POLYNOMIALS WITH SOME PRESCRIBED ZEROS
Q.I. Rahman and Mohd. Ali Khan
(received September 27, 1966)
1. In connection with various problems concerning poly-
nomials
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is known to play a very important role [11, problem 34]. For
example, if

lpn(X)lgi for -1<x< 1,

then in the same interval [12]

ot ()] < n”

with equality possible if and only if pn(x) is the n-th Tchebycheff
polynomial Tn(x) . Another situation illustrating our remark is

the following [7, p.62].

Amongst all polynomials q (x) = x + a4 xn-1 + ..
n -
+ a,x + a with leading coefficient 1, the one which minimizes
the norm
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lq_ || = max |q (x)]
n [_1,1] n

n

-n+1
is the polynomial 2 Tn(x) .

It is also known [14, Theorem 17] that if
n

pn(x) = = a x is a polynomial of degree n such that
v
v=0

lpn(x)l <1 on[0,1]," then for 0<v<n

la I <t |,
v — ' nv
where tn 's are the coefficients of the polynomial
)V
n
v
T (2x-1)= = t b'd
n n, v
v=0

The following result of I. Schur ([15], Theorem V; see also
[4], Theorem 3) provides yet another illustration.

THEOREM A. If pn(x) is a polynomial of degree n such

that lpn(x)l <1 on [-1,1] and p (0) = 0, then in the same in-
n

terval

(1) Ipn(X)/XI <m,

where m =n or n-1 according as n is odd or even, with
equality possible only at x = 0 . The extremal polynomial is
Tn(x) or Tn 1(x) according as n is odd or even.

The theorem of Schur can be stated in the following alter-
native form:

X p (x) is a polynomial of degree n such that
n

|T1(x) pn(x) l = Icos (cos-1 x) pn(x)l

lxp ()] <1,

for -1<x< 1, then in the same interval
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lp (x)| < m+1,
n

where m =n or n-1 according as n is even or odd.

Having realized the importance of Tchebycheff polynomials
we seek to generalize the preceding result by assuming that
ITk(x) pn(x)l <1 for -1<x< 1, where Tk(x) is the k-th

Tchebycheff polynomial. We prove

THEOREM 1. It pn(x) is a polynomial of degree n such

that lTk(x) pn(x)[ <1 for -1<x< 1, then in the same interval

Ipn(x)l <(n+k)/k.

For even n, this result includes Theorem A.
For the proof of Theorem 1, we need the following:

LEMMA. If F(6) is a real trigonometric polynomial of
degree n and |F(6)] <1 for real 6, then

2
(2) n2(F(0))% + (F1(0))% < n° o real .
Inequality (2) was first explicitly stated by van der Corput
and Schaake [6], although it is implicit in an earlier inequality

due to Szegé [16].

Proof of Theorem 1.  Let the maximum of Ipn(cos 0)| for

0< 6< 27 occur when 6 = 90 I 60 is either 0 or 2w there

is nothing to prove, since then ITk(cos Go)l =1 and we get
6 <1.
Ipn(cos 0)| < Ipn(cos 60) Tk(cos O)l <

Now let 0< 60< 27 , and choose vy such that ety pn(cos 60)

is real. Consider the real trigonometric polynomial
iy
F(8) = Re {e pn(cos 0)} .

The maximum modulus of F(6) occurs at 90 and it is a local
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maximum as well, i.e., the derivative of F(6) vanishes at 6
0

Applying the lemma to the trigonometric polynomial

Tk(cos 0) F(0) = cos k6 F(86)
we get
(n+k)2 (cos2 k) F2(9) + {-k(sin k8) F(0) + (cos k6) F'(e)}2 < (n+k)2 ,

for 0<6< 2r. For 06=06 we have in particular
- - o

{(n419% (cos” k0 ) + k¥ (sin” k0_} F(0 ) < (n#h)”
or

[F(0_)] < (n#)/ (k% + (n° +2nk) (cos” keo)}i/z,

and the desired result follows.

If S(6) is a trigonometric polynomial of degree n and
|S(6)| < 1 for real 6, then

(3) |s' (@) <n, 0 real .

This result was proved by Bernstein [1], except that in (3)
he had 2n in place of n . Inequality (3) in the present form
first appeared in print in a paper of Fekete [8] who attributes the
proof to Fejér. Bernstein [2, p.39] attributes the proof to
Landau. Using (3), we can deduce from

S(6) - S(0) = fe S'(t) dt ,
0

that if S(6) is a trigonometric polynomial of degree n such that
IS(O)I <1, and S(0) =0, then for all real 6

(4) [S(6)/6] <n.

The example sin n6 shows that the result is best possible. Note
the analogy between this result and Theorem A.

It is well known that the class of trigonometric polynomials
of degree n coincides [5] with the class of entire functions of
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exponential type r(n< 7 < n+1), periodic on the real axis with
period 2w . Inequality (4) is therefore included in the following
result.

THEOREM 2. If f(z) is an entire function of exponential
type 7 such that If(x)Tf_ 1 for all real x, and f(0) = 0, then

(5) [f(x)/x|< T .
The bound is attained for the function sin vz .

Inequality (3) has been extended [3, p.206] by S. N.Bernstein
to entire functions of exponential type and so Theorem 2 follows
in exactly the same way as inequality (4).

2
2. In this section, we obtain L analogues of (1), (4) and (5).

