
RESEARCH ARTICLE

Model order reduction based on Runge–Kutta
neural networks

Qinyu Zhuang1,* , Juan Manuel Lorenzi1, Hans-Joachim Bungartz2 and Dirk Hartmann1

1Technology, Siemens AG, Bayern, Germany
2Chair of Scientific Computing, Technical University of Munich, Bayern, Germany
*Corresponding author. E-mail: qinyu.zhuang@siemens.com

Received: 06 February 2021; Revised: 10 June 2021; Accepted: 11 July 2021

Keywords: Dynamic parameter sampling; explicit Euler neural network; model order reduction; multilayer perceptron; Runge–
Kutta neural network

Abstract

Model order reduction (MOR) methods enable the generation of real-time-capable digital twins, with the potential to
unlock various novel value streams in industry. While traditional projection-based methods are robust and accurate for
linear problems, incorporating machine learning to deal with nonlinearity becomes a new choice for reducing complex
problems. These kinds of methods are independent to the numerical solver for the full order model and keep the
nonintrusiveness of the whole workflow. Such methods usually consist of two steps. The first step is the dimension
reduction by a projection-based method, and the second is the model reconstruction by a neural network (NN). In this
work, we apply some modifications for both steps respectively and investigate how they are impacted by testing with
three different simulationmodels. In all cases Proper orthogonal decomposition is used for dimension reduction. For this
step, the effects of generating the snapshot database with constant input parameters is compared with time-dependent
input parameters. For themodel reconstruction step, three types ofNNarchitectures are compared:multilayer perceptron
(MLP), explicit Euler NN (EENN), and Runge–Kutta NN (RKNN). The MLPs learn the system state directly, whereas
EENNs and RKNNs learn the derivative of system state and predict the new state as a numerical integrator. In the tests,
RKNNs show their advantage as the network architecture informed by higher-order numerical strategy.

Impact Statement

Nonintrusive model order reduction (MOR) technique that can reduce models of generalized forms is desired in
many industrial fields. Among available methods, MOR combined with artificial neural network (ANN) has
great potential. However, most of the current ANN-based MORmethods ignore the fact that the target system is
actually evaluated by an unknown numerical solver. Runge–Kutta neural network (RKNN) is a type of ANN that
treats the time-series data as a result of numerical integration. This concept also makes RKNN more physics-
informed, which can be a novel basis for further research. Therefore, investigating the capability of using this
architecture for learning in the reduced space is meaningful.

1. Introduction

Physics-based simulation has been an integral part of product development and design as a cheaper
alternative to physical prototyping. On the one hand, large computational resource enables using complex
simulation models in the design phase. On the other hand, small form-factor hardware is also readily

©TheAuthor(s), 2021. Published byCambridgeUniversity Press. This is anOpenAccess article, distributed under the terms of the Creative Commons
Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the
original article is properly cited.

Data-Centric Engineering (2021), 2: e13
doi:10.1017/dce.2021.15

https://doi.org/10.1017/dce.2021.15 Published online by Cambridge University Press

https://orcid.org/0000-0002-5186-8438
mailto:qinyu.zhuang@siemens.com
http://creativecommons.org/licenses/by/4.0
https://doi.org/10.1017/dce.2021.15
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/dce.2021.15&domain=pdf
https://doi.org/10.1017/dce.2021.15


available, enabling “edge computing,” that is deploying compact computing devices in factories and smart
buildings to enable data analysis. The existence of such hardware opens up the possibility of transferring the
physics-basedmodels fromdesign phase into the operation phase. This is a key part of the digital twin vision
(Hartmann et al., 2018; Rasheed et al., 2019). A digital twin running next to the device can enable novel
industrial solutions such as model-based predictive maintenance or model-based process optimization.

However, bringing highly complex simulation models into the operation phase presents several
challenges which are not present in the design phase. Firstly, the memory footprint of such models needs
to be reduced to fit within the limited memory of edge devices, alongside the rest of the other potential
data-analysis processes. Secondly, the models need to run at or faster than real-time on the limited
hardware of edge devices. The methods which transform simulation models to comply with such
requirements are known under the umbrella term of model order reduction (MOR; Antoulas, 2005;
Hinze and Volkwein, 2005; Willcox and Peraire, 2002).

MostMOR techniques rely on mapping the high-dimensional state of the full order model (FOM) into a
lower-dimensional spacewhere the reduced ordermodel (ROM) is to be solved.Within this contribution,we
look into proper orthogonal decomposition (POD), one of the most widely used methods for finding such
mapping (Willcox and Peraire, 2002; Hinze and Volkwein, 2005). POD is based on performing principal
component analysis (PCA) on model trajectories generated by the original FOM, known as snapshots.

For linear models, knowing the dimension-reduction mapping and the equations which define the
FOM is enough to obtain an ROM through projection. However, this cannot be done for complex models
with nonlinearities. In this case, a model-reconstruction step is needed in order to reproduce the nonlinear
behaviors in the reduced space. There are several methods perform this step, such as discrete empirical
interpolation (Chaturantabut and Sorensen, 2010), operator inference (Peherstorfer and Willcox, 2016),
and long-short-term-memory neural network (NN)s (Mohan andGaitonde, 2018). Besides, recurrent NNs
(Kosmatopoulos et al., 1995), have also been used for this purpose (Kani and Elsheikh, 2017;Wang et al.,
2020). As a universal approximator, a standard multilayer perceptron (MLP) NN also can be used for this
purpose. Sometimes, ROMswhich are flexible with the time-stepping are required. In this case, networks
such as RS-ResNet (Qin et al., 2019) can be employed. However, a disadvantage of this kind of networks
is the requirement of training different networks for different time steps. Therefore, the flexibility is
restricted by the number of the trained networks. Apart from these, we also would like to point out the
numerical-integration-based NN models such as explicit Euler NN (EENN; (Pan and Duraisamy, 2018)
andRunge–Kutta NN (RKNN;Wang and Lin, 1998) specialize in nonintrusivelymodeling the solution of
ordinary differential equation (ODE) or partial differential equation (PDE).Moreover, these networks can
efficiently learn the time information in the training data and bemore flexible to the time stepping strategy.
Therefore, their potential of reconstructing the ROMs is worth investigation.

The combination of POD for dimension reduction and machine learning represents a purely-data-
driven MOR frameworkfor the complex problems (Agudelo et al., 2009; Ubbiali, 2017; Pawar et al.,
2019). The main contribution of this work consists in exploring methodological variations to this
framework. On the one hand, the effects of different approaches to generate the snapshot data for POD
are investigated. On the other hand, the impact of using different NN architectures is explored. Although
by some means the intrusive methods can be applied to reduce the test models investigated in this work,
we will consider in a more generalized scope where we have very limited access to the FOM solver and a
nonintrusive solution is necessary. Therefore, conventional intrusivemethods are not studied in this work.

The paper is organized as follows. The introduction to POD and the modification for taking snapshots
of the FOMs is given in Section 2. The principles and architectures of different networks are described in
Section 3, numerical experiment evaluating the proposed MOR framework are given in Section 4, and
their results are shown in Section 5. Finally, the conclusions follow in Section 6.

2. Proper Orthogonal Decomposition

In the last decades, there have beenmany efforts to develop different techniques in order to obtain compact
low-dimensional representations of high-dimensional datasets. These representations, in general,

e13-2 Qinyu Zhuang et al.

https://doi.org/10.1017/dce.2021.15 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2021.15


encapsulate the most important information while discarding less important components. Some applica-
tions include image compression using PCA (Du and Fowler, 2007), data visualization using t-SNE (van
der Maaten and Hinton, 2008) and structural description of data using diffusion maps (Coifman et al.,
2005). Here, the focus will be on POD, which is a variant of PCA in the field of MOR.

POD can find a reduced basis V of arbitrary dimension that optimally represents (in a least square
sense) the trajectories of the FOMused as snapshots. This basis can be used to project such snapshots into
the low-dimensional space.

