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ON FUNCTIONAL PROPERTIES OF 
INCOMPLETE GAUSSIAN SUMS 

K. I. OSKOLKOV 

ABSTRACT. The following special function of two real variables X2 and 
x\ is considered: 

^2iri(n X2+nx\ ) 
H(x2,xi) = p.v. £ -—. = J im J2 ••• 

n^0 2TT in N^™o<\n\<N 

and its connections with the incomplete Gaussian sums 

,„2 
2-ni^ 

where u are intervals of length \LU\ < 1. In particular, it is proved that for 

each fixed xi and uniformly in X2 the function H(x2, x\ ) is of weakly bounded 

2-variation in the variable x\ over the period [0,1]. In terms of the sums W 

this means that for collections Q. = { u^}, consisting of nonoverlapping 

intervals ojk C [0,1) the following estimate is valid: 

sup card ( u^ : W H) > £ V ^ < 

where card denotes the number of elements, and c is an absolute positive 
constant. The exact value of the best absolute constant /t in the estimate 

W lu, - < Kyfq 

(which is due to G. H. Hardy and J. E. Littlewood) is discussed. 

1. Introduction. We study here the special function of two real variables JC2, x\ 

p2-ni(n2X2+nx\) 

(1.1) H{x2,xx) = P.v. £ — r ^ = J i m E • • 

and its connections with incomplete Gaussian sums, i.e., 

(1.2) W\uj\a\ = y > 2 7 r / ^ ; q= 1,2,..., ; a = 0, ± 1 , . . . ; (a,<?) = 1, 
V <?J neco 

where a; denotes closed intervals on the real axis, with the length | UJ | satisfying 0 < 
| a; | < q. (If one or both endpoints of UJ are integers, we take the corresponding sum-
mands with the factor 1/2). For |CJ| = q, W(UJ) turns into complete Gaussian sum for 
which we use the notation S ( - ) ; moreover, let 

fa b \ JL. 2*i(an2+bn) 

S - , - = I > — r " ; a,ft = 0,±l,...,(a,^)= 1. 
W q) n=\ 
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ON FUNCTIONAL PROPERTIES 183 

The sums S were introduced and computed by K. F. Gauss, and in particular their moduli 
are defined by the following classical relation 

(1.3i) 

(1.3/0 

W q) 
y/q if q = 1 (mod 2); 

S ( - , b) I - y/Q(l + {-\)aQ+b) if q = 0 (mod 2), Q 

The following estimate is valid for incomplete Gaussian sums: 

(1.4) W ^ , - j «y/q. 

Here and in what follows relations such as A < < B mean, for a complex quantity A and 
nonnegative B, that \A\ < cB where c is an absolute constant; A denotes the conjugate 
of A. If | A\ < c7;<5... • #, where the factor c depends only on 7 ,£ , . . . , we use the nota­
tion A <<7,,$,... B. We comment on (1.4) a little later, and now immediately illustrate 
relationships between incomplete Gaussian sums and the function H{x2,x\ ) or its version 

(1.10 #*(*2,*i) = e'^ (H(^,XI)- l-H(x2 ,2x,)l 

-TTIX2 

p.v. E 
i/:i/=l/2(modl) 

p27n(*/2JC2+!/-*! ) 

27TlV 

(See Section 2 for the proof.) 

LEMMA 1. Let 0 < a < 1, q a positive integer, a an integer with (a, q) — I, a' the 
solution of the congruence ad = 1 (mod q) ( unique mod q) 

Wa(
a)=w([0,qa];a)= £ 
yqJ V 47 ne[0,q 

3-Tti-

e[0,qa) 

Then 

(1.50 

(1.5/0 

(1.5///) 

W a ( ? ) = 5 g ) ( a t 5 ( ^ , a ) ) , ^ S l ( m o d 2 ) ; 

Wa f - j =s{-) ( a + x w f - , 2 a l l , (/^ = 0 (mod 4); 

ifq = 2 (mod 4). 

It is clear from the assertion that the general problem of distribution of values of 
incomplete Gaussian sums is equivalent to that of investigation of functional properties 
of H(x2,x\ ). In particular, the estimate (1.4) is equivalent to the boundedness ofH(x2, x\ ) 
on the whole real plane E2 = { x = (JC2,JCI),JC2,JCI G E] — (—oo, oo)} . 

Estimate (1.4) is due to G. H. Hardy and J. E. Littlewood [5]. Although (1.4) has 
not been explicitly emphasized in [5], it is a corollary of iterative application of the 
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approximate functional equation which was discovered by Hardy and Little wood in [5] 
for the sums 

Wn(x2,xi) = J2 e*i(m2x2+2nvc'\ (JC2,JCI) G E2. 

Those iterations were carried out in [5, pp.212-213]. E.C. Titchmarsh commented on 
[5] in [5i], and presented (cf. [5i, pp. 113-114]) a more detailed estimate of incomplete 
Gaussian sums in terms of denominators of continued fractions from the variable X2. 
That comment implies (1.4) as a special case. We note also the joint paper of H. Fiedler, 
W. Jurkat and O. Koerner [4], devoted to the asymptotical formula of I. M. Vinogradov's 
type for the quadratic exponential sums W'n with real variables X2,x\. [4] also contains 
the proof of (1.4), using iterations of the above-mentioned functional equation (cf.[4,pp. 
138-139]), which is also derived in [4]. To a certain extent, the approach which we apply 
here to incomplete Gaussian sums is related with that of [4]. We also note that W'n(x2, x\ ) 
for real X2,x\, after the Hardy-Littlewood's paper [5], have been considered by several 
authors. For a survey of those results, the reader may be referred to [5i], [4]. 

On the other hand, the total boundedness of the function H(xi,x\ ) and hence also the 
estimate (1.4), (cf. (1.5)) is a consequence of a more general result, which was proved 
in [1] using I. M. Vinogradov's method of exponential sums (cf. [8]). Namely, for each 
fixed positive integer r the following discrete Hilbert transforms 

f,2iri(nrxr+---+n~X2+nx\ ) 

HN(xr,...,X2,x\)= /2 ô—• 
l<|n|<JV Z7Tin 

are uniformly bounded in N — 1,2,... and real coefficients xr,... ,X2,x\ of the polyno­
mial in the imaginary exponent. Furthermore, as N —> oo, the limit 

H(xr,..., x\ ) = lim Hu{xr,..., x\ ) 

exists at all points of the real space Er = {(xr,..., X2, x\ )} . 
Here we present a more detailed analysis of the function H{x2,x\), and apply it to 

further considerations of incomplete Gaussian sums. Recall some necessary functional 
definitions. 

Let /i(£ ) be some complex-valued and bounded function of the real variable £ on a 
certain interval UJ , and let 

osc(/z, UJ) = sup{ |/KO — Kl)\ ' £,,1 € OJ} . 

Let 7 > 1 and consider collections Q, — {tJk} of nonoverlapping subintervals a;* of a;. 
If 

SUp ̂ 2 o s c 7 (̂ > uk) < °°> 
Q k 

the function h is said to be of (strongly) bounded 7 -variation on UJ\ we use the notation 
var7(^,(j) for the value of the sup at the right hand side. Furthermore, fix a collection 
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Q and a positive £, and count the number (denoted by card) of those Uk £ ^ , for which 

OSC(h,UJk) > 6. If 

sup sup e1 card{o;^ : osc(/z,^) > e} < oo, 
Q e>0 

we shall say that h is of weakly bounded 7 -variation on a;, and denote war7(/i,ù;) the 

value of the sup above. The notion of (strong) 2 -variation was introduced by N. Wiener, 

and usefulness of 7-variations in Fourier analysis has been thoroughly studied, cf. e.g. 

[2, Ch. 4]. We can easily see that for 1 < 7 < S 

war7(/*,u;) < var7(/z,u); (vâTs(h,uj))1'6 << 7 , £ (war7(/i,OJ))1 '1 , 

so that if for example h is of weakly bounded 2-variation, then it is of strongly bounded 

7 -variation for each 7 > 2. 

The following assertion is valid. 

THEOREM 1. 1 ) For each fixed real X2 the function H(x2,x\ ) is of weakly bounded 2 

-variation in the variable x\ over the period [0,1) and this property is uniform in X2 : 

(1.6/) sup war2(//(*2, *)» [0> 1)) < ° ° 
X2 

2) Let £1 — {cJk} be an arbitrary set of nonoverlapping intervals on [0,1]; q = 

1,2,. . . ; a = 0, ± 1 , . . . , (a, q) = 1. Then the following estimate holds true for the in­

complete Gaussian sums which correspond to the intervals quj^: 

(1.6«) card ( uJk ' w(qLJk,-]\> £y/q\ . - 2 < < e~\e > 0). 

