A QUENCHED CENTRAL LIMIT THEOREM FOR REVERSIBLE RANDOM WALKS IN A RANDOM ENVIRONMENT ON $\mathbb Z$

HOANG-CHUONG LAM,* Can Tho University and Ben Gurion University

Abstract

The main aim of this paper is to prove the quenched central limit theorem for reversible random walks in a stationary random environment on $\mathbb Z$ without having the integrability condition on the conductance and without using any martingale. The method shown here is particularly simple and was introduced by Depauw and Derrien [3]. More precisely, for a given realization ω of the environment, we consider the Poisson equation $(P_{\omega}-I)g=f$, and then use the pointwise ergodic theorem in [8] to treat the limit of solutions and then the central limit theorem will be established by the convergence of moments. In particular, there is an analogue to a Markov process with discrete space and the diffusion in a stationary random environment.

Keywords: Quenched central limit theorem; reversible random walk in random environment

2010 Mathematics Subject Classification: Primary 60J15; 60F05 Secondary 60J27; 60J60

1. Introduction

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. The definition of a random walk in a random environment involves two ingredients:

- 1. The environment which is randomly chosen but remains fixed throughout the time evolution.
- 2. The random walk whose transition probability is determined by the environment.

The space Ω is interpreted as the space of environments. For each $\omega \in \Omega$, we define the random walk in the environment ω as the (time homogeneous) Markov chain $(X_n)_{n\geq 0}$ on $\mathbb Z$ with certain (random) transition probabilities

$$p(\omega, x, y) = \mathbb{P}_{\omega} \{ X_1 = y / X_0 = x \}.$$

The probability measure \mathbb{P}_{ω} determines the distribution of the random walk in a given environment ω . In this paper we study only the random walk with the initial condition $X_0 = 0$,

$$\mathbb{P}_{\omega}^{0}\{X_{0}=0\}=1.$$

The probability measure \mathbb{P}^0_ω indicates the distribution of the random walk in a given environment ω with the initial position of the walk referred to as *the Quenched law*. For more information about the random walk in a random environment and *the Annealed law* see [1], [6], and [9].

Received 8 May 2013; revision received 13 January 2014.

Email address: lhchuong@ctu.edu.vn

^{*} Postal address: Department of Mathematics, Can Tho University, Can Tho City, Vietnam.

Now we consider the following model for the random walk in a random environment. Let $(\Omega, \mathcal{A}, \mu)$ be a probability space and T be an invertible measure preserving transformation on Ω , which is ergodic. More precisely, T acts on Ω by

$$T: \Omega \times \mathbb{Z} \to \Omega$$
 and $(\omega, k) \mapsto T^k \omega$,

which is joint measurable and satisfies

- 1. For any $k, h \in \mathbb{Z}$: $T^{k+h} = T^k T^h$ and $T^0 \omega = \omega$.
- 2. T preserves the measure $\mu: \mu(T^k A) = \mu(A)$ for any $k \in \mathbb{Z}$.
- 3. T is ergodic: if $T^k A = A$ (up to null sets) for all $k \in \mathbb{Z}$ then $\mu(A)$ is equal to 0 or 1.

On the \mathbb{Z} network, we assume that the conductivity of the edge between $\{k, k+1\}$ is equal to $c(T^k\omega)$, where c is a positive measurable function on Ω . Fix $\omega \in \Omega$ and consider a random walk $(X_n)_{n\geq 0}$ on \mathbb{Z} where $X_0=0$ and the transition probability $p(\omega,k,h)$ is given by

$$p(\omega; k, k+1) = \mathbb{P}_{\omega}^{0} \{ X_{n+1} = k + 1/X_n = k \} = c(T^k \omega) / \bar{c}(T^k \omega),$$

and

$$p(\omega; k, k-1) = \mathbb{P}^0_{\omega} \{ X_{n+1} = k - 1/X_n = k \} = c(T^{k-1}\omega)/\bar{c}(T^k\omega),$$

where $\bar{c}(\omega) = c(\omega) + c(T^{-1}\omega)$. These random walks are reversible since for all adjacent vertices x, y in \mathbb{Z} , we have $\bar{c}(T^x\omega)p(\omega; x, y) = \bar{c}(T^y\omega)p(\omega; y, x)$. The Markov operator $f \mapsto P_{\omega}f$ is defined by

$$P_{\omega}f(k) = \frac{1}{\bar{c}(T^k\omega)}[c(T^{k-1}\omega)f(k-1) + c(T^k\omega)f(k+1)].$$

When c is integrable but c^{-1} not, Derriennic and Lin have proved, in an unpublished work, the annealed central limit theorem (CLT) with null variance: $\lim_{n\to\infty} n^{-1}\mathbb{E}_{\omega}(X_n^2) = 0$ in μ -measure, where \mathbb{E}_{ω} denotes the expectation relative to the randomness of the walk with the environment being fixed. For the quenched version Depauw and Derrien [3] considered a nonnegative solution f, defined on \mathbb{Z} , of the Poisson equation $(P_{\omega} - I)f = 1$ and that satisfies f(0) = 0 to obtain the limit of the variance of the reversible random walk $(X_n)_{n\geq 0}$ without using any martingale and without having any condition on function c except that c > 0.

Theorem 1. (Depaise and Derrien [3].) For almost all environments ω ,

$$\lim_{n \to +\infty} \mathbb{E}_{\omega} \left\{ \frac{X_n^2}{n} \right\} = \left[\int \frac{1}{c} \, \mathrm{d}\mu \int c \, \mathrm{d}\mu \right]^{-1}.$$

This limit is null if at least one of the integrals is $+\infty$.

When both of c and c^{-1} are integrable, the quenched CLT, in the usual case, can be proved by the method of martingale, first introduced by Kozlov, [5]. Unfortunately, this method does not allow us to treat the case when c or c^{-1} are not integrable. The aim of this paper is to generalize Theorem 1 and to establish the quenched CLT without using any martingale and without having any condition on function c except that c > 0. In the case when at least one of c and c^{-1} is not integrable, X_n/\sqrt{n} converges to the degenerate normal distribution. The second method is adapted from [3] and leads to the following theorem.

Theorem 2. For almost all environments ω ,

$$\frac{X_n}{\sqrt{n}} \xrightarrow{\mathrm{D}} \mathcal{N}\left(0, \left[\int \frac{1}{c} \,\mathrm{d}\mu \int c \,\mathrm{d}\mu\right]^{-1}\right) \ as \ n \to +\infty.$$

The limiting distribution being a degenerate normal distribution if at least one of the integrals is $+\infty$.