2.1. Problem statement

The full-dimensional problem that we intend to reduce in this work is an ordinary differential equation
(ODE) typically originating from a spatial discretization from a multidimensional PDE. This ODE is
frequently used as the governing equation formany engineering problems. The equation can bewritten as:

_y tð Þ¼ f y tð Þ;μ tð Þð Þ, (1)

where y ∈ RN is the state vector of the FOM, t ∈ t0, tend½ � is the time, and μ ∈ Rnμ is the vector of the system
parameters. N is the number of variables in state vector will be called the size of the FOM and nμ is the
number of system parameters. The target ofMOR is to find a reducedmodel, with sizeNr ≪N, which can
reproduce the solution of the FOM to a certain accuracy for a given set of system parameters μ tð Þ. This
goal will be achieved by mapping the FOM into a reduced space with the help of a reduced basis V . As
briefly described before, the reduced basis is constructed from the snapshots of the FOM. Snapshots are
nothing but a set of solutions, fy1,y2,…, yNs

g, to the FOM Equation (1) with corresponding system
parameter configurations μ1,μ2,…,μNsf g. Here,Ns is the number of snapshots taken for the FOM. Often,
these snapshots will present in the form of matrix called snapshot matrix Y ¼ y1,y2,…,yNs

� �
∈ RN� Ns�kð Þ,

where k is the number of time steps in each simulation.

2.2. Taking snapshots: static-parameter sampling (SPS) and dynamic-parameter sampling (DPS)

Since the reduced basisV is constructed based on the snapshot matrixY and later the snapshot will also be
used to train the artificial NN (ANN), the quality of the snapshots is crucial to the performance of the
whole framework. Here, in this paper, we propose a new sampling strategy, DPS, for taking snapshots to
capture the dynamics of the FOM as much as possible.

The conventional way to define the system parameters μ during each snapshot simulation is to choose
constant values μðtÞ¼ μðt0Þ using some sparse sampling technique such as Sparse Grids, Latin Hypercube
Sampling (Helton and Davis, 2003), Hammersley Sampling, and Halton Sampling (Wong et al., 1997).
Some strategies can select those constant parameter values smartly, amongwhich the greedy sampling (Bui-
Thanh, 2007; Haasdonk et al., 2011; Lappano et al., 2016) is probably the most well-known. Although
greedy sampling techniques have been proven highly successful for projection-based, intrusive MOR
methods, they are difficult to apply to the reduction methods used in this work. This is because we do not
count with a priori error estimator and a posteriori error calculation would require the retraining of the NNs
during the evaluation of the snapshots, which is unfeasible due to computational costs. Therefore, DPS is
proposed in this work as the alternative snapshot collection strategy for non-intrusive MOR.

DPS, just as its name implies, we use time-dependent parameter values to construct the ith snapshot
solution yi so that it satisfies

_yi ¼ f yi;μi tð Þð Þ: (2)

We would like to select the values for the μi from a function space

F ¼ μ : t0, tend½ �!Ωf g, (3)

where t0, tend½ �⊂R is the time span and Ω¼ μmin1 ,μmax1

� �� μmin2 ,μmax2

� ��…� μminnμ
,μmaxnμ

h i
is a hypercube

defined by the limits of the individual components of the the parameter vector. In principle, we could use

Data-Centric Engineering e13-3

https://doi.org/10.1017/dce.2021.15 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2021.15


any finite subset of F to build our snapshots. In this work, we decided to use sinusoidal function for
dynamic sampling as an example. These functions are constructed as follows:

1. Use any multivariate sampling, for example, Hammersley sequence is used in this work, to select
Ns parameter vectors μ1,μ2,…,μNs

� �
.

2. Select Ns randomly distributed values for the angular frequency ω1,…,ωNsf g⊂ 0,ωmax½ �, where
ωmax ¼ 4, selected so that the functions have a maximum of 4 oscillations within the time frame.

3. Define the parameter functions as

μi tð Þ¼ μampi ∣sin ωtð Þ∣þμi
min, (4)

where μampi ¼ μi�μmin and μmin ¼ μmin1 ,μmin2 ,…,μminnμ

h i
.

A graphical representation of representative function is shown in Figure 1.
The solutions of Equation (2) using parameters defined by Equation (4) are the snapshots we use for

DPS. The snapshots contain the dynamic response of the system with certain parameter configurations.
And more dynamic modes are included in the snapshots, more essential information about the system is
available to the reduction.Moreover, since the input–output response of the systemwill be fed into theNN
in Section 3, the diversity of the snapshots will strongly influence the training procedure. In this aspect,
DPS can provide us with more diverse observation to the system’s response.

We must clarify that the procedure used to define the input parameters functions is arbitrary. The
sinusoidal range and frequency of the sinusoidal function should: (a) cover the whole relevant value range
of the parameters and (b) incorporate time dependent effects. The limit in the maximum frequency chosen
relatively small because of the nature of the problems used as test cases. It is possible to consider the use of
other functions instead of sinusoidal functions. As an example, Qin et al. (2021) have defined time-
dependent input functions using low-order polynomials. We favor sinusoidal functions, because we can
more easily ensure that their values fall within the limits we define for the individual parameters.We defer
the exploration of alternatives to future research.

2.3. Singular value decomposition

With the snapshots obtained in the Section 2.2, the goal is to find an appropriate reduced basis vif gNr
i¼1

which minimizes the approximation error (Chaturantabut and Sorensen, 2010):

Figure 1. An example showing the relation and difference between static-parameter sampling (SPS) and
dynamic-parameter sampling (DPS). We assume the parameter space is designed as 0,100½ �� 0,100½ �.
Orange: the parameter configuration μ¼ 80,40½ � is selected for running one snapshot simulation. Blue:
the parameter configuration μ tð Þ¼ 80jsin 4π=100tð Þj,40jsin 4π=100tð Þj½ � is selected for running one

snapshot simulation.

e13-4 Qinyu Zhuang et al.

https://doi.org/10.1017/dce.2021.15 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2021.15


ϵapprox ¼
XNs

j¼1

yj�
XNr

iþ1

yTj vi
� �

vi

�����
�����
2

2

, (5)

where yi stands for y μið Þ.
The minimization of ϵapprox in Equation (5) can be solved by singular value decomposition of the

snapshot matrix Y ¼ y1,y2,…,yNs

� �
∈RN� Ns�kð Þ:

Y ¼V ΣW T : (6)

If the rank of the matrix Y is k, then the matrix V ∈RN�k consists of k column vectors
vi, i¼ 1,2,…,kf g, and matrix Σ is a diagonal matrix diag σ1,σ2,…,σkð Þ. σi is called ith singular value

corresponding to ith singular vector vi.
Essentially, each singular vector vi represents a dynamic mode of the system. And the corre-

sponding singular value σi of singular vector vi can be seen as the “weight” of the dynamic mode vi.
Since the greater the weight, the more important the dynamic mode is, Nr singular vectors
corresponding to the greatest Nr singular values will be used to construct the reduced basis
V r ¼ v1,v2,…,vNr½ �∈RN�Nr . Theoretically, the reduced model will have better quality if more
dynamic modes are retained in V , but this will also increase the size of the reduced model. And
since some high frequency noise with small singular value might also be observed in snapshots and
later included in the reduced model, the reduced dimension must be selected carefully. For research
regarding this topic, we refer to Josse and Husson (2012) and Valle et al. (1999), and we will not
further study it in this work.

The high-dimensional Equation (1) can be projected into the reduced space using the reduced basis:

VTV _yr tð Þ¼VT f Vyr;μð Þ, (7)

where yr is the reduced state vector. And if the orthonormality of the column vectors in V is considered,
the Equation (7) can be simplified to:

_yr tð Þ¼VT f Vyr;μð Þ: (8)

In Equation (8), if f �ð Þ is a linear function of y≈Vyr, then further reduction can be applied and leads to:

_yr tð Þ¼ f r yr;μð Þ: (9)

However, if we consider a more generalized form of f �ð Þ, that is the function can be either linear or
nonlinear to y, the evaluation of f �ð Þ still requires lifting yr toVyr. This lifting and evaluation is performed
during the online phase and can significantly reduce the efficiency of the ROM.A solution to this problem
can be using an approximator (e.g., NN) to construct a new function satisfying bf yr;μð Þ≈VT f Vyr;μð Þ.

3. Prediction by NN

After finding the projection into the lower-dimensional space, we need a way to reproduce the projected
dynamics which is governed by Equation (1) in the full-order space. In this work, we consider three NN
architectures: MLP, EENN, and RKNN.