It is clear that for sufficiently large e the left hand side of (1.6ii) is less than 1 due 

to (1.6ii), i.e. card = 0, which in particular implies (1.4). Furthermore, by (1.5) and 

(1.3) the second assertion is a consequence of (1.6i). We also note that Theorem 1 is best 

possible, that is we cannot take strong instead of weak 2-variation in (1.6i), and it can be 

easily seen that 

(1.7) E 
n^qojk 

2irin 
» <?log<?, where ^ = (2qTxl\kxl2,{k + l ) 1 / 2 ) . 

For more details, see section 5 where the proof of Theorem 1 is carried out. In (1.6ii) and 

(1.7) quo is used to denote the interval u'' = { £ : £ = qr\,r\ G UJ} . 

Consideration of the local properties of H(x2,x\) (see Theorem 2, Section 5) enable 

also to estimate the exact value of the absolute constant times ^fq in the right hand side 

of (1.4). The corresponding extremal problem, say in the class of odd denominators q, 

deals with the computation of the quantity 

«o sup {q-{/2\w(u;,ab) \u\ <q,(a,q)= 1 ,q= 1,3,5, . . .} . 
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This problem was posed by A. A. Karatsuba in a personal conversation with the author. 
It can also be split into parts, corresponding to the cases of short, middle-length and long, 
i.e., almost complete sums. The corresponding asymptotic constants can be defined as 
follows. Let q —•> oo, q = 1 (mod 2), and let /3 > 0 be such that (3q —> 0; furthermore, 
let 

1 
0, oc\ a2 * + / 3 . « 3 

Kt = limsup max q l'2Waiq -
q-^oo a:(a,q)=\ ' \q 

1- /3 , 

1,2,3; 

max 
4>o 

Jo dX F2 = max 
4>o 

1 

F3 = max 
4>o 

-e* 
Jo 

ie ^ ri 

73 h 

_—7T/A" dX 

-7T/A* 

Each of the latter three quantities is expressed in terms of incomplete Fresnel integral, 
i.e., 

(1.8) g(0 = ei: j f V ^ d A (£>0). 

They provide lower bounds for the constants «,-,/ = 1,2,3 (see Proposition 1 below). 
The explicit value of «o remains unknown. However, it also can be expressed in terms 
of incomplete Fresnel integral, taken over periodic intervals on the real axis. We call a 
set Q in (—00,00) a periodic interval iff there are a positive number T and an ordinary 
interval cu in (—00, 00) such that 

id {£ :£ = fcr + T/,* = o,±i , . . . ,7j e ^ } 

and associate with each a; the corresponding Fresnel integral, understood in the Cauchy 
principle value sense: 

G(Q) ~ e ^~p. v. / \{Cj,\)e~ •iri\' dX lim [ 

where \ (Q, À ) = 1, if À G Q and \ {ÛJ , À ) = 0, if À ^ u. (Note that convergence 
and boundedness of £7 (Û5) is a serious matter. In fact it is equivalent to (1.4) or the 
boundedness of//, cf. Section 3, Lemma 3, and also relations (3. 3)). 

PROPOSITION 1. 

(1.9/) 

The following relations are valid: 

KO = sup I Ç(û)\, 

where the sup is taken over the set of all periodic intervals Q ; 

(1.9//) 

(1.9m) 

(1.9/v) 

(1.9v) 

«0 >2Fj = 1.341 

K\ 
1 

Ki>F2> 1; 

«3 > ^ 3 > ^ — ' 
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It can be seen from (1.9) that incomplete Gaussian sums exhibit, with respect to the 
corresponding complete ones, a kind of the well-known Gibbs phenomena in the theory 
of Fourier series, cf. [10, Ch. 2, Section 9]. 

We also note that Theorem 1 can be equivalently formulated in terms of functional 
properties of generalized solutions to the Cauchy initial value problem for Schroedinger 
equation 

3XF 1 32vF 
at 2iTi axz 

with periodical (of period 1) initial data/(x). (For more details concerning this relation 
cf. [6], [6i]). Namely, let vari(/, [0,1)) < oo , i.e.,/(jc) is of ordinary bounded variation 
on the period. Then there is a solution to (1.10) in the class of regular ^(x, t), which 
is bounded everywhere on E2 = { (x, t)}, and moreover, for each fixed t, ^(JC, t) is of 
weakly bounded 2-variation in x over [0,1), and 

supwar2(
vF(-,r), [0 ,1))<< var? (/*, [0, 1)). 

t 
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In particular, the author is indebted to A. Sharma and N. Sivakumar, who checked the 
language of the manuscript. Special thanks are due to Christine Fischer for beautiful and 
prompt typesetting. 

2. Identities for Gaussian sums and Vinogradov's continuations. Let/(A ) be a 
complex-valued, periodic (of period 1 ) function of the real variable À, integrable over 
the period, and let/(w) stand for its Fourier coefficients 

f(n) = Jlf(\)e-27TinXd\, n = 0,±l,.. . . 

We define the Vinogradov's series (V-series) off in two real variable (x2,x\ ) (cf. [6],[6i]) 
as follows: 

(2. 1/) V(f\x29xx) ~ J2f(n)e2«l(n2x^\ 
n 

where n = 0, ± 1 , . . . . The sum of the series (2.1/), whenever it exists is called the (two 
dimensional) V-continuation off. In our case, we understand the sum of (2. 1/) as the 
limit of the sequence of symmetrical partial sums of the series: 

V(f;x2,x\)= lim VN(f\x2,x\), 

\n\<N 
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If vari(/\ [0,1)) < oo, then V(f; S2,x\) exists on the whole real plane É2 = {(x2,x\ )} 
and is a bounded function of (*2, x\ ) (cf. [6],[6i]; the main point here is the existence and 
boundedness of H(x2, x\ )). 

From this point of view H(x2,x\) coincides with the V-continuation of the Bernoulli 
kernel of the first order: 

2ixin\ i 

(2.2) tf(*2,*i)=V(*;*2,*i), £(A) = p.v. E ^ ^ " = ^ - { A } 

where { À } denotes the fractional part of À G (—oo, oo), A ̂  0, ±1 , At the rational 
i2ofthekind(jc2,Jti) = q , ^ 

compute a representation for H as a finite sum: 

'a b\ 1 t^ 

1x q 

points on the plane Ez of the kind (x2,x\) = ( - , - ) , where (a, q) = 1, it is not difficult to 

\q q) 2qin=l 

O „ ; an +bn 

e27Tl-^r~cot 

V-continuations of general functions possess the following periodicity properties in the 
variables X2,x\\ 

(2.4) V(f\x2+ 1,JC,) = V(f\x2,xx + 1) = V(f;*2 + ̂  + ^) = V(f;*2,*i) 

and the symmetry properties of H(x2,x\) are expressed by 

H(e2x2,exx\) = 01(!±^j/(*2,*1) + i^T/fe,^)) 

(02 = ±l,(9i = ±1). 

Next we note some necessary elementary properties of the complete Gaussian sums 
(shift-formulae in the linear variable). Let q be a positive integer, a, b, v-integers, (a, q) — 
1, and denote by a' the (unique in modg) solution of the congruence 

ad = 1 (mod q). 

Then 

(2.60 S(a,b-^)=e^'^s(a,b); 
\q q ) \q qJ 

fa b + i/\ -2W(4V+2'/no fa b\ 
(2.6/0 S\ - , =e « S - , - , if? = 1 (mod 2). 

\q q J \q qJ 
Note that if g = 1 (mod 2) and g = ^ , then 

(2.7) 2' = g,4 ' = g2 , . . . ,(2 / c) / = g* (fc = 0,1, . . . ) . 

Furthermore, given a function/(A ), we let 
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The following lemma collects identities that are valid for V-continuations. We assume 
that the values of/(A ) everywhere equal to the sum of its Fourier series, which converges 
everywhere in the sense of limit of symmetrical partial sums. In particular, 

_ , _ / ( A + 0 ) - / ( A - 0 ) 
J{A)~ 

whenever both of one-sided limits exist. In particular 

(2.8) {0} = ̂ . 

LEMMA 2. 1) For each A € (—oo, oo) 

(2.80 v(f;«.A)=IË*(-.-V<A-->-
q q»=o \q q) q 

In particular, for odd q and Q—^f 

(2.8,7) V(f^A)=l-s(a)qYJe^fiX-V-). 
q q VqJv=o q 

For even q and Q—\ 

a 1 f a\ Q~] ivta'v2 2v 
(2.8ÎÎÎ) V(f;a,X)=-S[a )YJe—T~f(\-~) 

q q \q) „=o q 
ifq = 0 (mod 4). 

q q \q qJ »=o q 
ifq = 2 (mod 4). 

