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On the Vanishing of µ-Invariants of
Elliptic Curves over Q

Mak Trifković

Abstract. Let E/Q be an elliptic curve with good ordinary reduction at a prime p > 2. It has a well-

defined Iwasawa µ-invariant µ(E)p which encodes part of the information about the growth of the

Selmer group Sel p∞ (E/Kn
) as Kn ranges over the subfields of the cyclotomic Zp-extension K∞/Q .

Ralph Greenberg has conjectured that any such E is isogenous to a curve E ′ with µ(E ′)p = 0. In this

paper we prove Greenberg’s conjecture for infinitely many curves E with a rational p-torsion point,

p = 3 or 5, no two of our examples having isomorphic p-torsion. The core of our strategy is a partial

explicit evaluation of the global duality pairing for finite flat group schemes over rings of integers.

1 Notation

Fix a rational prime p > 2. We denote by K∞ ⊃ · · · ⊃ Kn ⊃ · · · ⊃ K0 = Q

the unique (cyclotomic) Zp-tower over Q . We write Γ ∼= γZp for the Galois group

GK∞/Q and a choice of topological generator γ. Set On = ring of integers of Kn,
Xn = Spec On.

We choose

πn = NQ(ζpn+1 )/Kn
(1− ζpn+1 )

as our preferred generator of the unique prime of Kn above p. The πn’s satisfy the
norm compatibility relation NKn+1/Kn

(πn+1) = πn.

Let F be a number field. For any elliptic curve E/F , we write E/OF
for its Néron

model. We define the discrete and compact Selmer groups of E/F by

Sel pn (E/F) = ker(H1(F, E[pn])→
∏

v∤∞,v|∞

H1(Fv, E)), 1 ≤ n ≤ ∞

Xp(E) = Sel p∞(E/K∞
)∨

respectively. Here G∨ = Hom(G, Q/Z) stands for the Pontryagin dual of a group G.

2 Introduction

Let E/Q be an elliptic curve with good ordinary reduction at a prime p > 2. Under
this assumption, the compact Selmer group Xp(E) is a finitely generated torsion mod-
ule over the Iwasawa algebra Λ = Zp[[Γ]] ∼= Zp[[T]], and as such has a characteristic

power series f
alg

E (T) ∈ Zp[[T]]. The condition pµ(E)p ‖ f
alg

E (T) in Zp[[T]] defines the
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Iwasawa µ-invariant µ(E)p of Xp(E), which controls the growth rate of X(E/Kn
)[p]

as Kn goes up the cyclotomic tower K∞/Q . One can say when it vanishes in purely

elementary terms:

µ(E)p = 0 ⇔ X(E/Kn
)[p] is bounded as n→∞.

Ralph Greenberg has made the following:

Conjecture 1 Every E/Q with good ordinary reduction at p > 2 is isogenous to a curve
E ′ with µ(E ′)p = 0.

When E[p] is irreducible, the Conjecture predicts that µ(E)p = 0. This, the generic
case, seems intractable at present.

The situation is rather brighter when E[p] is reducible, i.e., when it sits in a short
exact sequence of GQ -modules

(1) 0→ Φ→ E[p]→ Ψ→ 0.

This case bifurcates into two sub-cases:

(1) Φ is odd and unramified at p, or even and ramified at p. In this case, Greenberg
and Vatsal [4] prove that E itself has µ = 0. The result follows by a fairly simple

bootstrapping from the Ferrero–Washington theorem.
(2) Φ is even and unramified at p, or odd and ramified at p, the harder case. Here

it can happen that µ(E)p > 0, and we can in fact precisely describe the isogeny
which conjecturally annihilates it (see Corollary 1). This paper will approach

this sub-case of Greenberg’s conjecture in the special instance where E[p] sits in
a non-split short exact sequence

0→ Z/pZ→ E[p]→ µp → 0.

In this situation Greenberg predicts that µ(E)p = 0, which we indeed prove for
infinitely many examples, some of them essentially new, when p = 3 or 5.

For instance, by the end of the paper we will show that the curve

E1 : y2 + xy = x3 − 6390x− 215900,

with a rational 3-torsion point has µ(E1)3 = 0. As far as we know, the best previous

estimate, coming from Schneider’s evaluation of f
alg

E1
(0) (see [3]), gives µ(E1)3 ≤ 4.

The same argument, mutatis mutandis, will show that µ(E2)3 = 0 for the rank 1
curve

E2 : y2 + xy = x3 + 58x − 22684,

for which the author does not know of a previous upper bound. Both these examples

are instances of a general theorem, Theorem 3, which proves that µ(E)p = 0 in
our setting provided there are “enough” cyclotomic units mod l for certain primes
l of bad reduction. The main interest of this result is that it gives a criterion for
µ(E)p = 0 which depends only on the number theory of the cyclotomic tower, and

https://doi.org/10.4153/CJM-2005-032-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-032-9


814 M. Trifković

not on the curve itself. We will apply Theorem 3 to find infinitely many essentially
distinct examples of curves with µ = 0 inside Kubert’s families parametrizing elliptic

curves with a rational p-torsion point, for p = 3 or 5.
It is interesting to compare the state of our knowledge about Conjecture 1 with

what we know about the Main Conjecture of Iwasawa theory. The latter predicts that

the characteristic power series f
alg

E (T) is, up to multiplication by Λ
×, equal to the

power series f an
E (T), associated to the analytic p-adic L function defined from modu-

lar symbols by Mazur and Swinnerton–Dyer. Kato has almost completely proved one

half of the Main Conjecture: he shows that f
alg

E (T)| f an
E (T) as elements in Qp[[T]].

In other words, he makes no claim about the relationship between the powers of p

dividing f an
E (T) and f

alg
E (T). He can show that f

alg
E (T)| f an

E in Zp[[T]] only when
GQ → AutE[p] is surjective, and p is outside an explicit set of primes (see [9]), so

it is fortunate that we can get some independent information on µ in the reducible
cases.

2.1 µ-Annihilating Isogenies

It is not hard to refine Conjecture 1 to say precisely which curve isogenous to E has
µ-invariant zero. Let C ⊂ E(Q̄) be a cyclic subgroup of order pn, stable under GQ .
Then the GQ -module C has a unique composition series

C ⊃ pC ⊃ · · · ⊃ pn−1C = C[p] ⊃ 0,

with each composition factor isomorphic to C[p]. We say that C is ramified at p
(resp., odd) if and only if the action of Ip (resp., the complex conjugation) on C[p] is
non-trivial. The following lemma relates the µ-invariants of E and E/C .

Lemma 1 We have the formula

µ(E/C)p = µ(E)p + δ,

where the value of δ, depending on the parity and ramification of the Galois action on

C, is given by the table:

C ramified unramified

odd −n 0

even 0 n

Proof Since E is good ordinary at p, reduction mod p gives an exact sequence of

GQp
-modules

0→ F → E[p∞]→ Ẽ[p∞]→ 0.

Consider the exact sequence 0 → C → E → E ′ → 0 over Q . Schneider [10] gives a
formula relating the µ-invariants of E and E ′:

µ(E ′)p − µ(E)p = ord p(|C(R)|)− ord p(|C ∩ F|).
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If |C| = p, C ∩ F is C or 0, depending on whether C is ramified or not, so we get

µ(E ′)p = µ(E)p +

C ramified unramified

odd −1 0

even 0 1

If C is cyclic of order pn, we can factor the isogeny E → E ′ = E/C into n isogenies

with kernels isomorphic to C[p]. Adding up, we get the lemma. For a much more
general version, see [2, Theorem 2.2].

This allows us to say precisely which curve isogenous to E should have µ-invariant
zero:

Corollary 1 Let M ⊂ E(Q̄) be the maximal subgroup which is

• cyclic p-primary,
• Q-rational, GQ -action on M odd and ramified at p.

Set |M| = pm. Then

(a) the minimal value of µ(E ′)p as E ′ ranges over the isogeny class of E (over Q) is
attained for E ′ = E/M.

(b) Conjecture 1 is equivalent to µ(E/M)p = 0, i.e. µ(E)p = m.
(c) When E[p] fits into an exact sequence (1), Conjecture 1 is equivalent to the following

claim: µ(E)p = 0⇔
(1) Φ is even and ramified at p, or odd and unramified at p, or
(2) Φ is even and unramified p, and the exact sequence (1) is non-split (to pre-

vent Ψ from lifting to an odd ramified subgroup, which would increase the µ-
invariant).

The beauty of Conjecture 1 is that it allows us to read off the µ-invariant, which is a
priori some sort of growth rate all the way up the cyclotomic tower, solely from the
arithmetic of E over Q .

Example The situation described in Corollary 1(c) is visible in the very first exam-
ple, the isogeny class of curves of conductor 11, with p = 5. Of the three, E = X1(11)

has a non-split sequence 0 → Z/5Z → E[5] → µ5 → 0, and Greenberg [3] proves
that µ(X1(11))5 = 0. In general, the curve with vanishing µ is expected to be the
optimal quotient of X1(N) in its isogeny class, and to have a number of other canon-
icality properties (see the forthcoming paper of Vatsal [12]).

2.2 Approaching µ(E)p = 0

This paper will outline an approach to the following special case of Greenberg’s con-

jecture, as listed in Corollary 1, case (c)(2):

Conjecture 2 If E[p] lives in a non-split sequence of GQ -modules 0 → Z/pZ →
E[p]→ µp → 0, then µ(E)p = 0.
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In the good ordinary case we are dealing with, Xp(E) is a finitely generated torsion
Λ-module. The following simple, yet useful criterion for detecting the vanishing of

the µ-invariant follows immediately from the structure theory of such Λ-modules:

Lemma 2 µ(E)p = 0 ⇔ Xp(E)/pXp(E) (= (Sel p∞(E/K∞
)[p])∨) is a torsion

Fp[[T]]-module.