In all cases the training data uses the snapshots projected into the reduced space.

Y r ¼VTY

¼VT y1,y2,…,yNs

� �
¼ yr,1,yr,2,…,yr,Ns

� �
,

(10)

where

yr,i ¼ yr,i t1ð Þ,…,yr,i tkð Þ� �
(11)

Data-Centric Engineering e13-5

https://doi.org/10.1017/dce.2021.15 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2021.15


is the projected trajectories corresponding to the parameter μi tð Þ and k is the number of time steps used for
each snapshot simulation. If we denote the step size with τ, we will have

tj ¼ t0þ τj for 0 ≤ j ≤ k: (12)

We also note that Yr∈ℝNr� Ns�kð Þ.
All the types of networks in this paper use the rectified linear unit (Glorot et al., 2011) as the activation

functions for enhancing the capability to approximating generalized nonlinearity. For updating the
parameters of the networks, the backpropagation (Rumelhart et al., 1986) is the method applied in this
work. For doing this, the Adam optimizer (Kingma and Ba, 2014) is used and L2 regularization is
deployed to prevent overfitting.

3.1. Multilayer perceptron

If the time step in the training data is the same as the desired time step in validation, the most
straightforward strategy of predicting the state in the future is to map all current information, that is state
vector and input parameters, to the future state vector. This is exactly howMLP network learns to predict
the evolution of the system. Its concept of learning the relation between each pair of neighboring state
vectors is shown in Figure 2.

yr,i tjþ1
	 


≈ gdMLP yr,i tj
	 


,μ tj
	 
	 


: (13)

In Algorithm 1, yr,i tj
	 


and yr,i tjþ1
	 


are the state vectors stored in the snapshots, and μ tj
	 


is the
parameter vector at the corresponding time instance. The operation A,B½ � means to concatenate two
arrays.Without loss of generality, we assume both yr,i tj

	 

andμ tj

	 

are column vectors, then this operation

will vertically stack them in sequence. The loss function used in this paper is mean-square error (MSE), it
computes the error between the approximation and the target by:

Figure 2. Picture of the structure of multilayer perceptron (MLP). MLPs approximate the new state
yr,i t jþ1

	 

based on the given input yr,i t j

	 

and μ t j

	 

.

Algorithm 1 Training of MLP network

Require: yr,i tj
	 


,μ tj
	 


,yr,i tjþ1

	 

1: while loss> losstol do
2: byr,i tjþ1

	 
¼ gdMLP yr,i tj
	 


,μ tj
	 
� �	 


3: loss¼MSE byr,i tjþ1

	 

,yr,i tjþ1

	 
	 

4: Use backpropagation to update the weights and biases of the network gdMLP

5: end while

e13-6 Qinyu Zhuang et al.

https://doi.org/10.1017/dce.2021.15 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2021.15


MSE L1,L2ð Þ¼ 1
n

Xn
i¼0

L1 i½ ��L2 i½ �ð Þ2 (14)

here n is the number of elements in both arrays, and i in the square brackets means ith element of the array.
The same notation and loss function is also used for the networks introduced in the next sections.

3.2. Explicit Euler neural network

As an alternative to learning the mapping between states of two consecutive time steps, it is possible to
learn the approximation bf �ð Þ to the R.H.S. of the reduced governing equations (Equation (8)). In this case,
the inputs to the NN are again the current state of the system yr,i tj

	 

and μðyjÞ, but the new state is now

calculated as

yr,i tjþ1
	 
¼ yr,i tj

	 
þ τgeeMLP tj,μ
	 


, (15)

where geeMLP tj,μ
	 


is an MLP used as the approximator to the R.H.S.
We denote a network trained in this way an EENN, as the approximation of the R.H.S. Equation (15)

corresponds to the explicit Euler (EE) integration scheme. In the test cases where the time steps are kept
constant, EENN and MLP are expected to perform very similarly. However, learning the dynamics with
such methods can present advantages when flexibility in time steps size is necessary. Therefore, in this
work we will compare MLP and RKNN with constant-time-step tests and compare EENN and RKNN
with variant-time-step tests.

From Equation (15), we know that an EENN is essentially a variant of residual network (He et al.,
2016) which learns the increment between two system states instead of learning to map the new state
directly from the old state. This leads to a potential advantage of EENNs that we can use deeper network
for approximating more complex nonlinearity.

The algorithm for training such an EENN is provided in Algorithm 2 and the sketch of the network
structure is given in Figure 3.

3.3. Runge–Kutta neural network

Wealso consider in this work RKNN,which embedNNs into higher order numerical integration schemes.
In this work, we only focus on explicit fourth-order Runge–Kutta (RK) as it is the most widely used
version used in engineering problems, however the approach can be applied to any order. The fourth-order
RK integration can be represented as follows:

yr,i tjþ1
	 
¼ yr,i tj

	 
þ1
6
h1þ2h2þ2h3þh4ð Þ, (16)

where:

h1 ¼ τf yr,i tj
	 


;μ tj
	 
	 


, h2 ¼ τf yr,i tj
	 
þh1

2
;μ tj
	 
� �

h3 ¼ τf yr,i tj
	 
þh2

2
;μ tj
	 
� �

, h4 ¼ τf yr,i tj
	 
þh3;μ tj

	 
	 

:

Algorithm 2 Training of EENN

Require: yr,i tj
	 


, μ tj
	 


, yr,i tjþ1

	 

1: while loss> losstol do
2: byr,i tjþ1

	 
¼ yr,i tj
	 
þ τgeeMLP yr,i tj

	 

,μ tj
	 
� �	 


3: loss¼MSE byr,i tjþ1

	 

, yr,i tjþ1

	 
	 

4: Use backpropagation to update the weights and biases of the network geeMLP

5: end while

Data-Centric Engineering e13-7

https://doi.org/10.1017/dce.2021.15 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2021.15


As we can see, the scheme requires the ability to evaluate the R.H.S. f y,μð Þ four times per time step.
The concept of this approach is based on using a MLP NN to approximate this function

f yr;μð Þ≈ grkMLP yr;μð Þ: (17)

Then this MLP can be integrated into the RK scheme as subnetwork to obtain an integrator

yr,i tjþ1
	 
¼ gRKNN yr,i tj

	 

;μ tj
	 
	 
¼ yr,i tj

	 
þ1
6

hRKNN1 þ2hRKNN2 þ2hRKNN3 þhRKNN4

	 

, (18)

where

hRKNN1 ¼ τgrkMLP yr,i tj
	 


;μ tj
	 
	 


, hRKNN2 ¼ τgrkMLP yr,i tj
	 
þhRKNN1

2
;μ tj
	 
� �

hRKNN3 ¼ τgrkMLP yr,i tj
	 
þhRKNN2

2
;μ tj
	 
� �

, hRKNN4 ¼ τgrkMLP yr,i tj
	 
þhRKNN3 ;μ tj

	 
	 

:

In Figure 4, we present a schematic on how the MLP subnetwork is embedded into the larger
RKNN based on Equation (18). It is worth noticing that RKNNs also use a residual network
structure.

Let us take the computation of hRKNN1 in Equation (18) as an example. We consider an MLP as
subnetwork with one input layer, two hidden layers, and one output layer and all fully inter-
connected. The input layer receives the previous state vector yr,i tj

	 

and the parameter vector μ tj

	 

,

that is the number of input neurons is set according to the number of components in the reduced
space and the number of parameters. That is, the amount of neurons will depend exclusively on the
model and it might change radically for different models. The output of this MLP becomes the
approximation for h1. The way subnetwork computing hRKNN2 ,hRKNN3 , and hRKNN4 are similar and the
only difference is the reduced state vector yr,i tj

	 

in the input will be replaced by yr,i tj

	 
þ cih
RKNN
i ,

Figure 3. Picture of an explicit Euler neural network (EENN). EENN uses a multilayer perceptron (MLP)
to approximate the R.H.S. of Equation (8). The output of the MLP is assembled as described in

Equation (15).

e13-8 Qinyu Zhuang et al.

https://doi.org/10.1017/dce.2021.15 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2021.15


where ci is the coefficient in Equation (16) and hRKNNi is computed in previous iteration. The
parameters of the subnetwork are updated using backpropagation. Also it is worth mentioning that
although there will be multiple computation for the intermediate stages of the RK scheme, only
one MLP subnetwork is needed for doing that. Therefore, the size of an RKNN is not affected by
the order of the RK scheme.

