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Abstract

Self-applicable specializers have been used successfully to automate the generation of
compilers. Specializers are often rather sophisticated, for which reason one would like to adapt
and transform them with the aid of the computer. But how to automate this process? The
answer to this question is given by three specializer projections. While the Futamura projections
define the generation of compilers from interpreters, the specializer projections define the
generation of specializers from interpreters. We discuss the potential applications of the
specializer projections, and argue that their realization is a real touchstone for the effectiveness
of the specialization principle. In particular, we discuss generic specializers, bootstrapping of
subject languages and the generation of optimizing specializers from interpretive specifications.
The Futamura projections are regarded as a special case of the specializer projections. Recent
results confirm that the specializer projections can be performed in practice using partial
evaluators.

Capsule review

Program specialization or partial evaluation has by now more than proven its worth as a
realistic program transformation paradigm. The Futamura projections stand as the cornerstone
of the development of program specialization. These projections tell us that if we write a self-
applicable program specializer we get much more than just a specializer: we get the possibility
to generate compilers from interpreters, and even a standalone compiler generator.

This paper takes the idea of the Futamura projections even further. It defines three variations
of the Futamura projections called the specializer projections.

Where the first Futamura projection tell us how to generate target programs from an
interpreter and a subject program, the first specializer projection tells us how, in the additional
presence of some of the input to the subject program, to generate a specialized version of the
subject program. Likewise, where the second Futamura projection tell us how to generate
compilers, the second specializer projection tells us how to generate specializers. Finally, where
the third Futamura projection tells us how to generate compiler generators, the third specializer
projection tells us how to generate specializer generators.

Soif we are given self-applicable specializer and we write an interpreter we get much more than
just an interpreter: we get the possibility to specialize programs in another language, and to
generate both a new specializer for this language, and a specializer generator.
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1 Introduction

The driving force behind the investigation of program specialization and self-
application are the three Futamura projections (Futamura, 1971). These projections
assert that compilers and compiler generators can be obtained from interpreters by
self-application of a program specializer; an approach which has many practical
advantages (Jones, 1990; Pagan, 1988). Partial evaluation, a technique for program
specialization, has been very successful due to its promising applications and recent
advances both in theory and practice. Fully automatic, self-applicable partial
evaluators now exist for several languages, and have been used for generating
compilers according to the Futamura projections (e.g. Andersen 1992; Bondorf and
Danvy, 1991; Consel and Danvy, 1991; Jones et al., 1989; Jorgensen, 1992;
Launchbury, 1991; Romanenko, 1988).

Current research in program specialization aims at extending the state of the art in
two directions: improving the specialization of programs and adapting existing
methods to new language features and paradigms. Improving program specializers is
not a trivial task: it requires considerable insights into an existing system or building
a new system from scratch. Specializers are often rather sophisticated, for which
reason we would like to adapt and transform them automatically. While self-
applicable specializers have been used to generate compilers and other program
generators, the generation of specializers by self-application seems far away. Indeed,
the Futamura projections give us no clue on how to generate specializers from
interpreters.

In this paper, we assert that specializers can be generated by self-application. As in
the Futamura projections, we define three specializer projections. While the Futamura
projections allow the generation of compilers from interpreters, the specializer
projections enable the generation of specializers from interpreters. The specializer
projections apply the methods of program specialization to the problem of specializer
construction. Constructing specializers is just another instance of the constant
struggle between universality and specialization. Recent results confirm that the
specializer projections can be performed in practice, even with existing partial
evaluators (Gliick and Jorgensen, 1994).

Given a self-applicable R - R-specializer and the interpretive definition of a
language S in R one can perform S— R-specialization, generate an S — R-specializer
and an S— R-specializer generator. As a consequence, one does not need to devise
S,— R-specializers for different subject language S, (i = 1,...,n) individually, just
to provide the interpretive definition of R. Other possible applications of the
specializer projections include (i) using generic specializers; (ii) bootstrapping of
subject languages, and (iii) generating optimizing specializers from appropriate
interpreters (i.e. to generate specializers that are stronger than the self-applicable
specializer used in their generation).