Throughout this paper, $\overset{\text{D}}{\rightarrow}$ denotes the convergence in distribution and $\mathcal{N}(\lambda, \sigma^2)$ denotes the normal distribution with mean λ and variance σ^2 .

This paper is organized as follows. In Section 2 we prove Theorem 2. In Section 3 there is an analogue to a Markov process with continuous time and discrete space. Finally, in Section 4 we consider the diffusion in a random environment. It is somewhat involved but we will show the proof of the CLT explicitly.

2. Proof of Theorem 2

Consider a normal distribution $Z \sim \mathcal{N}(0, \sigma^2)$, and for each $\ell = 1, 2, 3, \dots$, we have

$$\mathbb{E}\{Z^{\ell}\} = 0 \quad \text{if } \ell = 2k - 1 \quad \text{and} \quad \mathbb{E}\{Z^{\ell}\} = \frac{(2k)!}{k! \, 2^k} \sigma^{\ell} \quad \text{if } \ell = 2k.$$

Using the method of moments introduced in [2, Theorem 30.2, page 390] to prove Theorem 2 it is sufficient to show that for almost all environments ω

$$\lim_{n \to +\infty} \mathbb{E}_{\omega} \left\{ \left(\frac{X_n}{\sqrt{n}} \right)^{\ell} \right\} = \mathbb{E} \{ Z^{\ell} \} = \begin{cases} 0 & \text{if } \ell = 2k - 1 \\ \frac{(2k)!}{k! \, 2^k} \sigma^{\ell} & \text{if } \ell = 2k \end{cases}$$

for each $\ell = 1, 2, 3, \dots$ In this case $\sigma^2 = [\int (1/c) d\mu \int c d\mu]^{-1}$.

We begin with the following elementary lemma.

Lemma 1. Let u_n , v_n be two sequences of positive real numbers and a nonnegative integer $\alpha \in \mathbb{N}$. Assume that $\lim_{n\to\infty} (1/n) \sum_{\ell=1}^n u_\ell = u > 0$ and $\lim_{n\to\infty} v_n = v > 0$. If both of u and v are finite

$$\lim_{n \to \infty} \frac{1}{n^{\alpha+1}} \sum_{\ell=1}^{n} \ell^{\alpha} u_{\ell} v_{\ell} = \frac{uv}{\alpha+1}$$
 (1)

else if at least one of u and v is infinite then the limit in (1) being $+\infty$.

Proof. We will prove that both of u and v are finite, with the other cases left to the reader. For $\alpha = 0$, we will show that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{\ell=1}^{n} u_{\ell} v_{\ell} = u v. \tag{2}$$

We have

$$\left| \frac{1}{n} \sum_{\ell=1}^{n} u_{\ell} v_{\ell} - u v \right| \leq \left| \frac{1}{n} \sum_{\ell=1}^{n} u_{\ell} (v_{\ell} - v) \right| + \left| \frac{1}{n} \sum_{\ell=1}^{n} (u_{\ell} - u) v \right|$$

$$\leq \frac{1}{n} \sum_{\ell=1}^{n} u_{\ell} |v_{\ell} - v| + v \left| \frac{1}{n} \sum_{\ell=1}^{n} u_{\ell} - u \right|$$

for any $\varepsilon > 0$ when *n* large enough, completing the proof of (2).

Now assume that (1) is true for $\alpha \geq 0$. We claim that it also holds for $\alpha + 1$, that is

$$\lim_{n \to \infty} \frac{1}{n^{\alpha+2}} \sum_{\ell=1}^{n} \ell^{\alpha+1} u_{\ell} v_{\ell} = \frac{uv}{\alpha+2}.$$
 (3)

Let $W_n = \sum_{\ell=1}^n \ell^{\alpha} u_{\ell} v_{\ell}$, using Abel's transformation

$$\frac{1}{n^{\alpha+2}} \sum_{\ell=1}^{n} \ell^{\alpha+1} u_{\ell} v_{\ell} = -\frac{1}{n^{\alpha+2}} \sum_{\ell=1}^{n-1} W_{\ell} + \frac{1}{n^{\alpha+1}} W_{n} = -I_{1} + I_{2}.$$

By the assumption $\lim_{n\to\infty} I_2 = \lim_{n\to\infty} (1/n^{\alpha+1}) W_n = uv/(\alpha+1)$, we have

$$\left| I_1 - \frac{uv}{(\alpha+1)(\alpha+2)} \right| \le \frac{1}{n^{\alpha+2}} \sum_{\ell=1}^{n-1} \ell^{\alpha+1} \left| \frac{W_{\ell}}{\ell^{\alpha+1}} - \frac{uv}{\alpha+1} \right|$$

$$+ \left| \frac{1}{n^{\alpha+2}} \sum_{\ell=1}^{n-1} \ell^{\alpha+1} - \frac{1}{\alpha+2} \left| \frac{uv}{\alpha+1} \right|$$

for any $\varepsilon > 0$ when n is large enough since $(1/n^{\alpha+2}) \sum_{\ell=1}^{n-1} \ell^{\alpha+1} = (1/n) \sum_{\ell=1}^{n-1} (\ell/n)^{\alpha+1}$ and as n goes to ∞ we will have the limit that is equal to $\int_0^1 x^{\alpha+1} dx = 1/(\alpha+2)$. It follows that $\lim_{n\to\infty} I_1 = uv/((\alpha+1)(\alpha+2))$. Hence,

$$\lim_{n\to\infty} \frac{1}{n^{\alpha+2}} \sum_{\ell=1}^n \ell^{\alpha+1} u_\ell v_\ell = -\frac{uv}{(\alpha+1)(\alpha+2)} + \frac{uv}{\alpha+1} = \frac{uv}{\alpha+2},$$

which completes the proof of (3).

Lemma 2. Given a function $\psi: \mathbb{Z} \to \mathbb{R}$ there exists a unique function $\phi: \mathbb{Z} \to \mathbb{R}$ such that

$$(P_{\omega} - I)\phi = \psi, \qquad \phi(1) = a, \qquad \phi(-1) = b.$$
 (4)

Proof. Since

$$(P_{\omega} - I)\phi(0) = \psi(0)$$

we have

$$c(T^{-1}\omega)\phi(-1) + c(\omega)\phi(1) - \bar{c}(\omega)\phi(0) = \bar{c}(\omega)\psi(0). \tag{5}$$

This determines $\phi(0)$.