Similar to explicit integrators, implicit ones can be used (Rico-Martinez andKevrekidis, 1993). Due to
their recurrent nature, or the dependence of predictions on themselves, the architecture of this type of NN
will have recurrent connections and offer an alternative to the approach taken here.

Algorithm 3 Training of RKNN

Require: yr,i tið Þ,μ tj
	 


,yr,i tiþ1ð Þ,τ
1: while loss> losstol do
2: hRKNN1 ¼ τgrkMLP yr,i tj

	 

,μ tj
	 
� �	 


3: hRKNN2 ¼ τgrkMLP yr,i tj
	 
þ hRKNN1

2 ,μ tj
	 
h i� �

4: hRKNN3 ¼ τgrkMLP yr,i tj
	 
þ hRKNN2

2 ,μ tj
	 
h i� �

5: hRKNN4 ¼ τgrkMLP yr,i tj
	 
þhRKNN3 ,μ tj

	 
� �	 

6: byr,i tjþ1

	 
¼ yr,i tj
	 
þ 1

6 hRKNN1 þ2hRKNN2 þ2hRKNN3 þhRKNN4

	 

7: loss¼MSE byr,i tiþ1ð Þ,yr,i tiþ1ð Þ	 

8: Use backpropagation to update the weights and biases of the network grkMLP

9: end while

Figure 4. Picture of a Runge–Kutta neural network (RKNN). An RKNN has a multilayer perceptron
(MLP) as the core network which approximates the R.H.S. of Equation (8). The output of the network is

assembled as described in Equation (16).

Data-Centric Engineering e13-9

https://doi.org/10.1017/dce.2021.15 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2021.15


4. Numerical Examples

In this section, the three numerical examples used for testing are described. The first one is a computer heat
sink, which is governed by the thermal equation without any nonlinear contribution. The second one is a
gap-radiation model whose physics equation is the thermal equation including fourth-order nonlinear
radiation terms. And the last example is a thermal-fluid model simulating a heat exchanger, which
includes the effects of fluid flow.

All test cases are all firstly reduced by POD method and then ROMs are evaluated by both MLP and
RKNN. And to validate the ROMs, each example will be assigned two test cases, one is a constant-load
test and the other one is a dynamic-load test.

The numerical experiments are performed on a computer with Intel Xeon E5-2640 CPU (6 cores and
2.50-3.00 GHz) and 48 GB memory. The snapshot simulations and reference solutions are provided by
thermal/flow multi-physics module in simulation software Siemens Simcenter NX 12 (release 2020.1,
version 1915).1 The open-source machine learning library Pytorch (Paszke et al., 2017) is used to realize
the training of the NNs. Some special treatment to improve the network’s training is provided in
Section 3.1, additionally, learning rate decay is employed to select the optimal learning rate adaptively.
We also use early stopping (Prechelt, 1998) to prevent the networks from overfitting.

4.1. Heat sink model

The first FEMmodel simulates a chip cooled by the attached heat sink. The chip will be the heat source of
the system and heat flux travels from the chip to the heat sink then released into the environment through
fins. Since the material used in the model is not temperature-dependent, the system is governed by the
linear heat transfer equation as Equation (19).

Cp _T ¼KTþBu, (19)

where Cp is the thermal capacity matrix, K is the thermal conductivity matrix, B is the generalized load
matrix, T is the state vector of temperature, and u is the input heat load vector.

Themeshedmodel is sketched in Figure 5a. Themodel consists of two parts, the red part is a chipmade
from copper whose thermal capacity is 385 J kg�1 K�1 and thermal conductivity is 387Wm�1 K�1. The

(a) Picture of the heat sink model (b) Sampled parameters

Figure 5. Test case: heat sink model.

1 https://www.plm.automation.siemens.com/global/en/products/simcenter/

e13-10 Qinyu Zhuang et al.

https://doi.org/10.1017/dce.2021.15 Published online by Cambridge University Press

https://www.plm.automation.siemens.com/global/en/products/simcenter/
https://doi.org/10.1017/dce.2021.15


green part represents the attached heat sink made from aluminum. The relevant material properties are
963 J kg�1 K�1 thermal capacity and 151 W m�1 K�1 thermal conductivity.

In the designed space, there are two variable parameters: initial temperature T0 and input heat load u.
The range of initial temperature is from 20°C to 50°C. The power of the volumetric heat source in the chip
has range from 0.05 to 0.15 W/mm3. Parameter coordinates sampled in parameter space are shown in
Figure 5b.

Both test cases have uniform initial temperature of 20°C. The volumetric heat source used by constant-
load test has fixed power 0.1W/mm3 and the one used by dynamic-load test has power as function of time
u tð Þ¼ 0:15�0:1 t

500 W/mm3.

4.2. Gap-radiation model

The model presented here is a thermal model including radiative coupling. This model can be thought of
as a proxy for other radiation-dominated heat transfer models such as those occurring in aerospspace,
energy and manufacturing. The discrete governing equation is as Equation (20).

Cp _T ¼KTþRT4þBu (20)

in addition to Equation (19), R is the radiation matrix and the operation �ð Þ4 means to apply fourth-order
power element-wise to the temperature vector, and not matrix multiplication.

The three-dimensional (3D) model is sketched in Figure 6a. As shown, the upper plate is heated by
thermal flow. When the temperature equilibrium between the two plates is broken due to an increment of
the temperature of the upper plate, radiative flux due to the temperature difference between two surfaces of
the gap takes place.

Both plates are made of steel, whose thermal capacity is 434 J kg�1 K�1 and thermal conductivity is
14 W m�1 K�1. The initial temperature T0 and the applied heat load u are the variable parameters. The
time scale of the whole simulated process is from 0 to 3,600 s.

Assuming operation condition where the input heat load of the system has the lower limitation umin ¼
40W and upper limitation umax ¼ 60W and the initial temperature has the lower limitation T 0,min ¼ 20∘C
and upper limitation T 0,max ¼ 300∘C is investigated. So the parameter space to take snapshots is defined as
20∘C, 300∘C½ �� 40W, 60W½ �. And the parameter configurations used for snapshots are given in
Figure 6b.

The test scenarios include a constant-load test and a dynamic-load test (Figure 7). The constant-load
test has fixed load magnitude of 50 W, while the dynamic-load test has a time-dependent load magnitude

u tð Þ¼ 60�20 t�1,800ð Þ2
1,8002

W.

(a) Picture of the gap-radiation model (b) Sampled parameters

Figure 6. Test case: gap-radiation model.

Data-Centric Engineering e13-11

https://doi.org/10.1017/dce.2021.15 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2021.15


4.3. Heat exchanger model

In this example, wemodel the temperature profile of a solid that is in contact with a fluid channels to cool it
down. The flow-field is governed by the Navier–Stokes (N–S) equations written in integral form (Kassab
et al., 2003): Z

Ω

∂W

∂t
dΩþ

Z
Γ
F�Tð Þ �ndΓ¼

Z
Ω
SdΩ, (21)

whereΩ denotes the volume, Γ denotes the surface bounded by the volumeΩ, and n is the outward-drawn
normal. The conserved variables are contained in W ¼ ρ,ρu,ρv,ρw,ρe,ρk,ρωð Þ, where, ρ,u,v,w,e,k,ω
are the density, the velocity in x-, y-, and z-directions, and the specific total energy.F and T are convective
and diffusive fluxes, respectively, S is a vector containing all terms arising from the use of a noninertial
reference frame as well as in the production and dissipation of turbulent quantities.

The governing equation for heat-conduction field in the solid is:

∇ � ks Tsð Þ∇Ts½ � ¼ 0 (22)

here Ts denotes the temperature of the solid, and ks is the thermal conductivity of the solid material.
Finally, the equations should be satisfied on the interface between fluid and solid are:

Tf ¼ Tskf
∂Tf

∂n
¼�ks

∂Ts

∂n
(23)

here Tf is the temperature computed from N–S solution Equation (21) and kf is thermal conductivity of
fluid.

