then
the equality in (7.2) holds on [0, s ; in particular, the equality in (3.7) holds on [0, so ]
(see Lemma 3.8).

If f is bounded from above, then we have the following lemma.

Lemma 7.3 Letz € oM. Let x and A satisfy the monotone-condition. For N ¢
(—00,1], assume that Riclf\’(y;(t)) > (n-1)ke “LE forallte(0,7(z)), and Hy ; >

(n-1)Ae 2. we suppose additionally that there exists § € R such that foy, < (n-1)4
on (0,7(2)). Then for all t;, t, € [0, 7(2)) with t; < t,, we have

0y(6.5) 51
ef(tl’z) xe*“‘s e za(tl) .
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In particular, for all t € [0,1(z)), we have
(7.3) 07(t:z) <e /s Ly La(t).

Proof From (2.2) and (4.2) we deduce
d 0 f( t,z)

E Ogm AfpaM()/z(t))"—HK /1(6 26£0.
A

Since §,,-1s )2 (1) = 54,2 (e72°t), we obtain the desired inequality. ]

Remark 74  Assume that for some t, € (0, 7(z)), the equality in (73) holds. Then
the equality in (7.3) holds on [0, t, ]; in particular, the equality in (4.2) holds on [0, ¢, ]
(see Remark 4.3).

7.2 Absolute Comparisons

We define éf: [0,00) x OM — R by

. 9,:(s, if ,
(7.4) 0¢(s,2) := {Of(s ) ifz ; :;8

To prove our volume comparison theorems, we need the following lemma.
Lemma 7.5 Let OM be compact. Then for all r > 0,
r
m%}f( B{(BM)) = /81\/1 /0 05(s,z)dsdvoly,

where B] (0M) is defined as (1.13), and voly, is the Riemannian volume measure on 0M
determined by the induced metric h.

Proof We give an outline of the proof. For r > 0, we set

={zeaM|1s(z) <7}, O U{yz(t)|t601(z))}

ZEU

U {y:(t) [tef0,t7:(n]}.

ze V,f

v/ = {zeoM|1p(z) >}, v/
Forall z€ M and ¢ € [0, 7(z) ), we see paur, r(y-(t)) = sy,-(t). Hence, by a straight-

forward argument, one can verify B/ (0M)\ CutoM = U/uV/ . Invirtue of the coarea
formula and the Fubini theorem,

™(2)  —()f(ee
mnﬂf f f et ))G(t z)dtdvoly,
uf

:fU{/(; Gf(s,z)dsdvolh,

z( ) —(n+1 t
Af f [tf, r ( )f()’z( )
n+1 ‘/r = 9 t dtd 1
m lf( ) f ( Z) voly,

:fv,f/o éf(s,z)dsdvolh.
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Since Cut oM is a null set, we conclude the lemma. [ ]

We set my gpr = e T vol,.
We prove the following absolute volume comparison inequality.

Lemma 7.6 For N € (—o0,1], assume that (M, 0M, f) has lower (x, A, N)-weighted
curvature bounds. Let oM be compact. Then for all r > 0 we have

(75) st (B (OM)) < 8,1 (r)myom(OM).

Proof By Lemma 7], éf(s, z) < e 750 (s) for all s > 0, where 5, is defined as
(L11). Integrate both sides over [0, r] with respect to s, and over dM with respect to
z. Lemma 7.5 implies the lemma. ]

One can also prove the following by replacing the role of Lemmas 7.1 and 7.5 with
Lemmas 7.3 and 2.6 in the proof of Lemma 7.6.

Lemma 7.7 Let x and ) satisfy the monotone-condition. For N € (—o0,1], assume
that (M, 0M, f) has lower (x, A, N)-weighted curvature bounds. Let 9M be compact.
Suppose additionally that there is § € R such that f < (n—-1)8 on M. Then forallr >0
we have

mf( B,(aM)) < 8 o5 )02 (T)mf,aM(aM).

