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A RANDOM ENVIRONMENT ON Z
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Abstract

The main aim of this paper is to prove the quenched central limit theorem for reversible
random walks in a stationary random environment on Z without having the integrability
condition on the conductance and without using any martingale. The method shown here
is particularly simple and was introduced by Depauw and Derrien [3]. More precisely, for
a given realizationω of the environment, we consider the Poisson equation (Pω−I )g = f ,
and then use the pointwise ergodic theorem in [8] to treat the limit of solutions and then the
central limit theorem will be established by the convergence of moments. In particular,
there is an analogue to a Markov process with discrete space and the diffusion in a
stationary random environment.
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1. Introduction

Let (�,A,P) be a probability space. The definition of a random walk in a random
environment involves two ingredients:

1. The environment which is randomly chosen but remains fixed throughout the time
evolution.

2. The random walk whose transition probability is determined by the environment.

The space� is interpreted as the space of environments. For eachω ∈ �, we define the random
walk in the environment ω as the (time homogeneous) Markov chain (Xn)n≥0 on Z with certain
(random) transition probabilities

p(ω, x, y) = Pω{X1 = y/X0 = x}.
The probability measure Pω determines the distribution of the random walk in a given environ-
ment ω. In this paper we study only the random walk with the initial condition X0 = 0,

P
0
ω{X0 = 0} = 1.

The probability measure P
0
ω indicates the distribution of the random walk in a given environment

ω with the initial position of the walk referred to as the Quenched law. For more information
about the random walk in a random environment and the Annealed law see [1], [6], and [9].
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1052 H.-C. LAM

Now we consider the following model for the random walk in a random environment. Let
(�,A, μ) be a probability space and T be an invertible measure preserving transformation on
�, which is ergodic. More precisely, T acts on � by

T : �× Z → � and (ω, k) �→ T kω,

which is joint measurable and satisfies

1. For any k, h ∈ Z : T k+h = T kT h and T 0ω = ω.

2. T preserves the measure μ : μ(T kA) = μ(A) for any k ∈ Z.

3. T is ergodic: if T kA = A (up to null sets) for all k ∈ Z then μ(A) is equal to 0 or 1.

On the Z network, we assume that the conductivity of the edge between {k, k + 1} is equal to
c(T kω), where c is a positive measurable function on �. Fix ω ∈ � and consider a random
walk (Xn)n≥0 on Z where X0 = 0 and the transition probability p(ω, k, h) is given by

p(ω; k, k + 1) = P
0
ω{Xn+1 = k + 1/Xn = k} = c(T kω)/c̄(T kω),

and
p(ω; k, k − 1) = P

0
ω{Xn+1 = k − 1/Xn = k} = c(T k−1ω)/c̄(T kω),

where c̄(ω) = c(ω) + c(T −1ω). These random walks are reversible since for all adjacent
vertices x, y in Z, we have c̄(T xω)p(ω; x, y) = c̄(T yω)p(ω; y, x). The Markov operator
f �→ Pωf is defined by

Pωf (k) = 1

c̄(T kω)
[c(T k−1ω)f (k − 1)+ c(T kω)f (k + 1)].

When c is integrable but c−1 not, Derriennic and Lin have proved, in an unpublished work,
the annealed central limit theorem (CLT) with null variance: limn→∞ n−1

Eω(X
2
n) = 0 in μ-

measure, where Eω denotes the expectation relative to the randomness of the walk with the
environment being fixed. For the quenched version Depauw and Derrien [3] considered a
nonnegative solution f , defined on Z, of the Poisson equation (Pω− I )f = 1 and that satisfies
f (0) = 0 to obtain the limit of the variance of the reversible random walk (Xn)n≥0 without
using any martingale and without having any condition on function c except that c > 0.

Theorem 1. (Depauw and Derrien [3].) For almost all environments ω,

lim
n→+∞ Eω

{
X2
n

n

}
=

[ ∫
1

c
dμ

∫
c dμ

]−1

.

This limit is null if at least one of the integrals is +∞.

