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Abstract

In machine translation (MT), one of the challenging tasks is to translate the proper nouns and technical
terms from the source language to the target language while preserving the phonetic equivalent of orig-
inal term. Machine transliteration, an essential part of MT systems, plays a vital role in handling proper
nouns and technical terms. In this paper, a hybrid attention-based encoder-decoder machine translit-
eration system is proposed for the low-resource English to the Assamese language. In this work, the
proposed machine transliteration system is integrated with the previously published hybrid attention-
based encoder-decoder neural MT model to improve the translation quality of English to the Assamese
language. The proposed integrated MT system demonstrated good results across various performance met-
rics such as BLEU, sacreBLEU, METEOR, chrF, RIBES, and TER for English to Assamese translation.
Additionally, human evaluation was also conducted to assess translation quality. The proposed inte-
grated MT system was compared with two existing systems: the Bing translation service model and the
Samanantar Indic translation model.
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1. Introduction

Communication plays a pivotal role in facilitating the exchange of knowledge and fostering
social interactions among individuals. However, the multitude of languages spoken worldwide,
exceeding 6500 in number, poses a formidable obstacle to seamless communication (Blasi,
Anastasopoulos, and Neubig 2022). In the specific context of Assam, a region located in the north-
eastern part of India, the predominant language is Assamese, which is extensively used throughout
the expansive Brahmaputra Valley (Baruah et al. 2014). Tracing its origins back to the seventh cen-
tury, Assamese language has experienced significant advancements as a written system, which is a
branch of the Indo-Aryan language. To enable effective communication between several regional
languages, the automated translation system becomes imperative. Machine translation (MT) sys-
tem has provided a way to lower the language barrier in commutation (Al-Muzaini, Al-Yahya, and
benhidour 2018). However, achieving a high level of accuracy in translation requires an extensive
vocabulary encompassing both the source and target languages, a comprehensive understand-
ing of the semantic properties inherent in both languages, and other relevant considerations.
Viable models for MT include rule-based, statistical-based, and neural network-based approaches
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(Cho et al. 2014). Rule-based methods rely on maintaining vast dictionaries containing predefined
semantic and syntactic rules of the languages concerned. Statistical models employ probabilistic
functions to construct tables with semantic rules learned from bilingual corpora. These statisti-
cal tables may include syntax trees or translation models for phrases. With the advent of neural
machine translation (NMT) models, tasks such as developing parse trees, phrase translation mod-
els, rule-based dictionaries, and other feature engineering activities have become significantly
easier.

NMT aims to construct and train a single, expansive neural network capable of reading a sen-
tence and producing an accurate translation (Luong, Pham, and Manning 2015). MT refers to
the automated process of using computers to translate text from one language to another. While
translating from one language to another, handling named entities such as names of people, places,
medicines, and sports terms is a challenging task as they are the same in all languages and conserve
their phonetics.

According to Karimi, Scholer, and Turpin (2011), “transliteration” is the process of transfer-
ring any word from one language to another without changing the phonetics characteristics of
the original term. For example, while transliterate from English to Assamese the word “moon”
becomes “ I’ (moon), “lovely” becomes “ @ireet” (lovely), “kingfisher” becomes “ fRrefErmra” (king-
fisher) and for many more named entities. The primary objective of this research is to propose a
methodology aimed at enhancing the quality of translations from English to Assamese by incor-
porating transliteration techniques for named entities. In this paper, a GRU-based transliteration
system for English to Assamese is developed and integrated with translation system for English to
Assamese.

This paper has following contributions:

« Building a model based on encoder-decoder architecture to achieve transliteration. The
proposed model uses a hybrid attention mechanism for an appropriate alignment of input—
output tokens. Byte-pair encoding (BPE) is also used to tokenize the vocabulary into sub-
word tokens. The experimental results show that the frequency of the out-of-vocabulary
(OOV) issue is reduced because of subword tokenization.

« Developing an integrated system combining translation and transliteration model to
achieve high-quality translations for English to Assamese.

« Evaluation of MTmodel using several metrics.

This paper is structured as follows: In Section 2, we provide a comprehensive literature review
on machine translation and transliteration. In Sections 3 and 4, we elaborate on the background
research and methodology employed in this study. In Section 5, we present our experimental setup
and results and compare our approach with existing systems. Finally, in Section 6, we present a
summary of our findings and offer concluding remarks.

2. Literature review

In recent years, there has been a lot of research and development in the fields of machine trans-
lation and transliteration. The encoder-decoder architecture, which serves as the foundation for
most NMT algorithms, has demonstrated promising results in various language pairings (Baruah
et al. 2014). This approach has gained acceptance and implementation in renowned organizations
such as Baidu, (Zhou et al. 2016), Google (Yonghui et al. 2016), and Microsoft (MSFT 2020).
Numerous papers have made valuable contributions to the improvement of NMT. For instance,
a notable contribution by Cho et al. (2014) introduced an RNN encoder-decoder model that
effectively converts sequences of varying lengths into fixed-length vectors and decodes them to
generate desired phrases. This technique provides valuable insights into sequence conversion and
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fixed-length vector representation. Addressing the vocabulary problem, Sennrich et al. (2016) pro-
posed grouping uncommon words into subword units, offering a solution for handling vocabulary
variation. Furthermore, He ef al. (2016) integrated statistical machine translation (SMT) features
into the log-linear framework, opening opportunities for further advancements in NMT. Another
noteworthy approach by Cheng (2019) explored semi-supervised learning using auto-encoders
and sequence-to-sequence models, enabling the creation of multi-way NMT models. In addition
to these contributions, Laskar et al. (2022) focused specifically on improving NMT for the low-
resource English-Assamese language pair. Their research aimed to enhance translation quality by
proposing novel techniques tailored to the challenges posed by limited resources.

