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Abstract

The main aim of this paper is to prove the quenched central limit theorem for reversible
random walks in a stationary random environment on Z without having the integrability
condition on the conductance and without using any martingale. The method shown here
is particularly simple and was introduced by Depauw and Derrien [3]. More precisely, for
a givenrealization w of the environment, we consider the Poisson equation (P, —1)g = f,
and then use the pointwise ergodic theorem in [8] to treat the limit of solutions and then the
central limit theorem will be established by the convergence of moments. In particular,
there is an analogue to a Markov process with discrete space and the diffusion in a
stationary random environment.
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1. Introduction

Let (2, A,P) be a probability space. The definition of a random walk in a random
environment involves two ingredients:

1. The environment which is randomly chosen but remains fixed throughout the time
evolution.

2. The random walk whose transition probability is determined by the environment.

The space 2 is interpreted as the space of environments. For each w € 2, we define the random
walk in the environment w as the (time homogeneous) Markov chain (X},),>0 on Z with certain
(random) transition probabilities

p(wv-xv Y) :Pw{Xl = y/XO :x}'

The probability measure P, determines the distribution of the random walk in a given environ-
ment w. In this paper we study only the random walk with the initial condition X = 0,

PV {Xo =0} = 1.

The probability measure IP?U indicates the distribution of the random walk in a given environment
w with the initial position of the walk referred to as the Quenched law. For more information
about the random walk in a random environment and the Annealed law see [1], [6], and [9].
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Now we consider the following model for the random walk in a random environment. Let
(€2, 4, u) be a probability space and T be an invertible measure preserving transformation on
2, which is ergodic. More precisely, T acts on Q2 by

T:Qx7Z—>Q and (w,k) — Tro,

which is joint measurable and satisfies
1. Forany k, h € Z: T*¥*" = T*T" and T%0w = w.
2. T preserves the measure p: w(T*A) = n(A) for any k € Z.
3. T isergodic: if TKA = A (up to null sets) for all k € Z then 1(A) is equal to 0 or 1.

On the Z network, we assume that the conductivity of the edge between {k, k 4 1} is equal to
c(Tka)), where c is a positive measurable function on 2. Fix w € Q and consider a random
walk (X,)n>0 on Z where Xo = 0 and the transition probability p(w, k, h) is given by

pl@ik k+1) =P){X,1 =k+1/X, =k} = c(T*w) /&(T* w),

and
pik k—1) =P){X,1 =k —1/X, =k} = c(T* ) /&(T* w),

where ¢(w) = ¢(®) + ¢(T'w). These random walks are reversible since for all adjacent
vertices x, y in Z, we have ¢(T*w)p(w; x,y) = c(T’w)p(w; y, x). The Markov operator
f — P, f is defined by

P, f(k) = [e(T*w) fk — 1) + c(T*w) f (k + D]

&(Tkw)

When c is integrable but ¢~ ! not, Derriennic and Lin have proved, in an unpublished work,
the annealed central limit theorem (CLT) with null variance: lim,— 0o n~'E,(X2) = 0 in p-
measure, where E,, denotes the expectation relative to the randomness of the walk with the
environment being fixed. For the quenched version Depauw and Derrien [3] considered a
nonnegative solution f, defined on Z, of the Poisson equation (P, — I) f = 1 and that satisfies
f(0) = 0 to obtain the limit of the variance of the reversible random walk (X,),>0 without
using any martingale and without having any condition on function c except that ¢ > 0.

Theorem 1. (Depauw and Derrien [3].) For almost all environments w,

X2 1 -
lim ]Ew{—”} = [/—du/cdu} .
n——+00 n C

This limit is null if at least one of the integrals is +00.

