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The Enriques-Fano classification ([E.F], [F]) of the maximal connected
algebraic subgroups of the three variable Cremona group, despite of its
group theoretic feature, seems to be the most significant result on the
rational threefolds so far known. In this paper as in [MU] we interpret
the Enriques-Fano classification from a geometric view point, namely the
geometry of minimal rational threefolds. We explained in [MU] the link
between the two objects; the maximal algebraic subgroups and the minimal
rational threefolds. Let (G, X) be a maximal algebraic subgroup of three
variable Cremona group. We denote by %(G, X) the set of all the alge-
braic operations (G, Y) such that Y is non-singular and projective and
such that (G, Y) is isomorphic to (G, X) as law chunks of algebraic
operation: namely (G, Y) is birationally equivalent to (G, X). Then we
define an order in %(G, X): for (G, Z), (G, W) e ¥(G, X), (G, Z)>(G, W) if
there exists an G-equivariant birational morphism of Z onto W.

Using the classification of [U4], we can state our result.

If (G,X) is one of the maximal algebraic subgroups except for (J9)
and (J11) listed in Theorem (2.1), [U4], then there exists the unique minimal
element in the ordered set ¥(G,X) and any other element of €(G, X) is
an equivariant blow-up of the minimal element. For the operdtions J9)
and (J11), we can describe the relatively minimal elements in €(G, X);
there are countable many relatively minimal elements and they are explicitly
constructed and are related each other by the equivariant elementary
transformation. In these cases too, any other element is an equivariant
blow-up of a relatively minimal elements.

Since our result thus reveals a new fascinating corner where the
simplicity dominates, we have not tried to relate our result with the
recent attempts of constructing minimal models for threefolds allowing
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16 HIROSHI UMEMURA

terminai singularities. Therefore there remains a very interesting problem
of studying minimal elements in wider categories allowing some reason-
able singularities.

As in our preceding papers, we work over the complex number field
k=C.

I should like to express my appreciation to the referee who pointed
out an error in the argument of Section 8 and revealed the Euclidean
model In a particular case.

§1. Preliminaries

We start with recalling the convention and some definitions.

(1.1.1) A Borel subgroup of SL, is denoted by B. We denote by D,
the 1-dimensional dihedral subgroup of SL,; D. = <((§ ?) (_1 1)>
te k¥

(1.1.2) An integral divisor on a variety is an irreducible reduced
closed subscheme of codimension 1.

The rational ruled surfaces appear very often in the discussion. We
recall some of their properties.

(1.2) The ruled surface F, (n >0) is by definition P(0p, ® Op.(—n))
which has a natural P'-bundle structure f: F, —P'. We denote [f*Op.(m)
by 0p,(m). The projection Op, ® Op.(—n) — Op(—n) gives a section C. of
F, — P.. The self-intersection number C% = —n and C. is characterized
by this property if n > 1 (cf. [Mar1]). ¢(C.) is the tautological line bundle
on P(Op; ® Op(—n)) so that fo(jC.) =~ S/(Op, ® Op.(—n)) for j > 0, where
S/(E) denotes the j-th symmetric tensor of E. We have a spectral
sequence for f.

(*)  Ep? = HP', B (0p,(m) ® 0(jC..))) == H*F,, U5 (m) ® O, (jC.)).
For j > 0, R'f(0r,(m) ® O(jC..)) = Up(m) ® Rf,,0(jC..)
= Op(m) ® R Op ogoc-nn ()
_ Op:(m) ® S (Op, @ @Pl(_n)):sé O(m — sn) if g=0
B 0 if g >0,

by the projection formula. Therefore the spectral sequence (*) degene-
rates giving
1.21) @ HXP, Op'm — sn)) ~ H*(F,, Oy, (m) ® O, (jC.)) for j >0,
0

§=
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(1.3.0) F, is by definition Spec(S(0p.(—n)), where S(E) = @OSJ'(E)
jz
denotes the symmetric algebra on E. ¥, has a natural structure of A'-
bundle f’: F, —P'. We denote f'*0Up.(m) by O (m). A'-bundle F, — P' is
the total space of line bundle 0p.(n) and hence we can regard as an open
subvariety of F,: namely F, — C, =~ F,.
F, has the 0-section C, of the line bundle @p.(n) which is defined in
F, by a surjective morphism Op, ® Op.(—n) — Op,. We have C: = n and
C, is disjoint from C.. And conversely if we have a section C’ on F,
with C? =n, C'NC., = ¢ or equivalently if we have a surjective mor-
phism Op, ® Op,(—n) — Op,, then there is a P'-automorphism of F,/P' (or
a P'-automorphism of F,/P' fixing C.) which transforms C to C,. Since
Aut$,F, is identified by Lemma (4.4), [U4] with the semi-direct product
HYP, 0(n)) xG,, the 0-section of F,/P' is not characteristic to F,: or
they are determined only up to Autp.F, = Aut,,F,.
It follows from the definition f%0y, ~ S(0(—n)). For a coherent
sheaf M on O, the spectral sequence for f’ degenerates since f is affine.

If we write the isomorphism deduced from the degeneracy of the spectral
sequence for M = 0y, (m), we get

(1.3.1) HF,, Op,(m)) = H?(P', Op,(m) @ [50x,)
=~ H*(P', Op(m)® (]er)0 S(Op: @ Ops(—n))))
~ @ H*P', Op.(m — jn)).
720

(1.3.2) Let S—P' be a P-bundle. As the Brauer group for a curve
vanishes, there exists a line bundle £ on P' such that S is P'-isomorphic
to P(E). If there exists sections D,, D. of S such that D, is disjoint
from D. with either D} =n or D> = —n, then we have both D= n
and D’ = —n and there exists a P'-isomorphism S ~ F, mapping D,
(resp. D.) to C, (resp. C.) (cf. Atiyah [A]).

(1.3.3) Let D F, (n > 0) be a section with D* = —n. H=2nce as we
mentioned above D = C,_ (cf. Maruyama [Marl] and [U3]). A non-trivial
operation of SL, on F, gives a semi-simple part of Aut’ F, and leaves
invariant C, and another section D, disjoint from C, hence D= n by
(1.3.2): the SL,-orbit decomposition of F, is (open orbit)UD,UD, [U3].
In particular D, (resp. D,) is characterised as the SlL.-invariant curve
on F, whose self-intersection number is negative (resp. positive). Con-
versely if we give a section D, with D = n disjoint of C., there exist a
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unique semi-simple part of Aut’ F, or equivalently mnon-trivial operation
of SL, on F, leaving D, and C, invariant (cf. (1.3.0) and [U3]).

We consider the ordered set ¥(G, X) of equivariant completions which
are birationally equivalent to a fixed operation.

DeriniTION (1.4). For a law chunk of algebraic operation (G, X), we
define %(G, X) = {(G, Y)|(G, Y) is an algebraic operation isomorphic to
(G, X) as law chunks of/ algebraic operation: in the usual language
(G, Y) is birationally equivalent to (G, X). Y is non-singular and pro-
jective (cf. [U1], [MU]).

%(G, X) is non-empty by [Su] if G is linear, in particular if X is
rational (see Theorem (3.2), [U2]) (see also [U5]). We define an order
>in %(G, X).

DerFiniTION (1.5). For (G, X)), (G, X, ec¥4(G, X), (G, X)) > (G, X,) if
there exists a G-equivariant birational morphism of X, onto X,.

Our result is a fruitful application of the theory of extremal rays
due to Mori, which is a generalization of the classical theory of both
ruled surfaces and of exceptional divisors of the first kind over a surface.
Referring the reader to [Mo] for the detail, we recall briefly the frame-
work of his theory and indicate how we can apply it. Let N(X) be the
R-vector space of all numerical equivalence classes of 1-cycles over a
non-singular projective threefold X with coefficients in R and NE(X) be
the smallest convex cone in N(X) containing all effective 1-cycles closed
under the multiplication by R,. We denote by NE(X) the closure of
NE(X) in the R-vector space N(X). A half line R = R,[Z] in NE(X) is
called an extremal ray if (i) (Z, c(X)) > 0 and if (ii) for Z, Z, e NE(X),
Z, + Z,e R implies Z,, Z, ¢ R.

THEOREM (Mori [Mo]). Let X be a non-singular projective threefold and
RC NE(X) be an extremal ray. Then there exists a morphism ¢: X —Y
to a projective variety Y such that (i) ¢4+0x = Oy and (ii) for any irreduci-
ble curve C in X, [C]eR if and only if dim ¢(C) = 0.

The structure of the morphism ¢ is analysed in Theorem (3.3), Corol-
lary (3.4) and Theorem (3.5), [Mo]. Roughly speaking we have one of
the following: (i) ¢ is a blow-down, (ii) ¢ makes X into a fibration over
a surface or a curve, (iii) X is a Fano threefold with o(X) = 1.

Since the morphism ¢ is functorial, if an algebraic group G operates
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on X, then G operates also on Y such that ¢ is G-equivariant. We apply
this for an operation (G, X) of a linear algebraic group on a non-singular
projective threefold X such that (G, X) gives a maximal connected
algebraic subgroup of the three variable Cremona group. In most of our
applications, Y is automatically smooth and we get one of the following:

(1) ¢ is an equivariant blow-up of non-singular Y,

(2) ¢ makes X into an equivariant P'-bundle over a rational ruled
surface,

(3) ¢ makes X into a del Pezzo bundle over P,

(4) X is a Fano threefold with o(X) = 1.

In the case (1), we apply the Mori theory again to Y and continue
to look for a minimal model. In the cases (2) and (3), we can determine
the structure of X completely. The case (4) rarely happens and in fact
never when we limit ourselves to the de Jonquiéres type operations
(G, X): recall that (G,X) is of de Jonquiéres type if there exist an
operation (G, Y), dim Y =1 or 2 and a dominant G-equivariant rational
map X - Y.

(1.6) We mean by a blow-up X— Y a blow-up of a non-singular
variety Y at a non-singular irreducible center. But by abuses of language,
we often call a sequence of blow-ups f; also a blow-up: f = fiofyo - of,:
X, —» X,, where f;,;: X;.,— X, is a blow-up of X, at a non-singular
irreducible center (0 < i< n — 1). We shall distinguish them clearly to
avoid the confusion.

The following theorem is useful when we analyse the elements of

%(G, X).

THEOREM (Danilov [Da)) (1.7). Let f: X — Y be a birational morphism
of non-singular projective varieties. If dim f~'(y) < 1 for any point yecY,
then up to an automorphism of X, f can be decomposed into a sequence
of blow-ups with smooth centers of codimension 2.

When dim X = dim Y = 2, the Theorem is classical and well-known.
We use the Theorem for threefolds.
We need the following Lemma which is finer than Lemma (1.21),

[U3].

LEmmA (1.8). Let f: X — Y be a projective, flat morphism of algebraic
varieties. Let : G X X— X be an operation of a reductive algebraic
group G on X such that fo+ = fop, where p,: G X X— X is the projec-
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tion. Then the following conditions are equivalent.

1) (G, X) is effective (resp. almost effective).

(2) There exists a point y,c¢ Y such that the induced operation
(G, (%) is effective (resp. almost effective).

(3) For any point ye Y, the induced operation (G, [ (y)) is effective
(resp. almost effective).

Proof. The implications (3) = (2) = (1) are evident. Thus we have
to prove (1) = (3). This follows from Exposé IX, S.G.A.D. but we prove
this directly. First we prove (1) = (3) for the almost effective case. We
show that if (3) does not hold for (G, X), then (1) does not hold. If there
exists a point y,e Y such that (G, f'(y,)) is not almost effective, then
there exists a positive dimensional normal subgroup of G which operates
trivially on f-'(y¥). Since any positive dimensional normal subgroup of
the reductive group G contains a non-trivial torus, we can thus find a
torus T'# 1 C G which operates trivially on f-'(y,). It is sufficient to show
that (T, X) is trivial. Namely to prove (1) = (3), it is sufficient to prove
it for the following special case: if G is a torus T and if there exists a
point y, ¢ Y such that T operates on f~'(y) trivially, then (7, X) is trivial.
Let L be a relatively ample line bundle for f: X — Y such that f,L is
locally free of finite rank and Rf,L = 0 for all i > 1: such a bundle L
exists replacing L by L®", n > 0 if necessary. + defines a morphism
¥: GX Y=TX Y—Aut,P(f,L) of group schemes over Y. For a point
y,e Y, we can find an affine neighbourhood Y’ of y, such that f,L is a
free Oy.-Module. Therefore we may assume that Y is affine. Then ¥
gives over Y = Spec A a morphism V/: T X Y — PGL, X Y. Using embed-
ding PGL,=—> GL,, we finally get ¢: TX Y—>GL, X Y and have to
prove that ¢ is trivial. Putting by T,. = {t € T'|¢*" = 1} the finite subgroup
of elements of order ¢, ¢ defines a Tyn-module M = A®”, where £ is a
prime number (different from p if ch & = p >0, which is not the case).
The character X: 7,. — A is a function of an element ¢ of T,. and of a point
yof Y:X(t; y). If we fix te T, y — X(¢; y) is regular function on Y. Since
T,. is finite, there are only finitely many representations of 7,. of rank
N over k and hence the function y > X(¢; y) is constant. Namely for all
y e Y, the reduction of T,.-module M at y is isomorphic each other. Since
the reduction at y, is the trivial T,.-module, 7T,. operates trivial on each
fibre. Taking all n >0, UT,. is dense in T,.,, we conclude 7T operates
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trivial on M. Hence ¢, V' are trivial. The proof (1) = (3) for effectiveness
follows from the last argument for finite groups.

Lemma (1.8) is the rigidity of operation of a reductive group.
We prove 2 lemmas for the automorphism group of A'-bundle. As
we explained above A'-bundles appear very often in the sequel.

Lemma (1.9). Let L be a line bundle over a projective algebraic
variety X and D an effective Cartier divisor on X. (a) Then we denoting
by L the total space Spec(@,.,L2%) of the line bundle L, AutyL is
representable in the category of reduced schemes over k and Auty L is
isomorphic to the semi-direct product HYX, L)XG,. (b) If the inclusion
HYX, L(— D)) - HX, L) is bijective, then H*X, L) fixes all the points of
L lying over D.

Proof. For any reduced scheme T — X, a e Aut, (T X L) is locally
an affine transformation and hence can be extended to an T-automor-
phism of the Pl-bundle T X ,PO® L-"). Therefore Aut,(T X;L) =
{o e Aut,(T X y P(0@® L") leaving the oo-section invariant}, which is a
closed subgroup of the automorphism group Aut P(0 @ L-') of the projec-
tive variety P(O® L™"). Let U,e; U, be a covering of X such that L is
defined by a 1-cocycle {g.;}.scr, &5€ HA(U,NU, 0%). Let se HX, L)
which is locally given by s,e H'(U,,0) such that g,s,=s, L is an
A'-bundle gluing U, X A' (e € I) by g,;: (x, u,) € U, X A" and (y, u,) € U, X A
are identified if x = y and g,,u, = u,. Thus the automorphism (x, u,) —
(x,u, + s,) of U, X A' defines an action of the vector group H%X, L) and
G,, operates on each fibre by the scalor multiplication. If we notice that
the Lie(Auty L) = {fcEnd(0® L)|f(0 ®0) C O ® 0}/scalor multiplications,
(a) follows from Lemma (1.8). If H(X, L(— D)) = H%X, L), all the section
of HYX, L) vanish on D and (b) is proved.

A similar argument gives

LemMma (1.10). Let L be a line bundle over a projective variety X and
D an effective Cartier divisor on X. (a) We denoting by Z an A'-bundle
over X defined by o non-trivial extension 0 —0-—>& —L—0, Aut,Y is
representable in the category of reduced schemes and AutyY is isomorphic
to the vector group HYX, L). (b) If the inclusion HYX, L(— D)) — HYX, L)
is bijective, then AutZ fixes all the points of Z lying over D.

Proof. This is proved by the same method as Lemma (1.9). See also
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Lemma (4.22) [U4].

Certain SL;-actions on a rational threefold do not have a fixed point
as we see in [MU] and shall see later. In general, an Sl,-action on a
threefold does not have too many fixed points.

Lemma (1.11). Let (SLy, X) be an operation of SL, on a non-singular
threefold X. Then the dimension of the subvariety S of SL,-fixed points
is at most 1 unless X = S.

Proof. Assume that SL,-fixes all the point of a surface S on X and
that (SL,, X) is non-trivial i.e. X+ S. Let xe S be a smooth point of S.
SL, operates on the Zariski tangent space m,/m’ but this operation fixes
the S-direction so that m,/m2 contains a trivial representation 2@k of
degree 2. Hence by the complete reducibility of SL,, m,m? is a trivial
SL,module. As we have Si(m,/m2) ~ mi/mi*', mifmi*' is a trivial SL,-
module. Therefore by the complete irreducibility. @./m/ is a trivial SL,-
module for j > 1. Consequently 0, = lim, @,/m} is a trivial SL,-module
and SL, operates on @, trivially and hence on its quotient field, which
is the function field of X. This is absurd as we assumed that (SL,, X)
is non-trivial.

The following Lemma gives an obstruction for blowing-down a divisor

to a smooth point.