2) Define the following rational points on the plane E2: 

b - \ \ fa' a'b (a b\ , fa 

\q q) \q q q 
, (cl dib-\)\ (4a)f {2a)'b\ _ 

y* = - , ; y** = - , *fq=i (m°d 2) 
\q q J V q q J 

Then ifq=l (mod 2), we have 

(2.9/) £ / H e ~ = 5O0V(f;**); 
#1=1 yqJ 

ifq = 0 (mod 2), then 

(2.9//) if(n)^^ = s(y)V(f+,y**) + s(y')V(f->y*l 
n=\ \qj 
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and in the latter case only one summand at the righthand side can be nonzero, i.e. 
S(y)S(J) = 0 

The proof of all the assertions is the same. Its background is the following relation 

l*"1
 2vi„ ( 1 , iffi = 0 (mod?), 

q£0
e q JO, ifrc^O (mod?), 

and it suffices to check the identities for functions/ of the form/m(A) = e2nimX,m — 
0, ± 1 , . . . (cf. also [6]). Relations (2.8ii)-(2.8iv) follow from (2.8i) and (2.6), where one 
should take b = 0 in the cases (2.8ii) and (2.8iii), and b = 1 in the case (2.8iv) cf. also 
(1.3ii). Relation (2.9i) follows from (2.6ii), (2.9ii) is a corollary of (2.6i), and here the 
cases of/m(A ) with even and odd m should be treated separately, cf. also (1.3ii). We omit 
the details. 

Next we apply (2.9i), (2.9ii) to the case, when/(A) is the characteristic function of 
some interval u = [a,/3], whose length \UJ\ satisfies 0 < |o;| < 1. We continue that 
characteristic function periodically, with period 1, over (—oo, oo). Then 

p—2ixina p—2ixin(5 

(2.10) / ( 0 ) = M , /(«)= — (n = ±l,±2,. . .) . 
In in 

Given a function h(X ), denote 

h(X)\Xeu = h(P) - h(a) (u; = [<*,/?])• 

Using (2.10), we see that (here again we omit the details of simple calculations) 

V<f;x2,Xl) = (A -H(x2,xx - \))\xeu, 

V(f+;x2,xi) = (A - l-H(x2,x] -2À)) | A & ) , 

V(f_-x2,X]) = e^W^H(x2,X] +x2 - 2X)-H(Xj,X-^ - A))|A€lJ. 

Thus if we define the vector x = (*2, *i) in three different ways corresponding to Asser­
tion 2) of Lemma x = y**, x = y*, x = y^, then keeping in mind that H{—x) — —H(x), 
we arrive at the following relations (cf. also (l.li)) 

(2.110 V(f;y„) = (A + / / ( ( 4 ^ , ( 2 ^ + A))|Aew, 
q q 

(2.11//) V(f+;y*) = (A + \fl{-, — + 2A))|AGw, 
2 q q 

nia'b - ̂  a! a'b 
(2.11///) V(/-_;y,) = e~ — H*{-, — + A) Xeuj. 

q 2q 
In particular, for b = 0,o; = [0,a], (2.11) and (2.9) (see also (1.3i)) imply (1.5), 

which proves Lemma 1. 

3. Incomplete Fresnel integrals. The following assertion is of equiconvergence 
type and connects the values of V-continuations with the corresponding Fresnel integrals. 
It may also be considered as a version of the Poisson summation formula. 
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LEMMA 3. Letf(X ) be square-integrable over the period [0,1) and let £, 77 be real 
numbers, £ ^ 0. 77ierc 

(3.1/) e* fe-*ix2f(\Ç+r,)d\- £ / ( n ) ^ 2 + 2 B ' U 0 (A - 00). 
•/ |A|- "K|<A 

7rc particular, ifvar\(f, [0,1)) < 00 , /̂ẑ n &6tf/i f/i£ integral and the series converge in 
Cauchy principal value sense, and 

(3. Ii7) p.v. e? /°° e-*/A2/(AE +r/)JA = p.v. £ / ( « ) ^ 2 + 2 ^ = V(f'\,r,). 
J-00 „ 2 

PROOF . For fixed £, 77 and A > 2£ denote A(A) the expression on the left hand side 
of (3. li). Then using the estimates 

e* [ e-*iXld\ - 1 < < min( l , (A- |£n | ) _ 1 ) if |£n| < A, 

é?ï / e-nix2d\ « min(l,(|£n| - A ) - 1 ) if \£n\ > A, 
J\\—£n\<A 

and observing the Fourier expansion of/, we obtain the following estimate: 

(3.2) A(A) < < £ Lftn)| min(l, |A - \£n\ \~l). 
n 

Here, the right hand side tends to 0 as A —• +00. To see this, fix a real number M with 
ICI < M < A , andlet 

ui = {n : \A- \£n\\ < M}, u2 = {n : \A- \£n\\ > M}, 

A,(A,M) = J2 |/(*)|, A2(A,M) = £ |/(#i) || A - \£n \\~l. 

We have Ai(A,M) —> 0 as A —> +00, since |/(n)| —+ 0 and a;i consists of two intervals 
whose lengths are fixed and equal to 2M|£ | _ 1 and the centres ±A|£ | _ 1 tend to ±00. 
Furthermore, 

X:(A-i^ir2 = r2E(kl-A|£r1r2<<(M|£ir1 

which, after application of the Cauchy inequality implies that A2(A, M) < </ (M\ £ | ) - 1 / 2 , 
and thus by (3.2) lim supA_^00 A(A) <</• (M\ £ | ) - 1 / 2 . Since M can be arbitrarily large, 
it follows that A(A) —> 0 as A —> +00, which completes the proof of (3.li). Finally, if 
vari(/, [0,1)) < 00, then cf. (2.1ii) the limit V of symmetrical partial sums VN exists by 
the results in [6],[6i], and (3.1ii) follows. 

A comparison of (3.1ii) with (2.9i) shows that if q = 1 (mod 2), then 

(3.30 ±f (I) e^'-f =S[fj p.v. ,ï £e-^f(XOdX, 
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where £ is an arbitrary real solution of the congruence 

£2 Q V q+\ 
(3. 3//) \ + ~ — = 0 (mod 1) (2 = * — ) 

2 q 2 
In particular, for odd q the incomplete Gaussian sums ( 1.2) can be expressed as product of 

the corresponding complete sum and the Fresnel integral Ç(û ) over appropriate periodic 

interval: 

(3.3,7) E^=s[^P.,fi_iae-^dX. 

Here 

à = {\ :A = k + iq,k = 0,±l,...;,q eu}\ 
(3. 3/v) 

t~lû = {\ : A =C ri,l eu}. 

and £ satisfies (3.3ii). Thus, relation (1.9i), which provides the implicit value of the best 

posssible constant times ^fq for q = 1 (mod 2) in (1.4) is a consequence of (3.3). 

Next we consider some properties of the following integral analogue of the function 

H(x2,x\): 

/

+oo ^27r(A X2+XX\) 

dX = lim / 
-oo 2TT/A «5-0 J8<\X\<A 

A—>oo 

PROPOSITION 2. 1) Let x2 ^ 0,0 < 6 <A,UJ = (6, A). Then 

2n(\2x2+\x]) 

J\\\£UJ 27T/A 

In particular, the integral defining G exists in the Cauchy principal value sense. 2) Let 

gd )(£ > 0) denote the incomplete Fresnel integral 

g(0 = e? J*e-*ix2d\, 

and let t be a real parameter. Then the values of G satisfy the following relations: 

(3.6/) G(x2t
2,x\t) = signt • G(x2,x\); 

(3.6/1) G(jc2,JCi) = s i g n ^ , | ^ , r / ( i - A 2 ) s i g n j : 2 d A , £ = | j t i | (2 | j c 2 | r 1 / 2 , 

or, with the same value of£ and 62 — ±1,6\ = ± 1 , 

(3.6///) G(02*2,0i*i) = 0i ( - ~ s ( 0 + ^ ~ s ( o ) ; 

(3.6/v) max |G(JC2,XI)| — F\ = max |g (£ ) | ; 

3) For each fixed x2 the function G(x2, x\ ) is of weakly bounded 2-variation in the variable 

x\ over the whole real axis (—oo, oo), and this property is uniform in x2: 

(3.7) sup war2(G(jC2, •)» (—°°> oo)) < oo; 
* 2 

(3.5) f É ""' 7 ' ^A < < min( l , (g 2 | s 2 | + ^ | x l | r ' / 2 ) . 
./ A e<j Z 7 T M 
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4) ifx2 7̂  0, then G(x2,x\ ) is not of strongly bounded 2-variation in the variable x\ over 
(—oo, oo). 