Decoding methods also play a crucial role in enhancing translation quality. Studies such as
Yuchen et al. (2018) have introduced techniques like model assembling, averaging, and candidate
re-ranking in order to enhance the performance of NMT models. Additionally, Shao and Nivre
(2016) demonstrated the effectiveness of convolutional neural networks (CNNs) in English-to-
Chinese transliteration, surpassing traditional PBSMT methods in terms of accuracy. Moreover,
Jankowski et al. (2021) presented a paper focusing on multilingual NMT models tailored for Slavic
languages, including Polish and Slovak. The paper introduced soft decoding, a technique that
allows the NMT model to generate multiple translations simultaneously. These research endeav-
ors have significantly contributed to the advancements and achievements in machine translation
and transliteration, paving the way for improved translation quality and expanded capabilities in
various language pairs.

Advancements in the field of transliteration have also been substantial, with researchers making
significant contributions in this area. Notably, Bahdanau and Bengio (2014) proposed bidi-
rectional encoder and attention-based decoder models for transliteration tasks across different
language pairings, highlighting their effectiveness and advantages over conventional phrase-
based statistical machine translation (PBSMT) methods. In the context of low-resource languages,
Le et al. (2019) introduced multiple neural network-based techniques to address the challenges of
transliteration, offering valuable guidance for handling transliteration tasks in scenarios with lim-
ited resources. Similarly, Hadj Ameur et al. (2017) developed an attention-based, bidirectional
encoding and decoding model specifically designed for Arabic-to-English machine translitera-
tion,demonstrating its competitiveness with state-of-the-art sequence-to-sequence models. The
research conducted by Grundkiewicz and Heafield (2018) focused on NMT techniques for named
entity transliteration, presenting and exploring various approaches to enhance transliteration
quality, including leveraging NMT models with attention mechanisms. Other studies, such as
Younes et al. (2018) and Masmoudi et al. (2020) have also investigated effective transliteration
techniques for diverse language pairs, encompassing the Romanization of the Tunisian lan-
guage. Additionally, Makarov et al. (2020) addressed the challenges associated with low-resource
transliteration for Ukrainian, conducting an investigation into unsupervised methods for translit-
eration mining and providing valuable insights into the utilization of data-driven approaches.
Furthermore, the paper by Dzambazov et al. (2019) delved into the realm of neural transliteration
for Slavic languages, specifically Ukrainian.

Although the studies mentioned above primarily focus on neural machine translation and
transliteration, it is worth noting several other relevant research endeavors. For instance,
Lakshmi and Shambhavi (2019) employed a character-level bidirectional long short-term memory
(BiLSTM) model to enhance English-Kannada transliteration accuracy. In a similar vein, Abbas
and Asif (2020) developed a hybrid technique for Hindi-to-English transliteration, achieving an
impressive transliteration accuracy of 97%. Furthermore, Vathsala and Holi (2020) utilized recur-
rent neural networks (RNNs), specifically long short-term memory (LSTM) models, to detect
inappropriate content on social media by means of transliterating and translating Twitter data,
thereby demonstrating the superiority of RNN-LSTM models over SMT models in this con-
text. Additionally, Athavale et al. (2016) an LSTM-based technique was proposed for named
entity recognition (NER) without language-specific restrictions, surpassing the performance of
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rule-based systems. Moreover, Kaur and Singh (2015) introduced an algorithm for translating
handwritten text into the International Phonetic Alphabet (IPA), effectively shedding light on
the limitations of grapheme-based transliteration. Notably, Kaur and Goyal (2018) presented a
remarkably accurate Punjabi-to-English transliteration method, employing SMT techniques that
achieved an impressive accuracy rate of 96% across various source—target language combinations.
Lastly, Hany Hassan et al. (2018) discussed the achievements of Microsoft’s MT system, demon-
strating its parity with professional human translations for Chinese-English language pairs and
its superior performance in comparison to crowdsourced references.

Collectively, these studies aid in the advancement of neural machine translation and transliter-
ation techniques, addressing various challenges and providing valuable insights into enhancing
translation and transliteration accuracy across different language pairs and resource scenar-
ios. However, to our knowledge, there have been limited attempts to integrate transliteration
and translation into a single system for the low-resource English-Assamese language pair. In
the subsequent section, we will provide an overview of the requisite background information,
encompassing the translation-transliteration model and the integration framework.

3. Preliminaries

In this section, we have discussed encoder—decoder models such as LSTM, GRU, and trans-
former, as well as the significance of BPE in addressing challenges like OOV issue and inflection.
Additionally, we have also presented a comparative analysis of these models, highlighting their
key features.

3.1 Encoder-decoder models

The encoder-decoder (Bahdanau et al., 2014; Laitonjam and Singh 2022) models work in a
sequence-to-sequence manner. The input sequence is compressed into a context vector by the
encoder, and the decoder utilizes this context vector to reconstruct the target sequence.

In the encoder, the hidden state h; is computed using the current input vector x; and the pre-
vious encoder hidden state h;_;. This is represented as hy = E4(h;—1, xt) (Cho et al. 2014), where
E4 is an activation function.