LEmma (1.12). Let ¢: X— Y be a birational morphism of smooth
projective threefolds and D C X be an irreducible subvariety of X. If the
image o(D) is a point, and if ¢ induces an isomorphism X — D ~ Y — ¢(D),
then O(D)® O, is an ample line bundle on D.

Proof. Let A be an ample divisor on X. ¢*p,A is linearly equivalent
to A + nD with n>0. Since for any divisor B on Y, 0(p*B)® 0, is
trivial on D, ¢*p,A = A + nD is trivial when restricted on D. Thus
O0(A)® O(nD)® 0, ~ O, hence O(A)® O, ~ O(—nD)Q O, and O(—D)Q 0O,
is ample.

The following Lemma would be well-known among the specialists.
For the definition of a conic boudle, see [Be].

Lemma (1.13). Let (p,f): (G, X) — (G, Y) be a morphism of algebraic
operations such that f: X— Y is a conic bundle over a non-singular surface
Y and po(X) = p(Y) + 1. If any reduced G-invariant curve on Y is isomor-
phic to the disjoint union of some PVs, then f: X— Y is a P'-bundle.
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Proof. Let C C Y be an irreducible component of discriminant locus
of the conic curve. We prove C = ¢. For otherwise it follows from the
assumption that p(X) = p(Y) + 1 and from p. 87, Lemma, [Mi] that ¢ '(C)
is irreducible. Therefore by Proposition 1.5, [Be], there exists an étale
2-covering C’ — C with an irreducible C’. This impossible since by
hypotheses C =~ P.

§2. Compact case

Let (G, X) denote one of the following operations of Theorem (2.1),
[U4]: (P1) (PGL,, P?), (P2) (PSO,, quadric C P*), (J1) (PGL, X PGL,, P' x P?),
(J2) (PGL, X PGL, X PGL,, P' x P' X P') and (J4) (PGL,, PGL;/B). These
are the maximal subgroups where X is a projective homogensous space.
Let (G, Y)e%(G, X). Then by definition, there exists a G-equivariant
birational map f: X--> Y which should be biregular as X is a complete
homogeneous space. Therefore we have proved.

TaEOREM (2.1). Let (G, X) be one of the operations (P1), (P2), (J1), (J2)
and (J4) of Theorem (2.1), [U4]. Then the set ¥(G, X) consists of a single
element.

§ 3. Equivariant completions of J3

(J3) is the operation (PGL, X Aut’F;,, P' X F) = (G, X) (m > 2) which
has a projective non-singular compactification (G, Y) = (PGL, X Aut’F,,
P' x F,). The orbit decomposition is P' x F,,U(P' X F,, — P' X F}). The
latter is a divisor on P' X F,,, which we denote by D. Let (G, Z) e ¥(G, X).
Then we have a G-equivariant birational map f: Y.-»Z. By Hironaka's
theorem of equivariant resolution, we can blow-up Y equivariantly to
eliminate the indeterminacy of f. But as there is no orbit of codimen-
sion > 2, f should be a birational morphism inducing an isomorphism
between the open orbits. We show that f is biregular. Assume that
f(D) is a curve. Then it follows from Theorem (1.7), f is a blow-up but
this is impossible since D ~ P! X P' and 0(D) ® O, 18 Opiyp:(0, —m), m > 2.
It follows from Lemma (1.12) that f(D) is not a point since O(D)® O, ~
Opiyp0, —m), m > 2. Therefore it follows from Zariski’s main theorem
that f is biregular. Hence we have proved.

THEOREM (3.2). The set ¥(PGL, X Aut’F,,, P' X F,) (m > 2) consisis
of a single element.
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§4. Equivariant completions of J5

(J5) 1is the operation (PGL, PGL,/D,,), where D,, is the dihedral
subgroup of order 2n with n > 4. We denote by D,, the binary dihedral
subgroup of order 4n of SL,: D,, is the subgroup of SL, generated by

<_1 1) and (% (C)“)’ ¢ = 1. Since (G, W) = (SL,, SLZ/IBZ,L) almost effec-

tively realizes (PSL,, SL,/D,,) = (PGL,, PGL,/D,,), we study #(G, W). Some-
times %(G, W) is denoted by #(J5: n).

The following Lemma was proved in [MU] but we give a proof because
later we need a more general assertion which one can prove easily once
one review the following

LEMMA (4.1). Let (SL,, X) be an operation of SL, on a projective non-
singular threefold X. If SL, has an open orbit on X, then there is no
SL,-fixed point on X. In particular if (G, Y)e ¢(J5; n), then there is no
G-fixed point on Y.

Proof. Let PecY and assume that P is a fixed point of G. Since Y
is projective and G = SL, is simple, there exists an SL,-invariant affine
neighbourhood Spec A of P. We denote by I the ideal of A consisting
of the elements of A vanishing at P. Putting m = IA,, we get a surjective
SLy-linear map ¢: I' > m*/m’. We can choose an SLy-invariant finite
dimensional subspace V of I* such that ¢(V) = m*/m’ by (1.9) Proposition,
[Bo]. The Zariski tangent space m/m* is an SL,-module and S*m/m?) ~
m?/m’. Thus m?/m® contains a non-zero SL,invariant f. For, there
certainly exists f if m/m® is reducible (which implies that m/m® contains
a trivial representation since m/m® is 3-dimensional) and if m/m® is irre-
ducible, m/m* is isomorphic to the vector space of homogeneous polyno-
mials of degree 2 in x, y where SL, operates on x, y in usual way and
the discriminant which is a polynomial of degree 2 in the coefficients of
a given homogeneous polynomial, is the SL,-invariant. Since the image
o(V) = m*/m* contains a trivial representation kf, by the complete reduc-
ibility of SL,, we can find a non-zero lifting fe V of f which is SL,-
invariant hence constant as SL, has an open orbit. This is absurd since
f vanishes at P.

To apply the main Theorem of [Mo], we need a more general asser-
tion than Lemma (4.1).
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LEmmA (4.2). Let (G, X) be an (algebraic) operation of a reductive
algebraic group G on an affine variety X = Spec A. Let Pc X be a fixed
point, n a non-negative integer and let W be a G-invariant subspace of
I*[I*', where I is the ideal of A consisting of regular functions on X
vanishing at P. Then there exists a G-invariant subspace W' of I™ such
that the canonical map W' — W' + I"*}I"*' — I"/I"*' induces a G-isomor-
phism of W' and W.

Proof. The lemma 1s proved by the same method as in the proof
of Lemma (4.1).

CoROLLARY (4.3). Let (G, X), P and n be as in Lemma (4.2). If there
exists a G-invariant element f in I"/I**', then there is a G-invariant lifting

fof ftoI"

Proof. This is a particular case of Lemma (4.2) since G is com-
pletely reducible.

LeMMA (4.4). Let (G, X) e 4(J5;n). Then the 4 cases (3.3.2) ---(3.3.5)
for X in Theorem (3.2), [Mo] never occur.

Proof. We excluded the case (3.3.2) by Lemma (4.1) since SL,-operates
on Y. The case (3.3.4) does not occur neither. For otherwise, the divisor
D to be mapped to a singular point is SL,-invariant and the single singular
point of the cone D is left fixed by SL,, which contradicts Lemma (4.1).
Assume that the case (3.3.3) happens. Then D =~ P' x P' and 0,(D) is of
bidegree (—1, —1). Let ¢: X — Y be the morphism arising from the Mori
theory and ¢(D) = . SL,-operates on Y and ¢ is equivariant. It follows
from Lemma (3.3.2), [Mo] that I,/I} =~ H° (0,(—D)) = H'(P' X P!, 0(1, 1)).
Thus the Zariski tangent space I,/I} at @, as an SL,-module, is isomorphic
to the tensor product M,® M,. Thus we have either (1) M, and M, are
irreducible or (2) M, or M, is trivial. The first case never occurs. For
otherwise since Y is projective and SL, is simple, we can find an SL,-
invariant affine neighbourhood Spec A of . Since there is a non-zero
SLy-invariant in I,/I5 in case (1), it follows from Corollary (4.3) that we
can find a non-zero SL,-invariant meromorphic function regular on Spec A
vanishing at . This is absurd since SL, has an open orbit on Y. In
case (2) we can find as before an SL,-invariant affine neighbourhood
Spec A of @. Since there is a 2-dimensional Sl,-invariant subspace in
I /I in case (2), it follows that we can find a 2-dimensional SL,-invariant
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subspace of A by Lemma (4.2) hence an SLyinvariant linear system of
dimension 1. Namely we get an SL, equivariant dominant rational map
X->P, hence in particular a morphism (SL,, SL,/D,,) — (SL,, P') of alge-
braic operations from the open orbit. This is impossible as ﬁzn can not
be contained in a Borel subgroup. Now assume that the case (3.3.5)
occurs. We argue similarly, using the notation in Mori [Mo], p. 146-147
as above. It follows from Lemma (3.32) that I,/I} =~ HYD, 0,(— D)) =
H'(P?, 0(2)). The latter is isomorphic to S*(H°(P? 0(1)) hence contains a
non-zero SL.-invariant element f as we see in the Proof of Lemma (4.1).
Arguing as in the preceding cases, f yields a non-zero SL,-invariant (hence
constant) rational function A vanishing at Q.

Let (SL,, P! X P*) be the diagonal operation and E denote the irre-
ducible SL-module of dimension 8. Then SL, operates on P(E) giving an
operation (SL,, P?). SL, has an open orbit on P and the orbit decom-
position of P* is SL,/D.,USL,/B, where B is a Borel subgroup and D. is
a subgroup generated by (a a“)’ aek* and (_1 1). The latter orbit
is a quadric in P’. Let us define ¢: P' X P'—>P* by o((x, y), (¥, v)) =
(xu, yu + xv, yv) e P* for ((x, y), (u, v)) e P' X P'. Then ¢: P' X P' - P* is
an SL,equivariant 2-covering whose branch locus is the diagonal of
P! X P' and whose ramification locus is the quadric X} — 4X,X, = 0 in P2
Let 0(i, j) denote the line bundle over P' X P' of bidegree i, j. The direct
image sheaf ¢,0(i, j) = E(i, j) is the rank 2 vector bundle studied by
Schwartzenberger [Sc]. SL, operates on E(i, j) hence on P(E(i, j)). Since
¢*0p(1) is isomorphic to 0(1, 1), E(,j) = E(i — j, 0)® ¢*0p.(j) hence
P(E(, j)) ~ P(E(I — j, 0)). Thus we denote by E; the vector bundle E(i, 0).

LeEmMmA (4.5). SL, operates on P(E,) and has an open orbit isomorphic
to SL,/D,, for n = 1.

Proof. The stabilizer H at (0, 1, 0) ¢ P? is the one dimensional subgroup
D.. of SL, generated by (3 ‘t)) eSL,, tek* and (_1 1). 6710, 1,0) =
(0, 1), (1,0)U((1, 0), (0, 1)) and the fibre of E, at (0, 1, 0) is identified with
the direct sum of the fibre of O(n, 0) at ((0, 1), (1,0)) and ((1, 0), (0, 1)).

The operations of T = {(8 ?_1)|tek*} on the fibres of O(n,0) at ((0, 1),
(1,0)) and ({1, 0), (0, 1)) are respectively by t* and ¢-*. The operation of
(_1 1) on P! x P! interchanges the points ((0, 1), (1, 0)) and ((1, 0), (0, 1))
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hence the fibres of @(n,0). Thus the stabilizer at a suitable point of
P (the fibre of E, at (0, 1,0) is D,,.

LemMma (4.6). Let (G,X)e%4(J5;n), (G, Y) be an algebraic operation
and f: X—Y be a G-equivariant dominant rational map. If Y is non-
singular and complete and if dim Y < 2, then (G, Y) is isomorphic to
(SL,, P*) where SL, operates on P* through the irreducible representation
of degree 3.

Proof. Assume that Y is a curve. As X is rational, Y is isomorphic
to P! by the Liiroth theorem and (SL,, Y) is the usual operation of SL,
on P' since SL, must have an open orbit on Y. Thus f defines a surjective
morphism SLZ/D~2n—> SL,/B. Namely up to conjugacy D,, is contained in
the Borel subgroup B of SL,. This is absurd because D~ZHCSL2 is an-
irreducible representation of degree 2 of D,,. Hence Y is a surface. G
has an open orbit also on Y since (G, X) has the open orbit and f is
dominant. Let the open orbit on Y be isomorphic to SL,/H. Then there
is a surjective morphism SL,/D,, — SL,/H for the open orbit and hence
we may assume ﬁZnCH. It follows now that H = D.. Thus (G,Y) is
isomorphic to (SL,, P?) as law chunks of algebraic operation, where SL,
operates on P? through the irreducible representation of degree 3 (cf. [U3]).
Let g: P*..» Y be an SL,-equivariant birational map. By Hironaka, there
exists an equivariant blow-ups g,: Z— P?, g,: Z— Y such that g = g,og;".
But the orbit decomposition of P? is SL,/D”USL,/B and hence Z = P*
and g is a birational morphism hence an isomorphism since P* is relatively
minimal and Y is non-singular.

THEOREM (4.7). For n = 4, the ordered set 4(J5; n) contains the unique
minimal element which is given by (SL,, P(E))) and any other element of
%(J5; n) is obtained by an equivariant blow-up of the minimal element
along curves isomorphic to P'.

Proof. Let (G, X) e %(J5; n). We show that if o(X) = 3, then we can
equivariantly blow down X to a non-singular projective Y. In fact, as X
is rational, by Mori [Mo] there exists an extremal ray and a morphism
¢: X— Y in Theorem (3.1), [Mo]. The 4 cases (3.3.2) - - - (3.3.5) are already
excluded by Lemma (4.4). We have to exclude all the cases in Theorem
(3.5) in [Mo].

The case (3.5.1) in [Mo] never happens. Otherwise there would be a
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morphism (G, X)— (G, Y) with Y non-singular projective surface. It fol-
lows from Lemma (4.11) that Y=P°. Now p(X) = p(Y) + 1 = o(P*) + 1
= 2, which is a contradiction.

The case (3.5.2) in [Mo] is impossible by Lemma (4.6). The case
(3.5.3) is excluded in Section 7, [MU].

We conclude therefore that if o(X) = 3, then only the case (3.3.1) in
[Mo] occurs.

Now we must show that if (G, X) € €(J5; n) and p(X) = 2, then (G, X)
is isomorphic to (SL,, P(E,)). Then as in the p(X) = 3 case, the extremal
ray exists. Since as we have seen in Section 7 [MU] o(Y) = 2 for (G, Y)
€ €(J5; n), the case (3.3.1), [Mo] never happens. The cases (3.3.2) -
(3.3.5), [Mo] are excluded by Lemma (4.4). The case (3.5.2), [Mo] is excluded
by Lemma (4.11) and we need not consider the case (3.5.3), [Mo] since
o(X) = 2. The only possible case is the (3.5.1), [Mo] and it follows from
Lemma (4.4) and Lemma (1.13) that ¢: X — Y = P? is an SL,-equivariant
P'-bundle over P? and hence X is isomorphic to P(E) for a suitable vector
bundle E over P* of rank 2 since the Brauer group of P* vanishes. Let
U denote the open SL,-orbit on P?; U = P>(the invariant quadric). We
show that the orbit decomposition of P(E|U) is SLQ/]jZn and SL,/G,, and
the morphism ¢ makes the latter orbit an étale 2-covering of U. In fact
as we saw in the proof of Lemma (4.5), the stabilizer at (0,1,0)e P is
D.. D. operates on the fibre P(E)|o,,», which contains D~w/D~2n =P -2
points = {(a, b) e P'|a, b # 0} = Q. The operation of D. on Q is (a, b) —
(t*"a, b) for ((t) ?hl) and (a, b) — (b, a) for (_1 1). Thus D, operates on
P(E)|p1y as on Q. Let us put D/ = P(E|U) — SL2/D~2,L. Then ¢~'(0, 1, 0)
— @ consists of 2 distinct points and these 2 points are interchanged by

(__1 1) hence in the same SL,-orbit. Since the morphism D' — U is

SL,-equivariant and surjective, D’ is an SL,-orbit. Consequently D’ is
isomorphic to SL,/G,, and SL,/G, — SL,/D. is of course étale. Now let
D be the closure of D' in P(E) = X. There exists a line bundle L over
P? such that O(D) = 0p(2) ® ¢*L. Hence we have an exact sequence

0—> (—D)—> Opgy—> 0y —>0.

L

Op(—2) ® ¢*L™!

Tensoring @p (1) we get
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0—> @P(m(—l) ® ¢*L‘1 —_ @P(E)(l) —> 0,(1) —> 0.
If we take the direct image ¢y,

00— ¢4(Op5)(—1) ® L —> ¢,.0p1)(1) —> ¢4 0 (1) —> R'0p 5, ( -1 X L.

I

Consequently E = ¢,0,(1). We shall show below that D =P’ x P\
Admitting this for a moment, we conclude that X = P(F) is isomorphic
to P(E,) for a some integer i > 0. SL, has an open orbit on P(E,) isomor-
phic to SLzlﬁm. Therefore i = n by Theorem (2.1), [U4].