Thus to show µ(E)p = 0, it suffices to prove that Sel p∞(E/K∞
)[p] has Fp[[T]]-corank

equal to zero. Up to finite kernel and cokernel, Sel p∞(E/K∞
)[p] is just Sel p(E/K∞

) ⊂
H1(K∞, E[p]), the standard Selmer group for E[p].

Greenberg [3] and Greenberg–Vatsal [4] prove this in the case (c)(1) of Corollary 1
by fitting the Selmer group for E[p] between suitably defined Selmer groups for Φ

and Ψ, and deducing from the Ferrero–Washington theorem that both of the latter
have Fp[[T]]-corank zero. The assumptions on parity and ramification of Φ and Ψ

are just right to make Ferrero–Washington applicable.
The main reason why the approach of Greenberg–Vatsal fails in the case (c)(2)

is that for any reasonable Galois-theoretic definition of finite-singular structures for
which we would get an exact sequence of the form

0→ Sel(Z/pZ/K∞
)→ Sel(E[p]/K∞

)→ Sel(µp/K∞
),

the last Selmer group, Sel(µp/K∞), has Fp[[T]]-rank 1. The main idea for rescuing
the argument is to carefully (and naturally) cut this group down to something small
enough to be Fp[[T]]-torsion, yet big enough to receive a map from Sel(E[p]).

To do this, we replace the sequence (1) of GQ -modules with the short exact se-
quence of quasi-finite flat group schemes over X0 = Spec Z associated to the Néron
model E/X0

of E,

(2) 0→ Z/pZ→ E[p]→ µ→ 0,

where µ is a quasi-finite group scheme isomorphic to µp over Z[1/N] and to {1}
elsewhere. Here N , the “p-torsion conductor”, is the product of all primes l for which

µ(F̄l) = {1}. A good way to picture µ is as µp punctured over l|N . Since µ(F̄l) =

E(F̄l)/Z/pZ, we get a “hole” in µ at l if and only if E[p](F̄l) ∼= Z/pZ. For this to
happen, E must have bad reduction at l. Specifically, l|N if and only if the reduction
of E at l is

• multiplicative, and p ∤ cl, the number of connected components of E/Fl
, or

• additive, in which case the presence of a rational torsion point forces p = 3, and
the reduction is of type IV or IV ∗.

The sequence (2) is base-change invariant in the sense that its base-change to Xn gives
the structure of the p-torsion of the Néron model of E/Kn

.
We concomitantly replace the Galois-theoretic Selmer groups

Sel p(E/Kn
) ⊂ H1(Kn, E[p])

with the flat cohomology groups H1
f l(Xn, E[p]).
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Lemma 3 There are maps H1
f l(X∞, E[p])→ Z ← Sel p(E/K∞

) with finite kernel and

cokernel. Thus H1
f l(X∞, E[p]) is Fp[[T]]-torsion if and only if Sel p(E/K∞

) is. To show

that µ(E)p = 0, it suffices to prove that H1
f l(X∞, E[p]) has corank 0 as an Fp[[T]]-mod-

ule.

Proof For the first part, see [6, Prop. 6.4]. The second claim is Lemma 2.

We will thus focus on showing H1
f l(X∞, E[p]) is a co-torsion Fp[[T]]-module. Over

X∞ we get the long exact sequence in flat cohomology associated to (2)

(3) H1
f l(X∞, Z/pZ)→ H1

f l(X∞, E[p])→ H1
f l(X∞, µ)

δ→ H2
f l(X∞, Z/pZ).

To show that µ(E)p = 0, we will see below that it suffices to find an Fp[[T]]-divi-
sible class b ∈ H1

f l(X∞, µ) such that δb 6= 0. How to go about verifying that
δb 6= 0? A naı̈ve idea, which will ultimately work, would be to find a functional

α : H2
f l(X∞, Z/pZ) → Qp/Zp such that α(δb) 6= 0. We compute the group of all

such functionals:

H2
f l(X∞, Z/pZ)∨ = (lim

→
H2

f l(Xn, Z/pZ))∨

= lim
←

H2
f l(Xn, Z/pZ)∨ ∼= lim

←
H1

f l(Xn, µp).

The last isomorphism comes from the existence of a perfect global duality pairing,

see [7]:
H1

f l(Xn, µp)×H2
f l(Xn, Z/pZ)→ Qp/Zp.

Notice that by Kummer theory

lim
←

O×n /O×p
n →֒ lim

←
H1

f l(Xn, µp),

so we might expect to show δb 6= 0 by evaluating on it a functional coming from a

norm-coherent sequence of units (mod p-th powers).
At the heart of this paper will thus be an explicit computation of the global duality

pairing H2
f l(Xn, Z/pZ) × H1

f l(Xn, µp) → Qp/Zp. To be precise, we will produce an
explicit pairing formula which will allow us to deduce that µ(E)p = 0 in some cases.

The mere existence of the formula will suffice for us; that it actually computes the
canonically defined global duality pairing will not be spelled out.

3 Strategy of Proof

All module-theoretic notions used here (“torsion”, “rank”, etc.) will refer to Fp[[T]]-
modules unless explicitly stated otherwise. In particular, Mdiv will refer to the maxi-
mal Fp[[T]]-divisible submodule of a Fp[[T]]-module M.

Proposition 1 µ(E)p = 0 if and only if there exists a b ∈ H1
f l(X∞, µ)div such that

δb 6= 0.
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Proof From (3) we extract the short exact sequence

0← H1
f l(X∞, Z/pZ)∨ ← H1

f l(X∞, E[p])∨ ← (ker δ)∨ ← 0.

It suffices to show that the flanking Fp[[T]]-modules H1
f l(X∞, Z/pZ)∨ and (ker δ)∨

both have rank 0. For the former, this is a straightforward consequence of the Ferrero–

Washington theorem. The latter is equal to the cokernel of δ∨ : H2
f l(X∞, Z/pZ)∨ →

H1
f l(X∞, µ)∨. Let F be the maximal free quotient of H1

f l(X∞, µ). Since, up to finite

kernel and cokernel, H1
f l(X∞, µ)∨ ∼= H1

f l(X∞, µp)∨ ∼= (O×∞/O
×p
∞ )∨ (see Lemma

4), and the latter is easily seen to be of Fp[[T]]-rank 1, we conclude that F is also of

rank 1. To show that the cokernel of δ∨ is Fp[[T]]-torsion, it is therefore enough to
show that the composed map

H2
f l(X∞, Z/pZ)∨

δ∨→ H1
f l(X∞, µ)∨ → F

is non-zero. Dualizing, we need to show that the map

H1
f l(X∞, µ)div

δ→ H2
f l(X∞, Z/pZ)

is non-zero, as claimed.

So, we start with an Fp[[T]]-divisible b ∈ H1
f l(X∞, µ), and we want to show δb 6=

0. The class b will live on some finite level, say b ∈ H1
f l(Xn, µ). Our task can be

broken up into two:

1. Verify that δb 6= 0 in H2
f l(Xn, Z/pZ).

2. Verify that δb remains non-zero under the restriction

H2
f l(Xn, Z/pZ)→ H2

f l(X∞, Z/pZ).

3.1 Finite-Level Computation

As we will be working over the single scheme Xn = Spec On, for the duration of this

subsection we suppress the n from our notations. Thus K = Kn, O = On, X = Xn,
etc.

As Z/pZ/X is a smooth group scheme, its flat cohomology is equal to its étale
cohomology (denoted with an unadorned H∗(X, Z/pZ)). The following proposition

will give us something of a handle on the elements on H2(X, Z/pZ):

Proposition 2 The group H2(X, Z/pZ) fits into the following long exact Gysin se-

quence

(4) 0→ H1(X, Z/pZ)→ Hom(GK , Z/pZ)→
⊕

v∤∞

Hom(Uv, Z/pZ)

d2→ H2(X, Z/pZ)→ H2(K, Z/pZ)

Here Uv denotes the units of the localization OK,v, and the sum is taken over all finite
places of K. (The meaning of d2 is explained in the proof.)
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Proof Let i : Spec K → X be the inclusion of the generic point. As étale sheaves,
Z/pZ/X = i∗(Z/pZ/Spec K) (note that this fails in the flat topology). Granting for the

moment the identification H0(X, R1i∗Z/pZ) = ⊕v∤∞Hom(Uv, Z/pZ), the long ex-
act sequence (4) becomes just the low-dimensional terms of the Grothendieck spec-
tral sequence for the composition of functors i∗ and H0(X,−):

E
m,n
2 = Hm(X, Rni∗Z/pZ)⇒ Hm+n(K, Z/pZ),

and d2 : E01
2 → E20

2 the corresponding second-stage diagonal differential.

To prove H0(X, R1i∗Z/pZ) =
⊕

v∤∞Hom(Uv, Z/pZ), we compute the stalks of

R1i∗Z/pZ at geometric points of X. At the geometric generic point η̄ : Spec K̄ →
X, the stalk is (R1i∗Z/pZ)η̄ = H1(K̄, Z/pZ) = 0. At a geometric special point
v̄ : Spec F̄v → X we get (R1i∗Z/pZ)v̄ = Hom(Iv̄/v, Z/pZ), which under the conjuga-
tion action of Frobenius Frv becomes an étale sheaf on Spec Fv. From these computa-

tions we conclude that R1i∗Z/pZ is an étale skyscraper sheaf on the one-dimensional
scheme X, and that therefore

R1i∗Z/pZ ∼=
⊕

v∤∞

iv∗Hom(Iv̄/v, Z/pZ).