When both of ¢ and ¢! are integrable, the quenched CLT, in the usual case, can be proved
by the method of martingale, first introduced by Kozlov, [5]. Unfortunately, this method does
not allow us to treat the case when ¢ or ¢! are not integrable. The aim of this paper is to
generalize Theorem 1 and to establish the quenched CLT without using any martingale and
without having any condition on function ¢ except that ¢ > 0. In the case when at least one
of ¢ and ¢! is not integrable, X,/ /n converges to the degenerate normal distribution. The
second method is adapted from [3] and leads to the following theorem.
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Theorem 2. For almost all environments w,

1 —1
"3>¢N<0,|:/—du/cd/{| ) asn — +0o.
c

The limiting distribution being a degenerate normal distribution if at least one of the integrals
is +00.

Throughout this paper, ‘2> denotes the convergence in distribution and N (A, o2) denotes the
normal distribution with mean % and variance o.

This paper is organized as follows. In Section 2 we prove Theorem 2. In Section 3 there is
an analogue to a Markov process with continuous time and discrete space. Finally, in Section 4
we consider the diffusion in a random environment. It is somewhat involved but we will show

the proof of the CLT explicitly.

2. Proof of Theorem 2

Consider a normal distribution Z ~ N (0, 02), and foreach ¢ = 1,2, 3, ..., we have

2
E{Zz} =0 if¢=2k—1 and E{z@}_ga‘f if € = 2k.

Using the method of moments introduced in [2, Theorem 30.2, page 390] to prove Theorem 2
it is sufficient to show that for almost all environments w

X, \! , 0 if € =2k —1
lim E =FE{Z"} = { k)
n—+00 “’{(ﬁ)} 2 —;'Z)kaﬁ if ¢ =2k

foreach ¢ = 1,2,3,.... Inthiscase 02 = [[(1/¢)du [ edu]™".
We begin with the following elementary lemma.

Lemma 1. Let u,, v, be two sequences of positive real numbers and a nonnegative integer
a € N. Assume that lim,,_, 5o (1/n) Z'g:l ug=u > 0andlim,_ v, =v > 0. If both of u
and v are finite

1 o uv

else if at least one of u and v is infinite then the limit in (1) being +o00.

Proof. We will prove that both of # and v are finite, with the other cases left to the reader.
For o = 0, we will show that
n

o1
ngn;o;;ugvg = uv. 2)

' Zue(vz —v)|+
1

—Zuglw —v|+v
nZ:]

<€

‘We have

IA

’ Z(W — u)v

=1

1
Dy
nl:l

1 n
'— Zugvg — Uuv
n

=1

IA

for any ¢ > 0 when n large enough, completing the proof of (2).
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Now assume that (1) is true for « > 0. We claim that it also holds for o + 1, that is

uv
ZE“HWW a1 3)

n—>oo nOH'

Let W, = 22’:1 £%uqvy, using Abel’s transformation

1 . a+1
not2 ZE Ueve = a+2 Z —h + D
=1

By the assumption lim,,_, », I = limnﬁoo(l/n““)Wn =uv/(x + 1), we have

Wg uv
I Ot+]
' (0l+1)(a+2)’ n“""zz g+ 1
1 'C ! - 1 uv
+1 b
+ n“+2; a+2|la+1
<e

for any & > 0 when n is large enough since (1/n%*2) 3} Veatl — (1/n ) D l((/n)”‘“ and
as n goes to co we will have the limit that is equal to fo &t dx = 1/(«x + 2). It follows that
limy, o I1 = uv/((¢ + 1)(o + 2)). Hence,

uv uv uv
ZWHWW + =

lim )
(a+1)(a+2) a+1 a+2

n— 00 na‘f‘z

which completes the proof of (3).