LemMmA (4.8). D is isomorphic to P' x P

Proof. It is sufficient to prove that D is non-singular. In fact if we
know that D is non-singular, D is a projective non-singular equivariant
completion of SL,/G,. A particular projective, non-singular equivariant
completion of SL,/G, is given by (SL, P' X P'), where SlL,-operates
diagonally. Therefore P' X P' and D are connected by equivariant blow-
ing-ups and downs. But as SL,-has no fixed point on P' X P! and P! x P!
is relatively minimal, P' X P' is isomorphic to D.

Let us now prove that D is non-singular. Let us denote by f: D— D
the normalization of D and by L the inverse image f *Op (1) ® Op). SL,
operates on D and has no fixed point since SL, has no fixed point on D.
Therefore D is a non-singular equivariant completion of (SL, SL./G,)
and it follows from the argument above that D is isomorphic to P' X P!
with the diagonal action of SL, and if we put ¢’ = ¢|D, ¢'of: P! X P'—P*
is the map studied above. Since fis an isomorphism outside the diagonal,
(¢ o F)«L is isomorphic to E when restricted on P* — (the ramification quadric
curve). Therefore S, has an open orbit isomorphic to SL,/D,, on
P((go’of)*i) and consequently by Proposition (7) [Sc], and Theorem (2.1),
[U4)], L = Opipa + n,a) (or Ola,a + n)). This is a contradiction once
the following Lemma is proved.

LEmMA (4.9). Let M be a line bundle on D. If D is singular, then
f*M = @Plel(a7 a)'

Proof. The following sublemma is well-known (see [Sc]). To explain
the assertion we need
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NorAaTiON (4.10). Let Y be a variety, L a line bundle and ¢ a global
section of L. Let L be defined by a cocycle g,, for an open covering
(U)ier and assume that ¢ is locally given by ¢, so that g},0, = ¢;,. Let
X, = {(z;, x;) e A X U, |2} = ¢,(x,)}. Identifying (z;, x,) e A' X U, and (z;, x;)
e A' X U, when (z,, x;) = (8,,2:, x;), we get the A'-bundle Spec(P;., L®).
Then X,’s are glued together to give X = UX,. We say that the scheme
X is the 2-covering defined by the section ¢ of L. The ramification
locus of X Y is the O-locus of ¢.

SuBLEMMA (4.11). Let X — Y be a finite morphism of degree 2, Y being
non-singular. If X is Cohen-Macauley, then there exist a line bundle L
on Y and a section ¢ of L' such that X is Y-isomorphic to the 2-covering
of Y defined by o.

By Sublemma (4.11), D is defined by a section s of 0p.(2/) whose
reduced 0-locus is the SL,-invariant quadric. Namely let h(x,, x,, x,) be
the quadric defining the ramification quadric. Then s = A% Therefore,
as fogp': P' X P'— P* is nothing but the canonical map associated with
P' X P' — (the symmetric product of 2 copies of P) = P, fo¢' and ¢ are
locally written as follows:

D=P xP f D ? . P
U U U
Spec k[x, y] —> Spec k[xy, x + ¥, (x — )] —> Spec k[x + y, xy]

4 is odd and = 3 since D is an irreducible 2-covering of P? and singular.
Let 4(2) denote the non-reduced subscheme of P' X P! defined by I2, where
I, is the defining ideal of the diagonal. The inclusion morphism L: 4(2)
— P' x P! is locally written by k[x, y]/(x — y)* < k[x,y]. Composing with
f, we get y: 4(2) — D which is locally given by klx, y1/(x — y) < k[x + ¥,
xy, (x — y)’]. Let now i be the automorphism of P' X P! interchanging factors.
It follows from the local expression that foioL = 4. Therefore if f*M
= Op.yp:(0, D), then L*@(a, b) = L*0(b, ). Now the Lemma follows from

Lemma (4.12). If 040 @ Oa, b) = 0,0 @ O(b, a), then a = b.

Proof. By tensoring O(—b, —a), we have to show that 0,, & 0(j, —j)
is not isomorphic to 0, if j = 1. In fact we have an exact sequence:

(4.13) 0—>0(—2, =2)—>Opspr—> 0y —>0.
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Assume that 0., ® 0(j, —j) = 0,, with j = 1. Tensoring 0(j, —j) with
the exact sequence (4.13), we get

0—0(G — 2, —j — 2)—>0(j, —j) —> O(j, —j) —> 0.
(4.14) HZ
@A(Z)

Since the morphisms in this exact sequence are SL,-morphisms, we get
SL,-exact sequence

0—> HY0, ) —> HOG — 2, —j — 2)).
(4.15) HZ
k

The SL,-module HY(0O(j — 2, —j — 2)) contains the trivial module k. Let
W, denote the irreducible SL,-module of degree d + 1if d >0 and W, =0
if d <0. By the Kiinneth formula and the Serre duality, H'(0(j — 2, — 2))
=W,,®@W, for j=1. By the Clebsch-Gordan formula (p. 126, [Hu])
W,.QW, =W, ,oW,, .. ®---D®W, W, ,® W, contains no trivial SL,-
module 2 which is absurd.

§5. Equivariant completions of J6

We have to consider the operation (G, W,, ,) = (G,, X SL;, X SL;, G,, X
SL, x SL,/H,, ,), where

H, A6 = {(tm, (t‘ x ) (tz Y )) e G, X SL, X SL,|¢, t,e k*, x,y € k}
' 0 ¢! 0 !
and m, n are integers with m > 2, —2 > n. We denote %(G, W, . by
%(J6; m, n). W, , is the principal G,-bundle of bidegree (m, n) over
SL,/B x SL,/B = P' x P'. Hence (G, W, , has a natural equivariant
completion L, , = P(Opi,pi @ Opiyp:s(—m, —n)) and we know that we have
a G-equivariant morphism (o, f): (G, P(Opixp: @ Opiyp:(m, n)) — (SL, X SL,,
P' X PY), ¢ being the projection ([U4]). We can regard Spec (D,z, O(—¢m,
—4n)) as a Zariski open set in P(Opipi @ Opipi(—m, —n)). We set

D.. = P(Upixp:s @ Opsxpi{—m, —n)) — Spec P O(—Lm, {n))
&0

and D, = Spec(®;so(—¢m, ¢n)) — W, , (=the zero section of the line
bundle Spec (P,so0(—¥¢m, £n)). Namely adding the 0-section D, to the
G, -bundle W, ., we get the line bundle Spec (P ,.,(— ¢m, — ¢{n)) and further-
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more by adding the oo-section D. to the line bundle Spec(®,s, (—‘¢m,
—¢n)), we get the P'-bundle P(0® O(—m, —n)) over P! x P. By the
equivariant morphism f, the orbit decomposition of P(0 P O(—m, —n)) is
w,.UD,UD..

TueoreM (5.1). #¥(J6; m,n) (m =2, —2 = n) consists of a single ele-
ment (G, L, ).

Proof. Let (G, X)e%(J6; m,n). By Hironaka’s Theorem, there ex-
ists an equivariant blow-up f: Y— P(@® 0(—m, —n)) and a birational
morphism f;: Y— X. It follows from orbit decomposition that f, is an
isomorphism. Thus we get a birational morphism f;: P(0 ® O(—m, —n))—
X. We have O(—D)® Oy, = Opixp:(m, n) and O(—D.)® O, = Op,yp(—m,
—n) if we identify D, and D. with P' X P' by the equivariant map f.
It follows from Lemma (1.12) that neither f(D,) nor f(D.) is reduced to
a point. Since m = 2, —2 > n, then we can blow down neither D, nor
D, to a curve (cf. Theorem (1.7)). Hence by Zariski’s Main Theorem f,
is an isomorphism.

§ 6. Equivariant completions of J7

J’. is by definition Spec(S(0p.(—m)); the total space of the line bundle
of degree m over P°.. We study the operation (J7) (Aut’d,, J,) (m = 2).
We know by Proposition (4.8), [U4] Aut °J;, respects the fibration J, — P%.
Therefore the operation (J7) (Aut’d), J,) has a natural equivariant com-
pletion (Aut’d,,, J,) by Corollary (4.10), [U4] where J, denotes P(0p. @
Op(—m)). We denote #(Aut’J,, J,) by €(J7; m).

TaEOREM (6.1). %(J7; m) (m = 2) consists of a single element (Aut’J,,,
I

Proof. For the same reason as in the case (J6), it is sufficient to
notice that we can not collapse the orbit D, = J,, — J/, = P? to a smooth
point. In fact, let f: J,— X be a birational morphism such that X is
non-singular and projective, f is biregular outside D., and such that f(D.)
is a point. Let H = n*0p,(1) so that H® O, _ = 0p.(1), where z: J, — P*
is the projection. Then 0, =f*(f,H)® 0, =H O0rD.))® 0,_ =
O0p:(1) ®(O(rD,)® 0,_). Hence r=1 and 0(D.)® 0, = Op(—1). But
0(D..)® O, = Op(—m), which is a contradiction.
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§7. Equivariant completions of J8

We study (J8) (Aut’ L, ,, L, .) (m=n=1): L, is the total space
Spec(S(O(—m) ® O(—n))) of the line bundle @(m, n) of bidegree (m, n) over
P' x P'. The operation (J8) (Aut’L;, ,, L, ,) respects the fibration L, , —
P' x P' by Proposition (4.11) and hence by Corollary (4.12) the operation
(J8) (Aut’ L}, ,, L, ) has a natural equivariant completion (Aut’L,, ,, L, ),
where L, , denotes the P'-bundle P(0® 0(—m, —n)) over P'xX P'. If

n = 1, by the composite morphism L, , Lpxpl P, we can regard L, ,
equivariantly as F,-bundle over P'. Replacing each fibre F, by P? we
get an equivariant completion (Aut’ L/, , X,,). The P:bundle X, over P'
is isomorphic to P(Up, @ Op, ® Up.(—m)) by its construction. We denote
#Aut’ L, ,, L},.) by (J8; m, n).

TaEOREM (7.1). If m = n = 2, ¥(J8; m, n) consists of one element (Aut’
L, ., L,.,). The ordered set ¥(J8; m,1) consists of 2 elements; (Aut’L,, ,
L,)>Auw L, ,, X,) (m=1).

Theorem is proved by the same method as Theorem (6.1). Hence we
omit the proof.

§ 8. Equivariant completions of J9

Let C, = F, — F,; namely C. is the section of P'-bundle f,: F, — P!
with C% = —n. The section with this property is uniquely determined
and called the infinity section of F, (see (1.2)). We denote by 0 (f) the
line bundle f¥0p.(f) and by O, (t) its restriction on F;.

The variety F,,, (m=n>=1) is the total space of the vector
bundle Op.(m) D Op.(n) over P': F, , = Spec(S(Cp.(—m) ® Op.(—n))), where
S(E) denotes the symmetric algebra on E. We can regard F, , also
as the total space of a line bundle @(m) over F,. Namely F, , =
Spec(S(0r,(—m))) and we have a morphism F/ , — F, giving the bundle
structure over F,. (J9) is the operation (Aut’F, ,, F, ) (m >n = 2).
Since (Aut’F;, ., F,,,) respects the fibration by Proposition (4.13), [U4], to
complete equivariantly the A'-bundle F, , over F,, first we want to equiv-
ariantly extend it to an A'-bundle over F,. For this purpose, in view of
Lemma (1.9) in section 1 of this paper, Lemma (4.4), Proposition (4.13)
and Corollary (4.17) all in [U4], it is sufficient to find a line bundle M
over F, such that (1) M is Aut’F,-equivariant, M is isomorphic to 0, (m)
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when restricted over F, and such that (2) the restriction HYF,, M)
— H(F,, M) = H(F,, 0;,(m)) induces an isomorphism. In fact, then
Spec(S(M ")) D Spec(S(0r(—m)) is a desired extension to F, and P(0;, ®
M~-"), which is an equivariant completion of Spec(S(M ")), is an equiv-
ariant completion of (Aut'F,, ., ¥, ).

We choose an integer £ such that m = ¢n 4 r, 0 < r <n (cf. Corollary
4.17), [U4]).

Lemma (8.1). (Aut'F,, ., F.. ) has an equivariant completion (Aut’Fj, ,,
F% ) for any integer k = ¢, where F% . denotes the P'-bundle f% .: P(0r, ®
Op,(—m) ® O, (—kC.)) - F,.

Proof. By the argument preceding the Lemma, we look for a condi-
tion for the restriction 0 — H(F,, O, (m) ® 0 (kC.)) — HF;, Or(m)) to be
isomorphism. It follows from the spectral sequences in (1.2), (1.2.1) and
(1.3.1),

0— HF,, O0p(m)® Oy, (kC.)) —————>H(F,, Ori(m))

ZH J

0— HYP', Op,(m) ® S*(0p, @ Op(—n)) —>H(P', Op,(m) @ S(Op; ® Op.(—n))

J J

0— & HYP', 0(m — sn)) >3 H(P', Op(m — tn)) .
§=0

t20

Therefore & > £ is the necessary and sufficient condition.

We denote by D% the oo-section of the P'-bundle F% , over F, so that
Di = F% . — Spec(S(Op,(—m)) ® Oy (—kC.)) and by D} the inverse image
(ft )'C.. We have a morphism

(d, /%0 (Aut*FE | FE ) ——> (Aut’F% , F,) of algebraic operations.

The projection f% , induces an isomorphism D} = F, and the divisor
D# is isomorphic to P((0® O(—m) R 0(—kC.))® 0,,) hence to P(0p, @
Op(—m + kn)) = F,_,.1n- The intersection D% D} is the oco-section of
the ruled surface Df¥ = F_, .., (see Fig (8.2)).

We use the orbit decomposition of F% . in a substantial way.

myn

LemMa (8.3). The orbit decomposition of (Auwt’F,, ., F: ) is F, U
(D! — DINDYU(DE — DENDYU(DIND:). For any integer k> £, the orbit
decomposition of (Aut’F,, ,, F}, ) is F,,U(Df — DiN Dy — C)U(D; — DYN DY)

U(D*NDYUC, where C is a 0-section of the ruled surface Df = F_, ...
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Fig. (8.2)

13
Fm,n

&
/
P, \ F,

Proof. It foliows from Corollary (4.17) and Lemma (4.4), [U4] that
F, .. Di and Dj, D{NDj are AutF, ,-invariant subvarieties of Fj , for

m,n

j = ¢. By the morphism f}, ,, the invariant divisor Dj decomposes into
the union (D{ — DiN D) U(D{N D)) of 2 invariant subvarieties. It follows
from Corollary (4.17), [U4] that the unipotent part of the Ker(Aut’F,, , —
Aut’F;) is H(F}, O,(m)). In the Proof of Lemma (8.1) we choose j = ¢
so that the restriction

(*)  H'(F,, Or,(m) ® Or,(jC.)) —> H(F,, 0r,(m) ® 0x,(jC.)) = HF,, U, (m))

induces an isomorphism between the cohomology groups and /¢ is the
smallest among such integers. Now the injection O (m)® 05, (jC.)—
O, (M) ® O, ((j + 1)C..) induces an injection 0 — HYF,, Oy (m) ® 0 (jC..)) —
HYF,, Oz (m) ® Og((j + 1)C..)), which is thus an isomorphism since their
dimensions coincide by (*). Therefore all the sections of H°(F,, 0y (m)
® O, (j + 1)C.) vanishes on C.. It follows from Lemma (1.9) that
HYF,, 0z (m)® 0g,(jC..)) operates on D{ trivially if j > ¢ and non-trivially
on D! The Lemma now follows from Lemma (1.8) and from [U3].

DEFINITION (8.4). Let X be a projective non-singular threefold and S
a finite set of irreducible divisors D, on X (1 <1 < n) such that (1) each
D, is isomorphic to a rational ruled surface F,, m; =20 (1 <i <n), (2) if
D,ND,#+ @, then D, and D, intersects transversely along D,ND, =
C.,(=P") which is a section of the rational ruled surfaces F,, and F,,
with [(C;;-Ci))p,| = m; and |(C;;-Ci))p,| = m; and such that (3) for any
three distinct divisors D,, D,, D, e S, D,ND,N D, = ¢. We associate to

https://doi.org/10.1017/50027763000002877 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000002877

36 HIROSHI UMEMURA

S a diagram D. D consists of n segments ¢, 4, ---, £, on the plane
satisfying the following conditions.

(a) ¢,N¢; is either empty or a point for any 1 <i <j < n.
(b) ¢.n¢; + @ if and only if D,ND, = @.

ExampLEs (8.5.1). We taking for S the set of G-invariant divisors on
F% ., it follows from Lemma (8.3) that S is described by

F, F,
and

Fm—m’

Gf B> 0.
Fnk—m

Assuming m — nf >0, to indicate that C’ = F,NF,_,, has the inter-
section numbers; (C?y,_,, = né — m <0, (C%s, = —n <0, we complete
the diagram by making the segments into arrows:

F, l
Fm-nc .

For k& with nk —m >0, C'=F,NF,.., has the intersection number
(C®p, = —n <0, (CMs,,_,, = nk — m >0. Therefore our diagram is

F,
Fnk-m .
(8.5.2). The diagram

| | signifies

¥, and F, (vesp. F, and F,) intersect transversely along sections of the
ruled surfaces and we have the intersection numbers

F.NFi, = —a, F,NF);, =0b, F,NF)5, = —b
and (F,NF.):, = —c.

https://doi.org/10.1017/50027763000002877 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000002877

RATIONAL THREEFOLDS 37

(8.5.3). The diagram

signifies among other things

(Faﬂ F,,)f:a = —a, (Fa N Fb)%‘,, = ‘_b; (Fb N Fc)%‘b = b and (Fbm Fc)i‘c = —C.
The following Lemma shows the convenience of the diagram.