The desired identification used above follows from local class field theory:

Hom(Iv̄/v, Z/pZ)Frv=1 ∼= Hom(Uv, Z/pZ),

for any choice of v̄|v.

Say we are lucky enough to have δb ∈ ker(H2(X, Z/pZ)→ H2(K, Z/pZ)). The tech-
nical core of this paper is the explicit computation of a lift of δb via d2, the spectral se-
quence differential, to a collection of functions ( fv : Uv → Z/pZ), almost all of which

vanish. Having computed this lift, the following proposition will give us a sufficient
condition for the lift to not be a restriction of a homomorphism f : GK → Z/pZ.

For any finite place v of K, we have the natural injection O
×
K →֒ Uv, a 7→ av.

Proposition 3 To show δb 6= 0 ∈ H2(X, Z/pZ), it suffices to show that there is a
global unit a ∈ O× such that

∑

v∤∞

fv(av) 6= 0.

Remark Though we will not prove it, the sum on the left is nothing but the pairing
〈a, b〉 induced from the global duality pairing by the composition

O×/O×p ×H1
f l(X, µ)→ H1

f l(X, µp)×H1
f l(X, µ)

id×δ−−−→ H1
f l(X, µp)×H2(X, Z/pZ)→ Qp/Zp.
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Proof To show δb 6= 0 it suffices, by the exact sequence (4), to show that the col-
lection ( fv : Uv → Z/pZ) is not the restriction of a global homomorphism f : GK →
Z/pZ. The restriction is given simply by composing along the top row of the diagram

∏

v Uv
�

� // A
× f
K

rec
// GKab/K

f
// Z/pZ

O×

OO

�

� // K×

OO ;;
xxxxxx

where rec is the Artin map of global class field theory. If ( fv : Uv → Z/pZ) were to
arise in this way, we would have that

∑

v∤∞

fv(av) = f ◦ rec
(

∏

v∤∞

av

)

= f ◦ rec(a) = 0,

since f ◦ rec |K× = 0 by global reciprocity (and the fact that f ◦ rec is trivial on the
Archimedean components of A

×
K , since p is odd).

3.2 Moving up the Tower

Reinstate the n in the notation: b ∈ H1
f l(Xn, µ) etc. Say we have shown that 0 6= δb ∈

H2(Xn, Z/pZ) by finding, as above, a collection ( fn,v : Un,v → Z/pZ) lifting δb and a

global unit an ∈ O×n such that

∑

v∤∞ of Kn

fn,v(an,v) 6= 0.

Proposition 4 Say an = NKn+1/Kn
(an+1). Then

0 6= res(δb) ∈ H2(Xn+1, Z/pZ).

Proof Throughout the proof, w will denote a generic finite place of Kn+1, v the place

of Kn below it, and Nw/v the corresponding local norm. Let us compare the relevant
parts of the long exact sequence (4) for Xn and Xn+1:

H1(Kn, Z/pZ) //

res
��

⊕

v Hom(Un,v, Z/pZ)
d2

//

◦Nw/v
��

H2(Xn, Z/pZ)

res
��

H1(Kn+1, Z/pZ) //
⊕

w Hom(Un+1,w, Z/pZ)
d2

// H2(Xn+1, Z/pZ)

The middle vertical map sends ( fn,v : Un,v → Z/pZ) to ( fn+1,w : Un+1,w → Z/pZ)
given by fn+1,w = fn,v ◦ Nw/v.
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The collection ( fn+1,w) is a lifting of res(δb) ∈ H2(Xn+1, Z/pZ). We have

∑

w of Kn+1

fn+1,w(an+1,w) =

∑

v of Kn

∑

w|v

fn,v(Nw/v(an+1,w)) =

∑

v

fn,v(an,v) 6= 0,

by assumption. Thus, essentially the same computation as on the n-th level shows

that δb 6= 0 on the (n + 1)-st level also.

For δb to remain non-zero all the way to H2(X∞, Z/pZ), it will suffice that the unit an

is the norm from O
×
k for all k ≥ n, in other words a universal norm in the cyclotomic

tower (at least up to p-th powers). A good supply of such an’s comes from cyclotomic
units.

4 The Structure of H
1
f l(X∞, µ)

Remember that µ is a quasi-finite flat group scheme over Spec Z, isomorphic to µp

over Spec Z[1/N] and to {1} over l|N . On Spec Z, µ represents a flat sheaf whose
value at an irreducible flat open U → Spec Z is given by

µ(U ) =

{

µp(OU ), if 1
N
∈ Γ(U , OU )

1 if 1
N

/∈ Γ(U , OU ).

Lemma 4 Over X∞, we have an exact sequence of Fp[[T]]-modules

(5) 0→
⊕

v∞|N

µp(Fv∞)→ H1
f l(X∞, µ)→ H1

f l(X∞, µp)→ 0.

The sum in the first term ranges over the finitely many places v∞|N of Kn.

Proof For every n, 1 ≤ n ≤ ∞, the “puncturing” of µp at places of Xn dividing N
is captured in the exact sequence of flat sheaves over Xn:

0→ µ→ µp →
⊕

vn|N

ivn∗µp → 0,

where ivn : : Spec Fvn
→ Xn.

Taking cohomology, we get a long exact sequence

(6) 0 = µp(On)→
⊕

vn|N

µp(Fvn
)→ H1

f l(Xn, µ)→ H1
f l(Xn, µp)

→
⊕

vn|N

H1
f l(Xn, ivn∗µp) →֒

⊕

vn|N

H1
f l(Fvn

, µp) =

⊕

vn|N

F
×
vn

/F
×p
vn

.
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The last inclusion comes from the Grothendieck spectral sequence for ivn∗. After
passing to the direct limit of these exact sequences, the first (non-zero) term in

(6) stabilizes to the finite group
⊕

v∞|N
µp(Fv∞), since there are only finitely many

primes v∞|N of K∞. The last term in (6) vanishes in the limit, since for high n, all
the elements of F×vn

become p-th powers in F×vn+1
.

In particular, we get that H1
f l(X∞, µ)div ։ H1

f l(X∞, µp)div ⊇ O×∞/O
×p
∞ , the

inclusion coming from Kummer theory along with the easy fact that O×∞/O
×p
∞ is

Fp[[T]]-divisible. Our goal now is to find explicit Čech cocycles lifting the classes

b ∈ O×∞/O
×p
∞ to H1

f l(X∞, µ).

4.1 Illustration

Before we do this, let us do the lifting construction in a slightly different setting which
will illustrate the main idea with a maximum of transparency. Take a field F contain-

ing µp, and a prime v ∤ p of F. Note that µp ⊂ Fv. Let Y = Spec OF , and let µ be the
flat scheme over Y obtained from µp by puncturing only over v. As above, we have
the diagram

0 // µp(Fv) // H1
f l(Y, µ) // H1

f l(Y, µp) // F×v /F
×p
v

O
×
F /O

×p
F

OO 99ssssss

The diagonal map is nothing but the reduction mod v. Take a b 6= 1 in O
×
F /O

×p
F such

that b is a p-th power mod v. We will lift the corresponding class b ∈ H1
f l(Y, µp) to

H1
f l(Y, µ).

First of all, the map O
×
F /O

×p
F → H1

f l(Y, µp) is the coboundary map for the Kum-
mer sequence of flat sheaves over Y , 0→ µp → Gm

p→ Gm → 0. This coboundary is
computed in the standard way: by abuse of notation start with b ∈ O

×
F = Gm(Y ),

take its “p-th root” as a flat 0-cochain y ′ of Gm, and compute its Čech coboundary.
Explicitly, fix once and for all a b1/p and let L = F(b1/p), G = Gal(L/F). The cochain
(V ′, b1/p ∈ Gm(V ′)) on the flat open cover V ′ = Spec OL

f→ Y can then be taken
as y ′.

An easy scheme-theoretic computation gives the decomposition into irreducibles

V ′ ×Y V ′ =
⋃

σ∈G

V ′σ,

where each V ′σ is a copy of V ′, and the p copies are all glued together at the primes
ramified in L/F, all of which divide p. The two projections p1, p2 : V ′ ×Y V ′ ⇉ V ′

are given as follows on any component V ′σ:

(7) p1 : V ′σ
∼= V ′

id→ V ′, p2 : V ′σ
∼= V ′

σ→ V ′.
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The Čech coboundary δy ′ = p∗2 y ′/p∗1 y ′ is a 1-cocycle for µp whose value on V ′σ is
given by

(δy ′)σ = (b1/p)σ−1.

This is clearly not a cocycle for µ: for σ 6= 1, the component V ′σ has a point over v,
yet supports a non-trivial root of unity, (δy ′)σ .

We can, however, tweak y ′ to get a cocycle for µ. For this, we will refine V ′ to a

Zariski open V ⊂ V ′. Since b (mod v) ∈ F
×p
v , v splits completely in L/K. The fiber

f−1(v) is a G-orbit consisting of p points {w1, . . . , wp}. Remove all but one, setting

V = V ′ \ {w2, . . . , wp}.

The picture of V →֒ V ′ (for p = 3) is given in Figure 1 (the circles represent the

removed points).
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Figure 1

Lemma 5 V ×Y V is a union of p irreducible components

V ×Y V =

⋃

σ∈G

Wσ,

where Wσ ⊂ V ′σ. W1
∼= V , and Wσ

∼= V \ {w1} ∼= V ′ \ f−1(v) for σ 6= 1.