Lemma 2. Given a function ¥ : Z — R there exists a unique function ¢ : 7 — R such that

(Pp — D¢ =1, ¢(1) =a, ¢(—1) =b. 4)
Proof. Since
(Po — D¢ (0) = ¥ (0)
we have
(T '@)p(—1) + c(@)p(1) — &) (0) = ()P (0). &)
This determines ¢ (0).
For m > 2, we consider
(Py — Dp(m —1) = (m —1).
This is equivalent to
(T w)p(m) — p(m — D] = c(T" 2w)¢p(m — 1) — p(m — )] + &(T" W)y (m — 1)
and then by induction on m
m—1 4

m—1
6 = 6D+ 6D =901 1 f;e))+ZC(TZ YT o)
s=1
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Similarly for m < —2, we have

—m C(T_la)) —m 1 -1 o
=¢(—1 —1) —¢( B —_— T —5).
$(m) = p(=1) + [p(—1) — ¢( ”;c(rewﬁ;ca%@;“ @)Y (—s)

‘We have thus proved that ¢ is a unique solution of (4). We also deduce that a particular solution
¢ of the Poisson equation (P, — )¢ = ¥ is characterized by the values ¢ (—1), ¢ (0) and ¢ (1)
such that they satisfy (5).

Proposition 1. For almost all environments w, we have

2k
X 2k)!
lim E, = = —( ) o
n— 400 ﬁ 2k k!

for each k > 1. This limit is null if at least one of c and ¢ is not integrable.

This is the generalization of Theorem 1 (or [3, Theorem 0.1]).
Proof. Fixing w € Q we consider a sequence of functions f; > 0, defined on Z, such that
(Py— 1) fx = fr1 fork >1, fo=1, fx(0) =0 fork > 1.

By Lemma 2 we can determine the function f; which satisfies fj(—1) = ¢(w)/c(T ') and

fi) =0

m—1 1 l
Z - ZE(TSLU) ifm > 2,
=1 C(T w) s=1

fim) =10 ifm=0,1,
—m 1 -1
Yo ——— > T w)  ifm <1
=1 C(T w) s=0

and for k > 2 the function f; which satisfies fi(1) = fir(—1) =0

m—1 l
1
Y T AT ) fic @) itm =2,
=1 s=1
Je(m) =10 ifm=-1,0,1,
—m —1
1
Y ——— Y T w) fii(—s)  ifm < -2,
=2 C(T [Cl)) s=1

Then, for any integer m and for k > 1, we have

(Po — 1) fr(m) = fi—1(m).

Replace m by X,, and take the expectation to obtain

Eo{fi (Xn+1)} = Eof fi (Xi)} + Eol fi—1(Xn)}
for any n > 0. It follows that for each k > 1
I’lk
]Ew{fk(Xn)} ~ F (6)

when 7 is large enough since f;(0) = 0 by the definition of f; and Xy = 0 by the assumption
of the random walk X,,. The proof of (6) is by induction on k.
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Equation (6) can be rewritten as

g [feX) X3 1
“l x2  ak k!

We see that lim,,—,  fix(m)/ m? exists and so lim;, 00 E,{X Zk / nk} exists, completing the
proof.

In the next step we will compute the limit of fi(m)/m?* by using the pointwise ergodic
theorem (p.e.t.) and Lemma 1.

Lemma 3. For each k > 1, with fi defined as above, we have

li fk(m) 2k 2k
m —F— =-——0
m—+oo m2k (2k)!

(7
This limit is +00 if at least one of ¢ and ¢~ is not integrable. It is denoted by cy.
Proof. This limit is true for k = 1. Indeed, for the case m > 0, we have
-1 ¢
Sf1(m) 15 £ 1 1 o
=— — - T’ w).
m? m ; m ) c(Ttw) € ZC( @)

= s=1

Applying Lemma 1 and the p.e.t. for uy = 1/c¢(T*w), vp = (1/£) Zle ¢(T*w) and @ = 1 this
tends to o2 = [f(l/c) du fcdu]. The point is that, since ¢ > 0, the convergence is still
satisfied if one of these integrals is +oo (see [3]).

Assume that (7) is also true for k > 1, we claim that it holds for k + 1, that is

k+1
lim Jie41(m) _ 2kt —20k+1)
m—oo m20+D — (2k + 2)!