Let pn(x) be a polynomial of degree n (>1) such that
pn(O) =0. Thenfor 0<a<n

1 2
f_1 lpn(x)/xl dx

= f ]pn(x)/xl2 dx + f Ipn(x)/xl2 dx
|x|<a/n (a/n)<|x]<1

(6)

o

< gni max lpn(x)/xlz +% f1 lpn(x)lzdx.
|x|<a/n a -t

Let R> 1 be arbitrary and let E_ denote the ellipse with

R
foci at +1 and semi-axes

a=%(R+R_1), ;3=-;-(R-R ) .

-1
It is easy to verify that if lxl La then the shortest distance D

. 2.1
of x from ER is B(1-x7) /2 . By Cauchy's integral formula
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2 2

p_(x) 4 p_(2) dz
X  2mi é z zZ - X
R
-1
Hence for |x|_<_a/ ,
2 1 2
lp (0)/x|" < ———77 Ip_(2)/z]" |dz]
n 2mp(1-x7) 12 fER n
2n-1
R 1 2
< ey |p (x)/x|” dx
11_}3('1_}(2)1/2 [1 n

by an inequality of Hille, Szegd, and Tamarkin (see inequality

2
(2.3) on p.732 of [9]). On putting R = we obtain

n-1

o /x|® « 2R [ [p /x| ® ax
m(1-x") -1

=2 21/2 J P\ =l ax
m(n -a ) -1

if |x|<a/n.

Using the last estimate in (6), we obtain

fi lpn(x)/xl2 dx

-1
2
1 1 2
<22 [P arx|Pax s 1 ()% ax
m(n -a ) -1 a -1
or
2,2 21/2
1 2 mn (n -a ) 1 2
lp_(x)/x|" dx < lp (x)]|” ax .
[1 n az{n(nz- az)i/2 - 4aen} f—i n

On putting a = 61. this reduces to
e
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fi Ipn(x)/xl2 dx

-1
< (ben/n)’ {1-(§)/ A S N lpn(x)l?‘ dx ,
-1

which is the analogue of (1) we wanted to prove. Itis not asserted
that the right- hand side of this inequality is best possible. Thus
we may state the following:

THEOREM 3. If pn(z) is a polynomial of degree n(>1)

0) =0, th
p,(0) then
1 2 2 1 2
(7) f |pn(x)/xl dx< Kn f lpn(x)l dx ,
-1 -1
where K< 83 .
If F(B) is a trigonometric polynomial of degree n, such

that F(0) = 0, then F(20)/sin 6 is a trigonometric polynomial
of degree 2n -1, and for 0< a< nm/2,

f“/z |F(20)/sin 6% do

-m/2
. 2 ) 2
= f |F(26)/sin 0]” do + [ |F(26)/sin6|“ a6
lelga/n (a/n)<’9|§1r/2
2a 2 172 2
<= max |F(20)/sin 0| e |F(26)/0|" de6,
n |6|<a/n (a/n)<|0]|<m/2

™

2
since |sin 9,2;]6, for |6 < Hence

WS}
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f"/z |F(20)/sin 9|2 de

-m/2
2 2

<2 ax |F(20)/sin elz+”——52‘— f“/z |F(26)/6]% do

n Ielga/n 4a -m7/2

2a 4n-1 2 2 n? /2 2
<= == [T |F(20)/sin 0| do +T—— [T'° |F(20)|" do

n 2r 2

-1 4a —1T/2

by a result of Ibragimov [10, p. 178] which states that, if S(6) is
a trigonometric polynomial of degree n, then for 1 <p<2

max |S(6)] < (2;—:1)”1’( [T Iso)|P ao)t’P .
-m<O<T -7

since [ |F(20)/sin 0] d6 is equal to 2 f“/z |F(26)/sin 6] d0

- -m/2
we obtain
3 3
2 .
f“//Z |F(20)/sim 0] % ab « ——2—T 17 e a0
-

4a {nm-2a(4n-1)} -n/2

On putting a = 1—1T2 this reduces to

3
(™% |F(20)/5in 6]% 46 < 6 x 3 x 12 x znﬂ)f"/z |F(20)[% de .
-m/2 n -m/2

Hence

3
™ Y- n T 2
_fﬁ |F(0)/sin5 |“ d6 < 6 x 3 x12% (57) f_ﬁ |F(e)|“ de.

Since 5 > sing we get
2'— 2
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j“ lF(e)/el de<54t><(2—Jr1 [F(6)|2
-

Hence we have the following theorem.

THEOREM 4. If F(©) is a trigonometric polynomial of
degree n such that F(0) = 0, then

(8) I |F(0)/0]% a6 < 27n° N BOIE

- -

Inequality (8) is to be compared with (4). Here again we do
not claim that the inequality is sharp.

Finally, we prove the following analogue of (5).

THEOREM 5. If f(z) is an entire function of exponential

2
type T belonging to L on the real axis and f(0) = 0, then

9) [ iea/x% dx< 27(r/m)® [ |5)] % ax .
-0 -0
Proof of Theorem 3. For every positive a
foo If(x)/le2 dx = f If(x)/x dx + f lf(x)/xl2 dx
- |x| > a/¥ |x| <a/m

< ('1’/.31)2 foo lf(x)l2 dx + 2(a/r) max lf(x)/xl2

- 00 -00<x<00

It has been proved by Korevaar [13] that if F(z) is an entire

2
function of exponential type T belonging to L~ on the real axis
then

|F(x)|2< T foo lF(x)lde, -0<x< ©.
= J
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Hence

I l£(x)/x|? ax < (7/a)° [ l£(x)]% dx + 2(a/m) [ |£(x)/x]  ax

-0 -

or

f°° lf(x)/xl2 dx < (’r/a)z 1T-1T2a f°° lf(x)l2 dx .
-0 - 00

. 2
Putting a =% which makes ('r‘/a) - _Trza minimum we get the
desired result.
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