The liquid flowing in the cooling tube is water whose thermal capacity is 4,187 J kg�1 K�1 and thermal
conductivity is 0.6Wm�1 K�1. The fluid field has an inlet boundary condition which equals to 1m/s. The
solid piece is made of aluminum whose thermal capacity is 963 J kg�1 K�1 and thermal conductivity is
151 W m�1 K�1.

The initial temperature in the designed parameter space is from 20°C to 50°C and the heat load applied
on the solid component varies from 80 to 120W, as shown in Figure A1. Therefore, we will use a constant
heat load whose magnitude is 100 W and a variant heat load whose magnitude is a function of time
u tð Þ¼ 120�0:8t W to validate the ROM, respectively.

5. Results

In this section, the results of the numerical tests in Section 4 are presented. The comparison will be made
along two dimension: the first dimension is sampling method, that is SPS versus DPS. The other

(a) Picture of the heat exchanger model (b) Sampled parameters

Figure 7. Test case: heat exchanger model.

e13-12 Qinyu Zhuang et al.

https://doi.org/10.1017/dce.2021.15 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2021.15


dimension is architecture of NN, that is among MLP, EENN, and RKNN. Some qualitative and
quantitative conclusion will be drawn based on comparison.

In Section 5.1, we will investigate how sampling strategy influences construction of reduced basis.
And in Sections 5.2.1 and 5.2.2, we will focus on how dataset and architecture influences the learning
quality respectively. For the investigation of different architectures, we focus on usingMLPs and RKNNs
to learn and predict with constant time step. In Section 5.2.3, we further study the capability of EENNs and
RKNNs to learn from the snapshots sampled on the coarse time grids and to predict on the fine time grids.

5.1. POD reduction

With SPS and DPS respectively, 30 snapshots are taken for each system with 30 different heat-load
magnitudes and initial temperatures. Each snapshot is a transient analysis from t0 ¼ 0 to tend with 100 time
points solved by NX 12.

The first 30 singular values found from SPS snapshots and DPS snapshots are shown in Figures 8–10
for each test case respectively. In the heat sink test model, the curves of σ from calculated from different
sampling strategies seem to exactly overlap on each other. And in Figures 9 and 10, only slight difference
can be found between two curves.

However, this does notmean the reduced basis constructed by different dataset has the same quality. To
quantitatively measure the quality of reduced basis, here we perform re-projection test to calculate the
error generated by each reduced basis. In the test, the reference trajectory is firstly projected into then

reduced space then back-projected into the full space. This process can be done using bY ref ¼VVTY ref .
Depending on re-projected trajectory, we can calculate the relative re-projection error using

EPOD ¼ 1
Ns�k

Y ref �bY ref



 


2

Y refj j2 , where Ns is number of snapshot simulations and k is the number of time points

in each simulation.
The POD errors with different sizes of reduced basis are shown in Figures A1 and A2. Similar to

summarized above, in most situations, POD error curves generated by different sampling strategies can
converge to similar values when the size of ROM is large enough. Nevertheless, in Figure Ab, the re-
projection error of SPS-ROM converges to a value greater than DPS-ROM’s. This means the reduced
basis calculated by DPS snapshots has higher quality (Figure A3).

Figure 8. Heat sink model: singular values of static-parameter sampling (SPS) snapshots and dynamic-
parameter sampling (DPS) snapshots.

Data-Centric Engineering e13-13

https://doi.org/10.1017/dce.2021.15 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2021.15


It is observed that, SPS-ROM can have smaller projection error in some cases. This suggests that
hybrid datasets (including static and dynamic parameters) may be needed to improve this aspect even
further. We propose to study this possibility in future works.

5.2. ANN-based ROM

The quality of the ROM is affected by the reduced basis constructed by POD and the NN trained in the
reduced space. In Section 5.1, by comparing singular values calculated from snapshotmatrices sampled in
different approaches, we did not see different sampling strategies have huge impact on constructing the
POD subspace. But they can still make difference on training the NNs. This will be investigated in

Figure 10. Heat exchanger model: singular values of static-parameter sampling (SPS) snapshots and
dynamic-parameter sampling (DPS) snapshots.

Figure 9. Gap-radiation model: singular values of static-parameter sampling (SPS) snapshots and
dynamic-parameter sampling (DPS) snapshots.

e13-14 Qinyu Zhuang et al.

https://doi.org/10.1017/dce.2021.15 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2021.15


Section 5.2.1. In Section 5.2.2, we compare MLP and RKNN with constant-step-size tests. In
Section 5.2.3, we compare EENN with RKNN with variant-step-size tests.

5.2.1. Static-parameter sampling versus dynamic-parameter sampling
In Section 2.2, we introduced two approaches for taking snapshots. In conventional SPS, the parameter
configuration assigned to the system is constant during the simulation time, that is μ tð Þ¼μ0. To include
more parameter diversity in training data, we designed new sampling strategy named DPS whose
parameter configuration is function of time. Datasets sampled by different strategies influences not only
the quality of reduced basis but also the training ofNN. In this section, howdifferent datasets can affect the
training is investigated.

To measure the prediction quality of the NNs correctly, the influence of reduction projection will be
removed from measurement. In other words, the approximation error should be evaluated in the reduced
space. Therefore, the reference trajectory is reduced by Yrref ¼VTY ref . With the prediction eYr made by
NN, the relative approximation error is calculated as

Eann ¼ 1
Ns � k

Yr ref � eYr



 


2

Yr refj j2
, (24)

where Ns is number of snapshot simulations and k is the number of time points in each simulation.
In Tables 1–4, we list the reference tests on the left and their competitors are listed on the right. The

values ΔEann stand for how much the relative prediction errors increase or decrease by using the
competitive approaches. This notation is also used in the later tables. It is observed that in 45 out of
60 (3/4) test cases ROMs trained byDPS data predict better in both test cases. But unlikemany otherMOR

Table 1. SPS versus DPS: heat sink model, relative error(%).

Nr MLP þ SPS MLP þ DPS ΔEann

(a) Constant-load test
1 0.09 0.16 þ0:07
2 0.05 0.19 þ0:14
3 0.11 0.13 þ0:02
4 0.10 0.16 þ0:06
5 0.30 0.18 �0:12
10 0.19 0.19 �0:00
15 0.10 0.16 þ0:06
20 0.11 0.15 þ0:04
25 0.19 0.16 �0:04
30 0.17 0.16 �0:01
(b) Dynamic-load test
1 0.38 0.15 �0:23
2 0.34 0.20 �0:15
3 0.33 0.15 �0:17
4 0.31 0.18 �0:13
5 0.37 0.18 �0:19
10 0.34 0.19 �0:15
15 0.29 0.17 �0:12
20 0.31 0.17 �0:14
25 0.32 0.16 �0:16
30 0.31 0.17 �0:14

Abbreviations: DPS, dynamic-parameter sampling; MLP, multilayer perceptron; SPS, static-parameter sampling.

Data-Centric Engineering e13-15

https://doi.org/10.1017/dce.2021.15 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2021.15


methods, the simulation error does not monotonically decrease while increasing the size of the ROM.
When the ROMsize is small, the simulation error ismainly caused by PODprojection error. In this region,
simulation error will decrease with increasing ROM size. Because the most dominant POD components
are the most important physics modes of the system, by adding them the ROM knows more about the
original system. However, POD components with smaller singular values might be trivial information in
snapshots, for example, noise from numerical integration. These trivial information also becomes noise in
training data and disturbs the learning process. This also reminds us to be careful to choose the size of
ROM while using ANN-based MOR techniques.

The tests here are considered as independent tests since test datasets are provided by new NX
simulation with different parameter configuration from the simulations used in the snapshots. The
independent test is optimal if the two datasets originate from two different sampling strategies (Özesmi
et al., 2006). Here, dynamic-load test can be considered to be optimal independent test for SPS-ROM and
vice versa for DPS-ROM. As shown in Tables 1–4, the ANNs trained by DPS data have better
performance on most of its optimal independent tests. But ANNs trained by SPS data also outperforms
in some test cases. This result reminds us again that using dataset obtained from diverse sources should be
considered.