®)

‘We have
¢

[ 1 s\*_ 1
7T ;dT‘ ®) fils) = > (Z) (T w) 7z fi(s).

s=1

Again, applying Lemma 1 and the p.e.t. for u; = &(T*w), vy = (1/5%) fi(s) and & = 2k, this
tends to [, c du2*1/(2k + 1)1 o =2k Moreover,

—1 2k+1 14

frier(m) 1% ¢ 1 1 _

2D T 2. m c(T'w) £2k+1 2T ) fils).
=1 s=1

Again, applying Lemma 1 and the p.e.t. foru, = 1/c(T‘w), v, = (1/£**1) Zle (TP w) fr.(s)
and o = 2k + 1, this tends to 21 /(2(k 4 1))! 0 ~2**+D which completes the proof of (8).
Similarly, we have the same result for the case m < 0.
From Lemma 3, for any ¢ > 0, there exists M > 0 such that for any m > M
m2k

fum) e

<eg/2. (€))
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Decomposing Q = {|X,| < M} U {|X,| > M} and combining (6) and (9) we obtain

X, \* 1 X2 1 X,
) il - 2)

feXn) ) nk
1 1
+ n_k]E‘”{ <Xﬁ" - afk(&:)) 1{X,1|5M}”

fk(Xn) 1
I’L—k {IXn|>M}

X2k 1
fe(Xn) ek

1 2%k 1
+ _kEw Xn - _fk(Xn)
n Ck

-

1{Xn|sM}}

<&

for n large enough. Since ¢ is as small as we need, we obtain the desired result, which completes
Proposition 1.

Proposition 2. For almost all environments w, it holds that

. Xn 2k—1
nBToo Ew{ <ﬁ) } =0 foreachk > 1.

Proof. Fixing o € Q2 we consider a sequence of functions gi, defined on Z, such that
(Py — Dgk = gx—1 fork >1, g =0, g(0)=0 fork>1.

Again, by Lemma 2 we can determine the function g; which satisfies g;(1) = 1/c(w) and
gi(=1) = —1/e(T"'w)

m—1 1
> —— ifm>1,
= (T )
g1(m) =40 ifm =0,
—m
1 .
= c(Tw)

and for k > 2 the function g satisfies gx(1) = gx(—1) =0

m—1 1 4
s .
Y s D AT o)ga(s)  ifm =2,
£=1 (T w) s=1
gk(m) =10 ifm=—1,0,1,
—m 1 -1
s .
Z — ZC(T w)gk—1(—s) ifm < =2.
=2 C(T w) s=1

Then for any integer m and for k > 1
(Po — 1)gr(m) = gr—1(m).
Replace m by X,, and then take the expectation to obtain

]Ea){gk(Xn+1)} = Ea){gk(xn)} + Ew{gk—l(Xn)} for any n = 0.
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It is straightforward to see that for each k > 1
E,{gx(X,)} =0 foranyn > 0. (10)
Equation (10) can be rewritten as

ge(X,) X!
| x2%1 X ()T =0

We see that the limit of g (m)/m2k—1 exists and so the limit of Ew{(Xn/ﬁ)Zk_l} equals 0.

In the next step we will compute the limit of gi(m)/m>~! by using the pointwise ergodic
theorem and Lemma 1.

Lemma 4. For each k > 1 and gy defined as above, we have

k-1 1
lim gk(m) _ o 2%+2 | 2
m—oo m2k—1 2k — 1! QcC

du.

This limit is 400 if at least one of ¢ and ¢~ is not integrable. It is denoted by dy.
The proof of Lemma 4 is left to the reader. From Lemma 4, for any ¢ > 0, there exists

M > 0 such that for any [m| > M

1| <e. (1D

mzk—ldk

Decomposing Q = {|X,,| < M} U {|X,| > M} and combining (10) and (11), we have

X, \*! 1 _ (Xn)
(6 B v Gty )

1 — gk (Xn)
Ey{ —— x2k=1 _ SR -
B o (X0 = 22 |

‘ gk (m)

1 1 ak(Xy)
<E 1 |x2%-1_ 8LAn)iy
= w{(ﬁ)ﬂc—l n d {1Xn|=M}
X\ (X }
+ E 1—- =11
4<ﬁ> X |

coonfel )

for n large enough. By Proposition 1 the limit lim,,_, o0 Eo, {(X,,/+/n)**~D} exists, and since
¢ is as small as we need, we then obtain the desired result which completes Proposition 2.