7.3 Relative Comparisons

Proof of Theorem 1.3 For N € (—o0,1], assume that (M, M, f) haslower (x,1, N)-
weighted curvature bounds. Let M be compact. Let us prove the desired inequality
(1.14).
By Lemma 71, for all s1, s, > 0 with s5; < 55,

éf(sz, z) 5p,(s1) < éf(sl,z) 500 (s2).-
We integrate the both sides over [0, r] with respect to s, and over [r, R] with respect
to s,. It follows that

R x
.[r ef(SZ’ Z)dSZ < SK,/\(R) - SK,)L(r)
fo 0¢(si,2)ds; Sia(r)

Lemma 7.5 implies that

mﬁ%}f(Bﬁ(aM)) <14 8ea(R) —8:a(r) _ Sxa(R)
mau (B (9M)) 8 (r) 8en(r)’

and hence (1.14). We complete the proof of Theorem 1.3. ]

Remark 78 Suppose that there exists R € (0,C, 1]\{oo} such that for every r €
(0, R] the equality in (1.14) holds. Then we see 74 > R on M (cf. [19, Lemma 4.3]).

We can also prove the following volume comparison by using Lemmas 7.3 and 2.6
instead of Lemmas 7.1 and 7.5 in the proof of Theorem 1.3.
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Theorem 7.9  Let k and A satisfy the monotone-condition. For N € (—o0,1], assume
that (M, 0M, f) has lower (x, A, N)-weighted curvature bounds. Let OM be compact.
Suppose additionally that there is § € R such that f < (n—1)8 on M. Then for all
r,R>0withr <R,

mf(BR(aM)) < Ske*“,)te*”(R)

7.6 < .
( ) I’Hf(Br(aM)) Ske—w,/‘e-zs(f’)

Remark 710  Assume that there exists R € (0, C,-15 1,25 ]\{ oo} such that for every
r € (0, R] the equality in (7.6) holds. Then one can verify that T > R on dM (cf. [19,
Lemma 4.3]).

7.4 Volume Growth Rigidity

Now, let us prove the following theorem.

Theorem 711  Suppose that k and A do not satisfy the ball-condition. For N € (—o0,1],
assume that (M, 0M, f) has lower (x, A, N)-weighted curvature bounds. Let oM be
compact. If we have

S
M ¢(By (OM))
e (B
(7.7) liminf —=————— >my y(dM),
rooo 8 () !
then M is isometric to [0, 00 ) xg,_, dM; moreover, if N € (—oo, 1), then for every z € OM,
the function f o y, is constant.

Proof Lemma 7.6 and Theorem 1.3 imply that for every R > 0 and for every r €
(0, R], the equality in (1.14) holds. Then 74 = 0o on OM (see Remark 7.8). In particular,
we have 7 = co on dM.

Fix z € oM. For all s > 0, we see éf(s, z) = e’f(z)sz)’f(s). Choose an orthonor-
mal basis {e;; }7 of T,0M, and let { Y, ; }"-] be the 9M-Jacobi fields along y, with
Y,i(0) = e, Y, ;(0) =—A, e.;. Forall i, we have Y, ; = F,, .E.,;, where {E_ ; } /7]
are the parallel vector fields E, ;(0) = e, ;. Moreover, if N € (—c0,1), then f oy, is
constant (see Remark 7.2). By the rigidity of Jacobi fields, a map @: [0, 00) xdM - M
defined by @ (¢, z) = y,(t) gives a desired isometry. |

Remark 7.12 1If x and A satisfy the ball-condition, then the author does not know
whether a similar result to Theorem 7.11 holds. In this case, under the same setting as
in Theorem 711, Lemma 3.5 implies 7 = C,,y on 0M (see Remark 7.8). Since 7(z)
can be either finite or infinite for each z € dM, it seems to be difficult to conclude any
rigidity results.

Next, we prove the following volume growth rigidity theorem.

Theorem 7.13  Let k and A satisfy the monotone-condition. For N € (—oc0,1], assume
that (M, OM, f) has lower (k, A, N)-weighted curvature bounds. Let M be compact.
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Suppose additionally that there exists § € R such that f < (n—-1)8 on M. If

B,(oM
liminfM > mgam(OM),

r—oo xe*”,/\e*z‘s(r) N
then the following hold.