When both of c and c−1 are integrable, the quenched CLT, in the usual case, can be proved
by the method of martingale, first introduced by Kozlov, [5]. Unfortunately, this method does
not allow us to treat the case when c or c−1 are not integrable. The aim of this paper is to
generalize Theorem 1 and to establish the quenched CLT without using any martingale and
without having any condition on function c except that c > 0. In the case when at least one
of c and c−1 is not integrable, Xn/

√
n converges to the degenerate normal distribution. The

second method is adapted from [3] and leads to the following theorem.
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Quenched central limit theorem 1053

Theorem 2. For almost all environments ω,

Xn√
n

d−→ N

(
0,

[ ∫
1

c
dμ

∫
c dμ

]−1)
as n → +∞.

The limiting distribution being a degenerate normal distribution if at least one of the integrals
is +∞.

Throughout this paper, ‘
d−→’ denotes the convergence in distribution and N (λ, σ 2) denotes the

normal distribution with mean λ and variance σ 2.
This paper is organized as follows. In Section 2 we prove Theorem 2. In Section 3 there is

an analogue to a Markov process with continuous time and discrete space. Finally, in Section 4
we consider the diffusion in a random environment. It is somewhat involved but we will show
the proof of the CLT explicitly.

2. Proof of Theorem 2

Consider a normal distribution Z ∼ N (0, σ 2), and for each � = 1, 2, 3, . . . , we have

E{Z�} = 0 if � = 2k − 1 and E{Z�} = (2k)!
k! 2k

σ � if � = 2k.

Using the method of moments introduced in [2, Theorem 30.2, page 390] to prove Theorem 2
it is sufficient to show that for almost all environments ω

lim
n→+∞ Eω

{(
Xn√
n

)�}
= E{Z�} =

⎧⎨
⎩

0 if � = 2k − 1
(2k)!
k! 2k

σ � if � = 2k

for each � = 1, 2, 3, . . .. In this case σ 2 = [∫ (1/c) dμ
∫
c dμ]−1.

We begin with the following elementary lemma.

Lemma 1. Let un, vn be two sequences of positive real numbers and a nonnegative integer
α ∈ N. Assume that limn→∞(1/n)

∑n
�=1 u� = u > 0 and limn→∞ vn = v > 0. If both of u

and v are finite

lim
n→∞

1

nα+1

n∑
�=1

�αu�v� = uv

α + 1
(1)

else if at least one of u and v is infinite then the limit in (1) being +∞.

Proof. We will prove that both of u and v are finite, with the other cases left to the reader.
For α = 0, we will show that

lim
n→∞

1

n

n∑
�=1

u�v� = uv. (2)

We have ∣∣∣∣1

n

n∑
�=1

u�v� − uv

∣∣∣∣ ≤
∣∣∣∣1

n

n∑
�=1

u�(v� − v)

∣∣∣∣ +
∣∣∣∣1

n

n∑
�=1

(u� − u)v

∣∣∣∣
≤ 1

n

n∑
�=1

u�|v� − v| + v

∣∣∣∣1

n

n∑
�=1

u� − u

∣∣∣∣
< ε

for any ε > 0 when n large enough, completing the proof of (2).
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Now assume that (1) is true for α ≥ 0. We claim that it also holds for α + 1, that is

lim
n→∞

1

nα+2

n∑
�=1

�α+1u�v� = uv

α + 2
. (3)

Let Wn = ∑n
�=1 �

αu�v�, using Abel’s transformation

1

nα+2

n∑
�=1

�α+1u�v� = − 1

nα+2

n−1∑
�=1

W� + 1

nα+1Wn = −I1 + I2.

By the assumption limn→∞ I2 = limn→∞(1/nα+1)Wn = uv/(α + 1), we have

∣∣∣∣I1 − uv

(α + 1)(α + 2)

∣∣∣∣ ≤ 1

nα+2

n−1∑
�=1

�α+1
∣∣∣∣ W�

�α+1 − uv

α + 1

∣∣∣∣
+

∣∣∣∣ 1

nα+2

n−1∑
�=1

�α+1 − 1

α + 2

∣∣∣∣ uv

α + 1

< ε

for any ε > 0 when n is large enough since (1/nα+2)
∑n−1
�=1 �

α+1 = (1/n)
∑n−1
�=1(�/n)

α+1 and
as n goes to ∞ we will have the limit that is equal to

∫ 1
0 x

α+1 dx = 1/(α + 2). It follows that
limn→∞ I1 = uv/((α + 1)(α + 2)). Hence,

lim
n→∞

1

nα+2

n∑
�=1

�α+1u�v� = − uv

(α + 1)(α + 2)
+ uv

α + 1
= uv

α + 2
,

which completes the proof of (3).