3. An analogue to a Markov process with discrete space

We consider a Markov process (X;)c[0,+o00) On Z with X = 0. The infinitesimal generator
is defined by

Lo f(k) =c(T* o) fk — 1) + c(T*w) f(k + 1) — &(T*w) f (k).

We will now establish a CLT for a Markov process (X;):c[0,+00) Without the use of a
martingale.
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Theorem 3. For almost all environments w,

-1
ﬁﬂ)d\/(OZ[/ldu} ) ast — +00
Vi ’ c '

The limiting distribution being a degenerate normal distribution if the integral is +00.

This problem was also considered by Kawazu and Kesten, [4]. They did not use the method
of martingale but instead used a time change of a Brownian motion.
To prove Theorem 3 it is sufficient to show that for almost all environments @

lim &, (2 E =0 ift=2k—1 lim &, (2 ek, if £ = 2k

e\ 7 ) (=0 e AR\ ) TR NS

foreach ¢ = 1,2, 3, .... In this case 02 = 2[ [ (1/c) du] .

Lemma 5. Given a function ¥ : Z — R there exists an unique function ¢: Z — R such that
Lop =1, $(1) =a, ¢(=1) =0b. (12)

Proof. By a similar argument as in Lemma 2 we can show that (12) has a unique solution
¢ such that

o ¢(1) =aand p(—1) = b;
e ¢(0) satisfies c(T~'w)¢(—1) + c(@)¢p(1) — E(w)¢(0) = v (0);

m—1 m—1 1 4
@ 9m) =B+ B0 = 01 Y P+ 3 s S Uit = 2
=1 =1 s=1
BTG o U L Tl ,
o pm) = (D +[p-D—pO1Y D13 LN y(—gifm < 2.
Z; c(T~tw) ; c(T~w) ;

Proposition 3. For almost all environments w, we have

. X ¥ _ @Ry
I_I)HEOOEQ,{<$) } = WU foreachk > 1.

This limit is null if ¢~ is not integrable.

Proof. Fixing w € 2, we consider a sequence of functions f; > 0, defined on Z, such that
Lo fr = fi—1 fork > 1, fo=1, fx(0) =0 fork > 1.

By Lemma 5 we determine a function f] which satisfies fi(—1) = 1/¢(T ') and fi(1) =0

m—1 )
Z - ifm > 2,
= c(Ttw)

fim) =40 ifm=0,1

—m ¢
= c(T~*w)
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and for k > 2 a function f; which satisfies fx(1) = fr(—1) =0

m—1

=1
Se(m) =10

—m

=2

Z c(Ttw)

1 14

ifm > 2,

Si—1(s)
s=1
ifm=-1,0,1,

1 -1

Y ey 2o S ifm s 2.

=1

Then L, fr(m) = fx—1(m) for any integer m and for k > 1. Replace m by X; to obtain
Lo fi(Xy) = fr—1(Xy) foranyt > 0.

Hence we can show that for each k > 1

k

Eu{fi(X)} = % for any # > 0. (13)

Indeed, if h1(t) = Eo{ f1(X,)} then

Eu{Ly f1(Xy)} = liI%Ew{Ew{fl(Xt-i-s)éXt} - N (Xt)}

— lim Ew{ S1(Xis) — [1(Xp) }
s—0 s

— lim M = h/(1).
s—0 N

Since E,{L,, f1(X;)} = 1 implies h1(t) =t + B fort > 0. And h1(0) = E,{f1(X0)} =0
implies 8 = 0, hence h (1) = E,{ f1(X;)} = . By induction on k we obtain the proof of (13).
The expansion is similar to Proposition 1 in Section 2. The proof of Proposition 3 is complete.