PROOF. The estimate (3.5) is a special case of the following more general one, which 
is true for real polynomials of higher degree in the imaginary exponent: 

r f,2TTi(Xrxr+---+X2X2+\x\) 

(3.8) / dX << rmin(l,(<T|jd + • • • +£ | j t 1 | r 1 / r ) . 
Jè<\X\<A \ 

For the proof of (3.8) see [6i]; we note that (3.8) follows by integration by parts from 
I. M. Vinogradov's estimate of oscillatory integral (cf. [8, Ch. 2, Lemma 4]): 

(3.9) fl J«i(yxr+..-+\Xl) dX < min(l,32 || JC | | _ 1 / r ) , | | * | | = max|;c,|. 
JO l<x<r 

(3.6i) immediately follows by change of variables in the integral, defining G. Vox x2 > 
0,xi > 0, (3.6i) implies: 

(3.10) G(X2,X1) = G(^X1(2X2)-
1/2) = / I ( 0 , £ = *i(2x2)~1/2 

where 

MO = P.V. / . .. d\ a >o). 
«/-oo Z7TM 

We have h(0) = 0 = g(0) and 

*'(£) = p. v. / + 0 0 ^ A 2 + 2 A ^A =^ 7 r ^ 2 p.v . [°° e*ix2dX 
J—oo J—oo 

= eïe-**2=fâ) (€>o) 
(it is easy to see that in the above differentiation under the sign of integral is in fact 
justified). Thus h(£) = g(£)* a n d (3.10) proves (3.6ii) for JC2 > 0,JCI > 0. Relations 
(3.6ii)-(3.6iv) then follow, since the symmetry properties of G(x2,x\) are the same as 
those of//(jc2,Jti), cf. (2.5). 

To prove assertion 3) according to (3.6ii) it suffices to show that 

(3.11) war2(g,[0,oo))< oo. 

Fix a £ > 0. Since |g'(A)| = 1, we have 

var1(^,[0,a) = ^ U , ( A ) | ^ A = £. 

Thus, given a collection Q = { ujk} of nonoverlapping intervals ujk on [0, oo) and e > 0, 
Chebyshev's inequality yields 

(3.12) card{a;* : osc(g,uk) > e, ukn [0,£] ^ 0} < £ - 1£ + 1. 

Furthermore, 

1 ni roo . . 2 1 

g(oo)= 2> g(°o) -g(t) = e* J e~",xd\«rl (É > 0), 
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which implies, that for £ _ 1 < < e 

(3.13) cardju;* : osc(g,^) > £, u^U [£,oo) ^ (/)} < 1. 

Choose some £ with e~x « £ << e~l so that (3.13) is valid; then (3.11) follows 
from (3.12). 

We note that assertion 3) remains valid for traces of the function G(x2,x\ ) on a much 
wider class of curves on the plane E2 than just lines parallel to x\ -axis. In particular, 
representation (3.6ii) implies that G(x2,x\) is of weakly bounded 2-variation on every 
straight line in E2. 

To prove assertion 4), it again suffices in view of (3.6ii) to show, that 

(3.14) var2(g, [0, oo)) = oo. 

We make use of the following estimate of the tails of the Fresnel integrals: 

e 
- 7 T Ï É 2 

(3.15) e - T ( £ ( o o ) - s ( 0 ) - V ^ 7 " < < r 3 ( £ > 0 ) . 

If we take ^ = kxl2,k = 1,2,..., we see from (3.15) that 

k(4*+ , ) -^.) i2 -^<<-^, 

and thus for A > 0 

var2(#,[0,A])> £ \g(Çk+l) - g(^k)\
2 

1 1 2 
> —= V - — const ~ —y log A (A —>• oo), 

^ i<^<A2-i * K2 

which proves (3.14). 

REMARK 1. Let r > 3, and consider the following improper oscillatory integral: 

—— dX = lim Gsji(xr, . . . ,* i ) , 
A—>oo 

where xr,... ,x\ are real variables and (cf. (3.8)) 

p2ni(\2xr+---+\x\) 

Gs,\(xr,...,xi)= dX. 
J8<\X\<A \ 

Then it follows from (3.8) that G converges and represents a function which is bounded 
in the whole r-dimensional real space Er — {(xr,... ,x\)}. The boundedness result can 
be easily derived from the corresponding one for the discrete sums HN, mentioned in the 
introduction. (In fact, Darboux sums for the integral G^\ taken with respect to equidistant 
partitions of [è, A] are exactly of the form //#). 
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However, the assertions concerning the boundedness of GSA and G are not new. They 
are due to E. M. Stein and S. Wainger [7] and the author learnt about it recently from the 
book [3] where the integrals G are discussed in [3i] and [3ii], particularly, the case r —2. 
For more details on G(xr,..., x\ ) and H(xn..., x\ ) as functions of real variables xr,..., x\ 
and for applications to Cauchy initial value problems for a class of Schroedinger type 
equations see [6i]. 

4. Local properties of//. Due to (3.6) the origin (0,0) is the only point on the plane 
E2 at which Gfe, x\ ) is discontinuous. The set of points discontinuity of H(x2, x\ ) is much 
more rich, cf. [6i], in fact, it is everywhere dense on the plane. For # = 1 , 2 , . . . let R(q) 
denote the set of rational points on the plane E2, defined as follows: 

R(q) = {y=(y2,yi)= f - , ^ 1 ; q= 1,2,... \a,b = 0,±1,...,(a,q) = 1}. 
\q qJ 

and let (cf.(1.3)) 
00 

R= \jR(q); R, = {yeR,S(y)^0} 
q=\ 

Then R' is precisely the set of all points, where H(x2,x\) is discontinuous. Moreover, 
if we fix a vector y G R\ and consider increments of H in small neighbourhoods of y 
in the variable x\, we can easily compute the exact value of the jump of H at the point 

y = \q'q): 

(4.1) lim (H(y2,yi +0~ H(y2,yx - 77)) = s(y). 

Here and in what follows s(y) for y = (y2,y\) G R(q) denotes the normalized Gaussian 
sum: 

s(y) = q-lS(y). 

Relation (4.1) is an easy consequence of (2.8i), if we recall that H(x2,x\) is the V-
continuation of the Bernoulli kernel of the first order (cf. (2.2) and (2.8)), and thus 

<*)-£'(;-i)G-KD-
Furthermore, it was shown in [6i] that in small neighbourhoods of each rational point 
y the increments of H (with respect to //(y)) approximately reproduce those of G, the 
coefficient of reduction being exactly equal to s(y): 

(4.2) (H(y + z)-H(y))-s(y)G(z)^0 (z — 0). 

in particular we have 
(4.3) H(x)-G(x)-+0 (x-*0) . 

These relations are valid for all r > 2 (cf. [6i]). Here we specify the case r — 2 and 
provide a more detailed description of increments of H in rectangular neighbourhoods 
of each y G R. These neighbourhoods are of the form 

(4.4) • ( y ) = { x = ( x 2 , * i ) , | x 2 - v 2 | «q-2,\xx-yx\ <0.5q~x} 

if y = (yi,yi) £R(q). 
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THEOREM 2. Let q = 1,2,.. . ,y = (yi.yi) G R(q), and let z = (z2,zi),( = 
(̂ 2,Ci) G ^2 ^ ^MC^ that the points x ~ y + z and x/ = y + £ belong to nn(y). Then 
the following asymptotic formula holds true: 

(H{y + z)-H(y + 0)- s{y)(G{z) - G(( )) 

( 4 5 ) « 9 1 / 2 ( | Z 2 | 1 / 2 + |<2| , / 2
 + | z i -Cl | ) -

PROOF. The main point of the proof is the following auxiliary statement which pro­
vides asymptotic formulae of Vinogradov's type (cf. also [4]) for finite quadratic expo­
nential sums. 

LEMMA 4. Let UJ be an interval on [I, oo), K a real number and q a positive integer, 

y = (yi>y\) € ^(tf)>x = y + i, where z = (zi,Z\) G E2 and let 

(4.6) %nq\zi\ < 1 (n G a;); 2q\z\\ < 1. 

Then the following estimates hold true: 

(4.7/) ]>[>ree?(*,>0-.sCy) / A^fcA) JA << x ^ l / 2 maxA K , 

(4.7/0 E nKe(x,n)-s(y) [ \Ke(z,\)d\ « K ^1/2maxA\ 
i.frr.. J|A|GO; A€W 

é?(*,À) = e2*i(x2x2+Xx]) for x = (JC2,JCI) G £2, A G (-00,00), 

(—1)K = e7"*, am/ m (4.7U) the summation is taken over all positive and negative inte­
gers n with \n\ G UJ. 