Lemma 2. Given a function ψ : Z → R there exists a unique function φ : Z → R such that

(Pω − I )φ = ψ, φ(1) = a, φ(−1) = b. (4)

Proof. Since
(Pω − I )φ(0) = ψ(0)

we have
c(T −1ω)φ(−1)+ c(ω)φ(1)− c̄(ω)φ(0) = c̄(ω)ψ(0). (5)

This determines φ(0).
For m ≥ 2, we consider

(Pω − I )φ(m− 1) = ψ(m− 1).

This is equivalent to

c(T m−1ω)[φ(m)− φ(m− 1)] = c(T m−2ω)[φ(m− 1)− φ(m− 2)] + c̄(T m−1ω)ψ(m− 1)

and then by induction on m

φ(m) = φ(1)+ [φ(1)− φ(0)]
m−1∑
�=1

c(ω)

c(T �ω)
+
m−1∑
�=1

1

c(T �ω)

�∑
s=1

c̄(T sω)ψ(s).
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Similarly for m ≤ −2, we have

φ(m) = φ(−1)+ [φ(−1)− φ(0)]
−m∑
�=2

c(T −1ω)

c(T −�ω)
+

−m∑
�=2

1

c(T −�ω)

�−1∑
s=1

c̄(T −sω)ψ(−s).

We have thus proved that φ is a unique solution of (4). We also deduce that a particular solution
φ of the Poisson equation (Pω− I )φ = ψ is characterized by the values φ(−1), φ(0) and φ(1)
such that they satisfy (5).

Proposition 1. For almost all environments ω, we have

lim
n→+∞ Eω

{(
Xn√
n

)2k}
= (2k)!

2kk! σ
2k

for each k ≥ 1. This limit is null if at least one of c and c−1 is not integrable.

This is the generalization of Theorem 1 (or [3, Theorem 0.1]).

Proof. Fixing ω ∈ � we consider a sequence of functions fk ≥ 0, defined on Z, such that

(Pω − I )fk ≡ fk−1 for k ≥ 1, f0 ≡ 1, fk(0) = 0 for k ≥ 1.

By Lemma 2 we can determine the function f1 which satisfies f1(−1) = c̄(ω)/c(T −1ω) and
f1(1) = 0

f1(m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

m−1∑
�=1

1

c(T �ω)

�∑
s=1

c̄(T sω) if m ≥ 2,

0 if m = 0, 1,
−m∑
�=1

1

c(T −�ω)

�−1∑
s=0

c̄(T −sω) if m ≤ −1

and for k ≥ 2 the function fk which satisfies fk(1) = fk(−1) = 0

fk(m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

m−1∑
�=1

1

c(T �ω)

�∑
s=1

c̄(T sω)fk−1(s) if m ≥ 2,

0 if m = −1, 0, 1,
−m∑
�=2

1

c(T −�ω)

�−1∑
s=1

c̄(T −sω)fk−1(−s) if m ≤ −2.

Then, for any integer m and for k ≥ 1, we have

(Pω − I )fk(m) = fk−1(m).

Replace m by Xn and take the expectation to obtain

Eω{fk(Xn+1)} = Eω{fk(Xn)} + Eω{fk−1(Xn)}
for any n ≥ 0. It follows that for each k ≥ 1

Eω{fk(Xn)} ∼
nk

k! (6)

when n is large enough since fk(0) = 0 by the definition of fk and X0 = 0 by the assumption
of the random walk Xn. The proof of (6) is by induction on k.
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Equation (6) can be rewritten as

Eω

{
fk(Xn)

X2k
n

X2k
n

nk

}
∼ 1

k! .

We see that limm→∞ fk(m)/m
2k exists and so limn→+∞ Eω{X2k

n /n
k} exists, completing the

proof.