LEmMmA (8.5.4). Let X be a non-singular projective threefold.
(i) Assume that we have two divisors on X isomorphic respectively
to F, and ¥, such that they are expressed in the diagram

F, F,

Let p: Y— X be a blow-up of X along F,NF,. If a > b>1, then the
divisor p~'(F,UF,) on Y is expressed in terms of the diagram

F,
Fa—b

T,

where F, and F, are the proper transforms and F,_, is the exceptional
divisor.

(i) Assume that we have two divisors on X isomorphic to F, and F,
such that they are expressed in the diagram

F.
F, .

Let p: Y— X be a blow up of X along F,NF,. If a, b > 1, then the divisor
p'(F,UF)) on Y is expressed in terms of the diagram

F,
Fa+b

F,
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where ¥, and F, are the proper transforms and F,,, is the exceptional
divisor for p.

Proof. Since F, and F, intersect transversely, the exceptional divisor
E is a rational ruled surface and ENF,, ENF, are disjoint sections of
the ruled surfaces. To distinguish F,, F, from their proper transforms,
the proper transforms of F, and F, are denoted by F, and F,. Let us
first prove (i). (F,NE) = (F,NE)-(F,NE), = &, -F,-E), = &, + E —
E-F,-E)= (p*F,— E-F,-E) = (p*F,-F.-E)y — (B -F,-E) = (F. -pu(Fy - E))x
—(—a) = —b + a.

Similarly we get (F,NE)%, = a — b. Therefore E is isomorphic to
F,.,. Since ¢ — b >0, the arrow on E ~ F,_, points from F, to F,. The
second assertion is proved by the same method.

Remark (8.5.5). In the diagram it is convenient to extend the arrow
to the ruled surface F, = P' X P'. To be precise, for example by defini-

tion the diagram
F. i
Fb (a) b > 1)

signifies that the divisors intersect transversely, (F,NF,);, = —a, F, NF)L,
= —b and F,NF, is a section of the ruled surfaces F,, F,. Let us allow
here ¢ =0 or b = 0 and then an arrow means one intersection number
is greater than or equal to the other. The diagram

F,
(8.5.5) r >0

shows that F)NF, is a section of the ruled surfaces F,, F, and (F,NF,),

=0 and (F,NF,);, = —b.
Therefore the diagram (8.5.5) is equivalent to

F {
0 F,

This remark being done, Lemma (8.5.4) (i) holds for ¢ > b >0 and
(i1) is correct for a, b > 0.
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It follows from Lemma (8.3),
(8.6) the set of the G-invariant divisors on F¢, , are described by,

myn

L
Fooen fm—4¢n>0
or by,
B
F, ifm—tn=0.

Let us treat only the case m — /n > 0 because the case m — /n =0 is
treated without any essential modification. There is only one choice of
the center to blow up F! , equivariantly: the intersection F,NF,_,,.
Let us blow-up ¥, , at F,NF,_,.: n;: X, > F., ., we get a new diagram of
G-invariant divisors

Frn X,
F. |center blowup F, \
8.7
( ) Fm—fﬂ 1 E = F([+l)n——m
Fm—[n

by Lemma (8.5.4).

We can now show that we can blow down F,_,, in X, to P' and we
get X i, This procedure is called the elementary transformation applied
for the P'-bundle f%, ,: F% ,— F, with center DN D} (see Maruyama [Mar
2]). Similarly the P'-bundle f, ,: Ft , —F, and the P' -bundle f%'.: Fitl
— F, are related one another by equivariant elementary transforma-
tions. Since F¢, , is a P'-bundle over F, obtained from the line bundle
Spec(S(Oy,(—m)) ® Or,(—£C.)) by adding the co-section, we have ¢,(D;) =
O, (—m) ® Or,(—¢C.) hence, denoting by f the fibre of the ruled surface
Di=F, (f-D)s,, = —¢.

(8.8) If ¢ =1, we can equivariantly blow down D = F, to get F}, , —
P(0p, ® Op(—m) @ Op,(—n)).

(8.9) Let us blow up X, at Fy,,p,.,NF,: m: X, — X,, where F.y,
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is the exceptional divisor for z, and F, is the proper transform =z;i'[D;].
It follows from Lemma (8.5.4)

Xl Xg
n \ center blow up F,
(8.9.1) Foimnn E=F,p,n.
F F(ln)n—m
m=Lin
Fm—-é’n
If we continue blowing up j-times on the invariant curve (= P') on
F,, we get
F, \
F(“J’)n-n
(8.9.2)
i Fm—{n F4
F(H!)n—m

(8.10) Let us blow up X, at Fu,pcnNFup: 70 X;— X, We get
by Lemma (8.5.4) a diagram

X X,
F, F,
T3
(8.101) F(“‘)"""' -— F(hl)n-m
center  blow-up
E = Floinn-m
Fm -én

if (2¢ + 1)n — 2m > 0, otherwise the arrow on E should be reversed.
Assume now that (2¢ + 1)n —2m =0 so that E=P' X P! = F, and we
can choose a G-invariant section L of P' X P' disjoint from F.,,..NE
and F,_,,NE.

(8.11) Let us blow up X, at L: n,: X, — X,. Denoting by E the ex-
ceptional divisor for z,, we can calculate the intersection number (E.P! X
PP X P) = 4n —m. In fact let
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F(g+1)n—m
(8.11.1)

P' x P!

’\E =F,.

be the diagrams for X, and X,. Then we have (E. F,. F))y, = (E. F,. F, + E
- E)X4 = (E. Fy. (nfF,) — E)X4 = (E. F,. ﬂszo)h — (E. F,. E)X4 = (E. F,. ”ZkFo)XA
= (rxENF. F)y, = (F,_,,NF.F) = {n — m. Since by Lemma (1.11) SL,
operates non-trivially on E leaving invariant the intersection ENP' X P,
then it follows from (1.3.3) E — F,_,, and ENP' X P' is the oo-section
of E.

(8.12) Let us blow up X, at another section of F, disjoint from
ENP' x P'; n;: X;— X,. As SL, operates on E non-trivially leaving the
intersection F,N E by Lemma (1.11), for the same reason as in (8.11) we

Fm —én

get
X4 X5
F(U +Dn-m
blow-up
(8.12.1) s
center

E ; FZ(m—én)

LemMaA (8.12.2). Let X be a (successive) equivariant blow-up of F ..
Then a G-invariant irreducible divisor on X is isomorphic to F,, a >0
with a e Zm 4+ Zn. There is at most only one G-invariant divisor on X
isomorphic to F, (see also Lemma (8.14)).

Proof. This is a cosequence of Lemma (8.5.4), Remark (8.5.5) and
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the argument of (8.11.1) and (8.12.1).

Lemma (8.13). Let (G, X)e C(Aut*F,, ., ¥, ) = €J9; m, n). We as-
sume (m, n) > 2. Then (a) there is no G-invariant divisor on X which
is isomorphic either to P* or F,. (b) There is no G-fixed point on X.

Proof. We have an equivariant birational map ¢: X > F, .. We can
eliminate the indeterminacy of ¢ by equivariantly blowing up X;

A

:E"Z 6—-—00-){

Since there is no fixed point on F?, , by Lemma (8.3), ¢, is also an equi-
variant blow-up by Theorem (1.7). If there were a G-invariant divisor
isomorphic to P* or F, on X, then it proper transform would be a G-
invariant divisor on X isomorphic to P* or to F,. This contradicts Lemma
(8.12.2) since (m, n) > 2. The assertion (a) is proved. If we blow up X
at a G-fixed point, (b) follows from (a).

LEmmaA (8.14). Let (G, X) e #(Aut® F,. ., Fr..) = €J9; m, n) and (Id, ¢,):
(G, X)— (G, F.,,) be an equivariant blow-up, where we choose the integer
0 as before: m=nl +r, 0 <r<n. We denote by S the set of all the
irreducible reduced effective G-invariant divisors on X. Then (a) S is a
finite set. (b) The subvariety \ Jpes D C X is connected. (c) S satisfies the
condition (1), (2), (3) of Definition (8.4). (d) If a divisor D e S is exceptional
for ¢, and if there is only one divisor D'e S, D # D) with DND' + &,
then (DND")% > 0. (e) For any G-invariant irreducible reduced curve C,
there exists a G-invariant irreducible reduced effective divisor D such that
C lies on D such that C is a section of the rational ruled surface D = F,
and (C?), = £+ t.

Remark (8.14.1). Later we shall not use (d). But we need (a), (b),
(c), (d) to prove (a), (b), (c) inductively.

Proof. First of all, we notice that the center of each step of ¢, is a
G-orbit by Lemma (8.13). Therefore the morphism ¢,: X F! . maps the
centers onto the unique G-invariant curve D{NDj on F% ,. This proves
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(b) by induction. Now let SL, — G be a non-trivial morphism and hence
give a semi-simple part of G by Corollary (4.17), [U4]. Then by Lemma
(1.11) for any D e S, SL, operates non-trivially on D. We prove the Lemma
by induction on the length of the sequence ¢, of blow-ups at smooth
irreducible centers or on the Picard number p(X) of X. The Lemma holds

for Ft, , by Lemma (8.3). The assertion (a) is evidently proved by induc-
tion. The remaining assertions (c), (d), (e) are not obvious. Let us factor
P2 = P30 P4 N
¢4/ X
X’ 123
s
K.

where ¢, is a sequence of G-equivariant blow-ups for which the Lemma
holds and ¢, is a G-equivariant blow-up at an irreducible G-invariant
center, which is a curve C isomorphic to P' by Lemma (8.3). We assume
that the Lemma holds for X’ and prove it for X. There are three pos-
sibilities:

(i) there exists 2 divisors D,, D,e S’ such that C = D,N D,, where
S’ denotes the set of G-invariant irreducible reduced effective divisors on
X’ (cf. Fig. (8.14.2. (1)), Examples (8.7), (8.9.1), (8.9.2) and (8.10)).

(i1) C lies on the unique G-invariant divisor D on X'.

We may assume in the case of (i) that D is exceptional for ¢, by
Lemma (8.3). For otherwise C is in the case (i) by Lemma (8.3).

The case (i1) is divided into 2 subcases:

(iia) C lies on the unique G-invariant divisor D on X’ and D is
isomorphic to P' X P' and exceptional for ¢, (cf. Fig. (8.14.2. (ii a)).

Fig (8.14.2)

O] (iih)
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Example (8.11)),

(ii b) C lies on the unique G-invariant divisor D on X’ and D is
isomorphic to F, (¢t > 0) and exceptional for ¢, (cf. Fig. (8.14.2. (ii b)),
Example (8.12)).

In the case (i), it is evident that Lemma (8.14) holds for X by (1.3.2)
and Lemma (1.11):

Let us study the case (ii a). In this case, it follows from (e) for C on
X’ that (C, C), = 0. By the assertions (c), (d), (e) for X’, we have:

(@
C blow-up E
at C
D=P x P P x P,

Namely the exceptional divisor E for ¢, intersects on X with the unique
G-invariant divisor which is the proper transform of D. Let us calculate
the intersection number: by the projection formula —n = (C..C.)s,
= (f2r.aCoe (DI N DY)y, = (frrno0)*C. E. 07 [D)z = ({aE + ap;'[D] + (a
divisor disjoint from ENe;'[D]}. E.¢;*[D])y with an integer a >0,
= o(E. E. ¢;'[D))z + alp:'[D]. E. ;' [D])z = a(e;'[D]. E. ¢;'[D])s by the as-
sumption (e). This proves that for the new born G-invariant divisor E the
assertions (c), (d), (e) hold by (1.8.3) since SL,-operates non-trivially on
any G-invariant divisor on X by Lemma (1.11). The Lemma is proved
for X in this case. Now we study the last case (ii b). By (1.3.3), Lemma
(1.11) and by the assertion (c), (d), (e) for X’ we have:

D=F, C ®: blow up . \

at C \E
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Namely the exceptional divisor E for ¢, intersects with the unique
G-invariant divisor which is the proper transform of D. We calculate the
intersection number as above: —n = (C.. C.)s, = ((f&..° 0)*C... E. ;' [D]) g
= ({aE + ag;'[D] + (a divisor disjoint from E N ¢;'[D]}. E. ¢;'[D])x, with an
integer a > 0, =a(E. E. ¢;'[D])z + a(e:'[D]. E. ¢;'[D])z. Hence (E. E. ¢;'[D])s
< 0 since (¢;'[D]. E. ¢7'[D))z = (C, C), > 0. This shows that the new born
divisor E satisfies the assertions (c), (d), (¢) of the Lemma for the same
reason as in the case (ii a). This proves the Lemma for X in the case
(i1 b) and hence the Lemma.

CoroLLARY (8.15). We assume (m, n) > 2. Let (G, X) e ¢(Aut’F,, , ¥, )
= %J9; m n), (G, X) e €(J9; m, n), (14, on: (G, X)—(G, F¢..) and (Id, ¢)):
(G, X) — (G, X) equivariant blow-ups with smooth centers. Then there is
no G-invariant divisor D isomorphic to P' X P' blown-down to P' along
different projections by ¢, and ¢,: the restriction of ¢, on D =P X P
coincides with the projection p;: P' X P'— P onto the i-th factor (i = 1, 2).

Proof. Assume that the existence of such a divisor D. It follows
from Lemma (8.14) that G leaves invariant a X P' € P' X P* for a suitable
point @ ¢ P'. Therefore ¢,(a X P') is a G-fixed point on X, which con-
tradicts Lemma (8.13).

Remark (8.15.1). We can prove Corollary (8.15) directly. It follows
from Lemma (8.12.2) that in any (successive) blow-up of F ,, there is at
most 1 invariant divisor E is isomorphic to P' X P'. Let ¢ be the line
P! to be contracted to a new direction. Then there is an invariant divisor
D such that ¢ is numerically equivariant to END. The divisor D is
isomorphic to F, for a suitable ae€Zm 4+ Zn. Since E is contracted,
—1=(E.{) =(E.E.D) = +a. This is a contradiction as we assume
(m, n) > 2.

Lemma (8.16). Under the hypothesis (m,n) > 2, none of the cases
(3.3.2), (3.3.3), (3.3.4) and (3.3.5) of Theorem (3.3), [Mo] occurs.

Proof. The cases (3.3.2), (3.3.5) are avoided by (a), Lemma (8.13). The
case (3.3.4) is excluded by (b), Lemma (8.13) since the singular point of
the G-invariant divisor is a G-fixed point.

Assume now that (3.3.3) is the case. Let FY, , < X, be an equivariant
birational map, where we choose £ as before. Since there appears no
fixed point by Lemma (8.13), there exist equivariant blow-ups ¢,: X ¥ .
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and ¢;: X — X such that ¢,0 ;' = ¢ by Theorem (1.7). The proper trans-
form ¢7'[D] of the divisor D = P' X P' of case (3.3.3) in [Mo] is G-invari-
ant P! x P' on X. Therefore 0, (P' X P) is a G-invariant divisor and
hence by Lemma (8.3) contained in Di: in fact ¢,(P' X P') = D{N Df unless
m = ¢n. Since SL, operates on F, ,, it operates also on D = P' X P.
There are 3 possibilities: (1) SL, fixes all the point of P' X P, (2) SL,
operates through one of the factors of P' X P', (3) SL, operates diagonally
on P' X P'. The case (1) never occurs by Lemma (1.11). We now exclude
the case where SL, operates on D through one of the factors of P' x P!,
say the second. It follows from the assumption (cf. Theorem (3.3) [Mo])
that s X P' and P' X ¢t are numerically equivalent. Taking s general, we
may assume that s X P' is disjoint from the center of the blow-up ¢, since
¢, is equivariant. Then ¢ s X P' is numerically equivalent to s X P' in
the proper transform ¢ '[P' X P'] and hence ¢,¢fs X P' is numerically
equivalent to either D{ND; or to a 0O-section C, of the rational ruled
surface D! since ¢, is SL,-equivariant and ¢,.¢fs X P' is SLy-invariant
curve on Di Tt follows from Corollary (8.15) that ¢,f(P' X £) is numer-
ically equivalent to aC, + bC, for some integers a, b = 0, where C, (resp.
C,) is a fibre of the ruled surface Df (vesp. Dj). =: F: ,—F,—P' denote
the fibration which is respected by G and we put z*0p.,(1) = H (see Pro-
position (4.13), [U4]). Then (H.C)) = (H.D,ND,;) =1 but (H.C) = (H.C)
= 0. Therefore (¢f(s X P"). 0¥ H) = (¢, (s X P). H) which is equal to
(C,- H) or (DN DY). H) hence to 1 and (¢f(P* X 8). 3 H) = (po0F(P* X 1). H)
((aC; + bC,). H) = 0. This contradicts the numerical equivalence of P' X ¢
and s X P* on X. Now we have to exclude the last possibility; the
diagonal operation of SL, on D = P' X P'. Assume to the contrary.
Then s X P' — P'Xt~0and 0=¢f(s X P' —P' X ) = (s X P in ¢f'[D])
— (P' X t in ¢7'[D]) hence taking ¢, ¢.4(s X P' in ¢{'[D]) is numerically
equivalent to ¢ (P' X ¢ in ¢;'[D]) for any s,te P'. Let us put C, = ¢,(s X
P! in ¢;'[D]) and C, = ¢(P* X ¢ in ¢;'[D]). We have one of the following:
(1) ¢, blows down ¢7'[D] = P' X P'—>P'. (2) ¢, is biregular at P' x P'.
In the first case one of C, (i =1, 2) is reduced to a point and the other
coincides with the unique G-invariant curve DiND: Thus D'ND¢ is
numerically equivalent to 0. This is absurd and the case (1) never hap-
pens. In the second case, m = fn and D, =P' X P', s X P' and t X P'C D,
= P! X P! are numerically equivalent, which does not happen (compare
the intersection numbers (D,.C), i = 1, 2).
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LemMma (8.17). Let (G, X) € ¥(J9; m, n). Let ¢: X — Y be the morphism
of (8.5.1), Theorem (3.5), [Mo]. Then the surface Y is isomorphic to F, and
X is a P-bundle over F,.