For $m \geq 2$, we consider

$$(P_{\omega} - I)\phi(m-1) = \psi(m-1).$$

This is equivalent to

$$c(T^{m-1}\omega)[\phi(m)-\phi(m-1)] = c(T^{m-2}\omega)[\phi(m-1)-\phi(m-2)] + \bar{c}(T^{m-1}\omega)\psi(m-1)$$

and then by induction on m

$$\phi(m) = \phi(1) + [\phi(1) - \phi(0)] \sum_{\ell=1}^{m-1} \frac{c(\omega)}{c(T^{\ell}\omega)} + \sum_{\ell=1}^{m-1} \frac{1}{c(T^{\ell}\omega)} \sum_{s=1}^{\ell} \bar{c}(T^{s}\omega) \psi(s).$$

Similarly for $m \leq -2$, we have

$$\phi(m) = \phi(-1) + [\phi(-1) - \phi(0)] \sum_{\ell=2}^{-m} \frac{c(T^{-1}\omega)}{c(T^{-\ell}\omega)} + \sum_{\ell=2}^{-m} \frac{1}{c(T^{-\ell}\omega)} \sum_{s=1}^{\ell-1} \bar{c}(T^{-s}\omega) \psi(-s).$$

We have thus proved that ϕ is a unique solution of (4). We also deduce that a particular solution ϕ of the Poisson equation $(P_{\omega} - I)\phi = \psi$ is characterized by the values $\phi(-1)$, $\phi(0)$ and $\phi(1)$ such that they satisfy (5).

Proposition 1. For almost all environments ω , we have

$$\lim_{n \to +\infty} \mathbb{E}_{\omega} \left\{ \left(\frac{X_n}{\sqrt{n}} \right)^{2k} \right\} = \frac{(2k)!}{2^k k!} \sigma^{2k}$$

for each $k \geq 1$. This limit is null if at least one of c and c^{-1} is not integrable.

This is the generalization of Theorem 1 (or [3, Theorem 0.1]).

Proof. Fixing $\omega \in \Omega$ we consider a sequence of functions $f_k \geq 0$, defined on \mathbb{Z} , such that

$$(P_{\omega} - I) f_k \equiv f_{k-1}$$
 for $k \ge 1$, $f_0 \equiv 1$, $f_k(0) = 0$ for $k \ge 1$.

By Lemma 2 we can determine the function f_1 which satisfies $f_1(-1) = \bar{c}(\omega)/c(T^{-1}\omega)$ and $f_1(1) = 0$

$$f_{1}(m) = \begin{cases} \sum_{\ell=1}^{m-1} \frac{1}{c(T^{\ell}\omega)} \sum_{s=1}^{\ell} \bar{c}(T^{s}\omega) & \text{if } m \geq 2, \\ 0 & \text{if } m = 0, 1, \\ \sum_{\ell=1}^{-m} \frac{1}{c(T^{-\ell}\omega)} \sum_{s=0}^{\ell-1} \bar{c}(T^{-s}\omega) & \text{if } m \leq -1 \end{cases}$$

and for $k \ge 2$ the function f_k which satisfies $f_k(1) = f_k(-1) = 0$

$$f_k(m) = \begin{cases} \sum_{\ell=1}^{m-1} \frac{1}{c(T^{\ell}\omega)} \sum_{s=1}^{\ell} \bar{c}(T^s\omega) f_{k-1}(s) & \text{if } m \ge 2, \\ 0 & \text{if } m = -1, 0, 1, \\ \sum_{\ell=2}^{-m} \frac{1}{c(T^{-\ell}\omega)} \sum_{s=1}^{\ell-1} \bar{c}(T^{-s}\omega) f_{k-1}(-s) & \text{if } m \le -2. \end{cases}$$

Then, for any integer m and for $k \ge 1$, we have

$$(P_{\omega} - I)f_k(m) = f_{k-1}(m).$$

Replace m by X_n and take the expectation to obtain

$$\mathbb{E}_{\omega}\{f_k(X_{n+1})\} = \mathbb{E}_{\omega}\{f_k(X_n)\} + \mathbb{E}_{\omega}\{f_{k-1}(X_n)\}\$$

for any $n \ge 0$. It follows that for each $k \ge 1$

$$\mathbb{E}_{\omega}\{f_k(X_n)\} \sim \frac{n^k}{k!} \tag{6}$$

when *n* is large enough since $f_k(0) = 0$ by the definition of f_k and $X_0 = 0$ by the assumption of the random walk X_n . The proof of (6) is by induction on *k*.

Equation (6) can be rewritten as

$$\mathbb{E}_{\omega}\left\{\frac{f_k(X_n)}{X_n^{2k}}\frac{X_n^{2k}}{n^k}\right\} \sim \frac{1}{k!}.$$

We see that $\lim_{m\to\infty} f_k(m)/m^{2k}$ exists and so $\lim_{n\to+\infty} \mathbb{E}_{\omega}\{X_n^{2k}/n^k\}$ exists, completing the proof.

In the next step we will compute the limit of $f_k(m)/m^{2k}$ by using the pointwise ergodic theorem (p.e.t.) and Lemma 1.

Lemma 3. For each $k \ge 1$, with f_k defined as above, we have

$$\lim_{m \to \pm \infty} \frac{f_k(m)}{m^{2k}} = \frac{2^k}{(2k)!} \sigma^{-2k}.$$
 (7)

This limit is $+\infty$ if at least one of c and c^{-1} is not integrable. It is denoted by c_k .

Proof. This limit is true for k = 1. Indeed, for the case m > 0, we have

$$\frac{f_1(m)}{m^2} = \frac{1}{m} \sum_{\ell=1}^{m-1} \left(\frac{\ell}{m}\right) \frac{1}{c(T^\ell \omega)} \frac{1}{\ell} \sum_{s=1}^{\ell} \bar{c}(T^s \omega).$$

Applying Lemma 1 and the p.e.t. for $u_{\ell} = 1/c(T^{\ell}\omega)$, $v_{\ell} = (1/\ell) \sum_{s=1}^{\ell} \bar{c}(T^{s}\omega)$ and $\alpha = 1$ this tends to $\sigma^{-2} = [\int (1/c) d\mu \int c d\mu]$. The point is that, since c > 0, the convergence is still satisfied if one of these integrals is $+\infty$ (see [3]).