We postpone the proof of Lemma 4 to Section 6, and now make use of this proposition. 
Given a point x — (x2,x\) G E2, consider the sequence of continued fractions (cf. [5], 

or [9, Ch. 1]) of the leading coordinate x2: 

yji = yjiOci) = % (7 = 1,2,...). 

We add Qo = 1 to the sequence of denominators <2/ = <2/(x2), and if x2 is a rational 
number, then the sequence of 3^ is finite, and we add Q = +00 as the final denominator. 
Furthermore, fix j — 0 , 1 , . . . and define the rational number yj\ as the closest to the 
coordinate x\ among the fractions (not necessarily irreducible) with denominators Q — 
Qj(x2), i.e., 

b \ b \ 
» i = » i ( * i , * 2 ) = g , -2Q^X>-Q<2Q' 

Let yj = (yj2,yj\ ),Zj = x — yj,j = 0,1, We make use of the following three well-
known properties of continued fractions (cf. [9, Ch. 1]) and best rational approximation 
to real numbers: 
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(4.8i) the denominators Qj increase at least as the Fibonacci numbers do: 

Qj+2 > QJ+\ + Qj\ 

(4.8ii) the errors zy satisfy relations 

1 < \Z2j\ < ' 
2QjQj+i QiQ*\ ' 

(4.8iii) yj2 is the closest rational number to X2 among all those whose denominators do 
not exceed Q/, 

(4.8iv) if £ is a real number, Q = 1,2,..., À an integer (A, Q) = 1 and 

i-
Q 

<_L, 

then ^ is the closest rational number to £ among all those rationals whose de­
nominators do not exceed Q. 

The latter statement may be complemented as follows: 
(4.8v) If £ is real, Q= 1,2,..., and for some constant c > 1 and integer A we have 

< - 5 - 2 < 2 2 

then each rational number of the form Bj P with P <c ' Q is not closer to £ than 
A/ Q. Since otherwise we would have had 

PQ 

B A 
< <"? + <-s < < cQ2 

which obviously contradicts the assumption P < c ]Q. 
Furthermore, we also make use of the following estimate of the tails of the integral G 

(cf. (3.5)) 

sup 
L>A 

I e(z,X) 
d\ « min(l ,A- ' |z2r1 / 2) (A > 0;z - (z2fZl) <E E2), 

JA<\X\<L \ 

and we obviously have (cf. (1.3)) 

(4.10) s(yj) = QjxS(yj) < < Qj'12. 

Next we define the following intervals on [1/ 8, oo), which depend on the denomina­
tors Qj = Q/fe) of continued fractions to^2 of x — fe,xj); 

(4.11) u;j = {\ :Qj(x2)<8\ < e>+ i fe)}j = 0 , l , . . . 

(Note that UJ0 may be empty.) If N G uijfa), then on account of (4.8ii) and the definition 
of y\j we have 

%nQj\z2j\ < SnQ^\ < 1 (ne uj)\ 2Qj\zij\ < 1. 
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Thus by Lemma 5 with n — — 1 and by (4.9), (4.10) and (4.8ii) we obtain 

(4.i2o E ^-«yj)J^ % ^ dx « AT'C;'2; 
\n\eujj,\n\>N n \\\>N 

(4. 12,7) E — « A r » e ; / 2
 + C7 , / 2 min( l ,Ar ' f i / 2 e ; / I

2 ) 
M a* " 
|"|>Af 

and in particular also 

(4.12/IÏ) E ^ < < e r 1 / 2 . 
\n\>N 

(Note that it may so happen that there are no integers n satisfying \n\ G ujj and \n\ > N, 
and in that case the corresponding sums obviously equal 0.) 

Estimate (4.12iii) along with (4.8i) imply in particular the everywhere convergence 
and uniform boundedness of the sequence of symmetric partial sums 

e(x,n) 

\<\n\<N Z7rin 

Obviously, for that purpose less accurate estimates than (4.12iii) would also be sufficient. 
Next, for sake of definitiveness, we assume that \z2\ > IC2I a nd consider separately 

the following two cases: 

(4.13/) 2q2\Z2\ < 1 ; 

(4.13//) 1 < 2q2\Z2\ < c , 

where c denotes the value of the absolute constant in the sign < < , occurring in the 
definition (4.4) of t=i(j). In the case (4.13i) we let 

N= \32Z2\~
l/\ M= \%qz2\~

X\ N* = |32Cz|_1/2, M' = \%q&\~1 • 

ThenN<M <M',N<N'. Let CJ = [l,N], 

A(CJ) = y, z^ > 
|n|€a; 2lTin \n\eu, 2 l l i n 

and z(t) = (1 - t)z + < for 0 < t < 1. Then 

e(y, n) de(z(t), n) 

\ | n | e 
^ 1 dU 

euj Lixin at i 

(4.14) Mz«),n) = 27t.n((z2 _ z2)n + (< | _ z i )X 
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and consequently 

(4.15) A(u) = M £ («2 -Z2)" + (Ci -Zi)M*(0,") I A 
0 \M€u, / 

with x(t) = y + z(t), 0 < t < 1. For each fixed f G [0,1] 

|Z2(0| = |z2(l-0+Cz^l <max( | z 2 | , | 6 l )= \zi\, 

and thus for \n\ Gw,rG[0 , l ]we have (cf. also (4.4)) 

&\nqz2(t)\ < %Nq\z2\ = NM~l < 1, 

2\qzi(t)\ <2^max( |z 1 | , |Ci | )<l . 

From this we see that for each fixed t G [0,1 ] the conditions of Lemma 5 are satisfied. We 
apply that lemma, taking K = 1 and n — 0. Then using (4. Hi) we see that for /G [0,1] 

£ ( ( C 2 - z 2 ) " + (Ci-^i)M*(0,«) 
| «lew 

- s{y) f («2 - z2)A + (Ci - zx ))e(z(tl A ) dX 
J\X\EuJ 

«q~[/\\Ci-Z2\N+\Ci-Zi\). 

Next we integrate this relation over t G [0,1]. Interchanging the orders of integration 
and keeping in mind the definition of N and (4.14), we then arrive at the following ap­
proximate representation for A(o;)(cf. also (4.15)): 

(4.160 A ( W ) - ^ ) ( i | o ^ r ^ ^ d A < < 9 ' / 2 ( | C 2 | i / 2 + |Z2 | i/2 + K l _ Z l | ) . 

If we also apply the estimate | sin u\ < \ u\ (3(w) = 0) and 

e ( C , A ) - e ( z , A ) « |Cz - Zi\X2 + |(Ci - Zi)A |, 

we immediately can substitute (4.16i) by 

(4.16n) 

Furthermore, let u\ = (N,M),UJ[ — (N,Mf). Then Lemma 5 is still applicable, and 
using (4.7ii) with K = 1 we get: 

(4.170 E T^-^L o f ^ d A « «1/2""1 « 9,/2l^l,/2. , TTL znin J\x\eQi 2irin IHeQi 2irin J\x\eQ\ 2irin 

e(xf,n) . . r e(Ç,X) (4.17.) E ^-«y)L^^dx<<qvw>\ 
\n\e& 2 7 r m ^IAIGQ; 2TT in 
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It follows from (4.9) that 

(4.180 s(y) f e4^d\« ^ /2 A / - 1 | Z 2 | - i /2 K< , / 2 M i/2( 
J\\\>M 2iun 

(4. is,,-) ,cv) f e-^dx« *'/Wr'iûi-'/2 « <?1/2I6I1/2-
J\x\>M' lirin 

Next we turn to the estimates of the remainders 

|«|>M 2 7 r / w ' \n\>M 2lTin 

Since we deal with the case (4.13i), it follows from (4.8iv) and (4.8iii) that there is 
such ay that q = Qj(x2), i.e., q belongs to the sequence of denominators of the continued 
fractions for x2. Then by (4.8ii) we also have 

1 , , , , 1 
< \Z2j(x2)\ = \Z2\ < 2qQj+{(x2) qQj+{(x2) 

Moreover 

&q\z2\ " 8 

Thus using (4.12iii) withy + 1 instead of j and M instead of TV we see that 

(4.19/) R « Q;+\/2(X2)« ql/2\z2\
l/2. 

Exactly the same observations show that 

(4.19//) # « 4 1 / 2 | 6 | 1 / 2 . 