Proof We have V ×Y V = p−1
1 (V ) ∩ p−1

2 (V ) ⊂ V ′ ×Y V ′. We obtain the claimed
decomposition by setting Wσ = (V ×Y V ) ∩ Vσ. Given the explicit description (7)
of the projections, and identifying V ′σ with V ′, we find the identifications

p−1
1 (V ) ∩V ′σ ⊂ V ′σ
‖ ‖
V ⊂ V ′

and
p−1

2 (V ) ∩V ′σ ⊂ V ′σ
‖ ‖

σ−1V ⊂ V ′

Intersecting the two yields the identification diagram

Wσ = (p−1
1 (V ) ∩ p−1

2 (V )) ∩V ′σ ⊂ V ′σ
‖ ‖

V ∩ σ−1V ⊂ V ′

For σ 6= 1, the picture is in Figure 2.
Since v splits in L/K, w1 6= σ−1w1, and we see that Wσ has no points over v.
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The cocycle δy, given on Wσ by (δy)σ = (b1/p)σ−1 is indeed a cocycle for µ. If

σ 6= 1, (δy)σ is a non-trivial p-th root of 1, but that is in µ(Wσ) since the Lemma
shows there are no points in Wσ above v. This procedure for making a cocycle for µ
can clearly be performed simultaneously for several v’s dividing N .

4.2 The General Computation

We will now repeat the same construction in our main setting, i.e., over Kn 6⊃ µp. We

start with the class b ∈ O×n /O
×p
n → O×∞/O

×p
∞ →֒ H1

f l(X∞, µp), and we assume that

b is a p-th power mod v for all v|N . This can always be achieved by increasing the

level n. We will only work at level n, so we again suppress the index n.
The inclusion of rings

O →֒ O[y]/(y p − b) = B,

gives us a flat open cover U ′ → X, and the 0-cochain (U ′, y) is a “p-th root” of b ∈
H0(X, Gm) whose Čech coboundary represents the class b ∈ H1

f l(X, µp). Inspired by

the above illustration, we will puncture U ′ to make a cocycle for µ. Let v1, . . . , vr ∈ X

be the primes dividing N . Since by assumption b ≡ ∗p (mod vi), there is at least one
wi|vi in U ′ with Fwi

= Fvi
, with p choices if µp ⊂ Fvi

. We set

U = U ′ \ {w|vi : w 6= wi}.

Let F = K(µp),Y = Spec OF,V = U×XY . Since Fwi
= Fvi

, all the primes of V above
wi lie above distinct primes of Y , so V → Y is a cover of the sort we considered in the
illustration. In particular, V ×Y V = (U ×X U )×X Y = ∪Wσ, and no Wσ, σ 6= 1 has
a point above N . The same is thus true for the irreducible components of U ×X U ,

so that the Čech coboundary of (U , y) is indeed a 1-cocycle for µ.
What if we had picked a different cover U ? Specifically, when µp ⊂ Fvi

, we can
pick any prime of B above vi to serve as the wi . Changing wi corresponds precisely to
changing our lift by an element of µp(Fvi

) ⊂ ⊕

v|N iv∗µp(Fv) →֒ H1
f l(Xn, µ). Since

the primes w|v of B of degree 1 are in a one-to-one correspondence with the p-th

roots tv ∈ Fv of b mod v, we have proved the following Proposition, which establishes
our standard explicit notation for elements of H1

f l(Xn, µ):

Proposition 5 Pick b ∈ O×n /O
×p
n , and assume that for all primes v|N of Kn, b ≡ t

p
v

(mod v) for some tv ∈ Fv. We denote by (b, {tv}v|N ) the cohomology class δ(U , y) ∈
H1

f l(Xn, µ) constructed above using this choice of tv’s. This notation gives a one-to-one
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correspondence between the choices (tv)v|N ∈
∏

v|N F×v /F
×p
v of roots of b mod all the

places v|N of Kn, and the lifts of b ∈ O×n /O
×p
n ⊂ H1

f l(Xn, µp) to H1
f l(Xn, µ).

4.3 Divisible Lifts

We know that O×∞/O
×p
∞ ⊂ H1

f l(X∞, µp)div . In terms of the preceding description,
which lifts are divisible?

Since H1
f l(X∞, µ)/H1

f l(X∞, µ)div is dual to the torsion of the Fp[[T]]-module

H1
f l(X∞, µ)∨, there is an r such that

T pr

H1
f l(X∞, µ) ⊆ H1

f l(X∞, µ)div .

We may as well assume r to be such that all the vr|N are inert in K∞/Kr . T pr

acts as

ρ− 1 := γ pr − 1.

Proposition 6 Pick n ≥ r large enough so that we can find a b ∈ O×n /O
×p
n , and a

u ∈ O×n /O
×p
n satisfying the following two conditions:

• b = uρ−1, and
• for every v|N a place of Kn we can find an sv ∈ F×v such that s

p
v ≡ u (mod v).

Since ρ fixes all the vr’s, it will act on the residue field extension Fvn
/Fvr

, and we set
tv = sρ−1

v (so that b ≡ t
p
v (mod v)). Then (b, {tv}v|N ) ∈ H1

f l(X∞, µ)div .

Proof Since T pr

(u, {sv}) = (uρ−1, {sρ−1
v }) = (b, {tv}), our choice of r guarantees

that (b, {tv}) ∈ H1
f l(X∞, µ)div .

5 The Fake Coboundary Map

Let F : A → B be a left exact functor between Abelian categories. Consider an exact
sequence in A, 0 → A → B → C. The last map need not be onto, so we do not in
general get a coboundary between the derived functors RnF(C)

∂−→ Rn+1F(A). We will

try to salvage as much of a coboundary map as possible in this slightly more general
setting. So, choose the injective resolutions 0 → A → I·A = (I0

A → I1
A → · · · ), and

similarly I·B, I·C fitting into the diagram

0 // I·A // I·B // I·C

0 // A

OO

// B

OO

// C

OO
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The functor F induces a ladder

(8) ...
...

...

0 // F(In+1
A )

OO

// F(In+1
B )

OO

// F(In+1
C )

OO

0 // F(In
A)

d

OO

// F(In
B)

d

OO

// F(In
C )

d

OO

0 // F(In−1
A )

d

OO

// F(In−1
B )

d

OO

// F(In−1
C )

d

OO

...

OO

...

OO

...

OO

The standard “lift-and-differentiate” recipe for the coboundary fails already at the
“lift” stage, since F(In

B) → F(In
C ) is not necessarily onto. The recipe will still apply to

the “liftable” cocycles:

Definition 1 Let F̃(In
C ) = ker d∩im(F(In

B)→ F(In
C )) be the group of liftable cocycles

in F(In
C ). Given x ∈ F̃(In

C ), we can lift it to x̃ ∈ F(In
B), and then take dx̃ ∈ F(In+1

B ),
which is the image of a y ∈ F(In+1

A ), since x was closed. The cohomology class of

y ∈ Rn+1F(A), denoted ∂x, does not depend on the choice of lifting x̃, and gives us a
well-defined “fake coboundary map”

∂ : F̃(In
C )→ Rn+1F(A).

The main point to appreciate here is that the fake coboundary does not necessarily
descend to RnF(C), and so indeed depends on the injective resolutions chosen: even

if a liftable x ∈ F(In
C ) is exact, x = dy, ∂x need not be 0. The usual Snake Lemma

argument proving that ∂x is exact needs a lift of y, which need not exist.

6 A Spectral Sequence Lemma

Here is a little technical lemma, giving a sort of dévissage for general Grothendieck

spectral sequences. Let A
F→ B

G→ Ab be the setup for a Grothendieck spectral

sequence: A, B are Abelian categories, Ab is the category of Abelian groups, F, G are
covariant left-exact functors, and F takes injectives of A into G-acyclic objects of B.
Let M ∈ A. Consider an injective resolution of M,

0→ M → I0
M → I1

M → · · · ,
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apply F to it and find injective resolutions 0 → F(M) → J·M, 0 → F(Iq) → J
·q
M by

B-injectives fitting into a diagram

0 // F(I1) // J01
M

// J11
M

// . . .

0 // F(I0) //

OO

J00
M

δ
//

d

OO

J10
M

//

OO

. . .

0 // F(M) //

OO

J0
M

//

OO

J1
M

//

OO

. . .

0

OO

0

OO

0

OO

Then E
pq
0M = G

(

J
pq
M

)

is a double complex with anti-commuting differentials d and δ,

which yields a spectral sequence with E2-term E
pq
2M = (RpF ◦RqG)(M). The sequence

converges:

(RpF ◦ RqG)(M)⇒ Rp+q(G ◦ F)(M).

As for the E1-term, we have in particular E
p0
1M = ker d : E

p0
0M → E

p1
0M , which is none

other than G( J
p
M) = ker d : G( J00

M )→ G( J01
M ).

Take an exact sequence in A, 0→ A→ B→ C → 0. The goal is to prove a lemma
relating the above spectral sequence of C to that of A: suitable coboundary maps are
asserted to commute with diagonal spectral sequence differentials d1 and d2. First,

find compatible A-injective resolutions of A, B and C :

0→ I·A → I·B → I·C → 0
↑ ↑ ↑

0→ A → B → C → 0

Since I
q
A is injective, we get an exact sequence 0 → F(I

q
A) → F(I

q
B) → F(I

q
C ) → 0 for

every q, and then choose the double complexes J
pq
A , etc. to fit in the three-dimensional

ladder whose typical slice is:

0→ J
·q
A → J

·q
B → J

·q
C → 0

↑ ↑ ↑
0→ F(I

q
A) → F(I

q
B) → F(I

q
C ) → 0

The complex G( J·C ) computes the derived functors R·G on F(C). Let Ẽ1
C = ker δ ∩

im(G( J1
B) → G( J1

C )) be the group of liftable cochains in G( J1
C ) = E10

1C , (so Ẽ1
C =

G̃( J1
C ), in the notation of Section 5). Set Ẽ0

C = δ−1Ẽ1
C ⊆ E00

1C . We are now ready to
state:

Proposition 7 There exist coboundary maps ∂v : E00
1C → E01

1A and ∂h : Ẽ1
C → E20

2A such
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that for any a ∈ Ẽ0
C , ∂va lands inside E01

2A ⊆ E01
1A, and the following diagram commutes:

E01
2A

d2

''OOOOOOOOOOOOOOOO

Ẽ0
C

∂v

OO

d1

// Ẽ1
C

∂h

// E20
2A

Here d1 = δ is the spectral sequence differential on E1C and d2 its analog on E2A.