Assume that (7) is also true for $k \ge 1$, we claim that it holds for k + 1, that is

$$\lim_{m \to \infty} \frac{f_{k+1}(m)}{m^{2(k+1)}} = \frac{2^{k+1}}{(2k+2)!} \sigma^{-2(k+1)}.$$
 (8)

We have

$$\frac{1}{\ell^{2k+1}} \sum_{s=1}^{\ell} \bar{c}(T^s \omega) f_k(s) = \frac{1}{\ell} \sum_{s=1}^{\ell} \left(\frac{s}{\ell}\right)^{2k} \bar{c}(T^s \omega) \frac{1}{s^{2k}} f_k(s).$$

Again, applying Lemma 1 and the p.e.t. for $u_s = \bar{c}(T^s\omega)$, $v_s = (1/s^{2k})f_k(s)$ and $\alpha = 2k$, this tends to $\int_{\Omega} c \, \mathrm{d}\mu 2^{k+1}/(2k+1)! \, \sigma^{-2k}$. Moreover,

$$\frac{f_{k+1}(m)}{m^{2(k+1)}} = \frac{1}{m} \sum_{\ell=1}^{m-1} \left(\frac{\ell}{m}\right)^{2k+1} \frac{1}{c(T^{\ell}\omega)} \frac{1}{\ell^{2k+1}} \sum_{s=1}^{\ell} \bar{c}(T^{s}\omega) f_{k}(s).$$

Again, applying Lemma 1 and the p.e.t. for $u'_{\ell} = 1/c(T^{\ell}\omega)$, $v'_{\ell} = (1/\ell^{2k+1})\sum_{s=1}^{\ell} \bar{c}(T^{s}\omega)f_{k}(s)$ and $\alpha = 2k+1$, this tends to $2^{k+1}/(2(k+1))! \sigma^{-2(k+1)}$ which completes the proof of (8). Similarly, we have the same result for the case m < 0.

From Lemma 3, for any $\varepsilon > 0$, there exists M > 0 such that for any m > M

$$\left| \frac{m^{2k}}{f_k(m)} - \frac{1}{c_k} \right| < \varepsilon/2. \tag{9}$$

Decomposing $\Omega = \{|X_n| \le M\} \cup \{|X_n| > M\}$ and combining (6) and (9) we obtain

$$\left| \mathbb{E}_{\omega} \left\{ \left(\frac{X_n}{\sqrt{n}} \right)^{2k} \right\} - \frac{1}{k! c_k} \right| \approx \left| \mathbb{E}_{\omega} \left\{ \left(\frac{X_n^{2k}}{f_k(X_n)} - \frac{1}{c_k} \right) \frac{f_k(X_n)}{n^k} \mathbf{1}_{\{|X_n| > M\}} \right\} \right|$$

$$+ \frac{1}{n^k} \mathbb{E}_{\omega} \left\{ \left(X_n^{2k} - \frac{1}{c_k} f_k(X_n) \right) \mathbf{1}_{\{|X_n| \le M\}} \right\} \right|$$

$$\leq \mathbb{E}_{\omega} \left\{ \left| \frac{X_n^{2k}}{f_k(X_n)} - \frac{1}{c_k} \left| \frac{f_k(X_n)}{n^k} \mathbf{1}_{\{|X_n| \ge M\}} \right| \right\}$$

$$+ \frac{1}{n^k} \mathbb{E}_{\omega} \left\{ \left| X_n^{2k} - \frac{1}{c_k} f_k(X_n) \right| \mathbf{1}_{\{|X_n| \le M\}} \right\}$$

$$< \varepsilon$$

for *n* large enough. Since ε is as small as we need, we obtain the desired result, which completes Proposition 1.

Proposition 2. For almost all environments ω , it holds that

$$\lim_{n \to +\infty} \mathbb{E}_{\omega} \left\{ \left(\frac{X_n}{\sqrt{n}} \right)^{2k-1} \right\} = 0 \quad \text{for each } k \ge 1.$$

Proof. Fixing $\omega \in \Omega$ we consider a sequence of functions g_k , defined on \mathbb{Z} , such that

$$(P_{\omega} - I)g_k \equiv g_{k-1}$$
 for $k \ge 1$, $g_0 \equiv 0$, $g_k(0) = 0$ for $k \ge 1$.

Again, by Lemma 2 we can determine the function g_1 which satisfies $g_1(1) = 1/c(\omega)$ and $g_1(-1) = -1/c(T^{-1}\omega)$

$$g_1(m) = \begin{cases} \sum_{\ell=0}^{m-1} \frac{1}{c(T^{\ell}\omega)} & \text{if } m \ge 1, \\ 0 & \text{if } m = 0, \\ -\sum_{\ell=1}^{m} \frac{1}{c(T^{-\ell}\omega)} & \text{if } m \le -1 \end{cases}$$

and for $k \ge 2$ the function g_k satisfies $g_k(1) = g_k(-1) = 0$

$$g_k(m) = \begin{cases} \sum_{\ell=1}^{m-1} \frac{1}{c(T^{\ell}\omega)} \sum_{s=1}^{\ell} \bar{c}(T^s\omega) g_{k-1}(s) & \text{if } m \ge 2, \\ 0 & \text{if } m = -1, 0, 1, \\ \sum_{\ell=2}^{-m} \frac{1}{c(T^{-\ell}\omega)} \sum_{s=1}^{\ell-1} \bar{c}(T^{-s}\omega) g_{k-1}(-s) & \text{if } m \le -2. \end{cases}$$

Then for any integer m and for $k \geq 1$

$$(P_{\omega} - I)g_k(m) = g_{k-1}(m).$$

Replace m by X_n and then take the expectation to obtain

$$\mathbb{E}_{\omega}\{g_k(X_{n+1})\} = \mathbb{E}_{\omega}\{g_k(X_n)\} + \mathbb{E}_{\omega}\{g_{k-1}(X_n)\} \quad \text{for any } n \ge 0.$$

It is straightforward to see that for each $k \ge 1$

$$\mathbb{E}_{\omega}\{g_k(X_n)\} = 0 \quad \text{for any } n \ge 0. \tag{10}$$

Equation (10) can be rewritten as

$$\mathbb{E}_{\omega} \left\{ \frac{g_k(X_n)}{X_n^{2k-1}} \times \frac{X_n^{2k-1}}{(\sqrt{n})^{2k-1}} \right\} = 0.$$

We see that the limit of $g_k(m)/m^{2k-1}$ exists and so the limit of $\mathbb{E}_{\omega}\{(X_n/\sqrt{n})^{2k-1}\}$ equals 0.