This paper is organized as follows. After reviewing the background and notation
in section 2, the specializer projections are defined in section 3. In section 4 we
consider the most general case of multilanguage specializer generation, and discuss
the inheritance of languages and functionality in the generation process. In section 5
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we outline three applications of the specializer projections. Section 6 discusses
practical aspects, and section 7 concludes with related work.

2 Background

Program specialization is a program transformation principle for specializing
programs with incomplete input information. Given a subject program S and some
partially known input information, a program specializer o generates a residual
program R that returns the same result when given the remaining input information
as S when applied to the complete input. The ultimate goal of program specialization
is to improve the efficiency of the subject program by exploiting the known
information in advance. The resulting residual program R can be much faster than the
subject program S. The reader is referred to the literature for more technical details
(Bjorner et al., 1988; Jones et al., 1993).

Let S be an S-program of two arguments, and let D,, D, be two input values.
Running S-program S with the input D,, D, is written as follows (S represents the
complete program text; the subscript S indicates the language in which the program

1s written
) Result = S¢(D,, D,)

The result of specializing the S-program S with respect to D, by an S — R-specializer
is an R-program R that returns the same result (if it exists) when given the remaining
input D, as the S-program 8
Ss(Dy, Do) = Rg(Dy)

A program specializer a can be described as a program with three parameters (Jones
et al., 1989): a subject program, a string classifying the arguments of the subject
program as either known (static, ‘s’) or unknown (dynamic, ‘d’), and a list of the
known input values. The classification is used to make it explicit which arguments of
a subject program are known/unknown.

Definition An /-program « is an S — R-specializer iff for all S-programs S and input
values D,, D,

S¢(D,, D,) = Rg(D,) where Ry=a,(Sg, ‘sd’, [D,])

In case the subject program S is equal to o, we speak of self-application. It can easily
be seen that for self-application to be feasible, I must be equal to S (or, at least, a
subset of S). Most self-applicable program specializers are S — S-specializers written
in S, where S = subset of a high-level language (such as Lisp, Prolog or C). Few
S —> R-specializers have been implemented (e.g. AMIX, where S = subset of Lisp;
R = code for a stack-machine (Holst, 1988)). We depict specializers using T-diagrams
where the arrow is marked with a Greek letter (to distinguish specializers from
compilers). Figure 1 illustrates an S — R-specializer written in I.

s 4 R

I

Fig. 1. T-diagram of an S — R-specializer written in 1
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2.1 Futamura projections

The Futamura projections (Futamura, 1971) assert that compilers and compiler
generators can be obtained from interpreters by self-application of a program
specializer. Several self-applicable program specializers have been built and applied
according to the Futamura projections (Jones et al., 1993). The formulas are termed
‘projections’ according to Ershov (1982), who coined the term for denoting the
specialization of programs with respect to some fixed argument (in an analytical
geometry sense). The following programs will be used in the Futamura projections
(and later in the specializer projections):

e A self-applicable R - R-specializer a written in R.
e An S-interpreter Int written in R.

For notational convenience we assume that all interpreted S-programs have two
arguments (of course, each argument may be a list of several arguments). This
assumption makes it easier to compare the Futamura projections and the specializer
projections. We define Int to be an interpreter with three parameters: the interpreted
program S, and the two arguments of S.

Definition An R-program Int is an S-Interpreter iff for all S-programs 8 and input
values D,, D,
S¢(D;, D,) = Intg(Sg, Dy, D,)

The Ist Futamura projection follows directly from the definition of the R—+R-
specializer o and the S-Interpreter Int. The effect of S - R-compilation is achieved
by specializing the S-interpreter Int with respect to an S-program S. During the
specialization of the S-interpreter the S-program S is static while both of its
arguments are dynamic (therefore the classification of the S-interpreter Int is
¢sdd’). The result is the residual program T.

Tg = og(Intg, ‘sdd’, [Sg]) S — R-compilation

According to the definition of the R > R-specializer o and the S-interpreter Int, the
new R-program T returns the same result as the S-program S with the same input:
Sg(D;, D;) = Intg(Sg, Dy, D) = Rg(D,, D,), ie. the R-program T is a
compiled version of the S-program S.