In the next step we will compute the limit of fk(m)/m2k by using the pointwise ergodic
theorem (p.e.t.) and Lemma 1.

Lemma 3. For each k ≥ 1, with fk defined as above, we have

lim
m→±∞

fk(m)

m2k = 2k

(2k)!σ
−2k. (7)

This limit is +∞ if at least one of c and c−1 is not integrable. It is denoted by ck .

Proof. This limit is true for k = 1. Indeed, for the case m > 0, we have

f1(m)

m2 = 1

m

m−1∑
�=1

(
�

m

)
1

c(T �ω)

1

�

�∑
s=1

c̄(T sω).

Applying Lemma 1 and the p.e.t. for u� = 1/c(T �ω), v� = (1/�)
∑�
s=1 c̄(T

sω) and α = 1 this
tends to σ−2 = [∫ (1/c) dμ

∫
c dμ]. The point is that, since c > 0, the convergence is still

satisfied if one of these integrals is +∞ (see [3]).
Assume that (7) is also true for k ≥ 1, we claim that it holds for k + 1, that is

lim
m→∞

fk+1(m)

m2(k+1)
= 2k+1

(2k + 2)!σ
−2(k+1). (8)

We have

1

�2k+1

�∑
s=1

c̄(T sω)fk(s) = 1

�

�∑
s=1

(
s

�

)2k

c̄(T sω)
1

s2k fk(s).

Again, applying Lemma 1 and the p.e.t. for us = c̄(T sω), vs = (1/s2k)fk(s) and α = 2k, this
tends to

∫
�
c dμ2k+1/(2k + 1)! σ−2k. Moreover,

fk+1(m)

m2(k+1)
= 1

m

m−1∑
�=1

(
�

m

)2k+1 1

c(T �ω)

1

�2k+1

�∑
s=1

c̄(T sω)fk(s).

Again, applying Lemma 1 and the p.e.t. foru′
� = 1/c(T �ω), v′

� = (1/�2k+1)
∑�
s=1 c̄(T

sω)fk(s)

and α = 2k + 1, this tends to 2k+1/(2(k + 1))! σ−2(k+1) which completes the proof of (8).
Similarly, we have the same result for the case m < 0.

From Lemma 3, for any ε > 0, there exists M > 0 such that for any m > M

∣∣∣∣ m2k

fk(m)
− 1

ck

∣∣∣∣ < ε/2. (9)
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Quenched central limit theorem 1057

Decomposing � = {|Xn| ≤ M} ∪ {|Xn| > M} and combining (6) and (9) we obtain∣∣∣∣Eω
{(

Xn√
n

)2k}
− 1

k! ck
∣∣∣∣ ≈

∣∣∣∣Eω
{(

X2k
n

fk(Xn)
− 1

ck

)
fk(Xn)

nk
1{|Xn|>M}

}

+ 1

nk
Eω

{(
X2k
n − 1

ck
fk(Xn)

)
1{|Xn|≤M}

}∣∣∣∣
≤ Eω

{∣∣∣∣ X2k
n

fk(Xn)
− 1

ck

∣∣∣∣fk(Xn)nk
1{|Xn|>M}

}

+ 1

nk
Eω

{∣∣∣∣X2k
n − 1

ck
fk(Xn)

∣∣∣∣1{|Xn|≤M}
}

< ε

for n large enough. Since ε is as small as we need, we obtain the desired result, which completes
Proposition 1.

Proposition 2. For almost all environments ω, it holds that

lim
n→+∞ Eω

{(
Xn√
n

)2k−1}
= 0 for each k ≥ 1.

Proof. Fixing ω ∈ � we consider a sequence of functions gk , defined on Z, such that

(Pω − I )gk ≡ gk−1 for k ≥ 1, g0 ≡ 0, gk(0) = 0 for k ≥ 1.

Again, by Lemma 2 we can determine the function g1 which satisfies g1(1) = 1/c(ω) and
g1(−1) = −1/c(T −1ω)

g1(m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

m−1∑
�=0

1

c(T �ω)
if m ≥ 1,

0 if m = 0,

−
−m∑
�=1

1

c(T −�ω)
if m ≤ −1

and for k ≥ 2 the function gk satisfies gk(1) = gk(−1) = 0

gk(m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

m−1∑
�=1

1

c(T �ω)

�∑
s=1

c̄(T sω)gk−1(s) if m ≥ 2,

0 if m = −1, 0, 1,
−m∑
�=2

1

c(T −�ω)

�−1∑
s=1

c̄(T −sω)gk−1(−s) if m ≤ −2.

