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HOPFIAN AND CO-HOPFIAN GROUPS

SATYA DEO AND K. VARADARAJAN

The main results proved in this note are the following:

(i) Any finitely generated group can be expressed as a quotient of a finitely
presented, centreless group which is simultaneously Hopfian and co-
Hopfian.

(ii) There is no functorial imbedding of groups (respectively finitely generated
groups) into Hopfian groups.

(iii) We prove a result which implies in particular that if the double ori-
entable cover N of a closed non-orientable aspherical manifold M has
a co-Hopfian fundamental group then ir\{M) itself is co-Hopfian.

1. A CLASS OF CO-HOPFIAN GROUPS

DEFINITION 1: A group G is said to be Hopfian (respectively co-Hopfian) if every
surjective (respectively injective) endomorphism / : G —> G is an automorphism.

We now recall the definition of a Poincare duality group. Let G be a group and
R a commutative ring. Let n be an integer ^ 0. G is said to be a duality group
of dimension n over R (or an i?-duality group of dimension n) if there exists a right
i?G-module C such that one has natural isomorphisms Hk(G\A) ~ Hn_k (G; C(&A)

for all k ^ 0 and all left i?G-modules A. Here C (££) A is regarded as a right RG-
R

module via (x <g> a)g — xg ® g~1a for all x £ C, a 6 A and g e G. The module C
occurring in the above definition is known as the dualising module. It turns out that
in the above case Hn(G;RG) = C, the right RG module structure on RG yielding
the right .RG-module structure on C. In case C ~ R as a right R-module, G will
be called a Poincare duality group of dimension n over R. If further C ~ R with
trivial right G-action then G is called an orientable Poincare duality group over R. By
a Poincare duality group (respectively orientable) we mean a Poincare duality group
(respectively orientable) over Z. By a closed manifold we mean a compact manifold
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without boundary. By an aspherical space X we mean a K(n, 1) space for some group

A group 7T is said to be of type FP over R if the trivial left ifor-module R admits
a finitely generated projective resolution of finite length. We shall say that TT is of type
FP if it is of type FP over Z. It is well-known that a duality group G over R is of
type FP over R. [2] is an excellent reference for results on duality groups.

If G is a group of type FP, the Euler characteristic x(G) of G can be defined as
Y^ (-l)fc dim-Hfc(G; Q) where Q is the trivial G-module Q and dimension of Hk(G; Q)
is as a vector space over Q. If G is of type FP and H any subgroup of G of finite
index then H is also of type FP. In this case it is also known that x(H) = [G '• H]x{G)

[4, 2, p.179].

PROPOSITION 1. Let G be a group of type FP satisfying the following condi-

tions:

(i) Any subgroup H of G with [G : H] = oo is not isomorphic to G and

(ii) X(G)^O.

Then G is co-Hopfian.

PROOF: Let H be a proper subgroup of G. We need to show that H is not

isomorphic to G. If [G : H] = oo, it is part of the hypothesis. Let [G : H] < oo. Since

H $.G, we have [G : H] = k an integer > 1. It follows that \{H) = fc*(G). Since

x{G) / 0 we see that x(-ff) 7̂  x(^)- Hence i / is not isomorphic to G. D

It is known that if G is a duality group of dimension n over R then the cohomo-
logical dimension OIRG of G over R is n [2, p.139]. A result of Strebel [18] asserts
that if G is a Poincare duality group of dimension n over R, then any subgroup H
of G with [G : H] = oo satisfies cdfii/ ^ n - 1. Hence H ^ G. As an immediate
consequence of Proposition 1 we get the following (see [2, pp.178-179]).

PROPOSITION 2 . Let G be a Poincare duality group satisfying x(G) ^ 0.
Then G is co-Hopfian.

PROPOSITION 3 . Let M be a closed aspherical manifold satisfying x(M) ^ 0.

Then TTI(M) is co-Hopfian.