The 2nd Futamura projection follows from the lst projection by applying the
specializer o a second time (the first self-application takes place), i.e. by specializing
the specializer a with respect to the S-interpreter Int and its classification “sdd’ . The
result is the S—> R-compiler C. According to the definition of o, the same target
program T can be obtained by applying the new program C to the S-program S
(instead of using the 1st Futamura projection), i.e. the program C resulting from the
2nd Futamura projection corresponds to an S-> R-compiler

Ck = og(og, ‘ssd’, [Intg, ‘sdd’]) S — R-compiler generation

The 3rd Futamura projection follows from the 2nd projection by applying the
specializer o a third time (the second and final self-application takes place). The
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specializer o is now specialized with respect to a. The result is the compiler-generator
G. According to the definition of the S - R-specializer a, the S - R-compiler C can be
generated by applying the program G to the S-Interpreter Int and the classification
‘sdd’ (instead of using the 2nd Futamura projection), i.e. the program G resulting
from the 3rd Futamura projection corresponds to a compiler generator

Gg = og(og, ‘ssd’, [og, ‘sdd’]) S — R-compiler-generator generation

3 Specializer projections

The specializer projections assert that, given a self-applicable R — R-specializer a and
the interpretive definition of language S in R, one may perform S — R-specialization,
generate an S— R-specializer and an S— R-specializer generator. The following
programs will be used in the three specializer projections (the same programs as in the
Futamura projections, see above):

e A self-applicable R — R-specializer o written in R.
e An S-interpreter Int written in R.

3.1 1st specializer projection

The 1st specializer projection follows directly from the definition of the R —R-
specializer o and the S-interpreter Int. The effect of S — R-specialization is achieved
by specializing the S-interpreter Int with respect to an S-program S and ~ in contrast
to the 1st Futamura projection — some part of S’s input. Assume that the input D, is
given at specialization time (i.e. the classification of the S-interpreteris ‘ssd’ ). The
residual program R is defined by

Rg = og(Intg, ‘sdd’, [Sg, D))

According to the definition of the R — R-specializer o and the S-interpreter Int the
new R-program R returns the same result given the remaining input D, as the S-
program S with the complete input D,, D,. Obviously, the R-program R is a
specialized version of the S-program S

Ss(Dy, Dp) = Intg(Ss, Dy, D) = Re(Dyp)

i.e. the effect of S — R-specialization can be achieved without an S - R-specializer. An
efficient residual program R may be produced if all operations in the interpreter Int
depending only on the program S and the static input D, can be executed at
specialization time.

3.2 2nd specializer projection

The 2nd specializer projection follows from the 1st projection by applying the
specializer o a second time, i.e. by specializing the specializer a with respect to the
interpreter Int and the classification ‘ssd’

Yk = Og(og, ‘ssd’, [Intg, ‘ssd’])
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According to the definition of «, the R-program R can be obtained by applying the
new R-program y (‘generated’) to the S-program $ and the input D,

Rg = vr(S5gs Dy).

The program y corresponds to an S — R specializer: applying v to an S-program S and
a part of its input D, produces an R-program R which is a specialized version of S.
That is, the 2nd specializer projection asserts the generation of an S R-specializer
by specializing an R - R-specializer with respect to an S-interpreter.

3.3 3rd specializer projection

The 3rd specializer projection follows from the 2nd projection by applying the
specializer a a third time, i.e. the specializer o is specialized with respect to o. The
result is an R-program G which is a specialized version of o

Cp = (g, ‘sdd’, [og, ‘ssd’])

According to the definition of the S — R-specializer o the S — R-specializer y can be
generated by applying the program G to the S-interpreter Int and the classification
‘ssd’

Y = Gp(Intg, ‘ssd’)

The residual program G can be called an S R-specializer generator, i.e. the 3rd
specializer projection defines the generation of an S— R-specializer generator by
double self-application of an R — R-specializer a.

3.4 Specializer projections and Futamura projections

The specializer projections can be summarized as follows:

Ry = op(Intg, ‘ssd’, [Sg, D;1) S — R-specialization
Y = Og(dg, ‘ssd’, [Intg, ‘ssd’]) S — R-specializer generation
Gg = og(og, ‘ssd’, [og, ‘ssd’]) S — R-specializer-generator generation

Applying the generated programs to the corresponding input
S5s(D;, D) = Rp(Dy)

= YR(SR, Dl) (Dz)
= Ggp(Intg, ‘ssd’) (S, D;) (Dy)

The building material used in the specializer projections is the same as in the
Futamura projections. The difference between the S — R-compilation asserted by the
1st Futamura projection and the S - R-specialization asserted by the st specializer
projection is that in the latter case, the S-interpreter is also specialized with respect to
some part of the input to the S-program. The difference between compiler generation
and specializer generation in the 2nd projections is the classification of the S-
interpreter during specialization time. The 3rd projections coincide. In fact, the
generator G is a general currying function which can be used with varying
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classifications. For example, the generator G can be used for generating an S— R-
compiler from the S-interpreter Int given the classification ‘sdd’ and for generating
an S— R-specializer given the classification ‘ssd’.