In the decoder, the hidden state s; is computed using the previous decoder hidden state s;_;, the
previous decoder output y;_1, and the context vector c. It is represented as s; = E4(st—1, ¥t—1, €)
(Phan-Vu et al. 2019), where E4 is an activation function.

Understanding the specific architectures like LSTM, gated recurrent unit (GRU), and trans-
former necessitates a thorough grasp of the explanations of the encoder and decoder components.

3.1.1 Long short-term memory (LSTM)

The LSTM network, as detailed by Hochreiter and Schmidhuber (1997), represents an evolution
of the conventional RNN design. It overcomes the limiting factor of vanishing gradients inherent
in standard RNNs, thereby enhancing the model’s ability to learn and sustain long-term depen-
dencies. The LSTM cell has several gates that control the flow of information, including the input
gate (i), forget gate (f), and output gate (0). The formula for the LSTM cell’s hidden state (k) is
determined as follows:

ht =0 - tanh (¢;)

where

- h; represents the hidden state at time step .

- 0 is the output gate’s activation, which controls the amount of information to be passed to the
output.
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Figure 1. Long short-term memory(LSTM) architecture (Hochreiter and Schmidhuber, 1997).
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Figure 2. Gated recurrent unit (GRU) architecture (Cho et al. 2014).

- ¢t is the cell state at time step ¢, computed using the input gate (i), forget gate (f), and a
combination of the current input (x;) and the previous hidden state (h;_1).

The LSTM architecture incorporates a gating mechanism that empowers the model to selec-
tively retain or discard information. This capability enables the LSTM to effectively handle
long sequences and maintain contextual dependencies during the translation process. Figure 1
illustrates the structure of the LSTM model.

3.1.2 Gated recurrent units (GRUs)
GRUs are a type of RNN architecture that were introduced in 2014 by Cho et al. (2014) as a simpler
alternative to LSTM units. GRUs consist of two main components, namely the update and reset
gates. The purpose of the update gate is to regulate the quantity of prior information that is to be
retained, whereas the reset gate’s role is to dictate the extent of forgetting or ignoring the previous
hidden state.

The formula for a GRU unit can be written as follows:

o Reset gate: ry = o (W,x¢ + Urhi—1 + by)

« Update gate: z; = o (Wx; + Uzhy—1 + b;)

« Candidate activation: ht = tanh (Wx; +r o (Uht — 1) + b)
« Hidden state: hy = (1 —z;) o hy_1 + z; 0 I~1t

Here, x; is the input at time step ¢, h;_; is the hidden state at the previous time step, r¢ and z;

are the reset and update gate activations, respectively, and /; is the candidate activation. o signifies
the operation of element-wise multiplication, while o represents the sigmoid activation function
and tanh corresponds to the hyperbolic tangent activation function. W, U, and b are the learnable
weights and biases of the network. The architecture of GRU is depicted in Figure 2.
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Figure 3. Transformer architecture (Vaswani et al. 2017).

3.1.3 Transformer

The architectural design known as the transformer was first proposed by Vaswani et al. (2017),
revolutionized sequence-to-sequence tasks by replacing RNNs with self-attention mechanisms.
The transformer architecture is comprised of two major parts: an encoder and a decoder, both
of which are constructed using multiple layers. In contrast to conventional recurrent neural net-
works, transformers process the input sequence in parallel, making them highly efficient for long
sequences. In the encoder, self-attention is used to compute attention scores between query (Q),
key (K), and value (V) embeddings of each word. These scores are then used to weight the value
embeddings, producing the encoded representation of the input sequence.

In the decoder, in addition to self-attention, the transformer that employs encoder-decoder
attention emphasizes on various elements of the input’s encoding sequence while generating
the output sequence. The transformer also incorporates positional encodings to account for the
sequential order of the words. Figure 3 illustrates the transformer architecture. Table 1 summarizes
the technical differences between LSTM, GRU, and transformer models for sequence-to-sequence
tasks (Bahdanau et al., 2014; Cho et al., 2014; Vaswani et al., 2017).
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Table 1. Comparison of LSTM, GRU, and transformer

Model Architecture Features
LST™M Recurrent neural network (RNN) Input, forget, output gates
GRU Recurrent neural network (RNN) Update, reset gates
Transformer Non-recurrent Self-attention
Unknown word (OOV)
Vocabulary obtained

after applying BPE to a
corpus of words

v v v v
o o g

Figure 4. Working of BPE solving OOV issue.

3.2 Byte-pair encoding (BPE)

In information theory, BPE is a compression technique that iteratively replaces the most frequent
consecutive byte pairs (strings) in the data with codes that are not present in the original data.
In NLP, BPE is used as a subword tokenization technique. A variant of this approach finds its
application in models for natural language interpretation, such as LSTM, GRU, transformers, and
GPT-2 for tokenizing word sequences. BPE is used during the preprocessing of data. In BPE, a
word is segmented into individual characters. BPE maintains a counter for all the unique words
in the vocabulary. For example, there is a vocabulary of words such as smart, smarter, oldest, and
wildest, with frequencies of 3, 4, 6, and 3, respectively. In BPE, these words are split into characters,
and the vocabulary is formed along with their frequency (Ramesh et al. 2022). The whole process
is shown in Figure 4 for a better understanding:

smart < /w> :3,smarter < /w> :4,oldest < /w > :6, wildest < /w> :3

A fixed number of iterations is run, and at every iteration, the frequency of each consecutive
byte pair is counted. The pair with the highest frequency is combined as a single token. In this
example, it is observed that the words “oldest” and “wildest” have occurred six and three times,
respectively. After all the words are tokenized as individual characters, the first iteration of the
process of generating byte-pair tokens is started. When the iteration begins, consecutive pairs
of characters are checked to compute the pair that has the highest frequency. It is seen that the
consecutive pair of characters “e” and “s” is the pair with the highest occurrence (6 4+ 3 =9), which
comes from the words “oldest” and “wildest”. Hence, the characters “e” and “s” are combined as a
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single token, “es”. The process of combining the most frequent pairs continues until a maximum
number of iterations is reached.