By a surface we mean a compact, connected 2-dimensional manifold N with or
without boundary. In this case if 6N ^ 0 it is well-known that ni(N) is a free group
of rank ^ 0 and that KI(N) = {e} if and only if N ~ D2. Any free group of rank
^ 1 is clearly not co-Hopfian. Denoting the closed orientable surface of genus g by J3

9

we have 5Z ~ 5 2 . If we denote the non-orientable closed surface with k cross-caps,
o

k ^ 1 by Nk we have Ni ~ P2. It is well-known that ^ for g ^ 1 and 7Vfc for k ^ 2
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are all aspherical. Also X ( E ) = 2 - 2p and x(iVfc) = 2 - k. Thus X ( E ) ^ 0 for

g > 2 and x(iVfc) ¥= 0 for it ^ 3. Also X) - S 1 x S1 and 7n f JZ) = Z © Z is not
l v l '

co-Hopfian; iV2 ~ K, the Klein bottle. It is known that J2 covers itself non-trivially
l

and K covers itself non-trivially. In particular TTI (K) is not co-Hopfian. One knows
that TTI(K) = (a,b; abab~1 = 1). The subgroup grp(o2,6) is a proper subgroup of
•Ki(K) which is isomorphic to wi(K). Clearly TTI(S2) = {1} and TTI(P2) ~ Z / 2 Z are
co-Hopfian. Thus Proposition 3 immediately yields the following:

THEOREM 1.

(a) The only closed surfaces N with wi(N) non co-Hopfian are S1 x S1 and
K.

(b) The only surface N with 6N ^ 0 and wi (N) co-Hopfian is D2.

REMARKS. : (1) Theorem 1 could be known to experts. Since we can not find an
explicit reference we have included a proof of it in our present paper. There is a lot of
recent activity studying the co-Hopficity of fundamental groups of compact 3-manifolds
[6, 7, 8, 20]. It is a well-known result that for any surface N, the fundamental group
TTI(AT) is Hopfian [1, 5, 10, 12].

(2) If G and H are Poincare duality groups it is well-known that G x H is a
Poincare duality group. If further x(G) ^ 0 ^ x{H), from x(<? x H) = x{G)x{H) we
see that x(G x H) / 0. Thus if E = {G \ G a Poincare duality group with x{G) ± 0}
then E is closed under the formation of finite direct products and every G € E is

co-Hopfian. In particular denoting T I ( X J = {ai,bi,... ,ag,bg; Yl[ai^i] = 1) by Tg
v g ' i=i

and ni(Nk) = {a\, a,2, , a*; a\a\... a\ = 1) by Ek we see that for any choice of
finite number of integers <fc ̂  2 and fy ^ 3 the group Fgi x . . . x r a r x Ekl x . . . x £7^
is co-Hopfian.

(3) A result of Gottlieb [9] asserts that if X is a finite K{G, 1) complex with
x{X) 7̂  0, then G is centreless. It follows that each one of the groups T9l x . . . x Tgr x
Ekx x .. . x Ek3 where 5; ^ 2, fcj ^ 3 for 1 ^ i ^ r, 1 ̂  j ' ^ s is centreless.

(4) Let G be a torsion-free group and H a subgroup of finite index in G. A
result of Bieri [3] asserts that G is a Poincare duality group if and only if H is. From
X{G) = [G : H]x(H) we see that x(G) ^ 0 <& x(H) ^ 0. In the above situation if one
of the groups is a Poincare duality group with non-zero Euler characteristic then both
the groups are co-Hopfian.

Recall that a group is said to be complete if it is centreless and its only automor-
phisms are inner automorphisms. Denote the cyclic group of order m by Cm. Let
m, n be integers satisfying m ^ 2 and n ^ 3. In [14] Miller and Schupp prove the
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following:

THEOREM. Any countable group G is embeddable in a complete Hopfian group
H which is a quotient of Cm * Cn • In case G is finitely presented, H above is finitely
presented. In case G has no elements of order m or n, the group H constructed above
will also be co-Hopfian.

