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Abstract

We consider a recent work of Pascu and Pascu [‘Neighbourhoods of univalent functions’, Bull. Aust.
Math. Soc. 83(2) (2011), 210–219] and rectify an error that appears in their work. In addition, we study
certain analogous results for sense-preserving harmonic mappings in the unit disc |z| < 1. As a corollary
to this result, we derive a coefficient condition for a sense-preserving harmonic mapping to be univalent
in |z| < 1.
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1. Introduction and preliminaries

The well-known Noshiro–Warschawski–Wolff criterion (see [3, page 47]) for
univalency asserts the following.

T A. If f : D→ C is analytic in a convex domain D and Re f ′(z) > 0 for all
z ∈ D, then f is univalent in D.

As a counterpart of this result Pascu and Pascu [6] proved the following lemma.

L B [6, Proposition 2.1]. Let f : D→ C be an analytic function in the domain D
and define

K( f , D) = inf
a,b

a,b∈D

∣∣∣∣∣ f (a) − f (b)
a − b

∣∣∣∣∣.
(1) If K( f , D) > 0, then f is univalent in D.
(2) Conversely, if f is univalent in D and Ω ⊂Ω ⊂ D is a domain strictly contained

in D, then K( f ,Ω) > 0.
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It is worth pointing out that the converse result, namely item (2) in Lemma B, is not
necessarily true. For example, consider f (z) = ez in the strip D = {z : −π < Im z < π}. It
is a simple exercise to see that f is univalent in D. Also let Ω = {z : −π/2 < Im z < π/2}
so that Ω ⊂Ω ⊂ D and {−n : n ∈ N} ⊂Ω. Moreover, since the sequence {e−n} converges
to 0, given ε > 0 we can find a stage N ∈ N such that∣∣∣∣∣e−n − e−m

n − m

∣∣∣∣∣ ≤ |e−n − e−m| < ε for all n, m ≥ N.

This observation shows that

K( f ,Ω) = inf
a,b

a,b∈Ω

∣∣∣∣∣e−a − e−b

a − b

∣∣∣∣∣ = 0,

from which we obtain that the converse part of Lemma B fails. The main mistake in
the proof of part (2) of Lemma B comes from the fact that Pascu and Pascu implicitly
assumed in their argument that the domain D is bounded. If this were made an explicit
condition then their result would be correct.

In addition, the authors in [6] proved the following result.

T C [6, Theorem 2.4]. Let f : D→ C be a nonconstant analytic function in the
convex domain D. If there exists an analytic function g : D→ C univalent in D such
that

| f ′(z) − g′(z)| ≤ K(g, D), z ∈ D,

then the function f is also univalent in D.

As a consequence of Theorem C, they obtained the following corollary.

C D [6, Corollary 2.6]. If f : D→ C is nonconstant and analytic in the
convex domain D and there exists c > 0 such that

| f ′(z) − c| ≤ c, z ∈ D, (1.1)

then f is univalent in D.

Moreover, Pascu and Pascu remarked [6, Remark 2.7] that Corollary D is equivalent
to Theorem A. It can easily be seen that Theorem A implies Corollary D, but again the
converse is not necessarily true as the next example demonstrates.

E 1.1. Let D be the right half-plane {z ∈ C : Re z > 0} and consider the function
f (z) = z2. Then f ′(z) = 2z and Re f ′(z) > 0 in D. Clearly, by the Noshiro–
Warschawski–Wolff univalence criterion f is univalent in D. On the other hand,
univalency of f in D does not follow from Corollary D, because we cannot find a
universal constant c > 0 satisfying (1.1). Thus the observation made by the authors
in [6] about the converse of Corollary D is not true in general.

In Section 2, we extend Theorem C for sense-preserving harmonic univalent
mappings and present a number of corollaries, remarks and examples.
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2. Main results

A complex-valued function f = u + iv in a simply connected domain D is said to be
harmonic if the real and imaginary parts of f satisfy Laplace’s equation. In D, f has
the canonical decomposition f = h + g, where h and g are analytic in D. The Jacobian
J f of f is given by

J f (z) = |h′(z)|2 − |g′(z)|2.

We say that f is sense-preserving in D if J f (z) > 0, for all z ∈ D. If the Jacobian of f
is nonvanishing in D, then by the inverse mapping theorem it follows that f is locally
univalent in D. For harmonic functions the converse is also true as asserted by Lewy’s
theorem [5] (see also [4, page 20]). We refer to Clunie and Sheil-Small [2] and Duren
[4] for many important results on harmonic univalent mappings.

In [7], the authors considered the class

C1
H := { f = h + g, f (0) = fz(0) = 1 and fz(0) = 0 : Re h′(z) > |g′(z)|, z ∈ D},

where D = {z : |z| < 1} is the open unit disc in C. They proved that the functions in
C1

H are not only univalent in D but also close-to-convex in D (see [7, Lemma 1.1]).
This result is regarded as a harmonic analogue of the Noshiro–Warschawski–Wolff
criterion.