Proposition 4. For almost all environments w, we have

X, \ %D
E — =0 foreachk > 1.
A(F) f=0 oreachis

Proof. Fixing w € Q we consider a sequence of functions g, defined on Z, such that

lim
t——+00

Logk = gk—1 fork >1, g =0, gk(0) =0 fork>1.
By Lemma 5 we can determine a function g; which satisfies g;(—1) = —1 /c(T_la)) and
gi(1) = 1/c(w)
m—1 1
> = ifm>1,
= c(Ttw)
g1(m) =40 ifm =0,
—m
1 .
YL tmet
= (T tw)
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and for k > 2 a function g; which satisfies g (1) = gx(—1) =0
m—1

1
Z T - ng i) iftm>2,

gr(m) = O ifm=-1,0,1,
—m 1 —1

ZC(T 7 )ng 1(=s) ifm < -2.

The expansion is similar to that in Proposition 2 in Section 2. The proof of Proposition 4 is
thus complete.

Remark 1. We introduce the sequence of transition times, (7,),eN, that are the times when X,
jumps i.e. 79 = 0 and
T, =inf{t > 11 Xy # X, _, ).

The times between transition times 7,41 — T, are called waiting times. It is well known that
the waiting times have an exponential distribution with the parameter ¢(7 %= w) that depends
only on the position of X; at time ;. In this case 7, — oo asn — oo.

The embedded process is given by Yo = X¢ = 0 and

Y, = X,.
Then (Y,)n>0 is also the random walk with transition probabilities as in the previous section.
Hence we can deduce that (X, ),>0 satisfies Theorem 2.
4. Diffusion in a stationary random environment

Let (2, A, u) be a probability space equipped with a flow (7y),er that is ergodic and
preserves the measure . We consider two random variables a, b > 0 such that the functions
x +— a(Tyw) and x +— b(Tyw) are continuous. Now we look at where w is fixed. The process
of the infinitesimal generator is defined by

1 d df
Lof(x)= 2a(Tow) dx (b(T w)—— )

with the initial condition X¢ = 0.
This describes the problem associated to the stochastic differential equation (SDE)

dX; = 0,(X;) dB; + pe(X,) dt, (14)

where (B;);>¢ is a Brownian motion, the coefficient of diffusion 63) (x) = b(Tyw)/a(Tyw) and
the drift j1,(x) = Qa(Tyw)) "' (d/dx) (b(Tyw)).

Theorem 4. Suppose that, almost anywhere w € Q, the functions aaz, (x) and j14,(x) are locally
Lipschitz. Then, for almost all o € Q, the solution (X;);>0 of SDE (14) satisfies

2 o] fon [ L] ") it

The limiting distribution is a degenerate normal distribution if at least one of the integrals is
+00.
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Papanicolaou and Varadhan [7] established the CLT for the elliptic case in dimension d > 1.
As in Theorem 2 we do not use any martingale to prove Theorem 4. We begin with a
continuous version of Lemma 1.

Lemma 6. Let u(x) and v(x) be two positive continuous functions and o a nonnegative integer.
Assume that limy_, 1 (1/y) foy u(x)ydx =u > 0 and limy_ 4o v(x) = v > 0. If both of u

and v are finite then

/y U (x) dx = —o
x“u(x)v(x)dx =

0 a+1

else if at least one of u and v is infinite then the limit in (15) is +oo0.

5)

im
y—>+400 yO""1

The proof of Lemma 6 is left to the reader.
Now we are going to show that for almost all environments w

X, ¢ 0 ifl =2k—1,
lim E — = 2!
100 “’Kﬁ)} %a‘f if ¢ = 2k
foreach ¢ = 1,2, 3, .... In this case 02 = [[qadu [o(1/b) dul=t.

Proposition 5. For almost all environments w, we have

X \* 2k)!
tim E,(2L) ] = B
1—>+00 Ji K12k

for each k > 1. This limit is null if at least one of a and 1/b is not integrable.
This is the generalization of Theorem 4.1 in [3].
Proof. Fixing w € Q2 we consider a sequence of functions f, defined on R, such that
L, fx = fxr—1 fork>1, fo=1, fx(0) =0 fork>1.