Proof. By Castelnuovo’s Theorem [Z] Y is rational and G has an
open orbit on Y. ¢ induces a morphism +: G— Aut’Y. A semi-simple
part of G is SL, and its image under +» does not reduce to 1. For other-
wise Ker would be isogeneous to SL, since the general fibre of ¢ is
isomorphic to P'. Hence the semi-simple part of G would be normal,
which contradicts Corollary (4.17), [U4]. Therefore SL, operates non-
trivially on Y. Since the unipotent radical of G is not abelian by Corollary
(4.17) [U4], it follows from Lemma (4.4), [U4] and Lemma (1.8) that the
unipotent radical of G operates non-trivially on Y, Y is a ruled surface
and G operates on Y with orbit decomposition: (open orbit) UP'. By
Lemma (1.13), X is a P'-bundle over Y. We show that Y is isomorphic
to F,. First assume that Y= F,. We denote by W, the irreducible
SL,-module of rank j + 1. It follows from Corollary (4.17), [U4] that the
irreducible SL,-module W, _, (m — n = 1) operates on F}, ,; x> x, y >y,
22z + Yo, _.(x), where ¢, _,(x) € k[x] with deg ¢,,_,(x) £ m — n. Hence the
map F% , — F, is generically the quotient by W,_,. . Since W, _, operates
trivially on F,, the P'-bundle is generically the quotient of X by W,._,
and hence Y is G-equivariantly isomorphic to F,. Consequently Y is
Aut’ F -equivariantly isomorphic to F, by Corollary (4.17), [U4]. Hence
F, = Y, which contradicts the assumption. Let us now assume that Y
is not isomorphic to F,. The using W,; x+—x, yr—y, 22 + on(x) in
place of W, _,, by the same argument we conclude F, = Y.

Lemma (8.18). Let (G, X) c 4(J9; m, n). The case (3.5.2) of Theorem
(3.5) in [Mo] occurs if and only if 2n > m >n and then X is isomorphic
to P(Op.(—m) @ Opi(—n) @ Op,).

Proof. Assume that the case (3.5.2), [Mo] happens and let ¢: X— Y
be the resulted morphism. G operates on Y and ¢ is equivariant. By
Liiroth’s theorem, Y is isomorphic to P'. Hence induces a morphism
v: G->PGL, A semi-simple part of G which is isogeneous to SL,, is
mapped surjectively onto PGL,. For otherwise there would be a subgroup
of Ker + isogeneous to the semi-direct product (U,,,® U,,,)SL; by Corol-
lary (4.17), [U4], where U,,, and U,,, denote respectively the irreducible
SL,-modules of degree m -+ 1 and n 4 1, since PGL, contains no unipotent
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group bigger than G,. Therefore (U,.,® U,,)SL, would operate on the
fibres of ¢. We taking ye Y general, it follows that (U,.,, ® U,.,)SL,
would operate almost effectively on the fibre X,, which contradicts The-
orem (2.25), [U3]. Thus +: G— PGL, is surjective and gives the semi-
simple part of G. Hence by letting G/H = F,,, and B a Borel subgroup
of G containing H, both ¢: X — Y and n: F% , — P' are birationally equi-
valent to G/H — G/X. In particular ¢ and r are birationally equivalent.
It follows that Y is a homogeneous space under G and all the fibres of
¢ is a non-singular del Pezzo surface S. The surface S is an equivariant
completion of A’ under the action: (y,2)—(y + a, 2+ f(3) () ekly]
with degf(y) < ¢ by Corollary (4.17), [U4], where ¢ is an integer with
m=né+r, 0<r<n. Therefore by Theorem 24.3 (ii) Manin [Man] S
is either P* or F, and ¢ = 1. But the F,-bundles are excluded in the
Mori theory, Theorem (3.5), [Mo]. Thus S is P?. Therefore there exists a
vector bundle E = 0(a) ® O(b) ® ¢, a < b <0 such that P(E) = X. Look-
ing at End E, it follows from Corollary (4.17), [U4] that this is possible
if and only if ¢ = —m, b = —n. The if part follows from Corollary
(4.17), [U4].

LemmA (8.19). Let (G, X)e¥%(J; m, n), and (m, n) > 2. (1) If m > 2n,
then the Picard number p(X)=3. (2) If 2n > m (>n), then p(X) = 2.
(3) Moreover p(X) = 2 if and only if 2n > m (>n) and X is isomorphic to
P(Op.(—m) ® Op(—n) ® @pl)-

Proof. Let us first show that p(X) = 2 in general. Assume p(X) = 1.
There exists an equivariant birational map x: F% ,---> X, where we fix a
large integer k. Then we can eliminate the indeterminacy of X by equi-

variantly blowing up F% ,:
X
N\
x

F;cn,n 00— X

Since there is no fixed point on X, ¢ is also an equivariant blow-up by
Throrem (1.7). p(F% ,) = 3 and there are exactly 2 G-invariant integral
divisors D and D} on F% , and they form with 7*@p(1) a basis of
Pic F* ,®Q. Since p(X) =1, ¢ should blow-down all the components of
p (DU Dj).
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SuBLEMMA (8.19.1). (a) ¢gp '(DfUDY) is a G-invariant curve C. (b)
q-'(y) is a l-cycle on X for any point ye C. (c) Putting q-\(y) =f, we
have the intersection number (E.f) =0 for all but one irreducible com-
ponents E of p~'(D¥UDY) and (E.f) = —1 for one particular irreducible
component E’.

Proof. We have already observed above (a). (b) follows from Lemma
(8.13). Let us write ¢ as a product of the blow-ups ¢,: X’ — X with

I

irreducible center C and ¢': X —— 5 x. Letus denote q;(C) by E’.

N /o

E’ is the only one G-invariant d1v1sor on X’. For an irreducible com-
ponent E of p~{(Df U D), we have (E.f) = (E.¢'*(q7'(y) = (¢+E. q7'(y)) =0
or —1 according as ¢4 E = 0 or g,LE = E’ (notice that ¢’ is a blow-down).

g.e.d.

Let us continue the proof of the Lemma. Since as in the proof of
Corollary (8.15) q blows-down the exceptional divisors to the same direc-
tions as p, (p*DE. f) = (DE.p.f) = (DEf, + 1), where [, is the fibre of the
ruled surface D! It follows from Sublemma (p*D:if) =0 or —1. But
(DEf) =1, (Dt f) = —k hence (D%, f, +f,) =1 — k. This is absurd. Now
Lemma (8.19) follows from Lemmas (8.16), (8.17) and (8.18).

THEOREM (8.20). We assume (m,n) > 2. Any element of %(J9;m, n)
(m > n = 2) can be equivariantly blown-down to a relatively minimal ele-
ment of the ordered set €(J9; m, n): an element x of an ordered set Z is
said to be relatively minimal if x >y for y e Z implies x = y. The centers
of the blow-down are curves isomorphic to P'.

(1) If m = 2n, the relatively minimal elements in %(J9; m, n) are the
(Aut’ Fy, ., Fr..)'s (kR = 9).

() If 2n > m, the relatively minimal elements in ¥(J9; m, n) are the
(Aut’F%: . F: Vs (k> ¢) and (Aut’ P(Op(—m) ® Op(—n) @ Op.), P(Op(—m)
@ Op(—n) @ Op)).

Proof. It follows from Lemma (8.16), Lemma (8.17), Lemma (8.18),
Lemma (8.19) and Mori [Mo] that if (G, X) € ¥(J9; m, n) with p(X) = 4, then
we can find an equivariant blow-down (G, Y) e €(J9; m, n) with p(Y) =
o(X) — 1. By construction the (Aut’F%, ,, F% ,)’s are relatively minimal under
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the condition on m, n, ¢, k of (1) and (2) (cf. (8.8)). Therefore in view of
Lemma (8.17) and Lemma (8.19), it remains to show: Let (G, X)c %(J9;
m, n) such that by an equivariant morphism (G, X) — (G, F,) compactifying
(Aut*F,, ., F, ) — (Aut’F,, ,, F}), X is a P'-bundle over F,, then (G, X) is
isomorphic to (Aut’F% . F% ), k= {. Since the Brauer group of F,
vanishes, there exists a vector bundle E of rank 2 such that X is F,-
isomorphic to P(E). The restriction of E over F, = F, — C,, is denoted by
E’. Then it follows from the argument of the Proof of Lemma (8.17) that
P(E’) is the natural relative completion of A'-bundle F, ,—F, over F,
hence we may assume E’ = Oy, @ Op,(—m). The P'-bundle P(E’)/F, has
an equivariant section s': F,— P(E’) corresponding to the projection
O, @ Op,(—m) — Oy (—m). In other words s’ is an equivariant rational
section s: F, —P(E). Since a rational map to a complete variety is
regular in codimension 1, s is G-equivariant and C, =F, — F, is a G-
orbit, s is an equivariant section of P(E)/F, extending s’. Therefore we
can find a line bundles L, M on F, such that (1) M|F, = 0;,(m) and (2) E
is an extension: (¥) 0—~L—E— M —0. Since by definition of s L|F, =
Op,, we may assume L = @y, by tensoring L~' if necessary. The first
condition implies M = Oy (—m) ® O (—jC.). It follows from the proof of
Lemma (8.1) j > ¢. Let us show that the extension is trivial; E = L &® M.
The extension (*) is parametrized by H'(F,, M~') and by the restriction
map (**) H'(F,, M) — H(F,, M) = HF,, Oy,(m)), the class [E] map to
0. Now the triviality of the class [E] follows from the following diagram
that shows the injectivity of the restriction map (¥**).

H'(F,M) ——s H'F.M)

. J

H'(F,, 0r,(m) ® 0, (jC.)) H\(F;, Or,(m))

2 J

H'(P', Opi(m) @ £,.0(j C..)) D HP, Opm + in))

.

H'(P', 6(m) ® S0 D O(—n))

2

{90 H'(P 0(m — sn))

(cf. (1.2.1) and (1.3.1)).
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Remark (8.20.1). We can prove Theorem (8.20) without using [Mo].
To this end we associate to a (successive) equivariant blow up of F., , a
diagram. We define inductively the diagram whose set of vertices consists
of the irreducible invariant divisors. The diagram is composed of vertices,
an edge and arrows jolning vertices. Kach vertex is painted white or
black. Namely, we associate to F; , a diagram consisting of 2-white
vertices representing the invariant divisors D{, D! and connect them by
an edge.

Fn o——° Fm-fn

We add to this diagram the intersection number of the divisor with its
fibre. For example, on the vertex F,, we associate the intersection number
(F,.f) = —4, where f denotes a fibre of the P'-bundle F, — P'. Therefore
the number (F,,_,..f) = 0 is associated to F,_,,. Our diagram for F¢ , is

Fn o——0 Fm—tn
—4 0

Now we assume that a diagram is associated with a (successive) blow-
up Y of F¢, , and we define a diagram for an equivariant blow-up n: X — Y.
The diagram for X is defined to be the union of the diagram for Y and a
vertex which represents the exceptional divisor E for z so that set of the
vertices of the diagram for X is considered as the set of the irreducible
invariant divisors on X. The colour of the new vertex corresponding to
the exceptional divisor E is white if the center of the blow-up = lies on
the proper transform F, of D on F’ , and otherwise black. We join a
vertex corresponding to a divisor D on Y with the vertex E by an arrow
pointing to E if the center of the equivariant blow up is on D. We write
at each vertex the intersection number of the corresponding divisor with
its fibre. This is easily done by the following rule: (1) Write —1 for
the new exceptional divisor E; (2) For vertices to be connected with the
vertex E, diminish by 1 from the number for Y; (3) Write the same
number for other vertices coming from Y.

Here are some examples. For X, in (8.7) we have

F, -4 -1

F
m=in F(“’l)n*m
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If we blow up X, along F,NF,.,,_., the diagram is

F, —{— 2
Fm-—t’n Q/Y\O F(C+’.‘)n—m
F(z+l)n-‘m
-1 -1

here F,,,_. is the esceptional divisor (c.f (8.7)).
If we blow up X, along F,,_,,NFy.y,-., then the diagram is

F, —0—1

Fm* n F +Dn-m
(8.20.2) ‘ (e
-9 —2

Fa —1 ’
where F, is the exceptional divisor. We know
24 4+ Dn — 2m if (2¢ 4+ Dn — 2m >0,
2m — (2¢ + Dn if (2¢ + Dn — 2m <0,

by Lemma (8.5.4).
In (8.20.2) if we blow up along F.,,..NF,, we get

F, —¢—1

Fm—tfn F(l-rl)n—m

Fa -2 Fb -1

We can determine b by Lemma (8.5.4).

The set of vertices or the invariant divisors is an ordered set by the
arrows. Namely let A, B be vertices for X. Then we define A > B if
there is an arrow from A to B. We say that an element x of an ordered
set s is relatively minimal if there is no element y e S such that x > y.
We conclude by Corollary (8.15).

ProrosiTION (8.20.3). We assume (m, n) > 2. Let Y be an equivariant
blow-up of Fi, , end D be an irreducible invariant divisor on Y. Then

https://doi.org/10.1017/50027763000002877 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000002877

RATIONAL THREEFOLDS 53

(A) the diagram for Y is connected and (B) the following conditions are
equivalent.

(1) The divisor D can be equivariantly blown down giving a non-
singular projective threefold.

(2) In the diagram of Y the number associated with the divisor D is
—1.

If the divisor D corresponds to a black vertex, then the conditions (1),
(2) are equivalent to the following condition.

(8) The vertex corresponding to D is relatively minimal.

(C) Let x be a black vertex. Then any vertex y with x >y is black.

Proof. The assertion follows from Corollary (8.15) by calculating the
intersection number. Notice that Y is a successive equivariant blow-up
with centers isomorphic to P

Let X be a (successive) equivariant blow-up of F¢ ,. Let us study a
successive equivariant blow-down of X ; X Y- Y,— ... Y, where we
assume that the Y,’s are projective and non-singular. Let us first study
pi: X— Y. Thus the exceptional divisor for p, is a vertex of the diagram
for X with intersection number —1. We associate to Y, a diagram, whose
vertices are the invariant divisors on Y,. We write for each vertex the
intersection number similarly as in X We explain how we join the
vertices. We construct the diagram for Y, from that of X as follows.
We eliminate from the diagram for X the vertex of the exceptional divisor
for p,, arrows and edge related with this vertex. The number for a
remaining vertex is unchanged if the corresponding divisor on X is disjoint
from the exceptional divisor for p, and otherwise the number is increased
by 1. For the remaining vertices, we keep arrows and colours unchanged.
The diagram for Y, has the following properties.

(8.20.4) (1) The diagram is connected.

(2) The vertices consist of the invariant divisors.

(3) For an invariant divisor, the following conditions are equivalent.

(i) The divisor is exceptional and can be equivariantly blown down
on a projective non-singular threefold.

(1i) The number associated with the vertex is —1.

If the vertex is black, these conditions are equivalent to the following.

(ili) The vertex is relatively minimal.

(4) Let x be a black vertex. Then any vertex y with x > y is black.
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Now for p,: Y,— Y,, we can argue similarly and define a diagram for
Y,. The diagram for Y, has the properties (8.20.8). Inductively we define
a diagram for Y, and the diagram for Y, has the properties (8.20.4) too.

If the diagram for Y, has a black vertex, it follows from the properties
(4) and (3.ii1) of (8.20.4) that we can find a black-vertex which can be
blown down. We can find an equivariant blown down Y, — Y such that
the diagram for Y consists only of white vertices and then the diagram
for Y is one of the following:

¥, F(l+t)'n—m
o—o0
iy 0
F, —l{—t—1i

se e

F(du)n—m F(£+t+l)n-1n. .o F(Z+t+i—1)n-—m F(£+t+i)n—m
1 -2 -2 —1
Fm-tn
o]
1:

In other words Y and hence Y, is an equivariant blow-up of F4¢ in
case of the first and second diagram. The case of the third diagram
occurs when £ =1 and in this case Y, is an equivariant blow up of
P(Op(—m) @ Op(—n) @ Opy).

Now let us treat the case (m,n) = 1. First we give an example to
illustrate the situation.