5.2.2. Constant-time-grid learning: MLP versus RKNN
To further improve the capability of predicting ODE systems, we propose to use network architecture
inspired by RK integrator in Section 3.3. Although it has been previously seen that RKNN can be used to
make long-term predictions for ODE system (Wang and Lin, 1998), it is still not clear if such approach can
work for POD-projected ODE systems. A possible challenge arises from the highly variable scale

Table 2. SPS versus DPS: gap-radiation model, relative error(%).

Nr MLP þ SPS MLP þ DPS ΔEann

(a) Constant-load test
1 0.50 0.59 þ0:09
2 0.59 0.27 �0:32
3 0.25 0.28 þ0:03
4 0.17 0.27 þ0:10
5 0.22 0.18 �0:04
10 0.13 0.14 þ0:01
15 0.17 0.22 þ0:05
20 0.22 0.13 �0:10
25 0.19 0.18 �0:01
30 0.16 0.16 �0:00
(b) Dynamic-load test
1 0.47 0.52 þ0:05
2 0.63 0.19 �0:44
3 0.30 0.26 �0:04
4 0.25 0.15 �0:10
5 0.17 0.19 þ0:02
10 0.27 0.19 �0:08
15 0.21 0.16 �0:04
20 0.21 0.13 �0:08
25 0.17 0.13 �0:04
30 0.19 0.12 �0:07

Abbreviations: DPS, dynamic-parameter sampling; MLP, multilayer perceptron; SPS, static-parameter sampling.

e13-16 Qinyu Zhuang et al.

https://doi.org/10.1017/dce.2021.15 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2021.15


differences between the reduced dimensions. Typically, the reduced snapshot will have much larger
component in some of the reduced dimensions (those with large singular values) than in others (small
singular values). This presents a challenge for NN-based learning methods.

The structure of MLP and RKNN is the same as described in Figures 2 and 4, but in detail, the number
of input neurons nin depends on the size of ROM and number of system parameters, that is nin ¼Nrþnμ.
The number of neurons on each hidden layers is chosen to be 32, this value is always greater than input
features, that is Nrþnμ. This is important for NN to interpret the underlying dynamics. And same as
depicted in the figures, each network has one input layer, two hidden layers, and one output layer, which
enables network to approximate any kind of mathematical function.

The prediction error Eann is measured in the same way as in Section 5.2.1. Since it is known from the
last comparison that DPS dataset is considered to be better training dataset, here both types of NNs are
trained with DPS dataset. And for each test case, the time grids used for collecting snapshots and for
validation have the same resolution. For these grids, 100 points are uniformly distributed on the time axis.
This time resolution can be considered to be fine to the nature of the test systems. Therefore, the learning
task in this section can be considered as learning from a fine time grid compared to the learning task in the
next section.

In Tables 5 and 6, we can observe that RKNN can predict the solution of reduced ODE system with
acceptable accuracy. But there is no indication that RKNN predicts the system behavior better in any
certain type of tests. In contrast, MLP is evaluated to be better at approximating larger-size ROM. One
possible explanation is that compared to a simple MLP, an RKNN can be considered as a deeper network
which is harder to train (Du et al., 2019). A solution could be to train large amount of networks for each
architecture but with different randomized initialization. Then evaluating the average performance of all
trained networks of each architecture. Here in this paper, due to the limitation of time and computational

Table 3. SPS versus DPS: heat exchanger model, relative error(%).

Nr MLP þ SPS MLP þ DPS ΔEann

(a) Constant-load test
1 0.20 0.27 þ0:07
2 0.31 0.27 �0:04
3 0.25 0.25 �0:00
4 0.24 0.24 �0:00
5 0.13 0.16 �0:03
10 0.17 0.11 �0:05
15 0.12 0.16 þ0:04
20 0.14 0.12 �0:02
25 0.15 0.15 �0:00
30 0.17 0.13 �0:04
(b) Dynamic-load test
1 0.48 0.22 �0:26
2 0.38 0.17 �0:21
3 0.28 0.27 �0:02
4 0.31 0.21 �0:11
5 0.17 0.15 �0:02
10 0.22 0.13 �0:09
15 0.17 0.17 �0:00
20 0.18 0.14 �0:04
25 0.15 0.15 �0:00
30 0.16 0.14 �0:02

Abbreviations: DPS, dynamic-parameter sampling; MLP, multilayer perceptron; SPS, static-parameter sampling.

Data-Centric Engineering e13-17

https://doi.org/10.1017/dce.2021.15 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2021.15


resource, we only train 10 networks for each type of architecture, which might not be sufficient to
eliminate the random effect.

5.2.3. Coarse-time-grid learning: EENN versus RKNN
Although the results of the previous section are inconclusive to demonstrate the advantages of RKNN
over MLP, here we will analyze a practical advantage of learning the system dynamics (learning f �ð Þ)
compared to directly learning the evolution of the system state. In the former case, the time step size for
prediction can be chosen independently of the time step used to take the snapshots. In this section, we use a
training data set in which snapshots are sampled coarsely, that is with a large time interval, to build new
ROMs. Then we evaluate the capability of these ROMs to predict the time evolution of the system under
new parameters and using finer integration time steps. Such a scenario is relevant in the context of MOR
when the FOMs are very large, as time andmemory constraints might limit the amount of (full order) input
data available to provide to the MOR methods.

MLPs (as defined in Section 3.1) cannot be applied to this test as we cannot use an independent time
step for evaluation. Therefore, we consider only EENNs and RKNNs. For examples in which the training
and evaluation time steps are equivalent, we expect EENNs to be equivalent to MLPs (Figure 11).

In the experiments, we prepare two dataset. For the dataset A, K¼ 25 snapshots are collected in each
snapshot simulation with DPS. For the purpose of validation, ROMs are asked to predict in the same time
span but with L¼ 25,50,100,200,300,500,1,000 steps. To be more specific, if the step size used in
training dataset is τs, the step size used in validation is τd ¼ τs,τs=2,…,τs=20,τs=40. In the dataset B,K ¼
100 snapshots are collected in each snapshot simulation. The trained ROMs will predict in the same time
spanwithL¼ 100,200,300,500,1,000 steps. The reduced data in both training sets has the size of 10. The

Table 4. MLP versus RKNN: heat sink model, relative error(%).

Nr MLP þ DPS RKNN þ DPS ΔEann

(a) Constant-load test
1 0.16 0.16 �0:01
2 0.19 0.15 �0:04
3 0.13 0.12 �0:01
4 0.16 0.16 �0:01
5 0.18 0.17 �0:01
10 0.19 0.17 �0:02
15 0.16 0.15 �0:00
20 0.15 0.17 þ0:02
25 0.16 0.21 þ0:05
30 0.16 0.24 þ0:08
(b) Dynamic-load test
1 0.15 0.16 þ0:01
2 0.20 0.15 �0:05
3 0.15 0.12 �0:03
4 0.18 0.16 �0:02
5 0.18 0.14 �0:04
10 0.19 0.16 �0:03
15 0.17 0.16 �0:01
20 0.17 0.18 þ0:02
25 0.16 0.19 þ0:04
30 0.17 0.25 þ0:08

Abbreviations: DPS, dynamic-parameter sampling; MLP, multilayer perceptron; RKNN, Runge–Kutta neural network.

e13-18 Qinyu Zhuang et al.

https://doi.org/10.1017/dce.2021.15 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2021.15


ROMs with such a size are observed to be stable with the POD projection error according to the previous
tests. And we use DPS to collect the data since it generally collects more information.

Figure 12 presents the results of this comparison. Each of the plots corresponds to a different test model
from Section 4 and they show the relative errors, calculated according to Equation (24) for prediction at
different time step sizes. For the reference (training) time step, the errors are small and comparable for both
EENN and RKNN, which is consistent with the observations in Section 5.2.2. For smaller evaluation time
steps, the errors become larger. We speculate that the learned R.H.S. still contains information from the
time step size used during training. However, we can clearly see that this effect is consistently smaller for
RKNN-MOR. This suggests that the use of the higher order numerical scheme during training can provide
a better quality inferred R.H.S.