The Futamura projections may be regarded as a special case of the specializer
projections: with D, being ‘empty’ the specializer projections are reduced to the
Futamura projections. This is not surprising, since S— R-compilation (no input is
given in advance) can be viewed as a special case of S — R-specialization (some input
is given in advance). If we have solved the problem of specializer generation, we have
also solved the problem of compiler generation.

There are now two ways for using self-application: specializer generation or
compiler generation (as illustrated in Fig. 2). In contrast to the Futamura projections,

Spec. Proj.

Int. + o > Y

Futamura Proj.

— Comp.

Fig. 2. Two ways using self-application: specializer generation and compiler generation

the specializer projections can be applied ‘repeatedly’: the new specializer v can be
reused according to the specializer projections (or the Futamura projections). This is
not possible with a compiler generated by the Futamura projections.

An open question is how far the generation of S — R-specializers can be taken. How
‘close’ must the languages S and R be that the generation of S— R-specializers is
practical? Could S be a ‘high-level’ language while R is a ‘low-level’ language?
These questions also remain to be answered for the Futamura projections.

3.5 Self-application of a generated S — R-specializer

The specializer projections define how to generate an S - R-specializer from an S-
interpreter and an S— R-specializer. It may be desirable to self-apply the new
specializer according to the Futamura projections (or the specializer projections). In
section 2 we argued that self-application requires the specializer to be written in its
own subject language. However, the specializer y cannot be self-applied because it is
written in R while its subject language is S (the incompatibility of y’s self-application
is illustrated in Fig. 34). How to use the new specializer y? The solution is simple:

s X R

R

a b

Fig. 3 (a). Incompatible self-application of v; (b) quasi self-application
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reuse the initial R — R-specializer o in the projections instead of attempting the self-
application of y (Fig. 3b). In other words, the new S— R-specializer y is not self-
applied (and does not need to be self-applicable). Such a combination of specializers
is usually not used for generating program generators because it requires to implement
two specializers. However, in our case one specializer is generated from another
specializer.

4 On the generation of specializers

Two important aspects of specializers generation: (1) the languages (subject,
residual, implementation language), and (2) the functionality which the new
specializers inherit. In this section we assume that two specializers and an interpreter
are given: an A — Y-specializer o, a B> Z-specializer f and an X-interpreter Int.
According to the specializer projections, a new specializer ¥ may be generated

Yz = PBec(ag ‘ssd’, [Int,, ‘ssd’])

4.1 The languages of the generated specializers

The new specializer y is an X — Y-specializer written in Z. It inherits the three
languages X, Y and Z from the initial building material (as can easily be verified):

e Its subject language X from the interpreter Int.
e Its residual language Y from the specialized specializer o.
e Its implementation language Z from the specializing specializer p.

The three other languages A, B and C — implementation language of the interpreter
and the subject languages of the two specializers — can be chosen arbitrarily: they
disappear during the generation process. (cf. Fig. 4). Note that the specializers o and
B are not self-applied.

X

Al A

e
w
b
l—<
<

C

Fig. 4. Multilanguage specializer generation

The inheritance of the languages can be represented in the following scheme of
multilanguage specialization. The T-diagrams are simply abbreviated (e.g. the
specializer « is characterized as A —Y/B). Note that this scheme is also valid for
generating compilers according to the Futamura projections. Since we are interested
in the language inheritance scheme we omit other details

X/A+A=-Y/B+B->2/C=X>Y/Z

There are three interesting instances of the above scheme:
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e S— R-specializer generation by self-application of an R — R-specializer (cf. section
3.2) S/R + R>R/R + R>R/R = S>R/R

e Specializer generation using two specializers, an S— R- and an R - R-specializer
(cf. section 3.5)
L/S+ S-R/R+ R-R/R = L->R/R

o Self-generation of an R - R-specializer using a self-interpreter (cf. section 5.3)

R/R + R~R/R + R—~R/R = R/R

4.2 The functionality of the generated specializers

The new specializer v inherits not only the three languages X, Y and Z but also its
functionality from the initial building material. The two specializers and the
interpreter play different roles in the generation of y.

o the specializing specializer B implements the ‘machinery’ of y;
e 7 inherits its functionality from the specialized specializer o and the interpreter
Int.