Now (4.16)-(4.19) imply (4.5), which completes the proof in the case (4.13i). As for 
the case (4.13ii), we notice that (4.5) is equivalent to 

(4.20/) H(y + z)-H(y + Ç)« q~^2. 

The proof follows the same lines as in the case (4.13i) and uses the property (4.8v) instead 
of (4.8iv) when estimating the remainders R and Rf. We omit the details. 

REMARK 2. Let 

y=(ab-) eR{q)^=(ab^l] where* = 0 or ± 1, 
U qJ W q J 

and let x G • ( j ) , * / £ I=I ( / ) - Then 

(4. 20//) H(x) - H(xf) << q'1!2. 

This is an easy consequence of (4.20i). 

https://doi.org/10.4153/CJM-1991-010-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1991-010-0


ON FUNCTIONAL PROPERTIES 201 

5. Proofs of Theorem 1 and Proposition 1 (completed). Given x2, a collection 
Q= {^k} of nonoverlapping intervals of [0,1) and a positive number e, let 

h(0 = H(x2,0> «(e) = {ukeQ,osc(h,vk)> e}, 

(5.1) Q,.(e) = {a* GQ(e), fi^l < | ^ | < Ô71}. 

Clearly, we can assume that OSC(/Î, Uk) = |/i(/3*)—&(<**) I > where u;* = [ar*,/3*].In(5.1)Q/ 
denotes the denominator of the continued fraction for x2 under consideration (cf. Section 
4). Note, that we may due to (2.4), assume that 0 < x2 < 1/2, and moreover that x2 

is an irrational number (the case of rational x2 can be obviously treated by a continuity 
argument). Let y2j- = cijQj1 denote the continued fractions themselves, and for each fixed 
jmdb = 0 ,± l , . . . .Le t 

• y > = { ( 6 ^ i ) : 16-^ -1 <{QjQj+\r\2\xx-bQJl\ <Qj1} 

Theorem 2 can be applied to estimate osc(/z, ujk) for the intervals Uk in Q/(e), and thus 
due to (5.1), (3.6iv) and (4.20ii), the set ujj(e) is empty if Qj > ce~2, where c is a suitable, 
sufficiently large, but absolute, constant. On the other hand, since \uk\ > Qj\ for Uk £ 
Qj(e)9 we trivially have 

cardQ/(e)<< Qj+l 

which by (4.8i) implies that 

(5.2) J2 cardQ,j(e)« s'2. 
j:Qj+]«£-2 

Therefore, we are left to consider only those/s for which the two-sided restrictions 

(5.3/) Qj«e~2« Qj+l 

hold true. By (4.8i) the number of such/s is bounded uniformly in e: 

(5.3//) card{y : Qj « £~2 « Qj+i} « 1. 

Fix ay with (5.3i) and first consider all those ujk G £&/(£) which contain points of the type 
(b — 0.5)<2~\ where b = 0, ±1 Clearly, the number of such Uk's does not exceed 
Qj, and thus their total number over ally with (5.3i) is < < e~2 on account of (5.3ii). For 
each of the remaining Uk G ^ ( e ) there is such an integer b that 

(5.4) LjkCljJb = [(b-0.5)Q]-l,(b + 0.5)Q]-1]. 

In order to estimate osc(/i, CĴ ) from above, we make use of Theorem 2 with 

y = yjJb = (ajQj\bQJx),z2 = £ = x2 - ajQj\ 

z\ = ak - bQJlX\ = (3k - bQj\ where uk = [ak9/3kl 

Then by (4.5) we see that for each Uk E Qj(e)9uJk C /,>, one of the following three 
estimates is valid: 

(5.5o £<<e;/2(N1/2+ici1/2)<<ô;+;/2 

https://doi.org/10.4153/CJM-1991-010-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1991-010-0


202 K. I. OSKOLKOV 

(cf. (4. 8n)); 

(5.5//) 

(5.5///) 

£«Qj,2\f3k-ak\ = o j / 2 | " * | ; 

e « QjXl2\G(z2,cck - bQjx) - G(z2^k ~ bQjx\. 

Due to (5.3i) relation (5.5/) is either impossible or it means that Qj+\ « Qj « e 2 

and thus 

(5.6i) YJ c a rd{Uk '• (5.50 holds ,u k G Q/(e),uk C Ij,b} << e2 

l<b<Qj 

Furthermore, since £& | ^ | < 1, by Chebyshev's inequality and (5.3i) we have 

(5.6//) c a r d { ^ : (5.5//)holds } < < Q]/2E~1 < < e'2. 

Finally, to estimate the number of those k for which (5.5iii) is valid with a fixed b, we 
1/2 _o _0 _ i 

apply (3.7). It follows that this number is < < {zQ-1 ) = £ Qj and consequently 

(5.6///) Y, c a r d( k : (5-5ii i)holds } < < £~2-
l<b<Qj 

Estimates (5.6) and (5.3) imply that card £l(e) << e~2, and thus 

war2(/i, [0,1)) = war2(//(jc2, •), [0 ,1) )<< 1 

which completes the proof of Theorem 1 ((1.6ii) is a corollary of (1.6i) and Lemma 1). 
Furthermore, to prove (1.7), we make use of the following well known asymptotic 

formula (cf. Lemma 4 with q = 1, K = 0) 
£ > 2 " ^ _ fn

e
2jir dX « 1 (Sn<Q, Q= 1,2,...). 

If we take ock — (Qk/ 2)xl2,k = 0,1,2, . . . ,32£ < g, and put ujk — [ak-\,ak) we readily 
see that (cf. (3.15)) 

E >> eiogg, 

and (1.7) follows. 
We proceed to the proof of Proposition 1. (We have already proved ( 1.9i), cf. relations 

(3.3)). First of all note, that 

g(+oo) = e 
Jo 

+ 0 ° «ri\2 , 1 
dX = - , 

2 

and thus, using the asymptotical formula (3.15) we see that the following strict inequal­
ities are valid for the quantities F\, F2, F3 : 

(5.7) 
F , > £ ( + o o ) = - ; F2> -+g(oo) = 1; 

F3 > 1 
1 

75 g(°o) 1 
2^31 

13 
12' 
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Now denote by £ i, £2, £3 respectively, those values of £ for which the max in the defi­
nitions of the quantities F\,F2, F3 is attained. We present below explicit (up to the numer­
ical values of £1, £2, £3) examples of "bad" denominators q, arguments - and intervals 
UJ, for which the corresponding incomplete Gaussian sums are "large" in the asymp­
totical sense as q —> 00. We consider odd denominators q only, and use the notation 
G = (^+1) /2 (cf. (2.7)). 

1) In the case of the short sums, i.e., Wa(aq~1) with aq — o{q), (a > 0) as q —> 00, 
fix an integer k — 0 ,1 , . . . , and let 

(5. 81) a = Qk+2 ( i.e., (4a)' = 2*), aq = i\\j2k+xq. 

li) In the case of short sums, symmetrical with respect to 0, i.e., W(uj,aq~l) with UJ = 
[—aq, aq\aq— o(q)(a > 0), define a and a as above, cf. (5.81). 

3) In the case of middle-length sums, i.e., Wa(aq~l) with a = 1/ 2 + /?, where (3 > 
0,(3q = o(q) (q —• 00), let 

(5. 811) a = Q, ( i.e., (4a)' =Q)aq=^+ £2 v /? 

4) In the case of almost complete sums, i.e., Wa(aq~]) with a = 1 — (3, where (3 > 
0,(3q = o(q) (q —> 00), let 

q=-l (mod 6); a = -3Q2 ( i.e., (4a)' = ~ ~ \ 
(5.8///) r— 

, \ïq 
<*? = ? - 6 ^ y • 

In all these three cases we use the identity (1.5i), and the following asymptotic rela­
tions, which are special cases of Theorem 2 (see also (3.6//)) (zi > 0, z\ > 0). 

(5.9/) H(Z29Zl)-g[-^—^ <<z\/
2
 + Z{ 

( , M , « ( ^ a , 2 , ) - ^ ( - 2 l ^ ) « 4 ' = + , ( ^ = s(i.o)). 
Case 1). Let (cf. (5.81)), for some fixed k = 0,1, 

(4a)' 2k 

zi = = —, z\ = a = £] 
q q 

2k+l 

q 
i.e.,z1(2z2r1/2 = £1. 

Then we see from (1.5i) and (5.9i) that 

Wa(-)-S\-\g(ti)«kl, 
' • ( ; ) - ( ; ) • 

and the result follows by the definition of £1. 
Case 2). Let (cf. (5.8ii)) 

(4a)' 1 Q 1 1 1 £2 

q 2 q 2 2q 2 <Jq 

https://doi.org/10.4153/CJM-1991-010-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1991-010-0


204 K. I. OSKOLKOV 

i.e., 

zi(2z2r1 / 2 = 6 , 

and use the identity (cf.(2.4)) 

H(x2 + -,xi + -) = H(x2,xl). 