In the next step we will compute the limit of $g_k(m)/m^{2k-1}$ by using the pointwise ergodic theorem and Lemma 1.

Lemma 4. For each $k \ge 1$ and g_k defined as above, we have

$$\lim_{m \to \pm \infty} \frac{g_k(m)}{m^{2k-1}} = \frac{2^{k-1}}{(2k-1)!} \sigma^{-2k+2} \int_{\Omega} \frac{1}{c} d\mu.$$

This limit is $+\infty$ if at least one of c and c^{-1} is not integrable. It is denoted by d_k .

The proof of Lemma 4 is left to the reader. From Lemma 4, for any $\varepsilon > 0$, there exists M > 0 such that for any |m| > M

$$\left| \frac{g_k(m)}{m^{2k-1}d_k} - 1 \right| < \varepsilon. \tag{11}$$

Decomposing $\Omega = \{|X_n| \leq M\} \cup \{|X_n| > M\}$ and combining (10) and (11), we have

$$\begin{split} \left| \mathbb{E}_{\omega} \left\{ \left(\frac{X_n}{\sqrt{n}} \right)^{2k-1} \right\} \right| &= \left| \mathbb{E}_{\omega} \left\{ \frac{1}{(\sqrt{n})^{2k-1}} \left(X_n^{2k-1} - \frac{g_k(X_n)}{d_k} \right) \mathbf{1}_{\{|X_n| \leq M\}} \right\} \right| \\ &+ \mathbb{E}_{\omega} \left\{ \frac{1}{(\sqrt{n})^{2k-1}} \left(X_n^{2k-1} - \frac{g_k(X_n)}{d_k} \right) \mathbf{1}_{\{|X_n| \leq M\}} \right\} \right| \\ &\leq \mathbb{E}_{\omega} \left\{ \frac{1}{(\sqrt{n})^{2k-1}} \left| X_n^{2k-1} - \frac{g_k(X_n)}{d_k} \right| \mathbf{1}_{\{|X_n| \leq M\}} \right\} \\ &+ \mathbb{E}_{\omega} \left\{ \left(\frac{|X_n|}{\sqrt{n}} \right)^{2k-1} \left| 1 - \frac{g_k(X_n)}{X_n^{2k-1}} d_k \right| \mathbf{1}_{\{|X_n| > M\}} \right\} \\ &\leq \varepsilon + \varepsilon \sqrt{\mathbb{E}_{\omega} \left\{ \left(\frac{X_n}{\sqrt{n}} \right)^{2(2k-1)} \right\}} \end{split}$$

for *n* large enough. By Proposition 1 the limit $\lim_{n\to\infty} \mathbb{E}_{\omega}\{(X_n/\sqrt{n})^{2(2k-1)}\}$ exists, and since ε is as small as we need, we then obtain the desired result which completes Proposition 2.

3. An analogue to a Markov process with discrete space

We consider a Markov process $(X_t)_{t \in [0,+\infty)}$ on \mathbb{Z} with $X_0 = 0$. The infinitesimal generator is defined by

$$L_{\omega}f(k) = c(T^{k-1}\omega)f(k-1) + c(T^k\omega)f(k+1) - \bar{c}(T^k\omega)f(k).$$

We will now establish a CLT for a Markov process $(X_t)_{t \in [0,+\infty)}$ without the use of a martingale.

Theorem 3. For almost all environments ω ,

$$\frac{X_t}{\sqrt{t}} \xrightarrow{\mathrm{D}} \mathcal{N}\left(0, 2 \left[\int \frac{1}{c} \, \mathrm{d}\mu\right]^{-1}\right) \quad as \ t \to +\infty.$$

The limiting distribution being a degenerate normal distribution if the integral is $+\infty$.

This problem was also considered by Kawazu and Kesten, [4]. They did not use the method of martingale but instead used a time change of a Brownian motion.

To prove Theorem 3 it is sufficient to show that for almost all environments ω

$$\lim_{t \to +\infty} \mathbb{E}_{\omega} \left\{ \left(\frac{X_t}{\sqrt{t}} \right)^{\ell} \right\} = 0 \quad \text{if } \ell = 2k - 1, \qquad \lim_{t \to +\infty} \mathbb{E}_{\omega} \left\{ \left(\frac{X_t}{\sqrt{t}} \right)^{\ell} \right\} = \frac{(2k)!}{k! \, 2^k} \sigma^{\ell} \quad \text{if } \ell = 2k$$

for each $\ell = 1, 2, 3, ...$ In this case $\sigma^2 = 2[\int (1/c) d\mu]^{-1}$.

Lemma 5. Given a function $\psi: \mathbb{Z} \to \mathbb{R}$ there exists an unique function $\phi: \mathbb{Z} \to \mathbb{R}$ such that

$$L_{\omega}\phi = \psi, \qquad \phi(1) = a, \qquad \phi(-1) = b.$$
 (12)

Proof. By a similar argument as in Lemma 2 we can show that (12) has a unique solution ϕ such that

- $\phi(1) = a \text{ and } \phi(-1) = b;$
- $\phi(0)$ satisfies $c(T^{-1}\omega)\phi(-1) + c(\omega)\phi(1) \bar{c}(\omega)\phi(0) = \psi(0)$;

•
$$\phi(m) = \phi(1) + [\phi(1) - \phi(0)] \sum_{\ell=1}^{m-1} \frac{c(\omega)}{c(T^{\ell}\omega)} + \sum_{\ell=1}^{m-1} \frac{1}{c(T^{\ell}\omega)} \sum_{s=1}^{\ell} \psi(s) \text{ if } m \ge 2;$$

•
$$\phi(m) = \phi(-1) + [\phi(-1) - \phi(0)] \sum_{\ell=2}^{-m} \frac{c(T^{-1}\omega)}{c(T^{-\ell}\omega)} + \sum_{\ell=2}^{-m} \frac{1}{c(T^{-\ell}\omega)} \sum_{s=1}^{\ell-1} \psi(-s) \text{ if } m \le -2.$$

Proposition 3. For almost all environments ω , we have

$$\lim_{t \to +\infty} \mathbb{E}_{\omega} \left\{ \left(\frac{X_t}{\sqrt{t}} \right)^{2k} \right\} = \frac{(2k)!}{k! \, 2^k} \sigma^{2k} \quad \text{for each } k \ge 1.$$

This limit is null if c^{-1} is not integrable.