We should stress that the specializer projections assert nothing about the efficiency
or specialization power of the specializers. The quality and efficiency of the generated
specializer v depends on the transformations and strategies built into the original
specializers o and P, and on the interpreter Int (cf. section 5.3). One would expect
(and hope) that those criteria for the effectiveness of specializers, such as Jones’
(1990) optimality criterion, which have been satisfied ‘pragmatically’ for hand-
written specializers would also hold for generated specializers. However, such
properties cannot be guaranteed in general, since it is impossible to construct (and to
generate) specializers that guarantee the maximum use of information for non-trivial
programming languages. For the specializer projections to be of practical value, the
techniques involved and the results must be ‘strong enough’. Ideally one would hope
to achieve (one of) the following goals:

(a) specializer y be at least as efficient as the original specializers;
(b) specializer y be at least as strong as the original specializers.

It is interesting to note that recent investigations demonstrated the feasibility of the
second goal (Gliick and Jergensen, 1994; Turchin, 1993).

S Approaches to specializer development

There are several techniques that enable us to make good use of the specializer
projections. In this section, we suggest three methods which aim at the modification
of the subject languages and the extension of the functionality of specializers.

5.1 Generic specializers

The specializer projections enable L, R-specializers to be generated for different
languages L (i = 1, ..., n), given a self-applicable R — R-specializer o. The economy of
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L, L, Y R
R R
R % R
+ =
L R
" L, Y R
R R

Fig. 5. Using a generic specializer o

this approach is obvious: a generic specializer can be devised and reused for different
languages. One does not need to write L,— R-specializers for each new subject
language, just give their interpretive definition in R. It is much easier to construct a
generic specializer plus a set of L,-interpreters than to write all L, -~ R-specializers by
hand. This method allows us to separate the definition of a language from the
specialization proper. A similar approach was used to derive manually a new
specialization algorithm for Prolog by writing its evaluation function in a functional
language and using an existing algorithm for minimal function graphs that was
already given for the functional language (Gallagher and Bruynooghe, 1991).

The ‘parallel” application of the specializer projections (Fig. 5) is the simplest
technique using the specializer projections for automating the construction (and
maintenance) of L, R-specializers. In case the generic specializer is modified, all
specializers can be automatically generated again. Only the generic specialization
engine needs to be updated and maintained. In addition, the same set of
L,-interpreters can be used together with different generic specializers. Note that the
L,— R-specializers generated from the same specializer have the same residual
language (this also holds for the L, —~ R-compilers generated from the same specializer
using the Futamura projections).

5.2 Bootstrapping

The specializer projections may be used to bootstrap the subject language S of an
S - R-specializer by defining extended language features in a subset of the language
by an interpretive definition. This is related to the well-known technique of
bootstrapping compilers, but different in the use of interpretive definitions.

First, an R - R-specializer is constructed, where R could be either an initial subset
S, of the subject language S or some language in which we would like to write an Sy-
interpreter in. Then the specializer for the full subject language S can be generated
step-by-step by supplying a series of interpretive definitions S, in Sy, S, in S, ... (where
S, is a subset of S,,,) and by repeatedly applying the specializer projections until the
full language S is reached. Each step in the process of bootstrapping can profit from
the previous steps. New features are expressed in terms of simpler ones. This is the
essence of the bootstrapping process; using the facilities offered by a subset of S to
definite more advanced features of S.
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S; ss & R ss5 L R
+ =
S, R R

Fig. 6. A step during the bootstrapping of a subject language

The bootstrapping technique allows the incremental development of specializers.
The advantage is obvious: it is usually much easier to construct a specializer for a
subset of a language S than to build a specializer for full S. The implementation of
the extensions is left to the computer.