One of the advantages of BPE is that it solves OOV problems to an extent because the vocab-
ulary prepared by BPE consists of subword tokens instead of whole words. Unknown words are
split using the subword tokens in the vocabulary, hence eliminating the OOV issue.

4. Proposed methodology

The proposed model integrates a translation model with the transliteration model for low-
resource English-Assamese languages using a hybrid attention mechanism. Accordingly, the
proposed methodology has the following four steps:

1. Preprocessing : We preprocess the corpus by normalizing the text to all lowercase letters,
removing special characters, and so on.

2. Developing a translation model: We develop a MT model based on GRU with a hybrid
attention mechanism.

3. Developing a transliteration model: We develop a GRU-based machine transliteration
model with a hybrid attention mechanism.

4. Integrating the translation model with the transliteration model: Finally, we integrate
the above two models to build a complete translation system.

4.1 Translation model

The NMT model utilized in this research adopts an encoder—decoder architecture, incorporating a
hybrid attention mechanism (Nath, Sarkar, and Das 2022). The encoder and decoder components
consist of unidirectional, single-layered GRUs with 1024 hidden units within each layer. A custom
bilingual corpus of sentences from the target and source languages is used for training the model.
Additionally, the decoder is composed of 1024 units in the final output layer.

This research uses a hybrid attention mechanism and an encoder-decoder architecture to cre-
ate both translation and transliteration model (Nath et al. 2022). Hybrid attention selects the
attention mechanism among additive and multiplicative processes for a Bilingual corpus. During
the initial learning phase of the NMT model, both additive and multiplicative attention processes
are used to provide prediction output. Hybrid attention mechanism’s main idea is to find out the
average loss produced by additive and multiplicative attention mechanisms individually. Then the
minimum loss obtained from the average losses of additive and multiplicative attention mecha-
nisms is used to update the weights of the model’s network. The average loss is calculated by taking
the mean (average) of the losses obtained from two different attention mechanisms.

4.2 Model network for transliteration

The transliteration model Shao and Nivre (2016); Younes et al. (2020) comprises a unidirectional
single-layer encoder and decoder with GRUs with 512 hidden units per layer. Figure 5 illustrates
the encoder—decoder architecture employed in the transliteration model. The model is trained on
a bilingual corpus. The bilingual corpus of words is first converted to parallel subword tokens. The
vocabulary is prepared from the corpus, and the embedding vectors are calculated accordingly.
The Softmax layer in the decoder consists of 512 units with a sparse categorical cross-entropy loss
function. BPE is used to attain subword tokens from the words of the corpus. In a machine translit-
eration model, to learn the relationship between parallel words, individual character-to-character
mapping is learned. Hence, the atomic units considered here are characters in the words. Similarly,
the atomic units of mapping are taken as subword tokens to get a more accurate translation for
named entity words. The details of subword tokens are given in Table 2.
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Table 2. Subword tokens
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Figure 5. Encoder-decoder architecture for transliteration model.

The steps for the transliteration model are illustrated with an example and are given below:

1. An input word is taken, such as “Parker.”

2. The word is split into characters or pairs based on corresponding phonetic representation,
suchas “Parker”.
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3. The characters are then tokenized using BPE.

4. The input “Parker” is fed into the encoder component and converts it into a vector [0.3,
0.1,0.2,...... ].

5. The decoder receives the numerical representation and converts it into the corresponding
{3 2 »

word in the target language. ==
6. The output is then displayed, alike “ *1&”.

4.3 Translation model integrated with transliteration

The integrated MT model consists of both a translation and a transliteration model. The model
is trained independently in two distinct phases. While the training of the models was done inde-
pendently in two phases, the models shared the same session during the training process. This
allows seamless integration of the transliteration model into the inference pipeline of the NMT
model. During evaluation, the transliteration model is invoked when named entities are detected
in the input text. We employ subword tokenization in the transliteration model to handle OOV
words like proper nouns that are not explicitly part of the model’s training vocabulary. This
enables the transliteration of unseen words. The translation model executes the task of translating,
while the transliteration model is specifically tasked with transliterating named entities. Figure 6
depicts the proposed integrated translation-transliteration system architecture. A nonlinear align-
ment between the positions of source words and corresponding target words poses a significant
challenge for the precise placement of translated named entities within the target sequence.

In order to solve this problem, we used the attention weights provided by the attention layer
in the translation model. This layer is used by the decoder to attain the context vector, which is
essential for predicting the output sequence. The attention mechanism relies on encoder output
and encoder hidden states for its computation of attention weights, which in turn facilitate the
formation of the context vector.

The attention weights act as indicators of the relevance of a particular word within the source
sequence during the process of translation. As a result, the utilization of attention weights allows
the decoder to focus on specific words at specific instances of time, leading to a more precise
translation.