Exampie (821). m=3, n=2 and {=1, r=1 On F,, we have
isomorphisms D ~ F,, D! ~ F,. In terms of the graph,

F,

If we blow up F;, along F,NF,, we get r,: X, —F}, with
F,

F,
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as we have seen in (8.7).
We blow up X, along F\NF, to get n,: X,— X,. On X, we have

We show that we can collaspe the divisor F, to another direction
to get a projective non-singular threefold U,, which we call the Euclidean
model of the operation (Aut’F;, Fi,. Namely there exists a projective
non-singular threefold U,, which is an equivariant completion of
(Aut°Fj,, F;,) and an equivariant morphism z: X, — U,,. The morphism
r is an equivariant blow-up morphism z: X,— U,,. The morphism =z is
an equivariant blow-up with center P' and the divisor F, = P' X P! on
X, is the exceptional divisor for . The restrictions r,|F, and =|F, are
equivalent to different projections; a X P' C P' X P' is collapsed by one
of the morphisms #, and n, and is mapped isomorphically by the other
for any a e P. By calculating the intersection number we know that we
can contract analytically the divisor F, for a different direction. However
the result of Mori [Mo] tells us that we can do it algebraically. In fact
for this purpose we show that the cone NE(X) is polyhedral. Precisely
the cone NE(X,) is spanned by a finite number of elements of NE(X)).
We determine even a linearly independent generators of the cone NE(X,).
The argument works not only for X, but also for any equivariant blow
up of F;,. To begin with, we show that the cone NE(F;, is spanned
by the fibres of D}~ F, and D; ~ F, and by the curve F,NF,. In fact
let G,CSL, be a subgroup of SL, isomorphic to G,. since a semi-simple
part of Aut'Fj, is SL,, we can consider G,C SL;, as a one dimensional
subgroup of Aut’F;,. We have a G,-equivariant morphism

f2°f§,2: Fs,z —> P
The subgroup G, has an open orbit A'C P'. F;, is trivial over A'; F},N
(feofiz)'A' =~ A® making the following diagram commutative
Fi.N(frof50 A" —~ A?
f2°f§zl lpl
Al J— Al
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We may assume that the operation of G, on A®is (x,y,2) - (x + @, y, 2)
(cf. [U4] p. 396). We show that C is rationally equivalent to an effective
curve on F,UF, and hence the cone NE(F;,) is spanned by the fibres of
D)~ F, and D} ~ F, and by DiND; since in general an effective curve
on the ruled surface F, (¢ > 0) is linearly equivariant to a non-negative
linear combination mf + nS where f is the fibre of F, and S is the section
of the ruled surface F, — P' with S* = —a.

If the curve C is not contained in Fj, — A’ and if CNA® is not G,-
invariant (or equivalently CN A’ is not of the form {(x,a, b) e A’|xc A'}
for a certain point (a, b) € A?), then using the operation of G,, the curve
C is rationally equivalent to an effective curve over F,, — A°’. For any
curve on F}, — A® or for any curve on A® excluded above, using opera-
tions of the additive group G, along the fibres of F;, — P!, we conclude
that they are rationally equivalent to effective curves on D!yD. We
proved that the cone NE(F;,) is spanned by the fibres of D; ~ F, and
D} ~ F, and by DiND) Since the Picard number of F}, is 3, dim N(F},)
= 3 and hence the 1l-cycles the fibres of D; and D; and D!N D. are
linearly independent and therefore they are edges of NE(F:,. The same
argument works for any equivariant blow-up of F},. For example for X,
any effective 1-cycle on X, is rationally equivalent to an effective 1-cycle
on F,UF,UF,. Therefore NE(X, is spanned by F,NF, F,NF, and by
the fibres of F, and the F,’s. As we noticed above, any effective divisor
on F, is linearly equivalent to a non-negative linear combination mf + nS
and hence the 1-cycle F,NF, is numerically equivalent to a non-negative
linear combination of 1l-cycles F,NF, and a fibre of the exceptional divisor
F,. Therefore the cone NE(X,) is spanned by F,NF, and fibres of F, and
the F/s. They are linearly independent and they are the edges of
NE(X). For X,, we conclude that NE(X,) is spanned by F,NF, and fibres
of F,, F,, F, and F,, here in the intersection F,NF, we may take any one
of the F/s. By the adjunction formula the canonical bundle of F, is
F, + K;)|F,. Using again the adjunction formula for the curve
F,NF, = ¢ we get (Fy, + K;)|Fy) + 4.8, = —2. On the other hand
((Fy + K )| F) + 2. 8)g, = (Fy + Ky, + F)F. FL. Fp)g, = (Fy + Ky, + FL F.
F) = F.F.F) + (Ky,.F.F) + F.F.F) = —1+ (Ky,.F..F,). Therefore
(Ky,-0) = —1 and £ = F,NF, is an extremal rational curve. It follows
from Lemmas (8.16) and (8.17) and from [Mo] that we can contract F, to
another direction; z; X, — U,, we have
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]?2

where the doted line represents P' consisting of the fixed points. Since
F,.F.F) = -2, we get O(P) R Op, = Op.(—2) for P’ intersecting F,. For
another P’, we have over Fi, OF)® 05 = p*0p(—2) since F, =p~'C,
and C* = —2. There is a line on this P* which is isomorphically mapped
to a zero section of F, on Fj, and hence we have O(P?)® Op, =~ Op.(—2)
too. Therefore we can not equivariantly contract none of the divisors
on U, onto a non-singular variety. Namely (Aut’F;,. U,,) is a relatively
minimal element of #(J;3,2). It follows from Lemma (8.5.4) and from
the argument of (8.12) that for an equivariant blow-up of X, there is only
one invariant divisor isomorphic to P' X P' and there is no invariant P%.

We can generalize Example (8.21) for %(J9;m,n), m >n >2 with
(m,n) = 1. In fact, we blow up F%,_, along DiND; we get n;: X,—F,
as in (8.7);

]?n I?

n~7

F.

J

where we put j = m — ¢n so that (n,j) = 1. We blow up X, at F.,..n
NF,_,, to get m,: X,— X,. We have on X,

F.

fn—2/20

if 2 —n>0
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Continuing blowing up along the unique curve where the two arrows
gather, we arrive by the Euclidean algorithm at the exceptional divisor
F, on X, for some r. We have on X,

\Fn_j
T
F, .

Now we still continue blowing up X, to get finally X,

F,

F,

\Fn‘J
)jFl
e

"

The argument in Example (8.21) shows that (i) an effective 1-cycle
on X, is rationally equivalent to an effective 1-cycle on F,UF,_,U-.--U
F,UF,UF,U..-UF,, (ii) NE(X,) is spanned by the fibres of F,, F,_,, - -,
F, F, F,-.-- and F, and by the l-cycle F,NF, (ii) these 1l-cycles are
linearly independent and that (iv) they are the edges of the cone NE(X,).
The same calculation as in Example (8.21) shows (Ky,.F,.F) = —1 so
that F;,NF, is an extremal rational curve. As in Example (8.21) we can
contract equivariantly F; to another direction to get a projective non-
singular threefold U, , on which the algebraic group Aut’F,, , acts. We
call U, , the Euclidean model of (Aut’F,, ,, F; ). For any (successive)
equivariant blow-up of X,, there is only one invariant F, by Lemma
(8.5.4) and there is no invariant P>. As in Example (8.21), we can show
that (Aut’ U, ,, U,,,) is relatively minimal in #(J9; m, n).

We can state in a form of Theorem.

THEOREM (8.22). We assume (m,n) = 1. Any element of %(J9; m, n)
(m > n > 2) can be equivariantly blown down to a relatively minimal ele-
ment of the ordered set €(J9; m, n).
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Q1) If m>2n, (m,n) =1, then the relatively minimal elements in
%(J9; m, n) are the (Aut’F: Tt Ys (k> ¥¢) and the Euclidean model
(Aut* U, ,,, U, ).

2) If 2n>m, (m,n) =1, then the relatively minimal elements in
%(J9; m,n) are the (Aut’F: ., Fi: ys (B> 4), (Aut’ P(Op(—m)® Op,(—n)
@ Opy), P(Op(—m) @ Op.(—n) ® 0p,)) and the Euclidean model (Aut’ U, ,,
U,..)-

Proof is done by the same method as in remark (8.20.1). Since there
may exist a divisor isomorphic to P' X P' which can be contracted for
2 different directions, in the diagram of invariant divisors we have to
associate 2 numbers for P' X P'. We do not give here a proof since this
is done quite similarly and the explication is messy.

Theorem (8.20) and (8.22) determine the relatively minimal elements
of the ordered set €(J9; m, n) and we constructed these relatively minimal
elements in an explicit way.

Remark (8.23). In the model U,,, we do have the case (3.3.5) of
Theorem (3.3) in [Mo].

§9. Equivariant completions of J10

It follows from Lemma (4.20), [U4] that (Aut’F, ., F,.) has an
equivariant completion (Aut’'F,, ., ¥, .), where F,  denotes P(0p.(—m) D
Op(—m) @ 0) (m > 2). We put ¥(J10; m) = €(Aut’F,, .., F,) (m >2). As
in the other preceding cases we want to know the orbit decomposition.

LemMma (9.1). The orbit decomposition of (Aut’F, ., F,.) is F, .U
Fpm — Fo ). The latter orbit is a divisor D isomorphic to P' X P.
Furthermore 0,(D) =~ Op,yp(—m, 1).

Proof. The first assertion follows from Lemma (4.20), [U4]. Let
Uy = {(%, x) e P'|x, = 0} and U, = {(x,, x) e P'|x, = 0}. Then it follows
from the definition that F, ,, is defined by gluing together U, X P* and
U, X P*: (3; (uy, Uy, uy)) € U, X P* and (¢; (v, v, 1,) € U, X P* are identified
ift=1/s, v,=s8"u, v,=s8"y, and u,=v,, D=F, , —F, Iis

{(3; (1, 1y, 0)) € U, X P2} U {(t; (v, v, 0)) e U, X PZ}

hence isomorphic to P' X P'. Let f be a fibre of the projection D — P!
induced by the map F, , —P'. Since f is a line in the fibre isomorphic
to P* and D is defined by u, = v, = 0 inducing the hyperplane section on
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the fibre P%, (D.f) = 1. To determine the degree for another projection of
D, we put ¢ = {(s; (1,0,0)) e U, x P}U{(¢; (1,0,0)) € U, X P*} and calculate
the intersection number (D. ¢). On W, = {(s; (1, Uy, uy)) € U, X P*|u, + 0}
D is defined by a regular function u,/u, =0 and on W, = {(¢; (v,, vy, Vs) €
U, X P*|v, # 0} D is defined by a regular function v,/v, = 0. Therefore on
W,UW,, D defines a line bundle whose transition function is (v./v,)/(u./u,)
= uy,fv, = t™. Thus O(D)® O, = Op,(—m).

THEOREM (9.2). The set %(J10; m) (m > 2) consists of one element
(AutO Fm,m’ Fm,m)'

Proof. Since O(D)® O, ~ Op.p(—m, 1), we can not collapse D nei-
ther to a smooth point by Lemma (1.12) nor to a curve. The theorem now
follows by the argument of Theorem (3.2).

§10. Equivariant completions of J11

Let us first construct some small equivariant completions. Let us
recall the definition of E/: using the notations of the section 1 E// is the
A’'-bundle over F,, defined by the unique non-trivial extension

(*) 0—> Oy, —> & —>0;, (2 — ¢m) —> 0

which is homogeneous under the opsration of SL, on F,. We know by
[U4] that J11 is the operation (Aut’E}, EHY(m >2, £>2 or m =1, £ > 3)
which respects consequently the natural fibrations E!/— F,, —P'. The
extension 0— 0y, - F — 0, (2 — ¢m)— 0 is parametrized by the cohomology
group H'(F;,, Op, (¢ém — 2)) which is SL;-isomorphic to @, H'(P', 0(ém — 2
— km)) by (1.3.1) and E’, corresponds to the unique SL,-invariant subspace
H'(P', 0(—2)) of @rso H'P', 0(4m — 2 — km)) (see (3.8), [U4]). If we take
J = ¢, then by the degeneracy of the spectral sequence (1.2) of f: F, — P,
the extension & on F, can be extended over F,:

(90— O E 0,2 — IM) @ O, (—JC) —0,

where C., = F,, — F/, (see (1.30) and the section 8). The hypotheses j > ¢
implies ({ — j)m — 2< 0 and hence the morphism HYF,, 0p (ém — 2)®
Oy, (jC.)) — H(¥}, Oy, (4m — 2)) induced by the restriction is an isomor-
phism. In fact by the degeneracy of spectral sequences (1.2) and (1.3.1),
we have a commutative diagram:
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H(F,,, 0y, (tm — 2) @ 0y, (jC.)) —> H(F,, Oy, (6m — 2))

, ! 4

@ H(P', Opi(fm — 2)Q O(—im)) = O D H'(P', Op(4m — 2) ® O(—im)).

Hence the P'-bundle f4(j): Ei(j) = P(£) — F, is equivariant completion
of (Aut’ EZ, E/Y) by Lemma (4.22), [U4].

Noration (10.1). We denote by Di(j) a divisor f4(j)(C.) and D))
the co-section of the P'-bundle f%(j): EL(j) — P' arising from the A'-bundle
or the extension (**) so that E.(j) = EZU Di(j) U DL}).

LemMma (10.2). (a) The divisors Dij) and Dij) are Aut’Ei(j)-invari-
ant. (b) EL()) — (DA)HUDY))) is an open orbit. (c) DY) is isomorphic
to P'x P' and the Aut’E!({)-orbit decomposition of Di{) = P'xX P' is
(P' X P' — diagonal) U diagonal. (c’) If j > ¢, then DY ]) is isomorphic to
F i pmi2 and the Aut® Ef(j)-orbit decomposition of D{j) =~ F_,n.. consists
of an open orbit and two Ps which are disjoint sections of the ruled surface
F-om.2— P': they are the oo-section and a 0-section of F;_,,... (d) L))
is isomorphic to F, with orbit decomposition (F,, — C.,)UC..

Proof. The assertions (a), (b) and (d) follow from the construction
(cf. the section 8). The restriction to C, ~ P' of the non-trivial extension
0— 0O, — & —0p (2 — M) ® O (—¢C.,) — 0 is an extension:

*) 0—>0p,—> 6P —>0p(2 — bm + £m)—>0

since (C.) = —m. We show that the extension (*) is non-trivial. In fact
putting M = 0 (—2 + {m)® O (¢C..), consider the exact sequence 0—
Og,(—C.) — Og,, — 0, — 0 defining the curve C, on F,. Tensoring M with
(*), we get 0— 0O (=24 Im)®@ O (¢ — 1)C..) > M —->M®RQ O, (=0p(—2))
— 0. Hence combining with the spectral sequence for F,, — P' we finally
get an SL,-exact sequence:

H'(0p, (=2 + tm) ® O, (¢ — 1C.)) —> H'(M) —> H'(P', 0(—2)))

! !

H'P,0(-2+ tm)@S(0@0(—m)  H'P', 0(—2+ (m)Q@S(ORU(—m))

! .

@ H'P®, 0(—2 + tm — im)) —> @ HP', (=2 + Im — jm)).
i=0 =0

Hence the map H'(M)— H'(C., M® 0,_) induces an isomorphism between
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H'(P', 0(—2))-factor in H'(M) and H'(M®Q 0,_), since H'(P!, @(j)) is the
irreducible SL,-module of degree —1 —j if H'(P!, @(j)) = 0. Therefore
the exact sequence (*) is SL.-isomorphic to the exact sequence:

(%) 0—>0—>0(1) @ O2) —> O2) —>0.
Since it follows from the spectral sequence (1.2.1) that the inclusion map

HO(me @Fm(_z + 5m) ® @Fm«é - I)Cw))

(10.3) —> HF,,, Oz, (—2 + {m)® 0(jC.))

is bijective for any j > £ (cf. the section 8), we conclude from Lmma (1.10)
that Ker ¢ = H(F,,, O, (—2 + ¢m)) fixes all the points lying over C.., where
¢ denotes the morphism Aut’E,(j) — Aut’F,, induced by the equivariant
morphism 7. In particular when £ = j, the action of Aut’E{(4) on D, ~
P’ X P! is an operation of SL, on P' X P' respecting the exact sequence
(**) and hence the diagonal action of SL, on P'X P' by Lemma
(1.11). This proves (c). Since for j > £, there is no SL,-invariant in
H'(P', 0(—2 — (j — ¢)m)), the restriction of the SL,-exact sequence 0 — 0y,
=& — O (2 — Im) ® Ox(jC..) >0 onto C.., =~ P'; 0 — Up,— € ® Op, — Up:(2 +
(j — ¢©)m)—0 splits and hence Di(j) ~F,,;_yn (¢)) now follows from
isomorphism (10.3), Lemma (1.10), Lemma (1.11) and [U3].

Lemma (10.4). Let (G, X) e ¥(Aut’E, EY) = € J11;m, £) (m > 2, £ > 2
or m =1, £ >3). Then there is no G-fixed point on X and none of the
cases (3.3.2), (3.3.3), (3.3.4) and (8.3.5) of Theorem (8.3) Mori [Mo] occurs.