Such a “serial” application of the specializer projections (Fig. 6) allows to develop
specializers in a modular and systematic way, i.e. by devising independent interpretive
definitions for each extension of the subject language. Each definition can be
incorporated automatically into a specializer. This simplifies the construction and the
maintenance of specializers: simple add or modify the corresponding interpretive
definitions. In case the underlying specialization engine is modified, the specializers
can be generated again from the existing definitions. This makes it possible to
separate specific language features from the specialization kernel.

5.3 ‘Bricks instead of tricks’

Generated specializers inherit not only their languages but also their functionality
from the initial specializers and interpreters. In the preceding sections, the specializer
projections were used to generate specializer for various subject languages. The same
principles can be applied to the construction of optimizing specializers, which enables
us to generate more efficient residual programs. So far, two approaches are known
that enable one to influence the way in which subject programs are specialized:

(1) rewrite the subject program (cf. Consel and Danvy, 1989);
(2) rewrite the specializer (cf. Bondorf, 1992).

The specializer projections offer a new alternative:
(3) provide an interpretive definition of the subject language.

Recent investigations confirm the feasibility of the third approach (cf. section 6.2):
it was shown that interpreters may be used for improving the transformational power
of supercompilation (Turchin, 1993), and that generated specializers may be stronger
than the partial evaluator used for their generation (Gliick and Jorgensen, 1994).
Using the interpretive approach, one may achieve a better specialization of programs
without rewriting each program individually, as in case (1), and without
understanding how an existing specializer works internally, as in case (2). Instead of
manually extending a specializer with numerous ‘tricks’, one could implement
corresponding methods in interpreters and generate the corresponding optimizing
specializers, i.e. each ‘trick’ may be put into a ‘brick’) One can also imagine a
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collection of such interpreters being shared, reused and combined to derive various
sophisticated specializers.

It is obvious that the three approaches discussed in this section can be combined
in various ways. For example, one could imagine a ‘specializer tool kit’ including a
library of generic specializers, a collection of ‘tricks in bricks’ and interpreters for
various subject languages.

6 Two practical approaches

In this section, we will outline how one can achieve in practice what has been
discussed in principle. Assume that the same ‘building material’ as in the definition
of the specializer projections is given (section 3): an S-interpreter Int and a self-
applicable R — R-specializer o, both written in R.

6.1 Incremental S— R-specialization
The effect of S — R-specialization can be achieved by splitting the task into two steps:

(1) S— R-translation of an S-program S into an R-program R.
(2) R->R-specialization of the R-program R with respect to known input D, .

Obviously, the specializer used in the first step has to produce target programs written
in the subject language of the specializer used in the second step; this is the case for
the R — R-specializer a (of course, one could use two different specializers provided
the first specializer produces programs written in the subject language of the second
specializer). A program Spec can be defined for performing S - R-specialization in
two steps. Assume that Spec is written in the language R. The program may look like

define Spec (int,p,dl)
let g = a(int, ‘sdd’,[p]) ; S— R-translation (1st step)
in a(q, ‘sd’, [d1]) ;R — R-specialization (2nd step)

A call to Spec correspond to the Ist specializer projection: given an S-interpreter,
and S-program and some of its input Spec returns to specialized version of the S-
program written in R. To improve the specialization process defined by Spec one can
specialize the program Spec with respect to a particular interpreter Int. This
corresponds to the 2nd specializer projection. Applying the specializer a to Spec
converts the first stage into an S— R-compiler (according to the 2nd Futamura
projection). However, not much will be improved by specializing the second stage,
since neither the input q nor d1 are known for a. The 3rd specializer projection over
Spec basically inserts a compiler generator in the first stage. Not much can achieved
in the second stage.

A possible optimization is the generation of an optimizing compiler for the first
stage provided an appropriate interpreter is given (Jorgensen, 1992). One can expect
that the specialization of optimized target programs will then return more efficient
residual programs in the second stage. However, a drawback of this method is that
the optimizing compiler will not be able to use the information provided in the second
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stage, i.e. ultimately the specialization power of Spec is determined by the strength
of the specializer used in the second stage.