We leveraged the attention layer’s functionality within the translation model via the utilization
of its attention weights or attention scores. These scores are computed using the previous decoder
hidden state (h_t) and each encoder hidden state (h_s) and this is represented as:

exp (score(hy, hy))
> exp (score(hy, hy))

These alignment scores indicate how much attention or emphasis should be placed on each
word in the source sequence during translation.

The attention mechanism then combines these alignment scores to create an alignment vector,
which has the same length as the source sequence. Each value in this vector corresponds to the
importance (or probability) of the corresponding word in the source sequence. This helps the
decoder decide what to focus on at each time step. The attention weights help identify the most
focused input token by finding the index of the maximum value in the attention weight vector.
This index is used to retrieve the corresponding word from a pre-built data structure mapping
integers to words.

We employ the NER tool from SpaCy to determine whether the identified word is a named
entity. If the word is classified as a LOCATION or ORGANIZATION type entity by the NER
model, we check if a standard Assamese translation exists in our custom databases of common
country names and institution names (e.g. “Bharot” for India). If a translation is available, we use
that standard translation in the output sequence.

Uts =
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Figure 6. Proposed integrated translation-transliteration system architecture.

However, not all LOCATION and ORGANIZATION entities have an existing standard
Assamese translation. For named entities that do not have a standard translation available in our
databases, as well as other types of named entities like PERSON, we send the word through our
transliteration model to produce an appropriate Assamese transliteration in the output sequence.

For words not identified as named entities by the NER tool, we directly use the translated

output from our translation model in the output sequence.

The algorithm is described in detail below. The following steps illustrate how an input sentence

is translated by the integrated MT model.:
At each time instant ¢ =i, where i ranges from 0 to the size of the source sentence:

1. Padding is applied to the input sentence to align its length with the expected source sen-
tence length. Subsequently, the input tokens within the source sentence are converted into
their corresponding unique integers, as defined during the vocabulary preparation phase.

. The input sequence is then passed to the encoder component of the translation model. The

encoder produces the encoder output and the encoder hidden state.

attention weight.

. The decoder component of the translation model incorporates an attention layer, which
takes as input the encoder output and encoder hidden state. The attention layer with the
help of it fine-tuned attention weights computes the context vector. The context vector
is obtained by multiplying vectors of the same shape, namely the encoder output and the

4. The decoder receives the context vector and attention weights from the attention layer.

The attention weights are represented as:
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0.12 0.0085 ... 0.61
0.7 0.003 ... 0.01

where each row represents a source token, and the number of columns corresponds to the
encoder hidden state.

6. This index is utilized to retrieve the corresponding source token from the input array. This
particular source token represents the focal point of translation at instant t =0.

7. Subsequently, we pass on this source token to the NER checker tool. In the case where
the input token is identified as a named entity, we further break it down into subwords.
If these subwords exist within the vocabulary, the subword sequence is then forwarded to
the transliteration model. The output subwords generated by the transliteration model are
merged to form a single word. This resulting word is placed in the output sequence at the
corresponding position for instant .

8. If the input token is not identified as a named entity, or if the subwords are absent from
the vocabulary, we employ the decoder component of the translation model to compute
the translated output using the context vector. The translated output token is subsequently
positioned within the output sequence at the respective position for instant ¢.

9. The maximum length of each iteration of these steps corresponds to the maximum length
of the target sequence. Also when the “end of sentence” token (<eos>) is found out, the
prediction ends.

5. Result and analysis
5.1 Data preprocessing

The corpus used to train both the translation and the transliteration models is taken from TDIL
(TDIL-DC 2006), and in addition to that, we have increased data by 11% using back translation as
well as back transliteration where required. We manually generated our back transliteration and
translation data using the Aksharantar (ai4bharat 2022) and Bing websites (MSFT 2020). Over 7%
of our transliteration and 4% of our translation corpora were generated by back-transliterating
and translating a selection of English words and sentences that weren’t included in the original
corpus. The integrated model uses a corpus of parallel sentences which belong to various domains
such as agriculture, entertainment, and history. All unwanted and irrelevant characters have been
removed from the bilingual corpora. Both the corpora words have been converted to lowercase.
Ninety-five percent of the corpus is used for training, while 5% is allocated for testing. The val-
idation set is of the same size as the test set and is derived from an external dataset (ai4bharat
2022). All the words (from both the language pair) in the corpus are converted to a sequence of
subword tokens. The bilingual corpus for the integrated translation-transliteration model under-
goes padding for shorter sentences to make all the sentences of a particular language pair equal.
This is done so that the model may be trained in batches. All the punctuations have been retained
in this corpus. If there is no white space between a word and punctuation, then white is given in
between them to consider the punctuation as an individual character. The corpus statistics for the
translation and Tables 3 and 4 present the transliteration models.

We utilized 1200 merge operations in our models. This value was selected based on testing
a range from 500 to 2000 merge ops. We used two metrics to evaluate the performance of the
algorithm: accuracy and runtime. We found that the accuracy of the algorithm was maximized
at 1200 merge operations. The runtime of the algorithm also decreased as the number of merge
operations increased, but only up to a point. After 1200 merge operations, the runtime of the
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Table 3. Corpus statistics for translation model

TDIL corpus 73,294
Manually generated 8,253
Total number of parallel sentences 81,547
Vocabulary count for English language 40,343
Vocabulary count for Assamese language 60,732
Total number of parallel sentences in the training set 77,470
Total number of parallel sentences in the testing set 4,077
Total number of parallel sentences in the validation set 4,077
Minimum word count in a sentence (both English and Assamese) 1
Maximum word count in a sentence (both English and Assamese) 22
Number of merge operations 1200

Table 4. Corpus statistics for transliteration model

TDIL corpus 61,960
Manually generated 6,945
Total number of parallel words 68,905
Vocabulary count for English language (subword tokens) 2027
Vocabulary count for Assamese language (subword tokens) 2070
Total number of parallel words in the training set 65,461
Total number of parallel words in the testing set 3,444
Total number of parallel words in the validation set 3,444
Number of merge operations 1200

algorithm started to increase again. Based on these results, we determined that 1200 is the optimal
number of merge operations for our specific dataset and algorithm.