Proof. Fixing $\omega \in \Omega$, we consider a sequence of functions $f_k \geq 0$, defined on \mathbb{Z} , such that

$$L_{\omega} f_k \equiv f_{k-1}$$
 for $k \ge 1$, $f_0 \equiv 1$, $f_k(0) = 0$ for $k \ge 1$.

By Lemma 5 we determine a function f_1 which satisfies $f_1(-1) = 1/c(T^{-1}\omega)$ and $f_1(1) = 0$

$$f_1(m) = \begin{cases} \sum_{\ell=1}^{m-1} \frac{\ell}{c(T^{\ell}\omega)} & \text{if } m \ge 2, \\ 0 & \text{if } m = 0, 1 \\ \sum_{\ell=1}^{-m} \frac{\ell}{c(T^{-\ell}\omega)} & \text{if } m \le -1 \end{cases}$$

and for $k \ge 2$ a function f_k which satisfies $f_k(1) = f_k(-1) = 0$

$$f_k(m) = \begin{cases} \sum_{\ell=1}^{m-1} \frac{1}{c(T^{\ell}\omega)} \sum_{s=1}^{\ell} f_{k-1}(s) & \text{if } m \ge 2, \\ 0 & \text{if } m = -1, 0, 1, \\ \sum_{\ell=2}^{-m} \frac{1}{c(T^{-\ell}\omega)} \sum_{s=1}^{\ell-1} f_{k-1}(-s) & \text{if } m \le -2. \end{cases}$$

Then $L_{\omega} f_k(m) = f_{k-1}(m)$ for any integer m and for $k \ge 1$. Replace m by X_t to obtain

$$L_{\omega} f_k(X_t) = f_{k-1}(X_t)$$
 for any $t \ge 0$.

Hence we can show that for each k > 1

$$\mathbb{E}_{\omega}\{f_k(X_t)\} = \frac{t^k}{k!} \quad \text{for any } t \ge 0.$$
 (13)

Indeed, if $h_1(t) = \mathbb{E}_{\omega}\{f_1(X_t)\}$ then

$$\mathbb{E}_{\omega}\{L_{\omega}f_{1}(X_{t})\} = \lim_{s \to 0} \mathbb{E}_{\omega}\left\{\frac{\mathbb{E}_{\omega}\{f_{1}(X_{t+s})/X_{t}\} - f_{1}(X_{t})}{s}\right\}$$
$$= \lim_{s \to 0} \mathbb{E}_{\omega}\left\{\frac{f_{1}(X_{t+s}) - f_{1}(X_{t})}{s}\right\}$$
$$= \lim_{s \to 0} \frac{h_{1}(t+s) - h_{1}(t)}{s} = h'_{1}(t).$$

Since $\mathbb{E}_{\omega}\{L_{\omega}f_1(X_t)\}=1$ implies $h_1(t)=t+\beta$ for $t\geq 0$. And $h_1(0)=\mathbb{E}_{\omega}\{f_1(X_0)\}=0$ implies $\beta=0$, hence $h_1(t)=\mathbb{E}_{\omega}\{f_1(X_t)\}=t$. By induction on k we obtain the proof of (13). The expansion is similar to Proposition 1 in Section 2. The proof of Proposition 3 is complete.

Proposition 4. For almost all environments ω , we have

$$\lim_{t \to +\infty} \mathbb{E}_{\omega} \left\{ \left(\frac{X_t}{\sqrt{t}} \right)^{(2k-1)} \right\} = 0 \quad \text{for each } k \ge 1.$$

Proof. Fixing $\omega \in \Omega$ we consider a sequence of functions g_k , defined on \mathbb{Z} , such that

$$L_{\omega}g_k \equiv g_{k-1}$$
 for $k \ge 1$, $g_0 \equiv 0$, $g_k(0) = 0$ for $k \ge 1$.

By Lemma 5 we can determine a function g_1 which satisfies $g_1(-1) = -1/c(T^{-1}\omega)$ and $g_1(1) = 1/c(\omega)$

$$g_1(m) = \begin{cases} \sum_{\ell=0}^{m-1} \frac{1}{c(T^{\ell}\omega)} & \text{if } m \ge 1, \\ 0 & \text{if } m = 0, \\ -\sum_{\ell=1}^{-m} \frac{1}{c(T^{-\ell}\omega)} & \text{if } m \le -1 \end{cases}$$

and for $k \ge 2$ a function g_k which satisfies $g_k(1) = g_k(-1) = 0$

$$g_k(m) = \begin{cases} \sum_{\ell=1}^{m-1} \frac{1}{c(T^{\ell}\omega)} \sum_{s=1}^{\ell} g_{k-1}(s) & \text{if } m \ge 2, \\ 0 & \text{if } m = -1, 0, 1, \\ \sum_{\ell=2}^{-m} \frac{1}{c(T^{-\ell}\omega)} \sum_{s=1}^{\ell-1} g_{k-1}(-s) & \text{if } m \le -2. \end{cases}$$

The expansion is similar to that in Proposition 2 in Section 2. The proof of Proposition 4 is thus complete.

Remark 1. We introduce the sequence of transition times, $(\tau_n)_{n\in\mathbb{N}}$, that are the times when X_t jumps i.e. $\tau_0 = 0$ and

$$\tau_n = \inf\{t \ge \tau_{n-1} \colon X_t \ne X_{\tau_{n-1}}\}.$$

The times between transition times $\tau_{n+1} - \tau_n$ are called waiting times. It is well known that the waiting times have an exponential distribution with the parameter $\bar{c}(T^{X_{\tau_n}}\omega)$ that depends only on the position of X_t at time τ_n . In this case $\tau_n \to \infty$ as $n \to \infty$.

The embedded process is given by $Y_0 = X_0 = 0$ and

$$Y_n = X_{\tau_n}$$
.

Then $(Y_n)_{n\geq 0}$ is also the random walk with transition probabilities as in the previous section. Hence we can deduce that $(X_{\tau_n})_{n\geq 0}$ satisfies Theorem 2.