Note that in case the specializer « is a partial evaluator directed by a binding-time
analysis, such as Mix (Jones et al., 1989), the specialization process defined above
incorporates two binding-time analysis: (1) the binding-time analysis of the interpreter
Int in the first stage (for guiding the compilation of the subject program); (ii) the
binding-time analysis of the target program produced by the first stage in the second
stage (for guiding the specialization of the target program).

Splitting the specialization process is related to the two-step method used for
semantics-directed compiler generation (Jones, 1988). In fact, both methods use
incremental specialization (Gliuck, 1991b).

6.2 Direct S— R-specialization

The ‘natural’ approach to specializer generation is to follow the specializer
projections directly, i.e. specializing the S-interpreter Int with respect to an S-
program and know parts of its input. Practical results using this approach and an
existing partial evaluator (i.e. Similix) are reported elsewhere (Gliick and Jorgensen,
1993). The interpreter Int was written carefully to ensure that the input to the
interpreter S-program can be separated into two parts (corresponding to the static
and dynamic input). Moreover, it was confirmed that the generated specializers may
be stronger than the partial evaluator o used for their generation (cf. section 5.3), i.e.
the combined effect of the partial evaluator o and an interpreter Int may be greater
than the effect of the specializer a alone. To the best of our knowledge, these are the
first practical results using the specializer projections for generating optimizing
specializers.

7 Related work

The specializer projections and their potential applications have been anticipated for
some time (Gliick, 1991a). They are an instance of the more general principle of
metasystem transition. Other potential applications of metasystem transition have
been discussed elsewhere (Abramov, 1991; Glick, 19915, 1992; Turchin, 1980,
1986). Using multiple interpretive layers for program transformation was suggested
by Turchin (1993) and called the stairway effect: a ‘mechanical’ way to repeat
metasystem transitions.

It is well-known that optimizing compilers can be generated from interpreters by
self-application of a program specializer. An optimizing compiler producing very
efficient program code for a substantial subset of a realistic lazy functional language
was obtained by providing an appropriate interpreter (Jorgensen, 1991, 1992). The
properties of the partial evaluator and the way in which the interpreter was written
ensured that all compiled programs had certain properties, e.g. efficient pattern
matching and no code duplication. From this viewpoint, it is not surprising that
interpreter can be also be used for optimizing the specialization of programs.

The residual language of the generated specializer is fixed. Changing the residual
language requires retargeting a specializer manually (automatic retargeting would
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require the use of program inversion (Abramov, 1991; Romanenko, 1991), which is
beyond the scope of this paper).

8 Conclusion

Whereas the Futamura projections allow us to generate compilers from interpreters,
the specializer projections enable us to generate specializers from interpreters. Self-
applicable specializers have been used successfully for generating compilers. However,
specializers are often rather sophisticated, for which reason one would also like to
adapt and transform them automatically. The specializer projections apply the
methods of program specialization to the problem of specializer construction. How
can we convince others if we do not use our own methods to solve our own problems
(i.e. the construction of specializers)?

We have presented three approaches using the specializer projections for the
development of specializers: generic specializers, bootstrapping of subject languages,
and using interpreters to optimize specialization. Common to all three approaches is
the use of interpretive specifications. This has several advantages compared to the
manual construction of specializers: it is generally easier to read and write
interpreters; the optimizations in the interpreters are integrated into the specializer
automatically; debugging an interpreter is simpler than debugging a specializer; and
one can instrument an interpreter with operations tracing the execution or doing
statistics (which results in a specializer doing these operations). In conclusion, the
specializer projections offer potentially more flexibility and economy in the
development of specializers.

Recent results confirm that specializers can indeed be generated from interpreters,
even with existing self-applicable partial evaluators. This can be seen as a first step
towards automatizing the construction of specializers. These results are also a strong
evidence that one should not limit the specialization principle to the generation of
compilers. The specializer projections can be seen as another ‘self-application’: the
use of specializers to generate specializers.

Using the specializer projections has, beyond practical advantages, the following
interesting property: the correctness of the generated specializer is guaranteed by the
correctness of the generic specializer and the correctness of the interpreter.

Specializer generation is new, and it is impossible to say how far this approach can
be taken. Some intriguing questions remain: How much can be achieved by a
repeated application of the specializer projections? What is the minimal functionality
an initial specializer must provide? How far these principles can be extended and
what their limitations are, will be a challenging problem for future research.
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