In their paper they give a specific construction for H. Of course H will depend on
G, m and n. They also point out that if G is the universal finitely presented group of
Higman [11], G can not be embedded in a finitely presented co-Hopfian group. When G

is this group of Higman, the construction of Miller and Schupp yields a finitely presented
complete Hopfian group H containing G, hence containing an isomorphic copy of every
finitely presented group. Our earlier results allow us to prove the following:

THEOREM 2 . Let G be any finitely generated group. Then G can be expressed
as a quotient of a finitely presented centreless group H which is simultaneously Hopfian
and co-Hopfian.

PROOF: We can express G as a quotient of a free group Fg of rank g for some

integer g ^ 2.

Clearly Fg is a quotient of Fg. If in the free group on a\, &i, , ag, bg we set
9

b\ — ... — bg = 1 the relation Y[ [a*, bi] = 1 is automatically satisfied and we get the
i=l

free group on o i , . . . , ag as a quotient of Tg. As already seen Tg is a centreless, finitely

presented group which is simultaneously Hopfian and co-Hopfian whenever g ^ 2. D

REMARK. (5) Evidently any direct factor of a co-Hopfian group is co-Hopfian. Using
this observation it is easy to see that there exist finitely generated Abelian groups which
are not quotients of co-Hopfian Abelian groups. In fact it is not true that an aribtrary
finitely generated free Abelian group A ^ 0 (Z, for instance) can be expressed as a
quotient of an Abelian co-Hopfian group.

2. ORIENTATION SUBGROUP OF INDEX 2

Remark (4) in Section 1 applies to Poincare duality groups with non-vanishing
Euler characteristic. There are Poincare duality groups G with x(G) ~ 0 which are co-
Hopfian, for instance G = -K\ (M) where M is a closed 3-dimensional Haken manifold
with positive Gromov invariant [6, 7]. Let G be a non-orientable Poincare duality
group. Then the dualising module Hn(G; "LG) as an Abelian group is isomorphic to Z
but the right G-action on Z will not be trivial. Hence H = {g € G | m • g — m for all
TO e Z} is a subgroup of index 2 in G. if is an orientable Poincare duality group of
the same dimension n as G. Every other subgroup of index 2 in G is a non-orientable
Poincare duality group. In this section we shall show that if H is co-Hopfian so is G.
First we prove a general
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LEMMA 1 . Let G be any group and H a subgroup of G satisfying the following
conditions:

(i) [G:H]<oo

(ii) for every injective endomorphism (p : G —> G we have <p(H) C H.

Then if H is co-Hopfian so is G.

PROOF: Since [G : H) < oo, the only subgroup E of G satisfying H C E and
[E : H] = [G : H] is G itself. Let ip : G -> G be any injective endomorphism.
By assumption <p(H) C H, hence ip | H : H -> H is an injective endomorphism.
Since H is a co-Hopfian <p(H) = H. Since <p : G -* f{G) is an isomorphism we get
[G : H] = [<p(G) : <f(H)] = [<p(G) : H]. Our first observation implies that (p(G) = G.

This proves the co-Hopficity of G. D

PROPOSITION 4 . Let G be a non-orientable Poincare duality group and H
the orientable Poincare duality subgroup of index 2 in G. Then for any injective
endomorphism ip : G —> G we have >p(H) C H.

PROOF: Let ip be of dimension n . Then we know that H is an orientable Poincare
duality group of dimension n . Hence cd H — n. Since (p : H ~ (p(H) we see that
cd, ip(H) - n. By the result of Strebel [17] we see that [G : <p(H)} < oo. If ip(H)<£H,
then <p(H) will be a non-orientable Poincare duality group of dimension n . Hence
Hn(<p(H);Z) = 0 while Hn(H;Z) = Z [2, p.174]. Since <p : H -> (p(H) is an isomor-
phism, this leads to a contradiction. D

THEOREM 3 . Let G be a non-orientable Poincare duality group and H the ori-
entable Poincare duality subgroup of index 2 in G. Then if H is co-Hop6an so is
G.