Proof We spell out the definition of the coboundary maps ∂v, ∂h, leaving the proof
of the commutativity to the reader.

The “vertical” coboundary ∂v: We define ∂v : E00
1C = G( J0

C ) → E01
1A as the connecting

homomorphism arising from

E0 :

0 // G( J01
A ) // G( J01

B ) // G( J01
C ) // 0

0 // G( J00
A ) //

d

OO

G( J00
B ) //

d

OO

G( J00
C ) //

d

OO

0

Restricted to G(F(C)) →֒ G( J0
C ), this map is nothing but G(F(C))

G(∂)→ G(R1F(A)) =

E01
2A induced from the classic connecting homomorphism of the long exact sequence

of the derived functors of F.

The “horizontal” coboundary ∂h: The connecting homomorphism in question should

in principle be a map E10
1C → E20

2A, but this turns out to be too much to ask for. Indeed,
consider the corresponding piece of our 3D spectral sequence ladder at the stage E0:

(9) E0 :

0 // G( J20
A ) // G( J20

B ) // G( J20
C ) // 0

0 // G( J10
A ) //

δ

OO

G( J10
B ) //

δ

OO

G( J10
C ) //

δ

OO

0

To pass to the E1 stage we take the kernel of d since we are on the bottom row of
E0. Note that d is “perpendicular” to the differential δ in (9), which accounts for the
(possible) failure of right exactness of the ensuing ladder:

(10) E1 :

0 // G( J2
A) // G( J2

B) // G( J2
C )

0 // G( J1
A) //

OO

G( J1
B) //

OO

G( J1
C )

OO
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This failure precludes the definition of a coboundary map on the entire G( J1
C ) = E10

1C .
Still, we recognize the diagram (10) as being part of the ladder (8) associated to the

exact sequence 0→ F(A)→ F(B)→ F(C) in B. Set

∂h : Ẽ1
C → R1G(F(A)) = E20

2A

to be the fake coboundary map defined as in Section 5.
The proof of the Proposition now becomes a simple but tedious diagram chase.

Remarks

(1) This proposition will allow us to replace a computation of d2 with a computation
of d1, which is much simpler: notice, for example, that the Ẽ’s are defined solely
in reference to resolutions of F(B) and F(C), and make no mention of the rest of

the spectral sequence machinery.
(2) One might expect that ∂hd1 is always 0, since it looks like a connecting homo-

morphism for δ evaluated on an δ-exact cochain. But this is not quite right: even
if b = δa, the usual Snake lemma argument showing that ∂hb is a coboundary

requires a to be liftable to G( J0
B), which does not necessarily happen. If it does,

then ∂hb is indeed 0.

7 Lifting Across d2

We will now use our spectral sequence lemma to give a general template for lifting
across d2. We keep the notation of the preceding sections. Start with exact sequences
0→ X → Y → Z in B and 0→ A→ B→ C → 0 in A living in a diagram

(11) 0 // X //

α
��

Y //

α
��

Z

α
��

0 // F(A) // F(B) // F(C)

Pick compatible injective resolutions over this ladder required to set up the spectral
sequences from Section 6, 0 → X → J·X, 0 → F(A) → J·A, etc. As in Section 5,
form the groups of liftable cocycles G̃( J1

Z), G̃( J1
C ) = Ẽ1

C which are the domains for

fake coboundary maps relative to our choice of injective resolutions. They fit into the
commutative diagram:

(12) G̃( J1
Z)

∂
//

α
��

[R2G](X)

α
��

Ẽ1
C = G̃( J1

C )
∂h

// [R2G](F(A))

This set-up will help us deal with the following basic
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Question Given z ∈ G̃( J1
Z), is ∂z 6= 0 ∈ [R2G](X)?

To answer affirmatively, it will suffice to show that α(∂z) is non-zero in

[R2G](F(A)). This would follow if we could lift α(∂z) across d2 to an element of
G([R1F](A)), and show that this lift does not come from [R1(G ◦ F)](A) in the long
exact sequence

0→ [R1G](F(A))→ [R1(G ◦ F)](A)→ G([R1F](A))
d2→ [R2G](F(A)),

coming from the spectral sequence for G ◦ F. On this level of abstraction, it is not at
all clear that this is a useful strategy. We have a concrete example in mind, though:
the Grothendieck spectral sequence of Proposition 2 computing H2(X, Z/pZ). Here,
G([R1F](A)) (=

⊕

v∤∞Hom(Uv, Z/pZ)) is a much more concrete object than

[R2G](F(A)) (= H2(X, Z/pZ)), so the computation will indeed go through. All we
have to do is find a d2-lift of α(∂z).

Note that our question makes no reference to the sequence 0→ A→ B→ C → 0,
which should indeed be thought of as auxiliary and chosen with a concrete z ∈ G̃( J1

Z)
in mind. Specifically, we have

Proposition 8 Assume the class [z] represented by a liftable cocycle z ∈ G̃( J1
Z) is in

ker([R1G](Z)
α→ [R1G](F(C)). Then we can explicitly find a lift of α(∂z) across d2.

Proof Since the complex

G( J0
C )

δ→ G( J1
C )

δ→ G( J2
C )

δ→ · · ·
computes [R·G](F(C)), we can find y ∈ G( J0

C ) with d1 y = δy = αz. Since z ∈
G̃( J1

Z), αz ∈ G̃( J1
C ) = Ẽ1

C and y ∈ Ẽ0
C (z liftable⇒ αz liftable). We can therefore

apply our spectral sequence Lemma 7 to conclude that ∂v y is our lifting of α(∂z):

α(∂z) = ∂h(αz) = ∂h(d1 y) = d2(∂v y).

8 The Meat of the Argument

In this section we use the machinery developed so far to prove that, under certain
assumptions, the coboundary map H1

f l(Xn, µ)
δ−→ H2

f l(Xn, Z/pZ) is non-zero.

8.1 Preliminaries

The p-torsion of our curve E/Q lies in a non-split exact sequence of GQ -modules

(13) 0→ Z/pZ→ E[p]→ µp → 0.

Fix once and for all a basis 〈T0, T1〉 of E[p](K̄) such that T0 ∈ E[p](Q). Relative to
this basis, the action of σ ∈ GQ on E[p] is given by the matrix

(14)

(

1 c(σ)
0 ω(σ)

)

.

Here ω−1c : GQ → Z/pZ is a 1-cocycle in H1(Q, Z/pZ(−1)) ∼= Ext1
GQ

(µp, Z/pZ)
whose class corresponds to the extension E[p].
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8.2 The Main Theorem

The following theorem provides the key ingredient for the strategy outlined in Sec-
tion 3.

Theorem 1 Assume that there is a level n in the cyclotomic Zp-tower, and a prime
v|l|N of Kn for which the following condition holds:

(∗) There exists a global unit a ∈ O×n which is not a p-th power mod v.

(This forces µp ⊆ F
×
l ⊆ F×v .) Then the coboundary map associated with (2),

H1
f l(Xn, µ)

δ−→ H2(Xn, Z/pZ)

is non-zero.

Proof We will be working entirely at the finite level n, so we again suppress it from

the notation. We start with a class b ∈ H1
f l(X, µ). Recall our strategy for proving

δb 6= 0 from Section 3: we lift δb across d2 :
⊕

v∤∞Hom(Uv, Z/pZ)→ H2(X, Z/pZ)

to a collection of homomorphisms ( fv : Uv → Z/pZ), and then find a global unit a

such that
∑

v∤∞ fv(av) 6= 0.

Remark We will compute on the étale site. This might seem strange, since we are
lifting across d2 the image of the coboundary in flat cohomology,

H1
f l(X, µ)

δ→ H2
f l(X, Z/pZ).

The étale cohomology does not “see” most of the classes (a, {tv}v|N ) ∈ H1
f l(X, µ)

since the representing cocycle is usually ramified over p. This is why the class we

will work with will have a = 1. Still, the étale site is comfortable to work with, chiefly
because i∗E[p] = E[p] as étale sheaves, and because the Gysin sequence (4) naturally
lives on it. It is possible, if more involved, to lift a general δ(b, {tv}v|N ), but even this
is done by “smoothing” the cocycle at p and doing an étale computation. In any case,

0 → Z/pZ → E[p] → µ → 0 remains exact when viewed as a sequence of étale
sheaves.

The Lifting Set-up

So, let us do a concrete application of Section 7. Consider the functors

Sh((Spec K)ét )
i∗−→ Sh(Xét )

Γ( · )=Γ(X, · )−−−−−−−−→ Ab

from GK -modules to étale sheaves over X to Abelian groups. We have a ladder

0 // Z/pZ // E[p] // µ

��

// 0

0 // i∗Z/pZ // i∗E[p] // i∗µp
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which we recognize as an instance of the diagram (11) from Section 7. Choose the
panoply of compatible injective resolutions J·Z/pZ, J·i∗µp

, etc. as in that section. We

are ultimately interested in computing the map H1
f l(X, µ)

δ−→ H2(X, Z/pZ) which
appears on the right edge of the diagram:

H1
f l(X, µ)

��

Γ̃( J1
µ)

α
��

// H1(X, µ)

77pppppppp
δ

// H2(X, Z/pZ)

Ẽ1
i∗µp

= Γ̃( J1
i∗µp

)
∂h

// H2(X, Z/pZ)

The commutative square in this diagram is precisely diagram (12) from Section 7. To
apply Proposition 8 we will need to find a liftable cocycle b ∈ Γ̃( J1

µ) whose class [b]

is in ker(H1(X, µ) → H1(X, i∗µp)). Liftability of b will be automatic, since the map
of étale sheaves E[p]→ µ is onto.