4. Diffusion in a stationary random environment

Let $(\Omega, \mathcal{A}, \mu)$ be a probability space equipped with a flow $(T_x)_{x \in \mathbb{R}}$ that is ergodic and preserves the measure μ . We consider two random variables a, b > 0 such that the functions $x \mapsto a(T_x \omega)$ and $x \mapsto b(T_x \omega)$ are continuous. Now we look at where ω is fixed. The process of the infinitesimal generator is defined by

$$L_{\omega}f(x) = \frac{1}{2a(T_x\omega)} \frac{\mathrm{d}}{\mathrm{d}x} \left(b(T_x\omega) \frac{\mathrm{d}f}{\mathrm{d}x} \right)$$

with the initial condition $X_0 = 0$.

This describes the problem associated to the stochastic differential equation (SDE)

$$dX_t = \sigma_{\omega}(X_t) dB_t + \mu_{\omega}(X_t) dt, \tag{14}$$

where $(B_t)_{t\geq 0}$ is a Brownian motion, the coefficient of diffusion $\sigma_{\omega}^2(x) = b(T_x\omega)/a(T_x\omega)$ and the drift $\mu_{\omega}(x) = (2a(T_x\omega))^{-1}(d/dx)(b(T_x\omega))$.

Theorem 4. Suppose that, almost anywhere $\omega \in \Omega$, the functions $\sigma_{\omega}^{2}(x)$ and $\mu_{\omega}(x)$ are locally Lipschitz. Then, for almost all $\omega \in \Omega$, the solution $(X_{t})_{t\geq 0}$ of SDE (14) satisfies

$$\frac{X_t}{\sqrt{t}} \stackrel{\mathrm{D}}{\to} \mathcal{N}\left(0, \left[\int_{\Omega} a \, \mathrm{d}\mu \int_{\Omega} \frac{1}{b} \, \mathrm{d}\mu\right]^{-1}\right) \quad as \ t \to +\infty.$$

The limiting distribution is a degenerate normal distribution if at least one of the integrals is $+\infty$.

Papanicolaou and Varadhan [7] established the CLT for the elliptic case in dimension $d \ge 1$.

As in Theorem 2 we do not use any martingale to prove Theorem 4. We begin with a continuous version of Lemma 1.

Lemma 6. Let u(x) and v(x) be two positive continuous functions and α a nonnegative integer. Assume that $\lim_{y\to+\infty} (1/y) \int_0^y u(x) \, \mathrm{d}x = \bar{u} > 0$ and $\lim_{x\to+\infty} v(x) = \bar{v} > 0$. If both of \bar{u} and \bar{v} are finite then

$$\lim_{y \to +\infty} \frac{1}{y^{\alpha+1}} \int_0^y x^{\alpha} u(x) v(x) \, \mathrm{d}x = \frac{\bar{u}\bar{v}}{\alpha+1}$$
 (15)

else if at least one of \bar{u} and \bar{v} is infinite then the limit in (15) is $+\infty$.

The proof of Lemma 6 is left to the reader.

Now we are going to show that for almost all environments ω

$$\lim_{t \to +\infty} \mathbb{E}_{\omega} \left\{ \left(\frac{X_t}{\sqrt{t}} \right)^{\ell} \right\} = \begin{cases} 0 & \text{if } \ell = 2k - 1 \\ \frac{(2k)!}{k! \, 2^k} \sigma^{\ell} & \text{if } \ell = 2k \end{cases}$$

for each $\ell = 1, 2, 3, ...$ In this case $\sigma^2 = [\int_{\Omega} a \, d\mu \int_{\Omega} (1/b) \, d\mu]^{-1}$.

Proposition 5. For almost all environments ω , we have

$$\lim_{t \to +\infty} \mathbb{E}_{\omega} \left\{ \left(\frac{X_t}{\sqrt{t}} \right)^{2k} \right\} = \frac{(2k)!}{k! \, 2^k} \sigma^{2k}$$

for each $k \ge 1$. This limit is null if at least one of a and 1/b is not integrable.

This is the generalization of Theorem 4.1 in [3].

Proof. Fixing $\omega \in \Omega$ we consider a sequence of functions f_k , defined on \mathbb{R} , such that

$$L_{\omega} f_k \equiv f_{k-1}$$
 for $k \ge 1$, $f_0 \equiv 1$, $f_k(0) = 0$ for $k \ge 1$.

For example, we can take

$$f_1(x) = \begin{cases} \int_{v=0}^{x} \frac{1}{b(T_v \omega)} \int_{u=0}^{v} 2a(T_u \omega) \, \mathrm{d}u \, \mathrm{d}v & \text{if } x \ge 0, \\ \int_{v=0}^{0} \frac{1}{b(T_v \omega)} \int_{v=0}^{0} 2a(T_u \omega) \, \mathrm{d}u \, \mathrm{d}v & \text{if } x < 0 \end{cases}$$

and for $k \ge 2$

$$f_k(x) = \begin{cases} \int_{v=0}^x \frac{1}{b(T_v \omega)} \int_{u=0}^v 2a(T_u \omega) f_{k-1}(u) \, \mathrm{d}u \, \mathrm{d}v & \text{if } x \ge 0, \\ \int_{v=x}^0 \frac{1}{b(T_v \omega)} \int_{u=v}^0 2a(T_u \omega) f_{k-1}(u) \, \mathrm{d}u \, \mathrm{d}v & \text{if } x < 0. \end{cases}$$

Lemma 7. For each $k \ge 1$, we have

$$\lim_{x \to \pm \infty} \frac{f_k(x)}{x^{2k}} = \frac{2^k}{(2k)!} \sigma^{-2k}.$$

This limit is $+\infty$ if at least one of a and 1/b is not integrable. It is denoted by ℓ_k .

The proof of Lemma 7 is left to the reader as a continuous version of Lemma 3.