(i) If x and A satisfy the convex-ball-condition, then M is isometric to B:e*“,Ae*z‘S’
and f = (n-1)8 on M.
(i) Ifk<O0andd = \/m, then M is isometric to [0, 00) xp,_, 0M; moreover, the
following hold:
(a) ifk =0andN € (—o0,1), then for every z € M the function f oy, is constant
on [0, 00);
(b) ifx <0, then f =(n—-1)8 on M.

Proof Inview of Lemma 77 and Theorem 7.9, we see the following. If x and A satisfy
the convex-ball-condition, then for R = C,,-1 ;,-2s, and for every r € (0,R] the
equality in (7.6) holds; in particular, T = C, ,-45 3 ,-26 on OM (see Remark 7.10). If x < 0
and A = \/m , then for every R > 0 and for every r € (0, R] the equality in (7.6) holds;
in particular, T = co (see Remark 7.10). Hence, 7 = Cy,-1s 3,2 on oM.

If x and A satisfy the convex-ball-condition, then due to Theorem 6.4, M is iso-
metric to B,’Ze_w,le_m, and f = (n-1)4.

Ifk<O0and A = \/m, then CutOM = @. Theorem 1.1 tells us that M is isometric
to [0, 00) xg,, dM; moreover, if N € (—o0,1), then for every z € dM the function
f o y: is constant. In the case of x < 0, for all t > 0,z € dM we see 0/(t,z) =
e_f(z)sz_l (t); in particular, f = (n —1)4 (see Remark 7.4). We complete the

e—46,Ae—26

proof. ]
8 Eigenvalues

8.1 Lower Bounds

We recall the following inequality of Picone type (see [1, Theorem 1.1] and [18, Lemma
7.1]).

Lemma 8.1 ([1,18]) Let p € (1,00). Let ¢ > 0 and y > 0 be two C'-functions on a
domain U c M. Then we have

(8.1) [vyl? 2 [VolF (v (y"¢""). V).
If the equality in (8.1) holds on U, then y = c¢ for some ¢ + 0 on U.

We prove the inequality (1.16) in Theorem 1.4.

Lemma 8.2 Let p € (1,00). For N € (—o0,1], assume that (M, oM, f) has lower
(x, A, N)-weighted curvature bounds. Let M be compact, and let f be dM-radial. Sup-
pose additionally that there is 8 € R such that f < (n-1)8 on M. For D € (0,C,,]\{co},
suppose InRady M < D, where InRad s M is defined as (1.13). Then we have (1.16).
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Proof First, we notice v, .15 125, pe2s = ey, . 1.p. Let § be a non-zero func-
tion satisfying (1.15) for v = v, 1 p. We may assume ¢|(0,D] > 0. The equation (1.15)
can be written in the form

(19'()P729"(s)s251(s)) "+ vlp(s)P2p(s)s5i(s) =0,
9(0)=0, ¢'(D)=0.

Hence, we see that 9|[g py > 0. Put @ := @ 0 pyy, 5, and fix a non-negative, non-zero
function y € C§°(M). From Lemma 8.1, we deduce that

(82) [oyl? 2 [vo | 2g(v(y @' 7), vo)
on Int M\ Cut OM. Here we put

F=(n+1)(n-1)7""f and f:=(n+1-2p)(n-1)"'7.
By f < (n-1)d and (8.2),

8.3 2P5[ rd Azf | vy|rd A:f Pdm
(8.3) e M||VWH mp> | e [V ms MHvy/H m;
> [ ol (viyrel ), vo) dm;.

Further, (8.3) and (4.10) tell us that e?? HVI//HPde? is at least

- /M ‘/’pq’w{ (@) =Hea(@)) o PaM,f} dmy

that is equal to v, .1, p fM wpdmf by the definition of Hy  (see (1.15) and (3.5)).
Therefore, Rﬁp(l//) > 2%y, . 1 p. This implies (L16). [

Remark 8.3 From the argument in the proof of Lemma 8.2, one can also verify the
following. Under the same setting as in Lemma 8.2, we have Ry p(t//) >

V), xe-43,1¢-20, pe2s fOT every non-negative, non-zero y € C'(M) with y|ap = 0 (cf. Re-
mark 4.11). Moreover, if the equality holds for some y, then the equalities in (8.3)
hold, and hence f = (n—1)6 on the set where Vy # 0, and y = c® for some ¢ # 0 (see
Lemma 8.1); in particular, we can conclude Vy # 0 on M\ CutdM, and f = (n—1)4
on M.