To further explore this hypothesis we can perform an additional test of the trained ROMs. As both
EENN and RKNN learn the right side f �ð Þ of Equation (8), we can integrate the ROM with a different
numerical scheme as the training. Results of these tests are presented in Figure 13, where we plot these
tests alongside the data in Figure 12. The new data includes the following: (a) the error incurred from
integrating the EENN-ROM using RK scheme and (b) the error incurred from integrating the RKNN-
ROM using EE scheme. The same qualitative behavior is observed for all test models. Interestingly, the
error is almost always largest and roughly independent of the step size when using RK scheme to integrate
the EENN-ROM. For RKNN-ROMs evaluated using EE scheme, the trend is quite different. For the
original (large) time step sizes, the errors are always larger than the reference RKNN results. However, for
smaller evaluation time steps the error approaches the same values as the result of integrating using RK
scheme.

We can interpret these trends as follows: for the RKNN-ROM (red curves), we see that evaluating using
EE scheme (circle markers) gives larger errors than RK scheme (cross markers) for large time steps, but

Table 5. MLP versus RKNN: gap-radiation model, relative error(%).

Nr MLP þ DPS RKNN þ DPS ΔEann

(a) Constant-load test
1 0.59 0.47 �0:13
2 0.27 0.24 �0:03
3 0.28 0.21 �0:07
4 0.27 0.19 �0:08
5 0.18 0.21 þ0:02
10 0.14 0.19 þ0:04
15 0.22 0.19 �0:03
20 0.13 0.19 þ0:06
25 0.18 0.24 þ0:06
30 0.16 0.21 þ0:05
(b) Dynamic-load test
1 0.52 0.38 �0:13
2 0.19 0.25 þ0:06
3 0.26 0.26 þ0:01
4 0.15 0.25 þ0:10
5 0.19 0.16 �0:03
10 0.19 0.21 þ0:02
15 0.16 0.16 �0:01
20 0.13 0.19 þ0:06
25 0.13 0.19 þ0:06
30 0.12 0.20 þ0:08

Abbreviations: DPS, dynamic-parameter sampling; MLP, multilayer perceptron; RKNN, Runge–Kutta neural network.

Data-Centric Engineering e13-19

https://doi.org/10.1017/dce.2021.15 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2021.15


that the error converges for smaller time steps. This is consistent with having an accurate R.H.S. and
integrating it using a higher or lower order integration scheme. For the EENN-ROM (blue curves), the
error is almost always larger than for RKNN-ROM and its convergence trend also contradicts the result
that we would observe with a real analytical R.H.S. Additionally, the errors become small only while
matching the evaluation conditions with the training conditions. This is consistent with our hypothesis

Table 6. MLP versus RKNN: heat exchanger model, relative error(%).

Nr MLP þ DPS RKNN þ DPS ΔEann

(a) Constant-load test
1 0.27 0.27 þ0:01
2 0.27 0.13 �0:13
3 0.25 0.15 �0:10
4 0.24 0.20 �0:04
5 0.16 0.13 �0:03
10 0.11 0.18 þ0:07
15 0.16 0.20 þ0:05
20 0.12 0.16 þ0:04
25 0.15 0.17 þ0:02
30 0.13 0.17 þ0:04
(b) Dynamic-load test
1 0.22 0.18 �0:04
2 0.17 0.13 �0:04
3 0.27 0.15 �0:11
4 0.21 0.19 �0:02
5 0.15 0.15 þ0:00
10 0.13 0.19 þ0:06
15 0.17 0.21 þ0:04
20 0.14 0.17 þ0:03
25 0.15 0.18 þ0:03
30 0.14 0.18 þ0:04

Abbreviations: DPS, dynamic-parameter sampling; MLP, multilayer perceptron; RKNN, Runge–Kutta neural network.

Figure 11. Time grid for collecting snapshots and time grid for prediction with reduced order model
(ROM).

e13-20 Qinyu Zhuang et al.

https://doi.org/10.1017/dce.2021.15 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2021.15


that the R.H.S. learned by EENNs are more influenced by the time step size in the training data, therefore
having less flexibility for changing it.

In summary, we believe that these tests strongly suggest that the use of higher order integration
schemes during training can noticeably improve the quality of the dynamics learned in the reduced space,
especially when the input data is sampled sparsely.

6. Conclusions

In this paper, we investigated different varieties of MOR based on ANN. In the first part, we looked
at different ways of generating the training data, namely SPS versus DPS. In the second part, we
study the influence of using different NN architectures. We compared MLP NNs that directly learn
the evolution of the system state with RKNN which learn the R.H.S. of the systems. Besides, we
compared RKNN versus EENN which learns the system R.H.S. similarly but with lower-order

Figure 12. The graph from the left to the right belongs to the heat sinkmodel, the gap-radiationmodel and
the heat exchanger model respectively. The reduced order model (ROMs) are generated from the coarse
and the fine time grids respectively. The prediction is made with time steps which are always finer than the
step sizes used in training data. The original step sizes used in two training snapshots are marked with

green (dataset A) and black (dataset B) vertical lines.

Figure 13. The graph from the left to the right belongs to the heat sinkmodel, the gap-radiationmodel and
the heat exchangermodel respectively. The tests aim to evaluate the accuracy of the learned reduced order

model (ROMs) in.

Data-Centric Engineering e13-21

https://doi.org/10.1017/dce.2021.15 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2021.15


numerical scheme, with a focus on the effect on learning reduced models from sparsely
sampled data.

As discussed in Section 5.2.1, DPS shows positive influence on the quality of ROM. Based on
observation, adding DPS snapshots into the dataset can enrich the dynamics contained in snapshots. This
can help with constructing better POD basis. Moreover, NN trained by DPS dataset is more sensitive to
system’s parameters. However, it is also seen that in some specific tests, network trained by DPS data
performs worse than networks trained by SPS data, which are usually found to be in the constant-load
tests. However, the direct comparison of RKNN and MLP did not show clear advantage of either
architecture under the conditions of the tests in Section 5.2.2.

The advantage of RKNN could actually be demonstrated by analyzing a test case in which the training
dataset is sampled coarsely in time. Here, we observed, that RKNN can predict with different step sizes
without significant increment of the prediction error. In contrast, this was not the case for EENN. Our
results also suggest that embedding a higher order integration scheme can help learning the systems
dynamics more reliably and independently of the time step in the input data. This result is relevant for
engineering applications, where memory and computational time constraints can limit the amount of data
made available for MOR.

Although thisMOR framework was tested only on thermal and thermal-flowmodels, it could be easily
adapted to other kinds of models, since it is nonintrusive and only relies on measured data to learn the
dynamics of the system. However, there is still more work to be done before these methods can be applied
to big scale and more general models.

Some further potential improvements for the approach discussed in this work include:

• Investigating the influence of using SPS–DPS-mixed snapshots.
• Investigating different methods of constructing reduced space other than POD, for example, auto-
encoder.

• Implementing implicit integration scheme with NNs as in Anderson et al. (1996) allowing more
accurate long-term prediction.

• Implementing integration scheme with multiple history states as part of input, which might also
enable more stable long-term prediction.

Acknowledgments. The authors are grateful to Siemens for sponsoring this project. The authors also thank Prof. Benjamin
Peherstorfer and Lukas Failer for their valuable suggestions for the research.

Funding Statement. This work is part of the research undertaken by the authors in COMPASwhich is an ITEA-EUREKA project
co-funded by the Federal Ministry of Education and Research of Germany (BMBF).

Competing Interests. Q.Z., J.L., and D.H. are employed at company Siemens AG.

Data Availability Statement. To get access to research data, please contact one of the authors with your request.

Author Contributions. Conceptualization: D.H. and H.-J.B.; Methodology: D.H., Q.Z., and J.L.; Data curation: Q.Z.; Data
visualization: Q.Z.; Writing-original draft: Q.Z., J.L., and. D.H. All authors approved the final submitted draft.

References
Agudelo OM, Espinosa JJ and De Moor B (2009) Acceleration of nonlinear POD models: a neural network approach. In 2009

European Control Conference (ECC). Budapest, Hungary: IEEE, pp. 1547–1552.

Anderson J,Kevrekidis I and Rico-Martinez R (1996) A comparison of recurrent training algorithms for time series analysis and
system identification. Computers & Chemical Engineering 20, S751–S756.

Antoulas A (2005) Approximation of Large-Scale Dynamical Systems. Philadelphia, USA: Society for Industrial and Applied
Mathematics.