Proof. A simple part of G is SL, and it has an open orbit by Corol-
lary (4.23), [U4] and hence there is no SL,-fixed point by Lemma (1.2.2),
[MU] and consequently there is no G-fixed point on X. We show that
there is no invariant divisor isomorphic to P? on X, In fact let X: X....—>
E{(6) be an equivariant birational map. Let the diagram

X
» / \q
1
X eoo——  EL(0)

be an equivariant elimination of indeterminancy, where p is an equiv-
ariant blow-up. Since there is no fixed point on E.(¢), it follows from
Theorem (1.7) q is an equivariant blow-up too. Assume that there is an
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invariant P? on X. Since there is no fixed point, the proper transform
p~'(P? is isomorphic to P2 This is a contradiction since there is neither
invariant P* nor fixed point on Ef(4).

LemMma (10.5). Let (G, X)e®J11;m,4) (m>2,4>20rm =1, £ > 3).
Let ¢: X— Y be the morphism of (3.5.1) Theorem (3.5) of [Mo]l. Then the
surface is isomorphic to F,, and X is a P'-bundle over F,,.

Proof. Since Aut’(E/; F,) = Aut’E} by Corollary (2.3), [U4], the
lemma is proved by the same argument as in the proof of Lemma (8.17).

Lemma (10.6). Let (G, X) e ¥(J11; m, 4). Case (3.5.2) of Theorem (3.5),
[Mo] never occurs.

Proof. It follows from Corollary (4.23), [U4] that a semi-simple part
SL, has an open orbit on X. Therefore if ®: X— Y is a morphism of
case (3.5.2) of Theorem (3.5), in [Mo], SL, has an open orbit and we have
a non-trivial morphism (y, ¢): (G, X) — (PGL,, P'). Hence all the fibres
of ¢ are isomorphic to one non-singular del Pezzo surface S and S is an
equivariant completion of a homogeneous surface Y’ under the unipotent
radical U of G since U has an open orbit on each fibre (see [U4]). The
homogeneous surface (U, Y’) contains (G®, G®) since any homogeneous
surface under unipotent group contains such operation. It follows now
from Theorem (3.5), [Mo] and from Theorem 2.4.4, [Ma] that S is isomor-
phic to P! X P' or P°. In the last case, there exists a vector bundle &
of rank 3 on P? such that X ~ P(§). By a theorem of Grothendieck we
can find 2 line bundles L, M on P! such that X ~ P(L® M ®0). Therefore
G:, operates on X and G}, © G. This is absurd. We notice that the rank
of G is equal to 2 (see [U4]). Now we exclude the first case S ~ P' x P
In fact assume that this is the case. We know that a semi-simple part
of G, which is isogeneous to SL,, has an open orbit (cf. Corollary (4.23),
[U4]). Let B be a Borel subgroup of SL,. B has an open orbit on P
Let y e P! such that BY = P! and hence T = {gc G|gy = y} is isomorphic
to G,. The operation of G, ~ T on the fibre ¢-'(y) =~ P' X P' is, up to
an automorphism of P' X P!, given by (u, v) — (t°u, t*v) for te G,, (u,v)
e P' X P!, where a, b are integers. (a, b) #= 0 since SL, has an open orbit
on X lying over P'. Therefore there exists a T ~ G,-orbit on P*' X P' ~
¢~'(y) whose closure is P' X v, or u, X P'. We may assume that the
closure is P' X v,. Then if for general point u e P!, we put D’ = B(u, v,)
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c X and D = D/, then D is a divisor since the stabilizer at (u, v)) of B
is finite. It follows from the comstruction DN¢(y) = DNEP' X P') =
P' X v, This is impossible since by Theorem (3.1), [Mo], P! X v,, u, X P!
belong to the same extremal ray but (D.P' X a) =0, (D.b X P') = 1.

Lemma (10.7). If (G, X) e #(J11; m, £), then po(X) >3 (m>2,£>2 or
m=1, £>3).

Proof. By Lemma (10.4), Lemma (10.5), Lemma (10.6) and [Mo], it is
sufficient to prove that p(X) 1 and this is done by the same argument
as in the Proof of Lemma (8.19).

Lemma (10.8). If (G, X) e ¥(J11;m, ¢) and p(X) = 3, then X is a P'-
bundle over ¥, and F,-isomorphic to E! (k) for a suitable integer k > 4.

Proof. It follows from Lemma (10.4), Lemma (10.5), Lemma (10.6) and
[Mo] that X is a P'-bundle over F, and n: X— F, is G-equivariant.
Since the Brauer of F,, vanish, there exists a vector bundle & of rank 2
over F_, such that X ~ P(¢). The restriction P(&)|F,, contains the A'-
bundle E} and D’ = (P(¢)|F,) — E;. is isomorphic to F,, which is a 2-
dimensional G-orbit on P(&)|F, hence on P(¢) (cf. Proof of Lemma (8.17)
and Theorem (8.20)). The closure D of IV in P(&) is an irreducible divisor.
D contains no fibre of P(&) over F,. In fact D contains no fibre of P(&)
lying over F/, and if it contained a fibre of P(&) lying over F,, — F,,, since
F,—F, =P is a G-orbit, D would contain the surface = '(F, — F),
which contradicts the irreducibility of D. Thus D intersects properly with
any fibre of z. The intersection number (D.f) = 1 for any fibre lying over
F/. hence over F,. This shows that D is non-singular. Since D is an
equivariant completion of I’ =~ F,,, D is isomorphic to F,, and z|D: D —

F, is an isomorphism. Therefore we get an exact sequence:

m

0—>L—>&—>M—0,

where L and M are line bundles over F,,. Thensoring L' we may assume
L=0:

* 0—>O0—>6—>M—0.
The restriction of this extension over F/, should be
(**) 0 —> Oy, —> 6| F,, —> 05, (2 — fm) —> 0.

Thus M =~ 0y, (2 — tm)Q Oy (—kC.,,), where C, = F,, — F,. It follows from
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the argument at the beginning of this section that (¢ — k)m — 2'<.0. The
extension (*) is parametrized by

H'F,, M) = H'(F,, Op,({m — 2)® Oy, (—kC..))
~ H'(P', Op.(4m — 2) ® SY0p: ® Op.(—m))

~ & H'(P, Op(tm — 2 — jm))
=0
and the extension (**) by
H'(F;, Op,(6m — 2)) ~ @ H' (P, Op(4m — 2 — jm))
70

by (1.2.1) and (1.3.1). Hence the restriction H'(F,, M) — H'¥,,, M) is
injective and the extension defining & is the cone used to define E‘(k).
We have thus proved

THEOREM (10.9). Any element of ¥(Aut E, E}Y) = ¥(J11;m, £) (m > 2,
£>2 or m=1, £>3) can be equivariantly blown-down to a relatively
minimal element of the ordered set %(J11; m, £) and the centers of the
blow-down are curves isomorphic to P'. The relatively minimal elements
in €(J11; m, £) are (Aut* E4()), EL()) (G = £).

Remark (10.10). As in the section 8, we can show that the
(Aut® E4()), EL()) (j = £) are related each other by equivariant elementary
transformations.

§11. Equivariant completions of J12

Let us recall the definition of the operation (J12). Let #: C,— C,
be an étale 2-covering of a non-singular open rational curve C, by an
irreducible curve C, of genus g > 1 so that C, is an elliptic or hyperelliptic
curve of genus g. Let ¢ be the involution of C, giving = so that C,/{¢)>
~ C, and we denote by i an involution of C, X P* x P':

it, x,y) = (&, y, x) for teC, x,yecP'.

We let operate SL, on C, X P' X P': h(t, x,y) = (¢, hx, hy) for (¢, x,y) e C,
X P' X P!, where for heSL, z¢ P!, hz denote the usual action of SL, on
P'. The operation of SL, on C, X (P' X P' — diagonal) commutes with the
involution i and thus defines an operation (SL,, X,), where X, = (P' X P!-
diagonal)/{i>. See (3.9), [U4].

Let us construdt a model. Let g be a non-negative integer and
n=g-+ 1. Let V be an irreducible SL,-module of dimension 3 so that
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we identify V with the vector space of the homogeneous polynomials of
degree 2 in x,y. The operation of SL, on the vector space kx@® ky is in
the usual way. By letting SL, operator on @p(n) trivially, SL, operates
on a vector bundle & = (0p, ®, V) ® 0p.(n) over P'. We use the basis aq,
b,con V: g(x,y) = ax® + bxy + cy* ¢ V. Denoting by z the fibre coordinate
of 0py(n) locally, if f(£) e HA(P!, 0(2u)), b* — 4ac + f(¢)2* is an SL,invariant
section of HYP', S%¢&)). Therefore we get a quadric bundle p: X, =
{B* — dac + f(®)2* = 0|(ax’ + bxy + cy’, 2) e P(6)} - P' on which SL,-oper-
ates. From now on we assume that the homogeneous polynomial f(¢) of
degree 2n has only simple roots so that y* = f(¢) defines a hyperelliptic
(or elliptic) curve.

Lemma (11.1). If f(¢) = O has only simple roots, then X, is non-singular
and projective.

Proof. In fact, locally X, is defined by {({;a,b,c,2)eA' X P*|b* —
4ac + f(t)z* = 0}. The smoothness of X, follows from this local expression.
The projectivity of X, is obvious.

Lemma (11.2). Let z: C—P' be the hyperelliptic curve defined by

y* = f(®). Then (SL,, X,) and (SL,, X,) are mutually isomorphic as law
chunks of algebraic operation.

Proof. If we add y = + f(¢), then over k(t,y) the quadratic form
b — dac + f(t)2* is isomorphic to; & — 4ac — w’. Namely X, ®p,C is
birationally equivalent to the product C X (quadric surface). Now the
descent datum on C X (quadric surface) defining X, is (e, b, ¢, w) — (aq, b,
¢, —w) if written in terms of the coordinate system on C X P2 Let us
see how the quadric is identified with P' X P' embedded in P® by P' X P'»
(%, 205 (g, 1) — (XoUy, XUy, XUy, Xu;) € P2 If SL, operates diagonally on
P! X P!, SL;-module H(P* x P!, ¢(1, 1)) is decomposed into the direct sum
U,® U,, where U, is the irreducible SL,-module of degree i. The explicit
decomposition is H°(P' X P!, 0(1, 1)) ~ H(P', 0(1)) ® H'(P*, (1)) = (kx,u, +
k(xu, + xu,) + kxuw,) @ k(xu, — x,u,). Thus to connect X, with X, we
had better consider the embedding P' X P'— P® given by ((x,, x1); (4, u,))
— (XU, XolUy + Xily, XiUy, XUy — XU,) so that the defining equation of the
image is X? — 4X, X, — X! = 0. Therefore the involution (a, b, ¢, w) (a, b,
¢, —w) on the quadric just corresponds to the automorphism of P! X P!
interchanging the factors. Now Lemma follows from the definition of X.
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Remark (11.3). We may expect to argue as in the preceding cases
trying to exclude the cases (3.3.3), (3.3.4) and (3.3.5) in [Mo]. But the case
(3.3.4) does occur as we see below (see (11.18)). Therefore we examine
equivariant completions studying closely the operation (SL,, X,) in Lemma
(11.1) and its equivariant blow-ups.

LEmMMA (11.4). The SL.-invariant reduced irreducible effective divisors
on X, are; (1) the fibre p~'(t), t € P' which is isomorphic to (SL,, P' X P)
with diagonal SL,-action if f(t) + 0 and to the singular quadric {u* + v*
+w=0CP if f(t)=0, (2) D, = {b* — 4ab = 0|(ax’* + bxy + ¢*, 0) e
X, C P(&)} which is isomorphic to (SL,, P' X P") with SL,-action through
the first factor.

Remark (11.5). Since SL, is a semi-simple part of Aut’Z ~ Aut’F, by
[U3], the operation of SL, on the singular quadric Z is essentially unique
and given as follows: Let U, denote the irreducible SL;-module of dimen-
sion 3 which we identify with the vector space of the homogeneous
polynomials of degree 2 in 2 variables x,y. Then U, has an SL,-invariant,
the discriminant D of the degree 2 polynomial, D(ax® + bxy + c)*) = b*
— 4ac. k being the trivial SL,-module, SL, acts on the direct sum U,® k
hence on P* = P(U, @ k) leaving the singular quadric b* — 4av =0 in P?
invariant.

Proof. Lemma follows from the construction of X,.

general fibre ~ P' X P,

singular fibre ~ the /

singular quadric in P?
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Lemma (11.6). The SLy-fixed points on X, are the singular points of
the singular fibres. If we blow up X, at one of the SL,-fixed points, SL,
operates on the exceptional divisor P through irreducible SL,-module of
dimension 3.

Proof. The first assertion of the Lemma is a consequence of the con-
struction of X,. X, is locally defined by {(¢; (a. b, ¢, 2)) e A' X P*|b* — 4dac
+ f(£2* = 0}. We may assume that the fixed point is in the fibre p~'(0),
namely £ =0 1s a simple zero of f(f) = 0. Hence locally for the usual
topology at the singular point y of the singular fibre p='(0), we may assume
that X, is defined by {(t, a, b, c) e A*|b* — 4ac + t = 0} and therefore X,
is isomorphic to, around (0; (0, 0, 0)), A® with irreducible SL,-action on A®.

Notation (11.7). We denote by W, the blow-up of X, at all the
SL,-fixed points of X,.

LEmMmA (11.8). The SL,-invariant irreducible reduced effective divisors
on W, are; (1) the proper transforms of SL,-invariant divisors on X,,
(2) the exceptional divisors isomorphic to P:. The proper transforms of the
singular fibres are isomorphic to F,. There is no SLy-fixed point on W,.

Proof. Since SL, operates on the exceptional divisor P? through
the irreducible representation, SL,-orbit decomposition of P? is SL,/G,,,
which is an open orbit, and SL,/B ~ P!, which is a conic in P%.

Here we give a table of intersections of 2 divisors on W,. We denote
by q: W, — X, the blow-up and by ¢ '[D] the proper transform of D.

The statement at (A, B) in the table describes the curve

coe|i> | e

ANDB as a curve on A.

Table (11.9)

q—l(Dw)ﬁl _-g~Y(smooth fibre) | g-'[singular fibre] | exceptional
Pix Pt - ~Pix P! ~F, divisor ~P?
g~ (De)=P1xP1 \\:\-‘*Plﬂxg in P1xP? PlXa in P1xP? empty
= :
7 ‘Sﬁ‘;ﬁtﬁ Pfibre) dpﬁézzgﬁ?ih \\ empty empty
g~ 1[singular fibre] | 0-section \ co-section
~F, in Fy empty — | inF,
exceptional non-singular —
divisor ~P? empty empty conic in P2 \\
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where the oo-section of F, is unique section of the ruled surface F, with
self-intersection number —2 and a O-section is a section of the ruled
surface disjoint from the oo-section, whose self-intersection number is
necessarily equal to 2.

CoroLLARY (11.10). Let C be an irreducible reduced SLy,-invariant
curve on W,. (a) C is an SL,-orbit hence isomorphic to P'.

(b) C is contained in a fibre q~'op~'(¢) for a some point t e P

(¢) C is an intersection of 2 irreducible reduced effective divisors.

(d) If 2 irreducible reduced effective divisors on W, intersect, they
intersect transversely along P'.

(e) Any 3 distinct irreducible reduced effective divisors have no point
in common.

Proof. This is a consequence of Lemma (11.8) and the construction
of X,.

Now we describe the SL,-invariant divisors on an equivariant blow-up
of W,.

Lemma (11.11). Let f,: ¥ — W, be a sequence of SLyequivariant blow-
ups: %t Xy — X5, 0<i<m+ 1) is an SLy,-equivariant blow-up at an
irreducible center, X, =Y, X,, - Xf‘and fo=XmimoXmoome10oXy. Forl<i
<m, we have the following.

(@) There is no SLy,-fixed point on X,.

(b) Any SL,invariant irreducible reduced effective divisor on X, is
smooth.

(¢) Any SL,-invariant (integral) curve C on X, has the following
properties:

(c1) C is an SL,-orbit hence isomorphic to P,

(c2) C is contained in a fibre X;}op~'(t) for a some point t e P',

(c8) C is an intersection of 2 SLy-invariant irreducible reduced
effective divisors A, B such that C = AN B, (C*, + 0.

(d) If 2 irreducible reduced effective divisors on X, intersect, they
intersect transversely along P'.

(e) Any 8 distinct irreducible reduced effective divisors on X; have
no point in common.

(f) The exceptional divisor E,C X, 0<i<m — 1) for X, .., is iso-
morphic to the ruled surface F,, for suitable integer ¢, > 1 with non-trivial
SL;-action.
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Proof. (a) follows from Lemma (11.8) since the image of a fixed point
is SL.-fixed. We prove Lemma (11.11) by descending induction on i. If
i = m, Lemma (11.11) is equivalent to Corollary (11.10). Now we have
to prove the assertions for i assuming the lemma for i + 1. Since there
is no fixed point on X, X ;..: X;— X;,, is the blow-up of X,,, at an
irreducible curve hence by (b) at P'. Therefore the exceptional divisor
E, is a ruled surface F,. Since if SL, operates on F, non-trivially and
if £ >1, SL,-orbit decomposition of F, is F, = open orbit (0-section) U
(oo-section), by Lemma (1.11) and (1.3.3) the other assertions follow once
we prove (c3) for SL,-invariant curves on E; C X,.