Then for any integer m and for k ≥ 1

(Pω − I )gk(m) = gk−1(m).

Replace m by Xn and then take the expectation to obtain

Eω{gk(Xn+1)} = Eω{gk(Xn)} + Eω{gk−1(Xn)} for any n ≥ 0.
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It is straightforward to see that for each k ≥ 1

Eω{gk(Xn)} = 0 for any n ≥ 0. (10)

Equation (10) can be rewritten as

Eω

{
gk(Xn)

X2k−1
n

× X2k−1
n

(
√
n)2k−1

}
= 0.

We see that the limit of gk(m)/m2k−1 exists and so the limit of Eω{(Xn/√n)2k−1} equals 0.

In the next step we will compute the limit of gk(m)/m2k−1 by using the pointwise ergodic
theorem and Lemma 1.

Lemma 4. For each k ≥ 1 and gk defined as above, we have

lim
m→±∞

gk(m)

m2k−1 = 2k−1

(2k − 1)!σ
−2k+2

∫
�

1

c
dμ.

This limit is +∞ if at least one of c and c−1 is not integrable. It is denoted by dk .

The proof of Lemma 4 is left to the reader. From Lemma 4, for any ε > 0, there exists
M > 0 such that for any |m| > M ∣∣∣∣ gk(m)m2k−1dk

− 1

∣∣∣∣ < ε. (11)

Decomposing � = {|Xn| ≤ M} ∪ {|Xn| > M} and combining (10) and (11), we have∣∣∣∣Eω
{(

Xn√
n

)2k−1}∣∣∣∣ =
∣∣∣∣Eω

{
1

(
√
n)2k−1

(
X2k−1
n − gk(Xn)

dk

)
1{|Xn|≤M}

}

+ Eω

{
1

(
√
n)2k−1

(
X2k−1
n − gk(Xn)

dk

)
1{|Xn|>M}

}∣∣∣∣
≤ Eω

{
1

(
√
n)2k−1

∣∣∣∣X2k−1
n − gk(Xn)

dk

∣∣∣∣1{|Xn|≤M}
}

+ Eω

{( |Xn|√
n

)2k−1∣∣∣∣1 − gk(Xn)

X2k−1
n dk

∣∣∣∣1{|Xn|>M}
}

≤ ε + ε

√
Eω

{(
Xn√
n

)2(2k−1)}

for n large enough. By Proposition 1 the limit limn→∞ Eω{(Xn/√n)2(2k−1)} exists, and since
ε is as small as we need, we then obtain the desired result which completes Proposition 2.

3. An analogue to a Markov process with discrete space

We consider a Markov process (Xt )t∈[0,+∞) on Z withX0 = 0. The infinitesimal generator
is defined by

Lωf (k) = c(T k−1ω)f (k − 1)+ c(T kω)f (k + 1)− c̄(T kω)f (k).

We will now establish a CLT for a Markov process (Xt )t∈[0,+∞) without the use of a
martingale.
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Theorem 3. For almost all environments ω,

Xt√
t

d−→ N

(
0, 2

[ ∫
1

c
dμ

]−1)
as t → +∞.

The limiting distribution being a degenerate normal distribution if the integral is +∞.

This problem was also considered by Kawazu and Kesten, [4]. They did not use the method
of martingale but instead used a time change of a Brownian motion.

To prove Theorem 3 it is sufficient to show that for almost all environments ω

lim
t→+∞ Eω

{(
Xt√
t

)�}
= 0 if � = 2k − 1, lim

t→+∞ Eω

{(
Xt√
t

)�}
= (2k)!
k! 2k

σ � if � = 2k

for each � = 1, 2, 3, . . .. In this case σ 2 = 2[∫ (1/c) dμ]−1.