We next prove the following comparison inequality.

Lemma 84 Let p € (1,00). Let x and A satisfy the convex-ball-condition. For
N € (-o0,1], let us assume that (M, dM, f) has lower (x, A, N)-weighted curvature
bounds. Let M be compact. Suppose additionally that there exists § € R such that
f<(n-1)8 on M. Then we have

Vip (M) 2 VO’P(BZe‘“,/\e‘Z“ )

Proof We first note that vo,p(BZe,M,M,zé) = e’zP‘svp,K,A,cm. Letg: [0,Ccn] = R
be a non-zero function satisfying (1.15) for v = v, . 1.c, > and let 9|(o,¢, ,] > 0. We see
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that 9'|o,c, ,) > 0. Define functions pyay,s = e poyand @ == g o pyys. Wefixa
non-negative, non-zero function y € Cg°(M). Then Lemma 8.1 leads us to

(8.4) [vyl? > [volr~2g(v(y o), vo)

on Int M\ Cut M. Notice that x and A satisfy the model-condition. From (8.4) and
(4.7), it follows that

2p6[ pd
e [ [vylrdm;

2pé p-2 Pal-p
>e fMqu)H g(V(yPOP), Vo) dmy
> [ o {((@Y) - Hea@)) o passs} diny.

The right-hand side is equal to vy, 1 c,, [;; ¥ dm. Therefore, we obtain Ry, () >
e‘zP‘svp,K,)L,CK’A. This proves the lemma. ]

Remark 8.5 From the argument in the proof of Lemma 8.4, we can also conclude
the following. Under the same setting as Lemma 8.4, we have Ry ,(y) >
v0,p(By,-4s 5,20 ) for every non-negative, non-zero y € C'(M) with y|3 = 0 (cf. Re-
mark 4.8). Moreover, if the equality holds for some v, then the equalities in (8.4) and
(4.7) hold (see Lemma 8.1 and Remark 4.8); in particular, y = ¢® for some ¢ # 0 on
M.

8.2 Equality Cases

We recall the following fact for eigenfunctions of the weighted p-Laplacian (see e.g.,
[20]).

Proposition 8.6 ([20]) Let p € (1,00). Let ¢: M — R be a smooth function. Let
M be compact. Then there exists a non-negative, non-zero function y € W&’P (M, myg)
such that Ry, ,(¥) = vy, p(M). Moreover, y € C>*(M) for some a € (0,1).

By using Proposition 8.6, we prove Theorem 1.4.

Proof of Theorem 1.4 Let p € (1,00). For N € (—oo0,1], assume that (M, oM, f)
has lower (x, A, N)-weighted curvature bounds. Let M be compact, and let f be oM-
radial. Suppose additionally that there is § € R such that f < (n —1)d on M. For
D € (0,Cy1]\{o0}, suppose InRadf M < D. Lemma 8.2 yields (1.16). Now, we as-
sume that the equality in (1.16) holds. Recall that our goal is to show that M is a
(ke™*°, Le~2%)-equational model space, and f = (n —1)8 on M.

By applying Proposition 8.6 to (n +1)(n —1)"'f, there exists a non-negative, non-
Zero y € Wol’p(M, m:;}f) n CH*(M) with

Rﬁ—f}f,p(#’) = Vp,ke=40,1e-28,De20

Then f = (n—1)6 on M (see Remark 8.3). Theorem 1.4 is already known when f is
constant (see [18, Theorem 1.6]). Thus, we complete the proof of Theorem 1.4. [
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Remark 8.7 Kasue [10] obtained an explicitlower bound for y, , ) p (see [10, Lemma
1.3]). Due to the estimate, under the same setting as in Theorem 1.4 with p = 2, we
have an explicit bound for v ¢, (M).

We also formulate the following eigenvalue rigidity theorem.

Theorem 8.8 Let p € (1,00). Let x and A satisfy the convex-ball-condition. For
N € (—o0,1], let us assume that (M, 0M, f) has lower (x, A, N)-weighted curvature
bounds. Let M be compact. Suppose additionally that there is § € R such that f <
(n-1)8 on M. Then

(8.5) Vip(M) 20,5 (B} o1 ) p-20)-

If the equality in (8.5) holds, then M is isometric to BY, pand f=(n-1)6 on M.