5.2 Model training

The proposed model is a GRU-based translation and transliteration model, trained on a sys-
tem with the following hardware configuration: 24 GB of RAM and single-core, hyper-threaded
Xeon processors with a clock rate of 2.3 GHz. Additionally, the system features a Tesla K80 GPU
instance with 2496 CUDA cores and 12 GB of VRAM.

We have also trained an LSTM-based translation and transliteration model with the same
parameters as the GRU model, as detailed in Table 5. In addition to the GRU and LSTM mod-
els, further experiments were conducted by training a transformer model. The transformer model
shares parameters with both the GRU and LSTM models, keeping consistency in our method-
ology. The detailed parameters for the transformer-based model are provided in Table 6. By
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Table 5. Parameters for LSTM and GRU-based translation and transliteration models

Parameters Translation model (LSTM/GRU) Transliteration model (LSTM/GRU)
Type of recurrent neural network instance LSTM/GRU LSTM/GRU
Encoder/decoder layers 1 1
Hidden units per layer 1024 512
Size of batch 32 16
Dimension of word embedding 300 300
Epochs count 16 15
Steps per epoch, number 1815 4092
Adoption of an optimizer Adam Adam
Initial rate of learning 0.001 0.001
Dropout factor 0.5 0.0

The function of loss Crossentropy of categorical sparse

Table 6. Parameters for transformer-based translation model

Parameters Transformer-based translation model
Type of recurrent neural network instance Transformer
Encoder/decoder layers 1

Size of batch 32

Number of attention heads 2

Epochs count 15

Feed-forward dimension 256

Initial rate of learning 0.01

Dropout factor 0.5

Embedding dimension 300

adopting this methodology, we aim to facilitate a better comprehension of the model’s behavior
and interpretation of the results.

5.3 Evaluation metrics

The evaluation metrics used are BLEU (bilingual evaluation understudy) (Papineni et al. 2002),
SacreBLEU (Post, Vilar, and Rebele 2018), TER (translation edit rate) (Snover et al. 2006),
METEOR (metric for evaluating translation with explicit ordering) (Lavie and Denkowski 2009),
chrF (character F-score) (Popovi¢, 2015), and RIBES (reference independent BLEU estimation
score) (Snover et al. 2006). In addition to these automated metrics, human evaluation was also
conducted to assess translation quality. For TER, lower scores in these evaluation metrics indicate
higher prediction accuracy.
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Table 7. Performance of transliteration model

Model ACC

GRU-based transliteration model 0.523

Table 8. Performance of distinct models for translation English to Assamese language

Model BLEU score  sacreBLEU  METEOR TER chrF2  RIBES
Transformer model 22.00 24.00 29.00 75.00 36.00 44.00
GRU-based translation model 26.10 29.72 34.40 7230 3917  47.17
LSTM-based translation model 24.12 26.60 31.03 7350 37.31  45.21
LSTM-based translation model with hybrid attention 25.60 28.30 33.60 72.,70 3830  46.60
LSTM-based translation model integrated with 27.30 30.00 35.10 69.70  41.00  49.00
transliteration (Bahdanau attention)

LSTM-based translation model integrated with 27.80 31.70 35.40 69.00  40.40  48.70
transliteration (hybrid attention)

GRU-based translation model along with hybrid 26.90 30.00 34.97 73.58  39.78  47.91
attention

GRU-based translation model integrated with 26.79 29.82 34.22 73.17  39.88  47.78

transliteration (Bahdanau attention)

GRU-based translation model integrated with 28.13 32.22 35.76 69.44 40.76 49.23
transliteration (hybrid attention)

5.4 Experimental results

In this study, the transliteration and translation models were developed and evaluated indepen-
dently. Subsequently, the translation model was integrated with the transliteration model, and
the combined system was tested on 4,077 sentences. In Table 7, the transliteration model’s per-
formance is assessed using the accuracy metric introduced by Zhang et al. (2016), denoted as
ACC (accuracy). ACC measures the correctness of the transliteration output, providing insights
into the model’s ability to accurately capture transliteration nuances based on the criteria estab-
lished by Zhang et al. The experimental results for the standalone transformer model, GRU-based
translation model, GRU-based translation model with a hybrid attention mechanism, proposed
integrated system along with the Bahdanau attention mechanism, hybrid attention mechanism,
as well as the LSTM-based translation models are presented in Table 8.The graphical representa-
tion in Figure 7 illustrates the progress of our model’s training through the epoch vs loss graph.
The presented visual representation illustrates the gradual decrease in loss metrics over multiple
epochs, indicating the model’s iterative improvement in error minimization and optimal fitting
of the training dataset. The decision to utilize GRU in our translation model is driven by its
competitive performance and potential ease of training.