Again by (1.5i) and (5.9i) we have 

" • ( Î ) - Î ( Ï ) ( 1 + ' < « I « I -
and the result follows from the definition of £2-

Case 3). Let (cf. (5.8iii)) 

(4a)' 1 2Q 1 1 
q 3 3g 3 3g 

Zl = 1 - a = £3 

Then by (1.5i) and (2.4), (2.5) we have 

, ~ , i .e . ,Z l(2 |z2 | r1 / 2 = 6 . 

Wi-Zl (^ j = 5 ( - ) ( l - z i + tffe - i-, 1 - z0) 
1 

- * ( ; ) « - < 
tf(*+^,zi)), 3 3q 

and therefore, by (5.9ii), 

MïHG) (->>)«'• 
which concludes the proof of the estimates Kk > Fk, k — 1,2, 3. 

Finally we show that in the case of k = 1 we actually have equality K\ = F\ (cf. ( 1.9i-
ii)). This assertion means that the maximum F\ of incomplete Fresnel integrals equals 
the best possible value of the constant X^/q in the estimate 

Wa (?) « ,/q 

for incomplete Gaussian sums of short length (i.e., a > 0, aq —• 0(q —> 00); we 
consider only odd denominators q, but an appropriate modification seems to be also true 
for even q). We already have the inequality K\ > F\ and thus (cf. (1.5i)) to prove the 
assertion, it suffices to establish the following estimate for H(x2,x\): 

(5.10) |#(*2,*0| <F{+c\xi 1/2 
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where c is an absolute positive constant. Clearly, we can assume that x2 G (0 ,1/ 2),x\ G 
(0,1/2). Consider the continued fractions ajQjx,j = 0,1,2,..., corresponding tox2 (see 
section 4; we let ao = 0, go = 1), and find a number j such that 

1 1 

2fi l-2Qj '7+1 

Let y; = (ajQr\0y, then x = fe,x0 G • (#) (cf. (4.8ii) and (4.4)) and Hty) = 0. 
Thus, we can apply Theorem 2, and it follows from (4.5) and (4.8ii) that 

n(x2,x{) - s(yj)G(x2 - ajQr\Xl) << Ql/\\x2 - ajQyl\1/2 + \Xl\) 

Since \s{y)\ < 1 for all y G R and max \G\ = Fx (cf. (3.6iv)), (5.10) follows, thereby 
completing the proof. 

6. Some formulae of summation. The main goal of this Section is to prove Lem­
ma 4, which was used above in the proof of Theorem 2. This is achieved by auxiliary 
statements—Lemmas 5 and 6, which are of a well known type in Analytic Number The­
ory: oscillatory sums are substuted by appropriate integrals, and the corresponding error 
terms are estimated. This general scheme originates from early papers of Vinogradov 
and the work of Van der Corput. 

Let B(X ) denote the Bernoulli kernel of the first order, (cf. (2.2)), i.e., B(X ) = 1 / 2 -
{ A } for real nonintegral À, and it is again convenient to assume, that B(m) — 1/2, 
if m = 0, ±1 , Fix a complex parameter (p,<p ^ ±1 , ± 2 , . . . , and let for the real 
variable A (cf. also [5i, p. 234]) 

e2ninX j / ^2iri<pB(\) j 

(6.h) A(^,A) = p.v. £ 
£UQ 2ni(n + <p) 2ni \ s'minp if 

<6.i,v> ^ . M = ^ = - E ^ T ^ . 

<6.1„> 4 0 V M ) _ * * * * ) = £ * " 
dip2

 n^07ri(n + if)3' 

LEMMA 5. Let LU = [a,(3] be a closed interval on the real axis, \LU\ — /3 — oc > 0, 
and 0(A ) a complex valued function, twice continuously differentiable on LU, 10(A )| > 
0(A £ to), and possessing the property: the logarithmic derivative 

( 6 - 3 ) * ( A ) = 2 ^ ô ( Â ) 

does not take on any integral values on LU, with the possible exception of zero, i.e., 

(6.4) min min \(f(X) — n\ — p > 0 
Xeuj |n| = l,2,... 
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Furthermore, let (cf. (6.2)) 

D(0) = X;'0(v)-/'*(A)rfA, 
vGu; 

(X' denotes the sum in which the summand, corresponding to the end point ofuj is taken 

with the factor 1/2 whenever this end is an integer), 

a(\) = A((/?(A),A), b(X) = A(l\if(X\X) (A G u). 

Then 

(6.5/) D(®) - 0(A)fl(A)|A6o; " /" ®(A)^(A)i(A)£/A. 

In particular, the following estimate is valid: 

(6.5//) D(O) < < p m a x | 0 | ( l + vari(<p,a;)) 
a; 

= m a x | 0 | ( l + / |<p'(A)|rfA). 

PROOF. For each fixed (p ^ ± 1 , ± 2 , . . . ,A(y?,A) is differentiable for A ^ 0, 

± l , ± 2 , . . . , a n d 

(6.6) A ( f ; A ) +2iri(pA(<p,\) = - 1 (A =̂  0 , ± 1 , . . . ) . 
dA 

This may be easily checked using the explicit representation of À in (6.1i). Moreover, 

keeping (6.4) in mind and using the series representations of B(X) and a(X) (cf. (6.1i)), 

we see that the function 

p2ixin\ 

c(A) = £ ( A ) - f l ( A ) = ( / ? ( A ) £ 
n^027rm(/i + <p(A)) 

is continuous on u, and is continuously differentiable everywhere on that interval except 

for the integral points A G w. On account of (6.6) and definitions of a(X),b(X) the 

derivative c'(X ) is computed as follows: 

dA(if,X)\ 
c>(X) = B'(X)-a'(X)=-l- 3 A ( ^ ' A ) 

<p=tp(\) - <p'(A)- -, 
<p = tfi(\) dX 

= 2TT i(f(X)a(X) - (ff(X)b(X) (A ^ 0 , ± 1 , . . . , A eu). 

In particular, c(A) is absolutely continuous on u, and integration by parts shows that 

D(<D) - / O d£ = [ <&d(a + c) 

= [ ®da+ [ <&c dX = <3>a\u + / (Oc' - O'a) JA 
Jo; Jo; JUJ 

— Oa |w + / <D • (liriipa — (p'b — lixiipa) dX 

= Oa\CJ- [ Qxp'bdX, 
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and (6.5i) follows. The estimate (6.5ii) is a consequence of (6.5i) and (6.4), since 

(6.7) | û ( A ) | + | f c ( A ) | « p l (AGo;). 

LEMMA 6. Let q be a positive integer, e — em (m = 0, ± 1,...) a sequence of complex 
numbers, periodic in m with period q i.e., 

(6.8) em+q = em (m = 0 ,±l , . . . ) 

and let 
1 ? n 

S = - J2 em-> v = max E Q m=\ \<n<q m=\ 

Furthermore, let LU be an interval in (—oo, oo), and F(X) a complex valued function on 
LU, three times continuously differentiable and vanishing nowhere on LU, and assume that 
the function 

1 ?{\) 
¥ > ( A ) : 

27TÏ F(X) 

does not take on any values of the form -,a — ±1 , ±2 , . . . on LU except perhaps the value 
0, i.e., 

(6.9) min min \qtp(X) — a\ — p > 0. 
AGa; |a| = l,2,... 

Then the following estimate holds true: 

(6.10) J2 emF(m)-s f F(X) dX « p V(max|F|) ( l +£« , • ) 

<5i = ô\((f,q) = max I / M dA; (a,f3) C LU,\/3 — a\ < q} , 

S2 = 62((f\q) = q / |v?'| rfA; 63 = hiw'^q) = q2 I ^ ' 1 ^A; 
Jo; ./a; 

54 = &.(¥>",q) = q2 I \ f"\ d\; S5= 85(tp',q) = q3 [ \ <p'\2 d\. 
JUJ JUJ 

In particular, if§t((p') and $s((ff) are piecewise monotonous and the number of intervals 
of monotonicity does not exceed an absolute constant, then 

(6.11) £ emF(m)-s [ F(X) dX « p V(max |F|)(1 + 66
2 +67 + <56<57), 

where b^ — q max^ | ip |,67 = q2 max^ | < '̂|. 

PROOF. With no loss of generality we can assume that: a) max^ \F\ — 1 ; b) q > 2 
(cf. Lemma 5); c) LU is of the form [1, a ] , where a > 1. 