Finding the Right b

Since µ/X → i∗(µp/K ) factors as µ/X → µp/X → i∗(µp/K ), it will suffice to consider
classes in ker(H1(X, µ)→ H1(X, µp)). To get at this kernel, consider the short exact
sequence of étale sheaves over X,

(15) 0→ µ→ µp →
⊕

v|N

iv∗µp → 0

analogous to that of Lemma 4, and the corresponding piece of the long exact coho-
mology sequence with connecting homomorphism D:

0→
⊕

w|N

µp(Fw)
D→ H1(X, µ)→ H1(X, µp).

By assumption (*), there is a v|N with µp(Fv) 6= 1. Fix once and for all a prime
v̄|v of K̄. The image of the basis element T1 under E[p] → µp gives a non-trivial
ζ ∈ µp(K̄). Define ζv ∈ µp(Fv) ⊂⊕

w|N µp(Fw) by ζ ≡ ζv (mod v̄). We obtain the

desired class simply by setting [b] = D(ζv). As [b] ∈ ker(H1(X, µ) → H1(X, µp)),

αb is a coboundary of a 0-cochain for i∗µp, for any cocycle b representing [b]. Our
spectral sequence lemma works on the level of resolutions, not cohomology, so we
need to find this cochain explicitly.

The Čech Cochain

First we represent ζv ∈ H0(X,
⊕

w|N iw∗µp) by a Čech cocycle. To be more precise,
we will write down a 0-cochain for µp lifting ζv, as this is the intermediate step in
computing [b] = D(ζv).
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Set K(U0) = L = K(ζ), K(U1) = K, and v ′ = v̄|K(U0). The K(Ui)’s are the
function fields of the two components of the étale cover U = U0

∐

U1 → X given

by:
U0 = Spec OK(U0)[1/pN] ∪ {v ′}
U1 = Spec OK \ {v}.

For the picture, see Figure 3.
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Figure 3

The Čech cochain y ∈ Č0(U , µp) defined on U0 by y0 = ζ ∈ µ(U0) = µp(U0)
and on U1 by y1 = 1 ∈ µ(U1) lifts ζv ∈ H0(X,

⊕

w|N iw∗µp) as promised. Therefore

δy = b is a cocycle representing our class [b] ∈ ker(H1(X, µ)→ H1(X, i∗µp)).

Let αy stand for y thought of as a Čech 0-cochain for i∗µp. At least in degrees

0 and 1, the complex of Čech sheaves Č·(U , i∗µp) maps into the resolution 0 →
i∗µp → J·i∗µp

. By abuse of notation, we still denote by αy the corresponding element

of the Γ( J0
i∗µp

) term of the complex

0→ Γ(i∗µp)→ Γ( J0
i∗µp

)
δ→ Γ( J1

i∗µp
)

δ→ Γ( J2
i∗µp

)→ · · ·

which computes H∗(X, i∗µp). We have δ(αy) = αb ∈ Ẽ1
i∗µp

, the group of liftable

cocycles, because b is automatically liftable. By definition, αy ∈ Ẽ0
i∗µp

.
Now the comes the crucial step. We apply the spectral sequence Lemma 7:

(16) d2∂v(αy) = ∂hd1(αy) = ∂h(αb) = α(δ[b]) ∼= δ[b] ∈ H2(X, Z/pZ).

We see that ∂v(αy) is the desired d2-lift of δ[b]. Before representing it explicitly,

we recall Remark (2) at the end of Section 6. Indeed, when the extension (13) is
non-split, ∂hd1(αy) is not necessarily zero. As in the Remark, the 0-cochain αy =

{(U0, ζ), (U1, 1)} for i∗µp cannot be lifted to a 0-cochain for i∗E[p], as is apparent
from the geometry of y. Indeed, say U ′ → U0 were an étale open cover such that

ζ ∈ i∗µp(U ′) = µp(K(U ′)) lifts to E[p](K(U ′)). Then all of E[p] must be rational
over K(U ′). Since the extension (13) is non-split, K(U ′)/K must ramify at every
prime above N . But U0, and therefore U ′, has a point over v|N , hence the supposedly
étale cover U ′ → U0 ramifies over v ′.
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8.2.1 Finally, a d2-Lift

To lift δ[b], we compute ∂v(αy) ∈ H0(X, R1i∗Z/pZ) explicitly. Let fi = ∂i yi , i =

1, 2, where ∂i : µp(K(Ui))→ Hom(GK(Ui ), Z/pZ) is the coboundary map associated
to (13) viewed as a sequence of GK(Ui )-modules. The homomorphisms fi : GK(Ui ) →
Z/pZ are easy to compute, given the Galois module structure (14) of E[p]:

f0 = c : GK(U0) → Z/pZ, f1 = 0 : GK(U1) → Z/pZ.

(The 1-cocycle c for Z/pZ(−1) becomes a homomorphism when restricted to GK(U0).)

The collection f := {(U0, f0), (U1, f1)} gives a 0-cochain for the presheaf

U 7→ H1(K(U ), Z/pZ) = Hom(GK(U ), Z/pZ).

This presheaf sheafifies to R1i∗Z/pZ, and f yields a global section which a moment’s
reflection will convince you is nothing other than

∂v(αy) ∈ E01
2(Z/pZ) = H0(X, R1i∗Z/pZ).

To translate this description of ∂v(αy) from H0(X, R1i∗Z/pZ) to

⊕

v∤∞

Hom(Uv, Z/pZ),

we simply take a w ∈ X, pick an open U0 or U1 covering it, and restrict the corre-
sponding fi to the inertia group of some w̄|w over K(Ui). In other words, if w 6= v, it
is covered by U1, and the w-component of f is 0. An exercise for the reader: what if

w ∤ pN , so that it is covered by U0 also? The v-component is c restricted to Iv̄/v, which
is non-zero precisely because we assumed that (13) is non-split. It is Frobenius-
invariant, and thus descends to a map fv : Uv → Z/pZ since v splits completely in
K(U0).

To finish off the proof of Theorem 1, we invoke the unit a ∈ O×n . Since by As-

sumption (∗) a is not a p-th power mod v, fv(av) 6= 0, and

∑

w∤∞

fw(aw) = fv(av) 6= 0,

so the collection ( fw : Uw → Z/pZ) is not the restriction of a global homomorphism
f : GK → Z/pZ.

The particular shape of fv is contingent on our choice of ζv ≡ ζ (mod v̄). Had we
chosen a different root of unity, its lift would change by a constant multiple, but in
any case we have the following more precise theorem:
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Theorem 2 With notations of this section, assume there is a prime v|N of K with
|Fv| ≡ 1 (mod p) (no assumption is made on global units mod v). Pick a ζv ∈ µp(Fv)

non-trivial, and let b ∈ H1
f l(X, µ) be its image under

µp(Fv) ⊂ H0(X,
⊕

w|N

iw∗µp)
D→֒ H1

f l(X, µ).

Then δb ∈ H2(X, Z/pZ) lifts across
⊕

v∤∞Hom(Uv, Z/pZ)
d2−→ H2(X, Z/pZ) to a

collection of homomorphisms

( fw : Uw → Z/pZ)

with fw = 0 if w 6= v, and fv 6= 0.

9 Examples

Finally, we produce some examples to show that the above theory not only has con-
tent, but also yields new curves for which we can prove µ(E)p = 0. In fact, as

soon as we get one new example, we trivially get infinitely many: any curve E ′ with
E ′[p] ∼= E[p] also satisfies µ(E ′)p = 0, as the argument depended only on the struc-
ture of p-torsion. For p = 3 or 5 we can in fact do better and produce infinitely many
examples with pairwise non-isomorphic p-torsion.

Before stating the general theorems, we will illustrate the strategy on a concrete
example when p = 3.

9.1 1990D1

Take p = 3, and consider the curve 1990D1 from Cremona’s tables:

E1 : y2 + xy = x3 − 6390x− 215900.

E1 is good ordinary at 3, E1(Q)tors has order 3, and the corresponding exact sequence

0→ Z/3Z→ E1[3]→ µ3 → 0

does not split, since we read from the tables that there is only one other curve in the
isogeny class of E1. The conductor factors as 1990 = 2 ·5 ·199, and the corresponding
reduction types and Tamagawa numbers are as follows: at 2 − I27, c2 = 27; at 5 −
I3, c5 = 3; at 199− I1, c199 = 1. Since E[p] ramifies at v|N if and only if p ∤ cv, E[3]
fits into the exact sequence

0→ Z/3Z→ E[3]→ µ→ 0,

where µ is µ3 punctured above 199.

The following formula for the p-adic valuation of f
alg

E (0) when E is good ordinary
at p and Sel p∞(E/Q

) is finite has been obtained by Perrin-Riou in the CM case, and
by Schneider in general (see [3], p. 35):
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(17) vp( fE(0)) = vp(TamE |Ẽ(Fp)|2| Sel p∞(E/Q
)|/|E(Q)|2),

where TamE is the product of the Tamagawa numbers and Ẽ is the reduction of E at p.
In the case at hand, we read off from the tables that XE1

(Q)[3∞] = 0, rk E1(Q) = 0,
so Sel3∞(E1/Q ) = 0. Formula (17) gives f (E1) = 27 · 3 · 1 · 9 · 1/9 = 81 up to units,

which tells us nothing more than µ(E1)3 ≤ 4. We can show that, in fact, µ(E1)3 = 0.
Since 9 ‖ 1992 − 1, 199 splits completely in K1 and the three primes above it are

inert thereafter. Over X∞ we thus have

0→ µ3(F199)3 → H1
f l(X∞, µ)→ H1

f l(X∞, µp)→ 0.