T 2.1. Let f : D→ C be a sense-preserving harmonic function in a convex
domain D with the canonical decomposition f = h + g. If there exists an analytic
univalent function φ : D→ C such that

|h′(z) − φ′(z)| + |g′(z)| ≤ K(φ, D), z ∈ D, (2.1)

then f is univalent in D.

P. Assume that f is not univalent in D. Then there are points z1, z2 ∈ D such that
z1 , z2 and f (z1) = f (z2). Since D is convex, the line segment joining z1 and z2 lies
completely in D, that is, {z(t) = (1 − t)z1 + tz2 : 0 ≤ t ≤ 1} ⊂ D. An integration along
this line segment, together with (2.1), yields

|φ(z2) − φ(z1)| = |( f (z2) − φ(z2)) − ( f (z1) − φ(z1))|

=

∣∣∣∣∣∫ 1

0

d
dt

( f (z(t)) − φ(z(t))) dt
∣∣∣∣∣

=

∣∣∣∣∣∫ 1

0
((h′(z(t)) − φ′(z(t)))(z2 − z1) + g′(z(t))(z2 − z1)) dt

∣∣∣∣∣
≤

∫ 1

0
(|h′(z(t)) − φ′(z(t))| + |g′(z(t))|)|z2 − z1| dt

≤ K(φ, D)|z2 − z1|.
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Since z1 , z2, from the above inequality and the definition of K(φ, D), as in [6],

K(φ, D) =

∣∣∣∣∣φ(z2) − φ(z1)
z2 − z1

∣∣∣∣∣. (2.2)

Again following the method of proof of [6], we consider the auxiliary function P
defined on D \ {z2} by

P(z) =
φ(z) − φ(z2)

z − z2
, z ∈ D \ {z2}.

As φ is analytic in D, it follows that P is analytic in D \ {z2} and we see that the limit

lim
z→z2

P(z) = lim
z→z2

φ(z) − φ(z2)
z − z2

= φ′(z2)

exists and is finite. Therefore, we can extend the function P to an analytic function in
D, which we also denote by P. Since

inf
z∈D
|P(z)| = inf

z,z2
z∈D

|P(z)| = inf
z,z2
z∈D

∣∣∣∣∣φ(z) − φ(z2)
z − z2

∣∣∣∣∣ ≥ inf
a,b

a,b∈D

∣∣∣∣∣φ(a) − φ(b)
a − b

∣∣∣∣∣ = K(φ, D),

it follows from (2.2) that

inf
z∈D
|P(z)| ≥ K(φ, D) =

∣∣∣∣∣φ(z2) − φ(z1)
z2 − z1

∣∣∣∣∣ = |P(z1)| ≥ inf
z∈D
|P(z)|.

Thus, the minimum modulus value of P in D is attained at z1.
Since φ is univalent in D, it follows that P is a nonvanishing analytic function

in D which attains its minimum modulus value in the interior of D. Hence, by the
minimum modulus principle for nonvanishing analytic functions, it follows that P must
be constant in D.

Thus,
φ(z) = c(z − z2) + φ(z2), z ∈ D, (2.3)

for a certain constant c ∈ C. From the definition of P, one can easily see that
c = φ′(z2)eiθ for some θ ∈ R. From (2.3) we see that φ is a linear function and so a
simple computation shows that K(φ, D) = |c| in this case.

As a consequence of the above discussion, (2.1) becomes

|h′(z) − c + g′(z)| ≤ |h′(z) − c| + |g′(z)| ≤ |c|, z ∈ D. (2.4)

We need to deal with two cases.

Case (i). Suppose that equality holds in both the inequalities in (2.4) for a particular
point, say at z0 ∈ D. Now, by the maximum modulus principle for complex-valued
harmonic functions (see [1, Corollary 1.11, page 8]),

h′(z) = l − g′(z), z ∈ D,

where l ∈ C. Since h′ is an analytic function, it follows that g′ is constant and so is h′.
Further, from the sense-preserving property of f , we get f (z) = αz + βz + γ for some
α, β and γ ∈ C with |α| > |β|.
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Case (ii). Suppose Case (i) does not happen. Now, repeating the above proof with
φ(z) = cz,

|cz2 − cz1| = |( f (z2) − cz2) − ( f (z1) − cz1)|

=

∣∣∣∣∣∫ 1

0

d
dt

( f (z(t)) − cz(t)) dt
∣∣∣∣∣

=

∣∣∣∣∣∫ 1

0
((h′(z(t)) − c)(z2 − z1) + eiθg′(z(t))(z2 − z1)) dt

∣∣∣∣∣ for some θ ∈ R,

≤

∫ 1

0
|h′(z(t)) − c + eiθg′(z(t))| |z2 − z1| dt

< |c| |z2 − z1|,

which is a contradiction, where in the above θ = 2 arg(z2 − z1). Indeed, if we have
equality in the last inequality, then as in Case (i) it is easy to see that f is an affine
mapping. This contradiction shows that the function f is univalent in D. �

R 2.2. The sense-preserving assumption about f cannot be removed in
Theorem 2.1. For example, consider the harmonic function f (z) = Re z, z ∈ D. The
Jacobian of f is zero on D, which shows that f is not even sense-preserving. Now take
φ(z) = z/2; then (2.1) is satisfied with K(φ, D) = 1/2 but f is not univalent in D.