Moreover, by the hypothesis of the theorem, function $f_k \in \mathbb{C}^2$ for each $k \geq 1$, the process $Y_t^{(k)}$, defined by $Y_t^{(k)} = f_k(X_t)$, satisfies SDE (14) by using Itô's lemma. We recall that

$$df_k(X_t) = f'_k(X_t)\sigma_{\omega}(X_t) dB_t + [f'_k(X_t)\mu_{\omega}(X_t) + \frac{1}{2}f''_k(X_t)\sigma_{\omega}^2(X_t)] dt.$$

By calculating, $dY_t^{(k)} = c_{\omega}(X_t) dB_t + f_{k-1}(X_t) dt$ for each $k \ge 1$ where $f_0 \equiv 1$. Hence, it follows that

$$\mathbb{E}_{\omega}\{f_k(X_t)\} = \frac{t^k}{k!} \quad \text{for each } k \ge 1.$$
 (16)

Combining Lemma 7 and (16) we obtain

$$\left| \mathbb{E}_{\lambda,\omega} \left\{ \left(\frac{X_t^2}{t} \right)^k \right\} - \frac{1}{k! \, \ell_k} \right| < \varepsilon$$

for any $\varepsilon > 0$ and for t large enough. And hence the proof of Proposition 5 is complete.

Proposition 6. For almost all environments ω , we have

$$\lim_{t \to +\infty} \mathbb{E}_{\omega} \left\{ \left(\frac{X_t}{\sqrt{t}} \right)^{(2k-1)} \right\} = 0 \quad \text{for each } k \ge 1.$$

Proof. Fixing $\omega \in \Omega$ we consider a sequence of functions g_k , defined on \mathbb{R} , such that

$$L_{\omega}g_k \equiv g_{k-1}$$
 for $k \ge 1$, $g_0 \equiv 0$, $g_k(0) = 0$, for $k \ge 1$.

For instance, we can take

$$g_1(x) = \int_{v=0}^{x} \frac{1}{b(T_v \omega)} dv$$
 if $x \ge 0$, and $g_1(x) = -\int_{v=x}^{0} \frac{1}{b(T_v \omega)} dv$ if $x < 0$

and for k > 2

$$g_k(x) = \begin{cases} \int_{v=0}^x \frac{1}{b(T_v \omega)} \int_{u=0}^v 2a(T_u \omega) g_{k-1}(u) \, \mathrm{d}u \, \mathrm{d}v & \text{if } x \ge 0, \\ \int_{v=x}^0 \frac{1}{b(T_v \omega)} \int_{u=v}^0 2a(T_u \omega) g_{k-1}(u) \, \mathrm{d}u \, \mathrm{d}v & \text{if } x < 0. \end{cases}$$

Lemma 8. For each $k \ge 1$, we have

$$\lim_{x \to \pm \infty} \frac{g_k(x)}{x^{2k-1}} = \frac{2^{k-1}}{(2k-1)!} \sigma^{-2k+2} \int \frac{1}{b} \, \mathrm{d}\mu.$$

This limit is $+\infty$ if at least one of a and 1/b is not integrable.

The proof of Lemma 8 is left to the reader as a continuous version of Lemma 4.

Moreover, by the hypothesis of the theorem, function $g_k \in \mathcal{C}^2$ for each $k \geq 1$, the process $Z_t^{(k)}$, defined by $Z_t^{(k)} = g_k(X_t)$, satisfies SDE (14) by using Itô's lemma. We recall that

$$dg_k(X_t) = g'_k(X_t)\sigma_{\omega}(X_t) dB_t + [g'_k(X_t)\mu_{\omega}(X_t) + \frac{1}{2}g''_k(X_t)\sigma_{\omega}^2(X_t)] dt.$$

By calculating, $dZ_t^{(k)} = d_{\omega}(X_t) dB_t + g_{k-1}(X_t) dt$ for each $k \ge 1$ and where $g_0 \equiv 0$. Hence, it follows that

$$\mathbb{E}_{\omega}\{g_k(X_t)\} = 0 \quad \text{for each } k \ge 1. \tag{17}$$

Combining Lemma 8 and (17) we obtain

$$\left| \mathbb{E}_{\lambda,\omega} \left\{ \left(\frac{X_t}{\sqrt{t}} \right)^{2k-1} \right\} \right| < \varepsilon$$

for any $\varepsilon > 0$ and for t large enough. And hence the proof of Proposition 6 is complete.

Remark 2. In our model, there is no explosion in finite time under the assumptions concerning $\sigma_{\omega}^2(x)$ and $\mu_{\omega}(x)$ for almost all $\omega \in \Omega$. Indeed, we assume that there exists $\Gamma > 0$ such that $\lim_{t \nearrow \Gamma} X_t = \infty$, where X_t is a solution of SDE (14). Lemma 7 ensures that $f_k(X_{\gamma}) > \Gamma^k/k!$ for some $\gamma \le \Gamma$ and $k \ge 1$. This is a contradiction since we know from (16) that

$$\mathbb{E}_{\omega}\{f_k(X_{\gamma})\} = \frac{\gamma^k}{k!} \le \frac{\Gamma^k}{k!} \quad \text{for each } k \ge 1.$$

Acknowledgements

This work was supported by the Israel Science Foundation (grant no. 1/12), as a postdoctoral fellowship at Ben Gurion University.

I am indebted to my PhD advisor, Jerome Depauw, for introducing this problem to me and for his very careful reading of an earlier version of this paper and his inspiring comments. I would like to thank Olivier Garet and the referee for their valuable suggestions.

References

- [1] ALILI, S. (1999). Asymptotic behaviour for random walks in random environments. J. Appl. Prob. 36, 334–349.
- [2] BILLINGSLEY, P. (1995). Probability and Measure, 3rd edn. John Wiley, New York.
- [3] DEPAUW, J. AND DERRIEN, J.-M. (2009). Variance limite d'une marche aléatoire réversible en milieu aléatoire sur Z. C. R. Math. Acad. Sci. Paris 347, 401–406.
- [4] KAWAZU, K. AND KESTEN, H. (1984). On birth and death processes in symmetric random environment. *J. Statist. Phys.* **37**, 561–576.
- [5] KOZLOV, S. M. (1985). The averaging method and walks in inhomogeneous environments. *Uspekhi Mat. Nauk* **40**, 61–120, 238.
- [6] MATHIEU, P. (2008). Quenched invariance principles for random walks with random conductances. J. Statist. Phys. 130, 1025–1046.
- [7] PAPANICOLAOU, G. C. AND VARADHAN, S. R. S. (1982). Diffusions with random coefficients. In *Statistics and Probability: Essays in Honor of C. R. Rao*, North-Holland, Amsterdam, pp. 547–552.
- [8] WIENER, N. (1939). The ergodic theorem. *Duke Math. J.* **5**, 1–18.
- [9] ZEITOUNI, O. (2006). Random walks in random environments. J. Phys. A 39, R433-R464.