PROOF: Immediate consequence of Proposition 4 and Lemma 1. D

COROLLARY 1 . Let M be a non-orientable closed aspherical manifold and N A
M the orientable double cover of M. Then if ni(N) is co-Hopfian so is TTI(M) .

PROOF: Immediate consequence of Theorem 3. D

3. EMBEDDINGS INTO HOPFIAN GROUPS

For the definition of an algebraically closed group the reader can refer to [13,
Section 8, Chapter 14] or the paper of Scott [16] or [19, Section 3]. It was proved by
W.R. Scott that any countable group G can be embedded in a countable algebraically
closed group. Practically the same proof yields the result that any infinite group G
can be embedded in an algebraically closed group having the same cardinality as G. A
result of B.H. Neumann [15] asserts that any algebraically closed group is simple and
not finitely generated. Since any simple group is clearly Hopfian we get the following:
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PROPOSITION 5 . Every group can be embedded in a Hopfian group.

Let Q denote the category of groups, A, C certain collections of groups.

DEFINITION 2: By a functorial embedding of groups from the class A into groups

belonging to the class C we mean an embedding G >—» F(G) for every G € A with
F(G) € C satisfying the following conditions:

(1) F : A —> C is a covariant functor when we regard A and C as full
subcategories of Q.

(2) For any morphism / : G —> H in A, the diagram

is commutative.

In [19] the second author has shown that there is no functorial embedding of groups
into algebraically closed groups. Let Gfg (respectively GfP) denote the class of finitely
generated (respectively finitely presented) groups. Let H denote the class of Hopfian
groups and Wfg = HnQf.g , fifp = 'HnQf.p. In the present paper we shall show that
there are no functorial embeddings of groups (respectively finitely generated groups)
into Hopfian groups. Since %fg C ~H, it follows that there is no functorial embedding
of finitely generated groups into finitely generated Hopfian groups.

THEOREM 4 . There is no functorial embedding of groups (respectively finitely

generated groups) into Hopfian groups.

PROOF: Since Gfg C Q, for proving Theorem 4, it suffices to show that there is
no functorial embedding of finitely generated groups into Hopfian groups. If possible
let F : Gfg - 4 ? i b e a functor and ic : G >—» F(G) be an embedding for every G £ Gf g

with F(G) € U satisfying conditions (1) and (2) of Definition 2. In [18] Tyrer-Jones
constructed a finitely generated group G ^ {e} which is isomorphic to G x G. Let
8 : GxG —> G be an isomorphism. Then F(9) : F(G x G ) - > F(G) is an isomorphism.
Let ji : G -¥ G x G, pi : G x G -> G be the obvious inclusions and projections
(i = 1,2), namely ji(g) = (g,e), j2{g) = (e,g), pi(g,h) = g and p2{g,h) = h for
any g G G, h € G. From pi o j x - ldG we get F(p{) o F( j i ) = ldF(G). Hence
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F(pi) : F(G x G ) - > F(G) is a surjective homomorphism. From the commutativity of

G ——• F(G)
«G

we see that F{j2)oiG(G) C Ker F(pi). Also F(p2)oF(j2) = ldF(G) shows that F(j2) •
F{G) -> F(G x G) is an embedding. It follows that Ker F(j>{) D F(j2) o iG(G) ± {e}.
Hence F(G) is a proper quotient of F(G x G) and F(6) : F(G x G) ~ F ( G ) . This
contradicts the Hopficity of F (G x G) . D

REMARK. (6) It is not true that every Abelian group can be eimbedded in a Hopfian
Abelian group. For instance any injective non-Hopfian Abelian group (for example, an
infinite direct sum of copies of Q; Zpoo for any prime p) can not be embedded into a
Hopfian Abelian group.

O P E N PROBLEMS.

(1) Does there exist a finitely presented group G with G isomorphic to GxG?
If such a group exists the proof of Theorem 4 shows that there is no
functorial embedding of finitely presented groups into Hopfian groups.

(2) Is it true that every group can be expressed as a quotient of a suitable
co-Hopfian group?
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