Lemma 5. Given a function ψ : Z → R there exists an unique function φ : Z → R such that

Lωφ = ψ, φ(1) = a, φ(−1) = b. (12)

Proof. By a similar argument as in Lemma 2 we can show that (12) has a unique solution
φ such that

• φ(1) = a and φ(−1) = b;

• φ(0) satisfies c(T −1ω)φ(−1)+ c(ω)φ(1)− c̄(ω)φ(0) = ψ(0);

• φ(m) = φ(1)+ [φ(1)− φ(0)]
m−1∑
�=1

c(ω)

c(T �ω)
+
m−1∑
�=1

1

c(T �ω)

�∑
s=1

ψ(s) if m ≥ 2;

• φ(m) = φ(−1)+[φ(−1)−φ(0)]
−m∑
�=2

c(T −1ω)

c(T −�ω)
+

−m∑
�=2

1

c(T −�ω)

�−1∑
s=1

ψ(−s) ifm ≤ −2.

Proposition 3. For almost all environments ω, we have

lim
t→+∞ Eω

{(
Xt√
t

)2k}
= (2k)!
k! 2k

σ 2k for each k ≥ 1.

This limit is null if c−1 is not integrable.

Proof. Fixing ω ∈ �, we consider a sequence of functions fk ≥ 0, defined on Z, such that

Lωfk ≡ fk−1 for k ≥ 1, f0 ≡ 1, fk(0) = 0 for k ≥ 1.

By Lemma 5 we determine a function f1 which satisfies f1(−1) = 1/c(T −1ω) and f1(1) = 0

f1(m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

m−1∑
�=1

�

c(T �ω)
if m ≥ 2,

0 if m = 0, 1
−m∑
�=1

�

c(T −�ω)
if m ≤ −1
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and for k ≥ 2 a function fk which satisfies fk(1) = fk(−1) = 0

fk(m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

m−1∑
�=1

1

c(T �ω)

�∑
s=1

fk−1(s) if m ≥ 2,

0 if m = −1, 0, 1,
−m∑
�=2

1

c(T −�ω)

�−1∑
s=1

fk−1(−s) if m ≤ −2.

Then Lωfk(m) = fk−1(m) for any integer m and for k ≥ 1. Replace m by Xt to obtain

Lωfk(Xt ) = fk−1(Xt ) for any t ≥ 0.

Hence we can show that for each k ≥ 1

Eω{fk(Xt )} = tk

k! for any t ≥ 0. (13)

Indeed, if h1(t) = Eω{f1(Xt )} then

Eω{Lωf1(Xt )} = lim
s→0

Eω

{
Eω{f1(Xt+s)/Xt } − f1(Xt )

s

}

= lim
s→0

Eω

{
f1(Xt+s)− f1(Xt )

s

}

= lim
s→0

h1(t + s)− h1(t)

s
= h′

1(t).

Since Eω{Lωf1(Xt )} = 1 implies h1(t) = t + β for t ≥ 0. And h1(0) = Eω{f1(X0)} = 0
implies β = 0, hence h1(t) = Eω{f1(Xt )} = t . By induction on k we obtain the proof of (13).

The expansion is similar to Proposition 1 in Section 2. The proof of Proposition 3 is complete.

Proposition 4. For almost all environments ω, we have

lim
t→+∞ Eω

{(
Xt√
t

)(2k−1)}
= 0 for each k ≥ 1.

Proof. Fixing ω ∈ � we consider a sequence of functions gk , defined on Z, such that

Lωgk ≡ gk−1 for k ≥ 1, g0 ≡ 0, gk(0) = 0 for k ≥ 1.

By Lemma 5 we can determine a function g1 which satisfies g1(−1) = −1/c(T −1ω) and
g1(1) = 1/c(ω)

g1(m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

m−1∑
�=0

1

c(T �ω)
if m ≥ 1,

0 if m = 0,

−
−m∑
�=1

1

c(T −�ω)
if m ≤ −1
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and for k ≥ 2 a function gk which satisfies gk(1) = gk(−1) = 0

gk(m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

m−1∑
�=1

1

c(T �ω)

�∑
s=1

gk−1(s) if m ≥ 2,

0 if m = −1, 0, 1,
−m∑
�=2

1

c(T −�ω)

�−1∑
s=1

gk−1(−s) if m ≤ −2.