-48 )e
Proof By Lemma 8.4, we have (8.5). Assume that the equality holds. Applying
Proposition 8.6 to f, we have a non-negative, non-zero y € WOI’P(M, ms)n C*(M)
with Ry, () = vo,p(BY,-ss 5,-2s)- Let @ be a non-zero function satisfying (1.15) for
V = VpCoo and let @lo ¢, ] > 0. Define pyp 5 = e Ppapyand @ = P o pours
(¢f. Lemma 6.2). Then ® = cy for some ¢ # 0; in particular, suppy = M and
® € C*(M). The equality in (4.7) also holds (see Remark 8.5).

Since supp ¥ = M, the equality in (4.5) holds on Int M\ Cut 0M (see Remark 4.8).
Fix z € dM. Choose an orthonormal basis {e,;}"' of T,0M. Let {Y,;}"7! be
the dM-Jacobi fields along y, with Y, ;(0) = e.;, Y, ;(0) = —A,_ e ;. Forall i, we
see Y, ; = Fy ) .E,; on [0,7(z)], where {E, ;}"-] are the parallel vector fields with
E..i(0) = e,,;. Moreover, f oy, = (n—-1)d on [0, 7(2)].

By Theorem 6.4, it suffices to show that InRad M = C, -1 j,-2s. Let us suppose
that InRad M < C, -4 ),-2s. Take xo € M with pyp(x9) = InRad M. Note that
x9 € Cut OM. By pop(x9) < Cyo-15 ) .-26, and by the rigidity of the Jacobi fields, xo is
not the first conjugate point along y,, where z; is a foot point of xo. Hence pyp,s is
not differentiable at x,. From ® € C>*(M), we deduce that ¢ (paar.5(x0)) = 0. This
contradicts ¢'|[o,c, ,) > 0. Thus, we complete the proof of Theorem 8.8. ]

8.3 Spectrum Rigidity

Let Q be a relatively compact domain in M such that its boundary is a smooth hy-
persurface in M with 0Q n M = &. For the canonical measure volyq on 9Q, put
myaq = e volyq.

Let us prove the following area estimate.

Lemma 8.9 Let x and A satisfy the monotone-condition. For N € (—o0,1], assume
that (M, oM, f) has lower (x, A, N )-weighted curvature bounds. Suppose additionally
that there exists 8 € R such that f < (n —1)8 on M. Define pyp.s = e ?pay. Let
Q be a relatively compact domain in M such that 0Q) is a smooth hypersurface in M
satisfying 0Q N oM = &. Set

D;s1(Q) := irelgfzpaM,(;(x) and Ds,(Q) :=sup pam,s(x).
x xeQ
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Then we have

D52 (Q) _n-1
2 s" N (a)da
me(Q) < e sup J; n—1M( ) my 50 (0Q)).
se(Dsa()D52(2))  Sga (8)

Proof Define a function ¢: [Ds1(Q), Ds2(Q2)] = R by

. s qua,z(Q)SZ,—Al(b)db
o(s) := A da

51(0) 51 l(a)
Put @ := g o pyu,s- By Lemma 4.4, on O\ Cut 0M, we have
(8.6) Ap® > —e (@ - Hen9') o poms =€ *

By Lemma 2.2, there exists a sequence {Q;} of compact subsets of the closure Q
such that for every i, the boundary 9Q); is a smooth hypersurface in M except for a
null set in (0Q), my 50 ), and satisfying the following: (1) for all iy, i, with i} < i, we
have Q; c Q;,; (2) O\ CutoM = U; Q;: (3) for every i, and for almost every point
x € 0Q; N 0Q in (0, my 3 ), there exists a unique unit outer normal vector for Q;
at x that coincides with the unit outer normal vector uyq on 0Q for Q; (4) for every
i, on 0Q;\0Q), there exists a unique unit outer normal vector field u; for Q; such that

g(ui,Vpam) 2 0.
For the canonical measure vol; on 9Q;\0Q, put my ; := e vol;. By integrating
the both sides of (8.6) on ;, and by integration by parts,