The integration of a transliteration model with a GRU-based translation model, along with a
hybrid attention mechanism, results in improved performance compared to the base translation
model, as evidenced by various evaluation metrics. Specifically, the integration of the translitera-
tion model leads to overall improvements in translation quality, particularly for named entities,
resulting in improved scores across various evaluation metrics. The performance comparison
graph is depicted in Figure 8, while Tables 9, 10, and 11 present output samples from a standalone
transliteration model and translation samples from the integrated system, respectively.
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Epoch vs Loss Graph

Loss per epoch

Epochs

Figure 7. Epoch vs loss graph - training progress and error minimization.

Performance of Models for English to Assamese Translation

BLEU Score
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Figure 8. Bar chart for performance comparison I.

In Table 9, the *-marked words are OOV, and the transliteration model recognizes and translit-
erates them. Hence, the OOV issue is solved by the transliteration model with the help of subword
tokenization.

In this study, we compare the performance of our proposed integrated system with two existing
MT approaches: Samanantar (Ramesh et al. 2022), which is based on transformer-based models
trained using Fairseq, and the commercial Microsoft MT system (MSFT 2020). The Samanantar
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Table 9. Sample outputs from standalone transliteration model

Input

Actual output

Predicted output

Usha

Kailashnath

I (Usha)

e (Kailashnath)

@t (Asha)
&rer (Kailashnath)

Islam B (Islam) Feemdt (Islami)
Buddha & (Buddha) &t (Buddha)
Rajendar Jwg (Rajendar) Fg (Rajendar)
Shudh =& (Shudh) =&t (Shudha)

Shaleem Khan
Ram

Rose

x Basab Nath
x Kanyakumari

* Jatashankar

=iféw A=t (Shaleem Khan)

< (Ram)

@ (Rose)

R (Basab Nath)

FIRFIA (Kanyakumari)

wBreY (Jatashankar)

~ffw A= (Shaaleem Khan)
et (Ram)
@ (Rose)
= (Bosab Nath)
Pt (Nayakumari)

oY (Jotashankar)

Table 10. Sample translation by integrated system without transliteration

Input

Actual output

Predicted output

FARE 2NE FRSH Jeom T T |
(Yak pradhankai greenhouse
utpanno kora hoy.)

e 2rqeeee <unk> Jeem war =@ (Yak
pradhankai <unk>utpanno kora hoy.)

This is primarily grown in greenhouse.

TACEH CRIY T 10 Fres |
(Kamalesh peshat ejan ganit
shikshak.)

Kamlesh is a maths teacher by
profession.

1 g =Ifro Frsrzr =71 (Kash ejan ganit
shikshak hoy.)

LA FSSIY UISIHY LT T | <unk>Zesay WS SO T [
(Rangoli utsabar anushthanat (<unk>utsawar anushthan tayer kara hoy.)
tayer karahoy.)

Rangoli is made in festive occasions.

ot A TR R TG @& |
(Geeta Kumari hariyana egraki
malla yoddha.)

Geeta Kumari is a wrestler from
Haryana.

Nt A& G | (Gee hariyana egraki
malla yoddha.)

Amjad Khan was a great Indian actor. TS A T TN SIS O WA Tl T SO wfeeaon | (Khan ejan
(Amjad Khan ejan mahan bharati  mahan bharatiyo abhineta asil.)
abhineta asil.)

R SROY 9 Ao BT I 37 o a3 wfss www | (ha bharatar

(Vihar bharatar ekhan atijan ekhan atijan rajya.)

vasatipurna rajya.)

Bihar is one of the highly populated
states in India.

model has six layers of encoders and decoders, 1536 input embeddings with 16 attention heads,
and a 4096 feed-forward dimension. It uses label smoothing of 0.1 and gradient clipping of 1.0
in the Adam optimizer and starts with a learning rate of 5e-4 and 4000 warm-up steps. We
tested this model using the identical test corpus as our proposed model, and the findings are pre-
sented in Table 12. In the second comparison, the Microsoft Azure Cognitive Services Translation
API were used to translate all the sentences in our test set. The experimental results of the pro-
posed integrated system and the two existing approaches are compared in terms of the BLEU
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Table 11. Sample translation by integrated system with transliteration

Input Actual output Predicted output

This is primarily grown in FARE 2RINE RSP oo w21 (Yak FARE ZIRRE RrAFY Ferm w211 (Yak

greenhouse. pradhankai greenhouse utpanno pradhankai greenhouse utpanno kora hoy.)
kora hoy.)

Kamlesh is a maths teacher by FACET CRIT TS I e | e T 9 P =11 (Kamlesh peshat

profession. (Kamalesh peshat ejan ganit ejan ganit shikshak.)
shikshak.)

Rangoli is made in festive occasions.  TCTFT ST WFHRT LOAT FIRA | TR ST WS LA T A1 (Rangoli
(Rangoli utsabar anushthanat tayer utsawar anushthanat tayer karahoy.)
karahoy.)

Geeta Kumari is a wrestler from Tror Pt AT 2R g T Wror Pt AT T @& (Amjad Khan ejan

Haryana. (Geeta Kumari hariyana egrakimalla ~ mahan bharati abhineta asil.)
yoddha.)

Amjad Khan was a great Indian actor.  Sur=swt A T TN SIS ASCror Wifeet 1 st AN SO IR SO aif$or (Amjad
(Amjad Khan ejan mahan bharati Khan ejan mahan bharati abhineta.)
abhineta asil.)

Bihar is one of the highly populated ~ R¥ So¥ 93 9fEs o7 T | R SROT a3 afgsRe s | (Vihar

states in India. (Vihar bharatar ekhan atijan bharatar ekhan atijanabas rajya.)
vasatipurna rajya.)