To illustrate our argument, let us first prove the lemma for i =m
— 1, namely X, _y,: X,.;,— X, = W, is a blow-up at an irreducible non-
singular SLyinvariant curve. We give a formal induction later. We
verify 4,_, > 1 case by case. Let A: Y— W, be the blow-up of W, at
the intersection ¢~ '(D.)Nq™" (smooth fibre) (see Fig. (11.11.1)) and E be
the exceptional divisor for hA.

Fig. (11.11.1)

/- /
D =P xP

/.../ Dz:PlXP’

\Z singular fibres
D.,

<%

X;

smooth fibre 1 D

Pl

Since D, = ¢~'(D,,) and D, = g~ (smooth fibre) intersect transversely along
the curve isomorphic to P!, E is isomorphic to F, for some integer ¢ > 0.
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Moreover A~'[D,]JNE and A~'[D,)NE are disjoint sections of ruled surface
F, since D, and D, intersect transversely along the center of the blow-up.
We calculate the intersection numbers (2'[D,]%. E) and (A'[D,*. E). Since
D, is a fibre of poq, h*D,. E = 0 hence

0 = (h"'[D,). h*D,. E) = (h"'[D,]. ."'[D;] + E.E)
= (h'[D,). 7' [Di]. E) + (h7'[Dy). E. E) = (h7'[D]. o' [D.]. E) + 2

by the table (11.9). Therefore
(h'[Dy]. h7'[D,).E) = —2 and (h'[D),h'[D].E)=2

since A-'[D,JNE is a section of F, disjoint from A~'[D,JNE. We have
thus proved ¢ = 2 and E is isomorphic to F,:

E~F,
h[D] ~P' x P!

0/
: fibre

h7'[D)] = P' x P!

diagonal

Let now j: Z— W, be the blow up of W, at the intersection of an ex-
ceptional divisor D, for ¢ and ¢~'[a singular fibre passing through q(D,)]
which we denote by D, (see Fig. (11.11.2)).

For the same reason as in case of h, the exceptional divisor J for j
is isomorphic to F, for some integer ¢ > 0 and

0 = (j'[Dy]. (fibre of pogej).dJ) = (j'[D.).j*@D; + D,).J)
= (j7'[D,).j 2Dy + j' D] + 3J. )
= (7' [DJ72D). ) + (G7'[D) ' [D. ) 4 (G7[D) 3. )
= 2(7D:].j[D). ) + 12

by Table (11.9). Hence (j~'[D,].j'[Dy].J) = —6. j'[D,]NJ CJ is a section
disjoint from the section j~'[D,JNJ C < hence (j'[D,).j'[D,).J) = 6. Let
us check this by another calculation. For the same reason as in preced-
ing cases,
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Fig. (11.11.2)

J
4

F,
J.—
DQIZPZ\\ l
\...\ D4=F2

~NJd singular fibre

X;

P P

0 = (j'[DJ). fibre of pogoj.J) = (j7'[D,).j'[2Ds] + j~[D.] + 3J.J)
= 2(j7'[D.,j7 D). J) + (G D] j ' [Di. ) + 3('[D.). J. J)
= (j7'[DJ.j' D). J) — 6.
Let r: V— W, be the blow-up of W, at the intersection of D; = ¢~'(D.,) and

D, = q! [singular fibre](see Fig. (11.11.3)). We denote by D the irreducible
exceptional divisor for g intersecting with D,.

L
e

Fig. (11.11.3)

£r
Ds =P'x P!
D=PFP

/1;5 Ip-r"

S Q\q singular fibres

D.
X,
| P
Pl
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We denote by L the exceptional divisor for r. For the same reason as
before 0 = (r'[D]. (fibre of poqor).L) = (r'[D,].r'[Dy] + L + 2r*D.L)
= (r'[Dg]. r*[Dg]. L) + (r'[Dy). L. L) = (r"'[DJ].r'[Dg]. L) + 2. Hence L is
isomorphic to F,.

Let us now give a rigorous induction. As we have seen at the
beginning of the proof, X, ,,: X; ;— X, is the blow-up at an SL,-invariant
curve C; on X, and it is sufficient to prove (c3) for SL,-invariant curves
on E,_, C X,_, under the assumption that Lemma (11.11) holds for X;. For
the center C,, we can find a smooth SL,-invariant divisor A, such that
C,C A, pogoX;,(A) is a point of P' and such that (C%,, # 0. Let B,
be the G-invariant smooth irreducible divisor on X, with C, = A,NB,: B,
exists by (c3) for X,.

Fig. (11.11.4)

Yooy =7
X; X
blow-up at C;
1 [B,] \
X Eio
=)
XA

X = Xr,s: X;o1— X, is the blow-up at C; = A,N B, as Fig. (11.11.4) shows.
We have:

= ((a fibre of pogo¥;,). E,_.. X—X[Ai])X,;_l

= ((ax'[A,] + bE,., + other divisors disjoint from E;, )E, .. X'[ADx,_,

(here a, b are positive integers)

= a(X7'[A] E,_,. X—I[Ai])xi_l + O(E, . E,_, xhl[Ai])Xi_l .
Thus (E;,_..E,_.. X"'[ADx,,#0 and E,_, =~ F,,_, with ¢, > 1 since E,_|N
X'[A,] and E,_ NX'[B,JCE,., are disjoint sections (cf. (1.3.3)). This
proves (c3) for i — 1. For, since there is no SL,-fixed point on X;_,, new
born SL,-invariant curves on X, , are 1 '[B,JNE,, and 1 '[A,]NE,_..

The fibration p: X, — P' is a dell Pezzo fibration of Theorem (3.5)
(3.5.2), [Mo]. In fact we show (see Example (11.18)).

Lemma (11.12). Pic X, is generated by D, and p* Pic P'. In partic-
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ular the Picard number o(X;) = 2.

Proof. As in the Proof of Lemma (11.2), let C — P' be the hyperel-
liptic curve defined by the extension k(v [, t)/k(t). Let B  C be the set
of branch points and RCP' be the set of ramification poits so that
m: C— B—P' — R is étale. Let us denote C — B by C, and P — R by
C,. As we have seen in the Proof of Lemma (11.2). The restriction
C, Xp: X, is the quotient of C, X P' X P' by the involution i: i(t, x, y)
= (et,y,x) for teC, x,yecP' where ¢ is the involution arising from =.
Pic (C, x P' X P") is isomorphic to Pic C,® Pic P' ® Pic P* hence to Pic C,
@ Z%*. By the descent theory,

(11.12.1) PicC, X p: X; = (Pic C,@Z%) =~ Z.

Given a line bundle L over X,. It follows from (11.12.1) that we can find
an integer n such that L(nD.) is trivial when restricted over C, X p. X,.
Therefore L(nD..) = 0y (D) for some divisor D whose support lies in the
singular fibres of p: X, > P'. We have thus proved Pic X, =ZD.®
p* Pic P

Let now (SL,, Y)e €(J12, ) = ¢(SL,, X,). We have an equivariant
birational map f: Y--» W, by Lemma (11.1). By blowing up Y, we can
eliminate the indeterminacy of f:

TN

After Hironaka, everything is done Sl,-equivariantly. Since there is no
SL,-fixed point by Lemma (11.8), the dimension of any fibre of f, < 1 and
hence f; is also a blow-down by Theorem (1.7). We may take f, minimal
so that there is no non-trivial factorization;

fi fi
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where g, fi and f; are blow-ups. La2t us decompose f, into a product of
blow ups: ¥;;.:: X—-X,0<i<m—-1, X, =Y, X, =W, fi=X,_1no°
Xm—Z.m—l o

singular irreducible curve.

<oy and %, ,,, 1s an SL,-equivariant blow-up of X,,, at non-

Similarly, let us decompose f, as a product of blow-ups with irredu-
cible centers: v, ,.,: ¥, = Y,,, 0<j<s—1), Y, = Y, Y. =Y and Ve
is a blow-up with a non-singular irreducible center.

LeEmmA (11.13). Let D be a smooth fibre p~'(t), teP'. The proper
transform (qe<f,)"'[D] is not an exceptional divisor for f,.

Proof. D, and p*0p(l) generate Pic X, by Lemma (11.12). The
smooth fibre D is a non-singular quadric in P* hence isomorphic to P' x P
Let us set ¢, =P' X a and 4, = a X P'. They are curves on D hence on
X,. It follows from the construction (¢,.D.) = (4. D.) =1, (£,.p*0p.(1))
= (4,. p*0p.(1)) = 0. Therefore ¢, is numerically equivalent to 4,. Hence
f¥, — £,) = f7'[4,] — f5'[4.] is numerically trivial since SL,- operation on
P! x P' = D is diagonal. Assume now that (g f)~'[D] is exceptional for f,.
Then there exist a blow-down f: Y2 collapsing (gof)~'[D] to a curve
C ~ P on a non-singular projective variety. Putting D = (g,0f)-'[D], the
restriction f: P! X P'~ D— C ~ P' is a projection, say onto the first
factor. Then f*f;‘[ﬂl] =aC, a>0 and f,f;'[¢,] = 0. Hence C is numer-
ically trivial. This is absurd since Z is non-singular projective.

Lemma (11.14). 0, (D.) =~ Opiyp:(2, —n).

Proof. Notice that in our notation, the restriction p|D. — P! is the
projection from P! X P' onto the second factor (cf. Table (11.9)). Let
05, (D.) = Opiyp:(a, b). Then it follows from the definition of X, and that
D,_, cuts on each fibre a divisor coming from the hyperplane section bundle
of P* hence a = 2. Let us calculate b. For this purpose we recall the
definition of X,. We cover P' by 2 A”s U, U, in usual way: P' = U,U U,
and the points ¢ e U, and 1/t € U, are identified. Gluing V, = U, X P° and
V, = U, X P* together by identifying (&, (x,, x,, %, X)) € V;, and (s, (3, 31,
YoyNe Vi if t=1/s, xp,=0, X, =y, Y =%, Y =1"%, we thus get
PO®O® 0D O(n). Let f(¢) be a polynomial of degree 2n with only simple
roots. X, is defined locally on V, by «} + x + &5 + f(H)x2 = 0 and on V,
by yi+ ¥+ yi+ f(©)(1/2n)y = 0. Therefore D. is defined by x, = 0 on
V,NX, any y, =0 on V,NX,. Now we put ¢ = {(t,(1,0,0,0)} e V,jtek}
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U{(s,(1,0,0,0) e V,|sek}. ¢ is a section of p|D,.: D,— P and b is the
degree of the line bundle O(D.)® @, on 4. On VN {x, # 0} D, is defined
by x,/x, and on V,N{y, # 0} by y,/v, = 0. Thus O(D.)® O, is defined by
the transition function (¥,/y,)/(x:/%;) = ys/x; = t* and hence @(D.)® 0, is
isomorphic to Op(—n). Therefore b = —n.

LemMA (11.15). The exceptional divisor for «n, is exceptional for qof,

Proof. Lemma (11.13) shows that the proper transform of a smooth
fibre of p is not exceptional for f. In view of Lemma (11.11) we have to
show that the proper transform of one of the following divisors can not
be exceptional for f,: (1) singular fibres for p, (2) D.. In fact let D be
a singular fibre of p. ¢*D = q'[D] + 2E with ¢ '[D] =~ F,, E ~ P* by
Lemma (11.8). Let ¢ be the fibre of the ruled surface ¢-'[D] ~ F,. Since
D is a fibre, 0 = (4. g*(fibre of p)) = (£.q*D) = (4. q7'[D] + 2E) = (4. q'[D])
+ 2(0.E) = (4.q7'[D]) + 2 by Lemma (11.8). Therefore 0(q~'[D])® 0, ~
Op.(—2) and hence the restriction of @(q-f;'[D]) on a fibre of the ruled
surface (f,0q)'[D] = F, is Op.(—k), k > 2 and can not be exceptional
for v,. By Lemma (11.14) 0, (D.) = (2, —n). Therefore putting D’ =
(o) '[D.], 0,(D) = (2, —b) with b > n since SL, operates on D, =~
P' x P! hence on (%, 0q)'[D.] through ths first factor. Thus D’ can not
be exceptional for .

ProposiTION (11.16). qof: Y--> X, is a blow-up morphism or Y is an
SL,-equivariant blow-up of (SL,, X,).

Proof. It follows from Lemma (11.15) the exceptional divisor for
is an exceptional divisor for f,o ¢ and no exceptional divisor is isomorphic
to P' X P' by Lemma (11.11).

TaEOREM (11.17). (SL,, X,) is the unique minimal element of €(J12; x)
and any other element of ¢(J12; n) is an equivariant blow-up of (SL,, X,).

The following example shows that the case (3.3.4), [Mo] occurs in
%(J12; n).

ExampLE (11.18). Let p '(t) = SCP? teP' be a singular fibre of
o: X;,—P. Let m be a line in P’ lying on the singular quadric S.
Regarding ¢ as a 1l-cycle on X,, we have (m.D.) =1, (m.p*0p.1)) = 0.
Denoting by ¢ a fibre of D, = P' X P'— P! with (4.p*0p(1)) =1 as in
Lemma (11.14). Let us denote by Y P(@® 0D 0@ O(n)), by p: Y— P! the
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projection and by D. the divisor on Y defined as follows: using the
notation of the Proof of Lemma (11.14), D_ is defined on V, by x, = 0 and
on V, by y, =0 so that D.NX .= D.. We need one more divisor D on
Y which is defined on V, by x, = 0 and on V, by y, = 0. By simple local
calculations, we get the following.

(11.15.1) Pi0y(D.) = OB ® Op(—n)
(11.15.2) Px0x(D) = 6B ® Opu(n).
(11.15.3) 0,(D) is generated by its global sections.

Let us content ourselves with checking (11.15.2) and (11.15.3) since
(11.15.1) is proved by the same method. Using the notation of the Proof
of Lemma (11.14), if we calculate p.(0y(D)) locally for U, X P*— U, we
get p.(0,(D)|U, is a free k[t]-module

{ao(t) + a4+ a2 4 0t

0

a(f) e k], 1<i< 3}.
Similarly on U,
P+0,(D)| U,

~ {bu<s> + b)Y+ bys) Y + by(s) Yo
Yo Yo Yo

bi(s) e kls], 0 < i< 3}.

Since t = 1/s, X, = ¥y, X, = ¥, Yo = X, ¥, = "X, the identification of these
2 free modules on the intersection U,N U, gives 0 @ 0(n). Thus ths set
of global sections

HY(Y, 0,(D)) ~ {ao +att ot a() b
X

0 xO 0

a,(t) ¢ klf] with deg a)(t) < n}

a, ek for 0<i<2,

= {bo + b0 4 b, Y b)Y b ek for 0<i<?,
Y

0 0 0

by(s) € k[s] with deg by(s) < n}
This shows (11.15.3).
It follows from (11.15.1), (11.15.2) and (11.15.3) that @x(D) ~ 0(D.) ®
P*0p(n) and 04(D.) ® p*0pn) is generated by its global sections. In

particular the restriction 03(D.) ® p*Opi(n) ® O , = 0z (D..) ® p*0p.(n) onto
X, is generated by its global sections. Now we can show that R.m +
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R. ¢ coincides with the cone NE(X,) spanned by the effective 1-cycles on
X, (see the section 1). In fact by Lemma (11.14) Rm + R¢ = N(X,) since
we know (m.p*0p,(1)) = 0, (£.p*0p,(1)) = 1. It is sufficient to show that
for a, beR am + b{ is numerically equivalent to an effective 1-cycle on
X, if and only if a,b > 0. As the if part is evident, we have to show
“only if”” part. Assume that am -+ b4 is numerically equivalent to an effec-
tive 1-cycle. Since @(D..) ® p*Up.(n) is generated by its global sections, we
have 0 < (am + b{.0(D.) ® p*0p(n)) = a(m. D.) + b(£. D.) + b(£. p*0Op(n))
=a —nb+ nb=a by Lemma (11.14). As p*0p.(n) is also generated by
its global sections, 0 < (am + bé.p*(¥p,(1)) = b as wanted.

Since by the adjunction formula (K;) =~ 0,(Ky + X,)® Oy, =
Oy (—2D.) @ p*M for some line bundle M over P, (4. Ky,) = —2. Hence
R.¢ is an extremal ray. Let us now blow up X, at C = SND.: ¢: Z—
X,.

We denote by E the exceptional divisor. Then K, = ¢*K,, + E and

(¢7'[€). K,) = (¢7'[4). ¢* K, + E) = (¢7'[4]. $*Kx,) + (¢7'[¢]. E)
= (¢p+¢7'[4]. Kx,) + 1, by the projection formula,
= Ky)+1=—-2+41=—1

Hence R,¢7'[4] is an extremal ray. Moreover since

@714 97 D + 1 = (47141, ¢7'[S] + E) = (¢7'[€)- $*S)
= (p+¢7'[€]. S) = (£.S) = 0, (¢7'[4].¢7'[S]) = —1.
Since S is the singular quadric in P? this shows that on (SL, W)e

%(J12; 7), R.¢7'[4] is an example of an extremal ray giving rise to case
(3.3.).
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