The primes above 199 in K1 = Q(α) correspond to the roots mod 199 of x3 − 3x +
1 = 0, the minimal polynomial of

α = ζ−1
9

1− ζ4
9

1− ζ2
9

.

Those roots, 6, 34, 159 (mod 199) may seem perfectly interchangeable, but in fact
they are not: 159 ≡ 693 (mod 199), whereas 6, 34 /∈ F

×3
199. Fix α and name the three

primes vi|199 of K1 by stipulating that

α ≡ 159 (mod v0), α ≡ 6 (mod v1), α ≡ 34 (mod v2).

Then α fits into a norm-coherent sequence {αn}, α1 = α, αn ∈ O×n . Let vi,n be the
unique prime of Kn above vi . We claim that αn is a cube mod v0,n and a non-cube

mod v1,n, v2,n. Indeed, vi,n is inert over vi , so we have a commutative diagram whose
vertical arrows are induced by the norm map Nn/1 : Kn → K1:

O×n
//

Nn/1

��

F×vi,n
//

N
��

F×vi,n
/F×3

vi,n

N
��

O
×
1

// F×vi
// F×vi

/F×3
vi

The last map is an isomorphism, being a surjection of two groups of order 3. There-

fore, αn is a cube mod vi,n if and only if Nn/1αn = α is a cube mod vi .
We now construct a divisible element in ker(H1

f l(X∞, µ) → H1
f l(X∞, µp)). Fix

an r ≥ 1 big enough so that T pr

H1
f l(X∞, µ) ⊆ H1

f l(X∞, µ)div , as in Section 4. Let

ρ = γ pr

, so that T pr ∈ Fp[[T]] acts as ρ − 1. For i = 1 or 2, αr mod vi,r has no cube
root in Fvi,r

, but acquires one in Fvi,r+1
; call them s1, s2. Pick s0 to be a cube root of

αr mod v0,r already in Fv0,r
(say 69 ∈ F199 ⊂ Fv0,r

). In O
×
r+1, αr becomes a cube mod all

three vi,r+1, so we can lift it to a class (αr, {s0, s1, s2}) ∈ H1
f l(Xr+1, µ) → H1

f l(X∞, µ).

As vi,r+1 is inert over vi,r , ρ acts on Fvi,r+1
and we compute

T pr

(αr, {s0, s1, s2}) = (αr, {s0, s1, s2})ρ−1
= (αρ−1

r , {sρ−1
0 , s

ρ−1
1 , s

ρ−1
2 })

= (1, {1, ζ1, ζ2}),
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where by our choice of the si ’s, ζ1, ζ2 6= 1 ∈ µ3(F199). By Proposition 6, b =

(1, {1, ζ1, ζ2}) ∈ ker(H1
f l(X∞, µ)→ H1

f l(X∞, µp)) is divisible.

Notice that the class b lives in H1
f l(X1, µ); passing to Xr+1 was necessary only to

divide it by T pr

. We will now show that δb ∈ H2
f l(X1, Z/pZ) has non-zero image by

lifting it to ( fw : Uw → Z/pZ)w∤∞ and showing that

∑

w∤∞

fw(u) 6= 0

for a unit u in a norm-coherent sequence. By the argument of Section 3, this suffices

to show that δb 6= 0 ∈ H2
f l(X∞, Z/pZ).

Since b = Dζ1 + Dζ2 in the notation of Theorem 2, b is “supported” only at v1

and v2, and thus lifts to a collection ( fw : Uw → Z/pZ)w∤∞ with only fv1
, fv2

non-zero.
Select u to be the Galois conjugate of α satisfying the following congruences (ob-

tained by cyclically permuting the congruences for α):

u ≡ 34 (mod v0), u ≡ 159 (mod v1), u ≡ 6 (mod v2).

We see that u is now a cube mod v1 and a non-cube mod v2. Thus, by Hensel’s lemma,
u ∈ U 3

v1
, u /∈ U 3

v2
. Since Uw/U 3

w
∼= Z/pZ for w ∤ 3, we see that fv1

(u) = 0, fv2
(u) 6= 0,

so finally
∑

w∤∞

fw(u) = fv1
(u) + fv2

(u) = fv2
(u) 6= 0.

So, we are done: we have an element b ∈ H1
f l(X∞, µ)div with δb 6= 0, which, as

explained in Section 3, implies µ(E1)3 = 0. The key to the evaluation was that we

choose the class b and a unit u so that the sum giving the pairing of b and u reduces
to a single summand. This avoids potentially hard-to-control cancellations.

9.2 3314B1

The same argument, mutatis mutandis, applies to Cremona’s curve 3314B1 given by
the equation

E2 : y2 + xy = x3 + 58x − 22684,

with 1657 replacing 199. Unlike E1, E2 has rank 1: Cremona computes that
(104, 1002) is a point of infinite order! Since fE(0) = 0, it carries no information
about µ. In a sense the success of our method is not surprising: both the λ and the µ
invariants contribute to fE(0), while our approach zeroes in on µ only (while losing

much useful information on λ).

9.3 A Generalization

Let us extract a proof template from the preceding two examples. For a fixed odd
prime p, any number field F and its integral ideal N, we define the support at N of a
global unit x ∈ O

×
F by

SuppF
N

(x) =
{

v|N : x not a p-th power in F
×
v

}

.
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Note that if v ∈ SuppF
N

(x) for some x ∈ O
×
F , then µp ⊂ Fv. Moreover, the rational

prime l below v is not inert in F/Q : if it were, the norm from F to Q would induce

the vertical maps in the diagram

O×F
//

��

F×v /F
×p
v

∼= ��

{±1} = Z× // F
×
l /F

×p
l

which would force the reduction mod v of any unit in OF to be a p-th power. When
F = Kn, these two necessary conditions simply translate into

(18) v ∈ SuppKn

N
(x) for some x ∈ O×n ⇒ p2|l − 1.

This notion of support will help us capture the general argument implicit in the above

example:

Theorem 3 Assume there is a level Kn in the Zp-tower satisfying the following condi-

tions:

(a) All primes v|N are inert in K∞/Kn.
(b) T pn

H1
f l(X∞, µ) ⊂ H1

f l(X∞, µ)div.

(c) There exist units α, u ∈ O×n such that both are universal norms for the Zp-tower

K∞/Kn, and such that SuppKn

N (α) ∩ SuppKn

N (u) = {v0}, a singleton.

Then, given our assumptions on E, we can conclude that µ(E)p = 0.

Proof The proof essentially follows the pattern of the example. As above, we choose
an sv ∈ F̄v for all v|N such that s

p
v ≡ α (mod v). T pn

acts on H1
f l(X∞, µ) as γ pn−1 =

ρ− 1 and fixes all v|N , so we can compute

T pr

(α, {sv}v|N ) = (α, {sv}v|N )ρ−1
= (αρ−1, {sρ−1

v }v|N )

= (1, {ζv}v|N ) =: b ∈ H1
f l(X∞, µ)div,

where ζv 6= 1 precisely when sv 6∈ Fv, i.e., when v ∈ SuppKn

N (α). Theorem 2 will then
lift the divisible class b = (1, {ζv}v|N ) to a collection of functions ( fw : Uw → Z/pZ),

w ranging over all primes of Kn, such that fw 6= 0 precisely when w ∈ SuppKn

N (α).
The terms in the sum

∑

w∤∞ fw(uw) are non-zero precisely when fw 6= 0 and u is

not a p-th power mod w, i.e., for w ∈ SuppKn

N (α) ∩ SuppKn

N (u) = {v0}. So the above
sum really has only one term, and no cancellation is possible:

∑

w∤∞

fw(u) = fv0
(uv) 6= 0.

We conclude δ 6= 0 on H1
f l(X∞, µ)div , as desired.
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For every l|N define the exponent ml by pml+1 ‖ l − 1. The prime l splits completely
in Kml

and is inert in K∞/Kml
.

Here is a situation where the conditions of Theorem 3 hold:

Theorem 4 Suppose that there is exactly one prime l|N satisfying ml ≥ 2. For this l,
also assume the following:

for at least one prime λ of Kml−1 above l, πml−1 is not a p-th power mod λ.

Then the conditions of Theorem 3 are satisfied. (Here πml−1 is the generator of the prime
above p in Kml−1 chosen in Section 1.)

Proof Set m = ml. First we choose n so that n ≥ m and T pn

H1
f l(X∞, µ) ⊂

H1
f l(X∞, µ)div. This n will satisfy condition (b) of Theorem 3. By the definition

of m, all primes dividing l are inert in K∞/Km, so a fortiori in K∞/Kn, thus satisfying
condition (a). Most of our work, then, will focus on producing the units α, u ∈ O×n
satisfying condition c). In fact, we will start by producing suitable units α ′, u ′ ∈ O×m ,

and the lifting to On will be a formality we leave for the end.
We have that SuppKm

N (x) = SuppKm

l (x) for any x ∈ O×m , since by assumption l is
the only prime dividing N which satisfies the necessary condition (18). To study the
behavior of units modulo the primes above l, it is natural to introduce the following

definitions.
Set G = GKm/Q = 〈γ〉, R = Fp[G], and let A ⊂ Km be the ring of elements inte-

gral at all λ|l, so that πm ∈ A. Consider the R-module V = (
∏

λ|l F
×
λ /F

×p
λ )0 of vec-

tors whose components have product 1 under the natural identification F
×
λ /F

×p
λ
∼=

F
×
l /F

×p
l . Then V is the target for the (G-equivariant) reduction map

red : A×/A×p → V,

a 7→ (a mod λ)λ|l.