R 2.3. The right-hand side in (2.1) cannot be replaced by a larger quantity, as
can be seen by the function f (z) = z + az2 in the unit disc D, where a ∈ D. For if we
take φ(z) = z, then K(φ, D) = 1 and hence, using Theorem 2.1, we get that f is univalent
in D if |2az| ≤ 1 for all z ∈ D, that is, if |2a| ≤ 1. But using a direct computation,
one can see that f is univalent in D if and only if |2a| ≤ 1. Hence inequality (2.1)
in Theorem 2.1 is sharp. Here we note that if |2a| ≤ 1 then f ∈ C1

H and hence f is
close-to-convex on D.

C 2.4. Let f : D→ C be a sense-preserving harmonic function in a convex
domain D with the canonical decomposition f = h + g. If there exists a constant c > 0
such that

|h′(z) − c| + |g′(z)| ≤ c, z ∈ D,

then f is univalent in D.

P. The proof follows from Theorem 2.1 by taking φ(z) = cz with c > 0. �

C 2.5. Let φ : D→ C be an analytic univalent function with Taylor series
expansion

φ(z) =

∞∑
n=0

knzn, z ∈ D.

Let f be a sense-preserving harmonic mapping with the canonical decomposition

f (z) =

∞∑
n=1

anzn +

∞∑
n=1

bnzn, z ∈ D. (2.5)
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If the coefficients in (2.5) satisfy

∞∑
n=1

n|an − kn| +

∞∑
n=1

n|bn| ≤ K(φ, D), (2.6)

then f is univalent in D.

P. Let h(z) =
∑∞

n=1 anzn and g(z) =
∑∞

n=1 bnzn. Then f = h + g. Now

|h′(z) − φ′(z)| + |g′(z)| =
∣∣∣∣∣ ∞∑
n=1

nanzn−1 −

∞∑
n=1

nknzn−1
∣∣∣∣∣ +

∣∣∣∣∣ ∞∑
n=1

nbnzn−1
∣∣∣∣∣

≤

∞∑
n=1

n|an − kn| |z|
n−1 +

∞∑
n=1

n|bn| |z|
n−1

<

∞∑
n=1

n|an − kn| +

∞∑
n=1

n|bn|

≤ K(φ, D),

for all z ∈ D. Thus, by Theorem 2.1, we conclude that f is univalent in D. �

E 2.6. If we take φ(z) = z in Corollary 2.5, then it follows easily that the
harmonic function f (z) = z + azn (n ≥ 2) is univalent in D whenever |a| ≤ 1/n (as
pointed out in Remark 2.3).

E 2.7. Let α be such that α ∈ (0, 1) and consider the function

ϕ(z) =
z − α

1 − αz
, z ∈ D.

It is well known that ϕ is an analytic automorphism of the unit disc and

K(ϕ, D) = inf
a,b

a,b∈D

∣∣∣∣∣ϕ(a) − ϕ(b)
a − b

∣∣∣∣∣ = inf
a,b

a,b∈D

∣∣∣∣∣ 1 − α2

(1 − αa)(1 − αb)

∣∣∣∣∣ =
1 − α
1 + α

.

Now we consider the harmonic function f (z) = ϕ(z) + g(z), where g(z) =
∑∞

n=1 bnzn and
the coefficients of g satisfy the condition

∞∑
n=1

n|bn| ≤
1 − α
1 + α

. (2.7)

We can easily see that (2.7) implies f is sense-preserving in D. For

|g′(z)| =
∣∣∣∣∣ ∞∑
n=1

nbnzn−1
∣∣∣∣∣ ≤ ∞∑

n=1

n|bn| ≤
1 − α
1 + α

<
1 − α2

|1 − αz|2
= |ϕ′(z)|.
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By Corollary 2.5, it follows that f is univalent in D. We observe that ϕ is a convex
function and, by (2.7), f is sense-preserving. Thus, by a result of Clunie and Sheil-
Small [2, Theorem 5.17], we conclude that the function f in this case is close-to-
convex in D.

E 2.8. For 0 < α < 1, consider the harmonic function

fa,α(z) =
z − α
1 − αz

+ aeiβz +

(1 − α
1 + α

− a
)
eiγ z2

2
, z ∈ D

where β, γ are real, and 0 < a < (1 − α)/(1 + α). As in Example 2.7, it can be easily
seen that fa,α(z) is sense-preserving in the unit disc D and a simple computation shows
that (2.6) is satisfied. Thus, by Corollary 2.5, fa,α(z) is univalent and close-to-convex
in D.
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