Bui-Thanh T (2007). Model-constrained optimization methods for reduction of parameterized large-scale systems. PhD Thesis,
Massachusetts Institute of Technology.

e13-22 Qinyu Zhuang et al.

https://doi.org/10.1017/dce.2021.15 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2021.15


Chaturantabut S and Sorensen DC (2010). Nonlinear model reduction via discrete empirical interpolation. SIAM Journal on
Scientific Computing 32(5), 2737–2764.

Coifman RR, Lafon S, Lee AB, Maggioni M, Nadler B, Warner F and Zucker SW (2005) Geometric diffusions as a tool for
harmonic analysis and structure definition of data: diffusionmaps.Proceedings of the National Academy of Sciences of theUnited
States of America 102(21), 7426–7431.

Du Q and Fowler JE (2007) Hyperspectral image compression using JPEG2000 and principal component analysis. IEEE
Geoscience and Remote Sensing Letters 4(2), 201–205.

Du S, Lee J, Li H, Wang L and Zhai X (2019) Gradient descent finds global minima of deep neural networks. In International
Conference on Machine Learning. Long Beach, USA: PMLR, pp. 1675–1685.

Glorot X, Bordes A and Bengio Y (2011) Deep sparse rectifier neural networks. In Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics. Ft. Lauderdale, FL, USA: JMLRWorkshop and Conference Proceedings,
pp. 315–323.

Haasdonk B, Dihlmann M and Ohlberger M (2011) A training set and multiple bases generation approach for parameterized
model reduction based on adaptive grids in parameter space.Mathematical and Computer Modelling of Dynamical Systems 17
(4), 423–442.

HartmannD,HerzMandWever U (2018)Model order reduction a key technology for digital twins. In Reduced-OrderModeling
(ROM) for Simulation and Optimization. Springer, pp. 167–179.

HeK, Zhang X,Ren S and Sun J (2016) Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, pp. 770–778.

Helton JC and Davis FJ (2003) Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems.
Reliability Engineering & System Safety 81(1), 23–69.

Hinze M and Volkwein S (2005) Proper orthogonal decomposition surrogate models for nonlinear dynamical systems: Error
estimates and suboptimal control. In Dimension Reduction of Large-Scale Systems. Berlin, Heidelberg: Springer, pp. 261–306.

Josse J and Husson F (2012) Selecting the number of components in principal component analysis using cross-validation
approximations. Computational Statistics & Data Analysis 56(6), 1869–1879.

Kani JN and Elsheikh AH (2017) DR-RNN: a deep residual recurrent neural network for model reduction. arXiv preprint arXiv:
1709.00939.

Kassab A,Divo E,Heidmann J, Steinthorsson E andRodriguez F (2003) BEM/FVM conjugate heat transfer analysis of a three-
dimensional film cooled turbine blade. International Journal of Numerical Methods for Heat & Fluid Flow 13, 581–610.

Kingma DP and Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980.
Kosmatopoulos EB, Polycarpou MM, Christodoulou MA and Ioannou PA (1995) Highorder neural network structures for

identification of dynamical systems. IEEE Transactions on Neural Networks 6(2), 422–431.
Lappano E, Naets F, Desmet W, Mundo D and Nijman E (2016) A greedy sampling approach for the projection basis

construction in parametric model order reduction for structural dynamics models. In Proceedings of ISMA 2016—International
Conference on Noise and Vibration Engineering and USD2016—International Conference on Uncertainty in Structural
Dynamics, Leuven, Belgium: KU Leuven pp. 3563–3571.

Mohan ATand Gaitonde DV (2018) A deep learning based approach to reduced order modeling for turbulent flow control using
LSTM neural networks. arXiv preprint arXiv:1804.09269.

Özesmi SL, Tan CO and Özesmi U (2006) Methodological issues in building, training, and testing artificial neural networks in
ecological applications. Ecological Modelling 195(1–2), 83–93.

PanS andDuraisamyK (2018) Long-time predictivemodeling of nonlinear dynamical systems using neural networks.Complexity
2018, 4801012.

Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L and Lerer A (2017) Automatic
differentiation in PyTorch.

Pawar S, Rahman S, Vaddireddy H, San O, Rasheed A and Vedula P (2019) A deep learning enabler for nonintrusive reduced
order modeling of fluid flows. Physics of Fluids 31(8), 085101.

Peherstorfer B and Willcox K (2016) Data-driven operator inference for nonintrusive projection-based model reduction.
Computer Methods in Applied Mechanics and Engineering 306, 196–215.

Prechelt L (1998). Early stopping-but when?. In Neural Networks: Tricks of the Trade. Berlin, Heidelberg: Springer, pp. 55–69.
Qin T, Chen Z, Jakeman JD and Xiu D (2021) Data-driven learning of nonautonomous systems. SIAM Journal on Scientific

Computing 43(3), A1607–A1624.
Qin T, Wu K and Xiu D (2019). Data driven governing equations approximation using deep neural networks. Journal of

Computational Physics 395, 620–635.
Rasheed A, San O and Kvamsdal T (2019) Digital twin: Values, challenges and enablers. arXiv preprint arXiv:1910.01719.
Rico-Martinez R and Kevrekidis IG (1993). Continuous time modeling of nonlinear systems: A neural network-based approach.

In IEEE International Conference on Neural Networks, 1993. San Francisco, CA, USA: IEEE, pp. 1522–1525.
Rumelhart DE, Hinton GE andWilliams RJ (1986) Learning representations by back-propagating errors. Nature 323(6088), 533.
Ubbiali S (2017). Reduced order modeling of nonlinear problems using neural networks.
Valle S,LiWandQin SJ (1999). Selection of the number of principal components: the variance of the reconstruction error criterion

with a comparison to other methods. Industrial & Engineering Chemistry Research 38(11), 4389–4401.
van der Maaten L and Hinton G (2008) Visualizing data using t-SNE. Journal of Machine Learning Research 9, 2579–2605.

Data-Centric Engineering e13-23

https://doi.org/10.1017/dce.2021.15 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2021.15


Wang Q, Ripamonti N and Hesthaven JS (2020). Recurrent neural network closure of parametric POD-Galerkin reduced-order
models based on the Mori-Zwanzig formalism. Journal of Computational Physics 410, 109402.

Wang Y-J and Lin C-T (1998). Runge-Kutta neural network for identification of dynamical systems in high accuracy. IEEE
Transactions on Neural Networks 9(2), 294–307.

Willcox K and Peraire J (2002). Balanced model reduction via the proper orthogonal decomposition. AIAA Journal 40(11),
2323–2330.

Wong T-T, LukW-S and Heng P-A (1997) Sampling with Hammersley and Halton points. Journal of Graphics Tools 2(2), 9–24.

Appendix: Additional Figures

(a) Constant load test (b) Dynamic load test

Figure A1. Projection error: heat sink model.

(a) Constant load test (b) Dynamic load test

Figure A2. Projection error: gap-radiation model.

e13-24 Qinyu Zhuang et al.

https://doi.org/10.1017/dce.2021.15 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2021.15


Cite this article: ZhuangQ, Lorenzi JM,Bungartz H.-J andHartmannD (2021).Model order reduction based on Runge–Kutta
neural networks. Data-Centric Engineering, 2: e13. doi:10.1017/dce.2021.15

(a) Constant load test (b) Dynamic load test

Figure A3. Projection error: heat exchanger model.

Data-Centric Engineering e13-25

https://doi.org/10.1017/dce.2021.15 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2021.15
https://doi.org/10.1017/dce.2021.15

	Model order reduction based on Runge-Kutta neural networks
	Impact Statement
	Introduction
	Proper Orthogonal Decomposition
	Problem statement
	Taking snapshots: static-parameter sampling (SPS) and dynamic-parameter sampling (DPS)
	Singular value decomposition

	Prediction by NN
	Multilayer perceptron
	Explicit Euler neural network
	Runge-Kutta neural network

	Numerical Examples
	Heat sink model
	Gap-radiation model
	Heat exchanger model

	Results
	POD reduction
	ANN-based ROM
	Static-parameter sampling versus dynamic-parameter sampling
	Constant-time-grid learning: MLP versus RKNN
	Coarse-time-grid learning: EENN versus RKNN


	Conclusions
	Acknowledgments
	Funding Statement
	Competing Interests
	Data Availability Statement
	Author Contributions
	References
	Appendix: Additional Figures