We will study the R-module theory of this map to show that the image of red is large

enough to contain two vectors r, s ∈ V with a single place of common support (i.e.,
a place where both have an entry 6= 1). Lifting them to O×m , and then to O×n , will
produce our desired units α and u.

First, some basic structure theory of R: R ∼= Fp[T]/T pm

under the identification

T ↔ γ − 1, and all its ideals are powers of the augmentation ideal I = ker(R →
Z/pZ), forming the chain I ⊃ I2 ⊃ · · · ⊃ I pm

= 0. For any subgroup Gk = 〈γ pk〉 ⊆
G, we will be interested in the ideal

I pk

= 〈γ pk − 1〉 =

{

∑

aσσ
∣

∣

∣

∑

τ∈Gk

aρτ = 0, ∀ρ ∈ G
}

.

Since l splits completely in Km/Q and is inert thereafter, V ∼= I as R-modules (this is
the main advantage of working over Km). Call Vk ⊂ V the submodule corresponding

to I pk ⊂ I:

Vk = {(xλ) ∈
∏

λ|l

F
×
λ /F

×p
λ |

∏

τ∈Gk

xτλ = 1, ∀λ|l}
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In particular, red(πm) ∈ Vk ⇔ NKm/Kk
(πm) = πk is a p-th power mod every λ. Our

assumption on πm−1 now simply reads red(πm) 6∈ Vm−1.

The group of cyclotomic units modulo p-th powers, denoted C ⊂ A×/A×p, is
isomorphic to Iπm. We claim that

red(C) ⊇ Vm−1.

Since V ∼= I, and since the R-submodules of I form a chain, it is enough to show that
the reverse inclusion does not hold. Suppose Vm−1 ) red(C) = Iπm. Then we would

have Vm−1 ⊇ R red(πm), contradicting our assumption that red(πm) /∈ Vm−1.
Since red(C) ⊇ Vm−1, all we have to do is find two elements r, s ∈ Vm−1 whose

supports have precisely one λ|l in common. This is easy: Since p ≥ 3, we can find

three distinct elements α1, α2, α3 ∈ Gm−1. Fix a place λ0|l, and let u ∈ F
×
l /F

×p
l be a

generator. We define r, s ∈ Vm−1 by specifying their components:

α1λ0 α2λ0 α3λ0

↓ ↓ ↓
r = ( u u−1 1 1 . . . 1)

s = ( 1 u u−1 1 . . . 1).

We lift r and s to α ′ and u ′ in C ⊂ O×m /O
×p
m . Cyclotomic units being universal norms,

we can choose α, u ∈ O×n whose norms from Kn to Km are α ′ and u ′, respectively.
Since all primes above l in Km remain inert in Km, there are one-to-one correspon-

dences SuppKn

l (α) ∼= SuppKm

l (α ′), SuppKn

l (u) ∼= SuppKm

l (u ′) and we conclude

SuppKn

l (α) ∩ SuppKn

l (u) ∼= SuppKm

l (α ′) ∩ SuppKm

l (u ′) = {α2λ0},

a singleton as required.

Remark The simpler condition “p not a p-th power mod l” implies that πm−1 in
not a p-th power mod λ, for some λ|l.

When p = 3 or 5, we now have the tools to prove µ(E)p = 0 for infinitely many
curves E satisfying our running hypotheses on E[p], as in Conjecture 2. Our exam-
ples are essentially different in that no two curves we will produce have isomorphic
p-torsion. We will find our curves in the Kubert families (see [5]) parametrizing

curves with a point of order p.

p = 3: Consider the family

Et : y2 + t y = x3 + x2 + tx

whose discriminant and j-invariant are given by

∆t = −t3(27t − 8), jt =
(3t − 1)3

t3(27t − 8)
.
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The point P = (0, 0) is of order 3 on any Et .
Choose t ∈ Z such that l = 27t − 8 is a prime number, and such that 3 is not a

cube mod l. There are infinitely many such t by the Čebotarev Theorem applied to
the extension K = Q(ζ27,

3
√

3) and σ ∈ GK/Q satisfying σ|Q(ζ27) = −8 ∈ Z/27Z×

and not fixing 3
√

3.
Since vl(∆t ) = 1, the equation for Et is minimal at l, and l is a prime of bad

reduction. If the reduction at l is additive, the point of order 3 forces it to be of type
IV or IV ∗, and µ has a puncture at l in either case. If the reduction is multiplicative,
the numerator cannot cancel the l in the denominator (since j(Et ) would then be
integral at l, and the reduction would be potentially good), thus cl = −vl( jt ) = 1.

Any other prime p of bad reduction divides t . Since t3 and (3t − 1)3 are relatively
prime in Z[x], we conclude that 3|vp( jt ) ≤ 0. Thus p is a prime of multiplicative re-
duction: if it were additive, it would again have to be of type IV or IV ∗, in which case
we would have j(Et ) ≡ 0 (mod p), contradiction. Thus reduction is multiplicative,

and 3|cp = −vp( j(Et )).
We conclude that the quasi-finite flat group scheme µ associated to Et has precisely

one puncture, at l, i.e., that its p-torsion conductor is N = l. Since 9 ‖ l − 1 and
3 is not a cube mod l, l satisfies all the conditions of Theorem 4, which guarantees

µ(Et )3 = 0. The infinitely many Et ’s we have thus produced have pairwise non-
isomorphic 3-torsion, since the punctures occur at different primes l.

p = 5: Consider the family

Es,t : y2 + (s− t)xy − s2t y = x3 − stx2

whose members have the point (0, 0) of order 5, and whose discriminant and
j-invariant are given by

∆s,t = −s5t5(s2 + 11st − t2), js,t =
(s4 + 12s3t + 14s2t2 − 12st3 + t4)3

s5t5(s2 + 11st − t2)
.

We now choose s, t ∈ Z so that l = s2 + 11st − t2 is a prime, 25|l − 1, and such that
5 is not a 5th power mod l as follows. Consider the extension L = Q(ζ25,

5
√

5), and
choose a rational prime l which splits completely in Q(ζ25), but not in L. This clearly
forces the last two conditions on l. As for finding s, t ∈ Z with l = s2 + 11st − t2,

this is possible for any l ≡ ±1 (mod 5), since the strict class number of the order of
Q(
√

5) of discriminant 125 is 1.
Having chosen our s and t , we check that µ, the quasi-finite flat quotient of Es,t [5],

has a single puncture precisely at l. As Es,t has a point of order 5, all primes of bad

reduction are necessarily multiplicative. Since vl(∆s,t ) = 1, l is a prime of (stable)
bad reduction. Therefore the l in the denominator of js,t cannot cancel, and cl =

vl( js,t ) = 1. Any other bad prime p divides s or t , say s. If p were to divide the
numerator in js,t , we would have have p|t also, so p|l, a contradiction. Thus 5|cp =

−vp( js,t ), and µ has no puncture at p. Theorem 4 applies again and allows us to
conclude that µ(Es,t )5 = 0. Moreover, if for a (s ′, t ′) chosen analogously we have
l ′ 6= l, Es,t [5] 6∼= Es ′,t ′[5], and we get an infinite supply of fundamentally distinct
examples of curves with µ-invariant zero.
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For example, s = 6, t = 1 will satisfy all our conditions. The corresponding curve

E6,1 : y2 + 5xy − 36y = x3 − 6x2

has conductor 606, and Tamagawa numbers c2 = c3 = 5, c101 = 1.

A similar argument with p = 7 is in principle possible, but runs into interest-
ing difficulties, analytic in nature, concerning the representation of primes by cubic
forms. For now, here are three curves with a rational point of order 7 which satisfy
the conditions of Theorem 4 and thus have µ(E)7 = 0. The examples were chosen to

have a relatively small puncture prime l, which is the last prime in the factorization
of the (elliptic curve) conductor:

y2 − 319xy − 49096y = x3 − 12274x2, NE = 950266 = 2 · 17 · 19 · 1471,

y2 − 589xy − 419796y = x3 − 46644x2, NE = 20510 = 2 · 3 · 13 · 23 · 2594,

y2 − 155xy + 1872y = x3 + 1872x2, NE = 20622 = 2 · 3 · 13 · 2939.

A final note: The argument above works only with the quasi-finite flat group scheme

E[p], so it is tempting to consider a slightly more general situation. Fix a field F, and
consider a Zp extension F∞/F. Take a quasi-finite flat group scheme G/OF

living in a
short exact sequence

(19) 0→ Z/pZ→ G→ µ→ 0,

with µ again a punctured over an ideal N, all of whose prime factors are assumed

finitely split in F∞. As in Section 4, we can find a K ⊆ H1
f l(Spec OF∞

, µ) which is
an extension of O

×
F∞

/O
×p
F∞

by a finite group. As in the case of elliptic curves, the long
exact sequence differential δ associated to (19) induces a pairing:

lim
←

O
×
Fn

/O
×p
Fn
×K→ lim

←
H1

f l(Spec OFn
, µp)×H1

f l(Spec OF∞
, µ)

id×δ→

→ lim
←

H1
f l(Spec OFn

, µp)×H2(Spec OF∞
, Z/pZ)→ Z/pZ,

where the last arrow is the limit of the canonical global duality pairing. Here is a
natural question to consider: is this pairing always non-zero when the pullback of
(19) to the generic point is non-split?
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