The expansion is similar to that in Proposition 2 in Section 2. The proof of Proposition 4 is
thus complete.

Remark 1. We introduce the sequence of transition times, (τn)n∈N, that are the times whenXt
jumps i.e. τ0 = 0 and

τn = inf{t ≥ τn−1 : Xt �= Xτn−1}.
The times between transition times τn+1 − τn are called waiting times. It is well known that
the waiting times have an exponential distribution with the parameter c̄(T Xτnω) that depends
only on the position of Xt at time τn. In this case τn → ∞ as n → ∞.

The embedded process is given by Y0 = X0 = 0 and

Yn = Xτn.

Then (Yn)n≥0 is also the random walk with transition probabilities as in the previous section.
Hence we can deduce that (Xτn)n≥0 satisfies Theorem 2.

4. Diffusion in a stationary random environment

Let (�,A, μ) be a probability space equipped with a flow (Tx)x∈R that is ergodic and
preserves the measure μ. We consider two random variables a, b > 0 such that the functions
x �→ a(Txω) and x �→ b(Txω) are continuous. Now we look at where ω is fixed. The process
of the infinitesimal generator is defined by

Lωf (x) = 1

2a(Txω)

d

dx

(
b(Txω)

df

dx

)

with the initial condition X0 = 0.
This describes the problem associated to the stochastic differential equation (SDE)

dXt = σω(Xt ) dBt + μω(Xt ) dt, (14)

where (Bt )t≥0 is a Brownian motion, the coefficient of diffusion σ 2
ω(x) = b(Txω)/a(Txω) and

the drift μω(x) = (2a(Txω))−1(d/dx)(b(Txω)).

Theorem 4. Suppose that, almost anywhere ω ∈ �, the functions σ 2
ω(x) andμω(x) are locally

Lipschitz. Then, for almost all ω ∈ �, the solution (Xt )t≥0 of SDE (14) satisfies

Xt√
t

d−→ N

(
0,

[ ∫
�

a dμ
∫
�

1

b
dμ

]−1)
as t → +∞.

The limiting distribution is a degenerate normal distribution if at least one of the integrals is
+∞.
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Papanicolaou and Varadhan [7] established the CLT for the elliptic case in dimension d ≥ 1.
As in Theorem 2 we do not use any martingale to prove Theorem 4. We begin with a

continuous version of Lemma 1.

Lemma 6. Let u(x) and v(x) be two positive continuous functions and α a nonnegative integer.
Assume that limy→+∞(1/y)

∫ y
0 u(x) dx = ū > 0 and limx→+∞ v(x) = v̄ > 0. If both of ū

and v̄ are finite then

lim
y→+∞

1

yα+1

∫ y

0
xαu(x)v(x) dx = ūv̄

α + 1
(15)

else if at least one of ū and v̄ is infinite then the limit in (15) is +∞.

The proof of Lemma 6 is left to the reader.
Now we are going to show that for almost all environments ω

lim
t→+∞ Eω

{(
Xt√
t

)�}
=

⎧⎨
⎩

0 if � = 2k − 1,
(2k)!
k! 2k

σ � if � = 2k

for each � = 1, 2, 3, . . .. In this case σ 2 = [∫
�
a dμ

∫
�
(1/b) dμ]−1.

Proposition 5. For almost all environments ω, we have

lim
t→+∞ Eω

{(
Xt√
t

)2k}
= (2k)!
k! 2k

σ 2k

for each k ≥ 1. This limit is null if at least one of a and 1/b is not integrable.

This is the generalization of Theorem 4.1 in [3].
Proof. Fixing ω ∈ � we consider a sequence of functions fk , defined on R, such that

Lωfk ≡ fk−1 for k ≥ 1, f0 ≡ 1, fk(0) = 0 for k ≥ 1.

For example, we can take

f1(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ x

v=0

1

b(Tvω)

∫ v

u=0
2a(Tuω) du dv if x ≥ 0,

∫ 0

v=x
1

b(Tvω)

∫ 0

u=v
2a(Tuω) du dv if x < 0

and for k ≥ 2

fk(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ x

v=0

1

b(Tvω)

∫ v

u=0
2a(Tuω)fk−1(u) du dv if x ≥ 0,

∫ 0

v=x
1

b(Tvω)

∫ 0

u=v
2a(Tuω)fk−1(u) du dv if x < 0.