For example, we can take

X 1 v
/ / 2a(Ty,w)dudv if x >0,
v u=0

_ —o b(Tyw)
filx) = o 1 )
/ b(Tyw) / 2a(Tyw)dudv ifx <0
v=x w0) Ju=y
and for k > 2

X 1 v

/ 0 m/ Oza(Tuw)fkfl(u)du dv ifx >0,
v= v w=

iy =9 |

1 0
2a(Tu) fim1 () dudvif x < 0.
/v=x b(Tyw) /uzu a(Ty) fr—1(u)dudv ifx <

Lemma 7. For each k > 1, we have

Jie(x) _ 2k 2k
im ——=——0 .
x—>*oo x2k (2k)!

This limit is 400 if at least one of a and 1/b is not integrable. It is denoted by .

The proof of Lemma 7 is left to the reader as a continuous version of Lemma 3.
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Moreover, by the hypothesis of the theorem, function f; € €2 for each k > 1, the process
Y,(k), defined by Y, [(k) = fr(X}), satisfies SDE (14) by using It6’s lemma. We recall that

dfi(X)) = fiX)0w(X) dB; + [ LX) 1o (X:) + % Y (X)o2(X)]dt.
By calculating, dYt(k) = co,(X;)dB; + fr—1(X;)dt for each k > 1 where fy = 1. Hence, it

follows that .

Eu{fi(X:)} = % foreachk > 1. (16)

Combining Lemma 7 and (16) we obtain

5 x2\* 1
R\ Kty

for any ¢ > 0 and for ¢ large enough. And hence the proof of Proposition 5 is complete.

<é&

Proposition 6. For almost all environments w, we have

X[ 2k—1)
zilgloo Ew{ (ﬁ) } =0 foreachk > 1.

Proof. Fixing w € Q2 we consider a sequence of functions gi, defined on R, such that
Lygk = gk—1 fork > 1, g0 =0, gx(0) =0, fork>1.

For instance, we can take

x 1 0 1
(x):/ dv ifx >0, and (x):—/ dv ifx <O
81 v=0 b(TLw) 81 v=x D(Tyw)
and for k > 2
X 1 v
2a(T,w)gr—1(w)dudv ifx >0,
/U:o b(Tyw) /u:o ekt
gk(x) =

0 1 0
2a(Tyw)grk—1(w)dudv ifx <O.
/v:x b(T) /u:v net

Lemma 8. For each k > 1, we have

k—1
lim 8k (x) _ 2 o —2k+2 1
x—+oo x2k=1 2k — 1)!

—du.
bl/«

This limit is 400 if at least one of a and 1/b is not integrable.

The proof of Lemma 8 is left to the reader as a continuous version of Lemma 4.
Moreover, by the hypothesis of the theorem, function g; € € for each k > 1, the process
Zt(k), defined by Zt(k) = gr(X}), satisfies SDE (14) by using Itd’s lemma. We recall that

dge (X)) = g4(X1)0w(X,) dB; + (g (Xt (X)) + Sgl (XDoZ(X)1dt.

By calculating, le(k) =d,(X;)dB; + gr—1(X;) dt for each k > 1 and where gg = 0. Hence,
it follows that
Ep{gr(X;)} =0 foreachk > 1. (17)
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Combining Lemma 8 and (17) we obtain

(o))

for any ¢ > 0 and for ¢ large enough. And hence the proof of Proposition 6 is complete.

<¢é&

Remark 2. In our model, there is no explosion in finite time under the assumptions concerning

002) (x) and p(x) for almost all w € Q2. Indeed, we assume that there exists I' > 0 such that

lim; ~r X; = oo, where X; is a solution of SDE (14). Lemma 7 ensures that f;(X,) > Fk/k!
for some y < I" and k > 1. This is a contradiction since we know from (16) that

J/k Fk

Eo{fr (X))} = o . for each k > 1.
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