Table 12. Performance comparison between integrated system and existing models

Model BLEU sacreBLEU METEOR TER chrF2 RIBES
Proposed integrated system 28.13 32.22 35.76 69.44 40.76 49.23
Samanatar IndicTrans model (Ramesh et al., 2022) 15.43 17.01 23.78 83.78 27.32 36.26
MSFT translation service (MSFT, 2020) 20.31 23.60 27.44 76.32 33.41 41.33

Table 13. Human evaluation scores for English to Assamese translations

Model Adequacy Fluency Overall rating
Proposed integrated system 3.91 4.63 4.27
Samanatar IndicTrans model (Ramesh et al., 2022) 2.81 3.26 3.03
MSFT translation service (MSFT, 2020) 3.01 3.74 3.37

score, sacreBLEU, METEOR, and TER, and the results are presented in Table 12 and Figure 9,
respectively.

According to the experimental findings shown in Table 12, it is observed that the proposed
integrated model for English to Assamese translation outperforms both MSFT and Samanantar’s
IndicTrans translation system. Specifically, the proposed model achieves a BLEU score of 28.13,
compared to 20.31 and 11.43 for MSFT and Samanantar’s Indic translation system, respectively.
Additionally, in Tables 14, 15, and 16 we presented a few sample predicted sentences to further
examine the translation quality of the integrated system, MSFT, and Samanantar’s IndicTrans
translation system. From the predicted sentences in Tables 13, 14, 15 and 16 it is observed that
the integrated system is capable of accurately translating named entities and performs better than
the existing systems for English to Assamese translation. Furthermore, the proposed integrated
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Table 14. Sample output from MSFT system

Input sentence Predicted output Actual output

This is primarily grown TBL JLTE TSP S P/ | (ato mukhyat FRE 2RI RTIIB o T 2 1 ( iyak
in greenhouse. seujagrihat kheti kara hoy.)

prathamat seujagrihat utpanna kara hoy.)

I live in Prid t bas karo.)

T CIIET A T (Moi

My name is Moon & = 5% (mor nam chandra.) IR YL (mor nam mun.)

Table 15. Sample output from Samanantar system

Input sentence Predicted output Actual output

This is primarily grown in SR 5 I XA AS=R | (jyar mukhy BIRE T AIB T T T 1 iyak
greenhouse. utpadon hol Greenhouse.) prathamat seujagrihat utpanna kara hoy.)
I live in Pride 2 Cllewo WAL W=l (moi gouravat jiai acho.) B B A IR (Moi Pride-t bas karo)
My name is Moon ¥ A BH | (mor nam chandrar.) U X

Performance Comparison between Integrated System and Existing Models

EE BLEU
80 4 B sacreBLEU
m METEOR
N TER
70 4 . chrF2
N RIBES
60
50
w
2
o
& 40
30 4
20 1
10 A
0-

Proposed Integrated System Samanatar IndicTrans Model MSFT Translation Service
Models

Figure 9. Bar chart for performance comparison II.

system is able to transliterate unknown named entities, as demonstrated in Table 8. Overall, the
translation quality of the proposed integrated model surpasses that of the existing systems. To
thoroughly assess the translation quality of MT models, we conducted a human evaluation follow-
ing the approach of Laskar et al. (2023), in addition to using automatic metrics. This is important
because it can capture nuances that automatic metrics often miss. Human evaluation method
focused on two key aspects: adequacy, which measures how accurately the translation conveys the
meaning of the source sentence, and fluency, which assesses how natural and idiomatic the transla-
tion is. To obtain an overall score, we averaged the adequacy and fluency ratings. Three evaluators
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Table 16. Sample output from integrated system

Input sentence Predicted output Actual output

This is primarily grown FARE 2E Rr=I%E $eow F1 =W 1 (yack pradhankai FARE 2 A=Y Feow w2 1 (iyak

in greenhouse. greenhouse utpanno kara hoy.) prathamikbhabe greenhouse-t utpanna
kara hoy.)

I live in Pride w2 21%% 1 et (moi Pride-t bas karo.) w2 21%% At et (moi Pride-t bas karo.)

My name is Moon IR YN (mor nam mun.) IR A YN (mor nam mun.)

independently assessed translation quality of three models using a 1-5 scale for a randomly cho-
sen set of 100 sample sentences. Table 13 summarizes the human evaluation scores for the three
models, providing insights into English-to- Assamese translation performance.

6. Conclusion

This paper proposed an integrated translation model for English to Assamese that combines a
GRU-based translation model with a transliteration model and a hybrid attention mechanism. The
integrated model is able to translate named entities accurately, leading to improved translation
accuracy. Furthermore, subword tokenization in the transliteration system partially addresses the
OOV issue. It achieves significantly better scores across multiple evaluation metrics, including
BLEU, TER, METEOR, and sacreBLEU, when compared to two other existing translation models.

For the current work, we have performed experiments on the TDIL corpus. However, we rec-
ognize that publicly available datasets such as the Samanantar corpus (containing about 138,353
English- Assamese parallel sentences) represent valuable additional training data. In future work,
we plan to incorporate the Samanantar dataset into our models as well. In the future, we also plan
to explore other languages from the northeastern region of India to develop a multilingual system
for translation. Additionally, to enhance the transliteration system, we suggest developing a model
capable of extracting phonemes, which are the basic units of sound in a particular language, from
the bilingual corpus.

Competing interests. The authors declare none.
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