Lemma 7. For each k ≥ 1, we have

lim
x→±∞

fk(x)

x2k = 2k

(2k)!σ
−2k.

This limit is +∞ if at least one of a and 1/b is not integrable. It is denoted by �k .

The proof of Lemma 7 is left to the reader as a continuous version of Lemma 3.
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Moreover, by the hypothesis of the theorem, function fk ∈ C2 for each k ≥ 1, the process
Y
(k)
t , defined by Y (k)t = fk(Xt ), satisfies SDE (14) by using Itô’s lemma. We recall that

dfk(Xt ) = f ′
k(Xt )σω(Xt ) dBt + [f ′

k(Xt )μω(Xt )+ 1
2f

′′
k (Xt )σ

2
ω(Xt )] dt.

By calculating, dY (k)t = cω(Xt ) dBt + fk−1(Xt ) dt for each k ≥ 1 where f0 ≡ 1. Hence, it
follows that

Eω{fk(Xt )} = tk

k! for each k ≥ 1. (16)

Combining Lemma 7 and (16) we obtain∣∣∣∣Eλ,ω
{(

X2
t

t

)k}
− 1

k! �k
∣∣∣∣ < ε

for any ε > 0 and for t large enough. And hence the proof of Proposition 5 is complete.

Proposition 6. For almost all environments ω, we have

lim
t→+∞ Eω

{(
Xt√
t

)(2k−1)}
= 0 for each k ≥ 1.

Proof. Fixing ω ∈ � we consider a sequence of functions gk , defined on R, such that

Lωgk ≡ gk−1 for k ≥ 1, g0 ≡ 0, gk(0) = 0, for k ≥ 1.

For instance, we can take

g1(x) =
∫ x

v=0

1

b(Tvω)
dv if x ≥ 0, and g1(x) = −

∫ 0

v=x
1

b(Tvω)
dv if x < 0

and for k ≥ 2

gk(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ x

v=0

1

b(Tvω)

∫ v

u=0
2a(Tuω)gk−1(u) du dv if x ≥ 0,

∫ 0

v=x
1

b(Tvω)

∫ 0

u=v
2a(Tuω)gk−1(u) du dv if x < 0.

Lemma 8. For each k ≥ 1, we have

lim
x→±∞

gk(x)

x2k−1 = 2k−1

(2k − 1)!σ
−2k+2

∫
1

b
dμ.

This limit is +∞ if at least one of a and 1/b is not integrable.

The proof of Lemma 8 is left to the reader as a continuous version of Lemma 4.
Moreover, by the hypothesis of the theorem, function gk ∈ C2 for each k ≥ 1, the process

Z
(k)
t , defined by Z(k)t = gk(Xt ), satisfies SDE (14) by using Itô’s lemma. We recall that

dgk(Xt ) = g′
k(Xt )σω(Xt ) dBt + [g′

k(Xt )μω(Xt )+ 1
2g

′′
k (Xt )σ

2
ω(Xt )] dt.

By calculating, dZ(k)t = dω(Xt ) dBt + gk−1(Xt ) dt for each k ≥ 1 and where g0 ≡ 0. Hence,
it follows that

Eω{gk(Xt )} = 0 for each k ≥ 1. (17)
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Combining Lemma 8 and (17) we obtain

∣∣∣∣Eλ,ω
{(

Xt√
t

)2k−1}∣∣∣∣ < ε

for any ε > 0 and for t large enough. And hence the proof of Proposition 6 is complete.

Remark 2. In our model, there is no explosion in finite time under the assumptions concerning
σ 2
ω(x) and μω(x) for almost all ω ∈ �. Indeed, we assume that there exists 
 > 0 such that

limt↗
 Xt = ∞, where Xt is a solution of SDE (14). Lemma 7 ensures that fk(Xγ ) > 
k/k!
for some γ ≤ 
 and k ≥ 1. This is a contradiction since we know from (16) that

Eω{fk(Xγ )} = γ k

k! ≤ 
k

k! for each k ≥ 1.
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