First consider the case of short intervals LU , namely a < < q. Then we obviously have 

(6.12/) s [ FdX « q~lV\Lu\ « V. 
JUJ 
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Let/? = [a] and 

K. I. OSKOLKOV 

Wn = E em, \ <n<p. 
m=\ 

Since p < < q, we have Wn < < V, and thus using summation by parts we see that 

(6.12/i) E ^ ( m ) = E Wm(F(m) - F(m + 1)) + WpF(p) 

'' rm+[ . 
m = l J m 

< < V(/" |f*(A)| dX + 1 ) < < V(/" |(^(A)| JA + 1) 
J UJ Jul 

« V( l+«0 

Estimates (6.12) imply (6.10) in the case when | UJ \ << q. Now, it suffices to consider 
intervals UJ of the form UJ — [l9Nq], where TV is a positive integer. For such an interval 
let 

Q = [ 0 , # - l ] , 0 ( / z , A ) = F(/i+Atf) (A Go;, 1 </z < ? ) , 

7m= / 0>(m,A) dA (m= 1,2, ,q\ 

Using (6.8) we see that 

(6.13/) 

Summation by parts as in (6.12ii) easily shows, that for each fixed v G UJ we have 

Nq q I 

E emF(m) = E emF(m) = E em I E $>{m,v) 
mEu) m—\ m~\ \jEul 

2 > w O ( m , i / ) « V(l+5i), 
m = l 

and thus, up to the same error, we can substitute E by Ylf in (6.13i) (cf. Lemma 5) 

(6.13//) 

Furthermore, 

E emF(m) - E ^ E ,(I>(m,v) < < V(l +«,). 
mGw m = l ï/Gti; 

7m = / F(m + Xq)dX = - F(X)dX, 
Jo a J m 

\'m *m+l <2q ; 

1 f(N-\)q+m 

q 

[ F(X)dX 
' JiO 

< 1, 

and thus after summation by parts we obtain: 

q q-\ 

E emL = E Wm(Im " Im+\) + WqIq, 
m—\ m—\ 

E (6.14) J2 emIm - s [ f(X) dX « vlY.lIm-Im+i I 
m = 1 w \ m = 1 

+ 17, - - f F(X)dX\) « V. 
qJu J 
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Now we apply the identity (6.5i) to the functions <î>(m, À ) for m = 1, . . . , q and À Gw. 
By the assumption (6.9) the requirement (6.4) is satisfied for all these functions, since 

(6.15) (27r/<D(m,A))_1—^—^ = q(p(Xq + m) ( m = l , . . . , ? ; A G û). 
ôX 

Then, using (6.13ii), (6.14) and (6.5i) we see that 

(6.14/) Y, emF(m)-sf F(X) dX « V(l +«i) + |/?i -R2\, 

where for 1 < \i < q (cf. (6.1 )) 

q 
R\ = E emA(m), A(/i) + 0(/i,AM/i,A)|A€^; 

m=\ 

a(ii, A) = A(q(f(Xq + //), A); 

Ri=£ emB(m\ B(») = / 0>(/i, \)<?<p'(\q + / / * , A) dA, 

b(n,\) = A(l\q(p(Xq + fi),X). 

To estimate /?i and /?2, we use summation by parts once again. For convenience we will 
use the symbol 3 to denote differentiation with respect to the parameter /x, i.e., d = j - . 
Then we have 

(6.16/) |/?,| < VI [q \dA(fi) dfi + max |A(/i) |], 

(6.16//) \R2\ <V\ [q\dB(ii)dn+ max |£( / i ) | ] , 

According to (6.9) (cf. also (6.7)) we see that 

(6.17) |tf(/i,A)| +|fc(/x,A)| « p 1 (/x G [1,(7], X ecu) 

and therefore 

(6.18/) max |A(/x)| <<« 1; 

(6.18//) max |#(/x)| < < p <?2 max / |(/(A<? + /i)| dX 

< ? / |^'(A)| </A = «2. 
Jo; 

Fix a A G cD and introduce the notations 

0(/i,A) = 0(/i), a(fjL,X) = a^, (p(\q + n) = ^ , 

(pf(Xq + fi) = (fl (p"(Xq + fi) = (p'p, fe(/x,A) = ^ , 

A (2 )(^(A^ + /x),A) = /zM. 
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We have 

da^ = q(p'(\q + ii)A(l\q(f(\q + fi),\) 

(6.19/) di&^ay) = aM30M + O M 3 ^ = <D^(27r /^^ +q^b^)\ 

(6.19») 3 ( O ^ V ; ^ ) = tf&vVniip^ + c / ^ +q(^)2h,). 

Keeping in mind (6.17) and the analogous estimate for h^, namely 

|/iM| < max max \A(2\q(f(Xq + /x),A)| < < p 1, 
A Go; 1 <n<q 

we see (6.19) that 

|d(<V/i)l « P l<*vl+?l^|. 
|a(o^2o;^)| « p ( | ^ ^ | + | ^ + ̂ |^ |2) . 

It follows from these estimates and from (6.16) that 

\R\\ «p V\ 1 +max f (\(f(Xq + fi)\ + q\ (f'(\q + /i)|)d/x 1 

\Rl\ « P V(52+q2 [(\ipip1 + \^"\)dX+qi [ \^'\2d\) 
Ju Jul 

= V(82 +^3 + 84+85). 

These estimates and (6.14i), (6.16), (6.18) imply the validity of (6.10) with*,-, 1 <j < 5, 

in the remainder terms. Now, if 3ft^/(A ) and S<^;(A ) are piecewise monotonous, the same 

is true for ?R(^(A) and 3(/?(A). In this case we have 

8\ <86 : 82 < q var\((p,u) << 86 < 1 + <56
2; 

£3 < (^max|<^|) (qvar\(ip,u)) << £6
2; 

84 < q2var\(<p',uj) << g2max \ipf\ — 8q\ 

85 < (g2max \<p'\) • (q vari(<^,a;)) < < 868-], 

and (6.11) follows, completing the proof of Lemma 6. 

Now we are in a position to complete the proof of Lemma 4. Let 

e(m) = e(y,m) : F(A) = \xe(z, A) (A G w) 
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Then (cf. (1.4)) 

(6.20/) 
1 q 

2TTI F(X) 2TTIX 

27nA2 

(6.20//) V = max 
AI 

X) ^Cy, m) 
m = l 

« t f ' / 2 . 

We first consider (4.7) for the intersection Q = a; H [l9q].lfû ^ 0, we estimate the 
integrals trivially: 

s(y) f XKe(z,X)dX « q~l/2m<ïxXK; q = ql'2max\K 

J id LU LU 

and apply summation by parts to Ed) • 

X nKe(x,n) = X e(y,ri)nKe(z,u) 
HELU HELU 

<< Vl X I n ^ f c « ) - ( « + l)"efow + 1)| + maxA 

< < q]/\maxXK)Uq+\\z2\\+\zi\)dX+l\ . 

Therefore we see from (4.6) that both the sum and the integral of (4.7) which correspond 
to the interval Q can be included in the remainder term q]/2maxXK. Thus we are left 
with the case when min^ À > q. In that case we have the following estimates for the 
remainder terms <$6 and 6j of (6.11)(cf. (4.6)): 

(6.21/) 66 << ^(maxA-1 +max|z2 | + |zi|)) < < 1, 
LU LU 

(6.21//) 67 < < 42(maxA~2 + | z 2 | ) < < 1. 
LU 

On the other hand (4.6) ensures that the condition (6.9) is satisfied with p = ^, and 
therefore (4.7i) is a consequence of (6.11), (6.21) and (6.20). 

As for (4.7ii), we let, for A G a;, 

e\m) = e(y,-m) + e(-m), F*(X) = F(-X) = ( - A ) ^ f c - A ) , 

and from exactly the same considerations as above we conclude that 

(6.22) Y](-nTe(x,-n)-s*(y) [ ( -A)Vfo-A) dX « ql/2maxX\ 
„C/ . , JXELU LU 

where 
1 q 1 q 

Ay) = - Z) *̂(m) = - X) e(y,-m). 
Q m=\ Q m=\ 
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It is a very simple, but essential consideration, that s*(y) = s(y), since (—m) runs over 
the same complete system of residues modg as m does. Thus, (4.7ii) is a consequence 
of (6.22) and (4.7i). 

REMARK 3. In connection with Theorem 1, it seems to be of interest to consider 
variational properties of H(x2, x\ ) on other curves on the plane E2, in particular, those of 
//(£,*i),£ G [0,1) for fixed xi. 
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