6745mf(Qi) < fﬂ qu)dmf

__ L VD)d -—f ,VD)dm; 50
faﬂi\ang(u ve)dmy, aamang(uaﬂ V®)dmyaa

The Cauchy-Schwarz inequality and g(u;, V®) > 0 tell us that
6_45Mf(Qi) < - f

5 V(D d
. §(uaq, V@)dmy 30

< /an,-naa(a o pam,s)|g(taas Vpam,s)|ldmy a
<e® sup @' (s)my,50(0Q).
s€(D5,1(Q),D5,2(Q))

By letting i — oo, we complete the proof. u

Kasue [11] has proved Lemma 8.9 when f = 0and § = 0.

For a > 0, the (f, a)-Dirichlet isoperimetric constant is defined as

mgaa (BQ)

(mp(Q))Ve’

where the infimum is taken over all relatively compact domains Q in M such that 0Q

are smooth hypersurfaces in M satisfying 0Q n oM = @. The (f, «)-Dirichlet Sobolev
constant is defined as

DI, (M, mg) := 1?2f

JulVeldmy

DS (M, my) = in T 1dladm e
P sewr otmpnoy (fyr 19| drmp) /e
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Let us recall the following relation between the constants.

Proposition 8.10 ([6]) Forall a >0, DI,(M,ms) = DSy (M, my).

For D € (0, C,.,], we put

87) C(k,1,D) = sup s (a)d“.
se[0,D) K, (5)

Notice that C(x, A, 00) is finite if and only if ¥ < 0 and A = \/|k|; in this case, we
have C(k, A, D) = ((n —=1)A)7}(1 - e~ (*"DAD),
From Lemma 8.9 we derive the following lemma.

Lemma 8.11 Let p € (1,00). Let x and A satisfy the monotone-condition. For
N € (—o0,1], assume that the triple (M, 0M, f) has lower (k, A, N)-weighted curva-
ture bounds. Suppose additionally that there exists § € R such that f < (n—-1)8 on M.
For D € (0, C,2], suppose InRad M < e*’D. Then we have

v, (M) > (pe®®C(x,1,D)) "

Proof Let Q) be a relatively compact domain in M such that 0Q is a smooth hyper-
surface in M with 0Q n oM = @. Set Cys := ¢2°C(x, A, D). Lemma 8.9 implies that
ms(Q) < Csmy,y0(9€2). By Proposition 8.10, we obtain DS; (M, my) > Cj'. For all
¢ € Wy'' (M, my), we have

(8:8) [ igidmg<cs [ [vgldm;.

Let ¥ be a non-zero function in W, (M, my). Put g := p(1-p)~". In (8.8), by
replacing ¢ with |y|?, and by the Holder inequality, we see

[ twirdmy < pcs [ 1ylr v yldm;
M M

1/q 1/p
p P
<pCol [ lwrdmg) ([ 17yl ram;)
Considering the Rayleigh quotient Ry , (), we complete the proof. ]

Finally, we prove the following spectrum rigidity theorem.

Theorem 8.12 Let p € (1,00). Let k < 0 and A := \/|«|. For N € (—o0,1], assume
that (M, 0M, f) has lower (x, A, N)-weighted curvature bounds. Let oM be compact.
Suppose additionally that there exists § € R such that f < (n—1)8 on M. Then

(8.9) pr(M) —2p6( (71;)1)/1)

If the equality in (8.9) holds, then M is isometric to [0, 00) xp_, OM; moreover, if N €
(—o0,1), then f oy, is constant for every z € oM.
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Proof For D > 0, we see that C(k, A, D) = ((n-1)1)7(1-e~(""D*P) Note that the
right-hand side is monotone increasing as D — co. Put D := e~2% InRad M. From
Lemma 8.11, we conclude

vrp(M) 2 2 (pClx, 1, Dy)) 2 e ("_pm)”.

Assume that the equality holds in (8.9). Then the monotonicity of C(x, A, D)
with respect to D implies Ds = oo; in particular, we have InRad M = oo. Since
OM is compact, 7(zg) = oo for some zg € dM. Theorem 1.1 completes the proof of
Theorem 8.12. ]
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